Merge pull request #40 from cwiki-us-docs/feature/tutorial-kafka

更新 Kafka 页面的内容
This commit is contained in:
YuCheng Hu 2021-08-06 14:38:30 -04:00 committed by GitHub
commit 461bad9659
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 76 additions and 324 deletions

View File

@ -1,42 +1,14 @@
---
id: tutorial-kafka
title: "Tutorial: Load streaming data from Apache Kafka"
sidebar_label: "Load from Apache Kafka"
---
# Kafka 数据加载教程
<!--
~ Licensed to the Apache Software Foundation (ASF) under one
~ or more contributor license agreements. See the NOTICE file
~ distributed with this work for additional information
~ regarding copyright ownership. The ASF licenses this file
~ to you under the Apache License, Version 2.0 (the
~ "License"); you may not use this file except in compliance
~ with the License. You may obtain a copy of the License at
~
~ http://www.apache.org/licenses/LICENSE-2.0
~
~ Unless required by applicable law or agreed to in writing,
~ software distributed under the License is distributed on an
~ "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
~ KIND, either express or implied. See the License for the
~ specific language governing permissions and limitations
~ under the License.
-->
本教程演示了如何使用Druid的Kafka索引服务将数据从Kafka流加载到Apache Druid中。
假设你已经完成了 [快速开始](../tutorials/index.md) 页面中的内容或者下面页面中有关的内容,并且你的 Druid 实例已使用 `micro-quickstart` 配置在你的本地的计算机上运行了。
到目前,你还不需要加载任何数据。
## Getting started
## 下载和启动 Kafka
This tutorial demonstrates how to load data into Apache Druid from a Kafka stream, using Druid's Kafka indexing service.
For this tutorial, we'll assume you've already downloaded Druid as described in
the [quickstart](index.html) using the `micro-quickstart` single-machine configuration and have it
running on your local machine. You don't need to have loaded any data yet.
## Download and start Kafka
[Apache Kafka](http://kafka.apache.org/) is a high throughput message bus that works well with
Druid. For this tutorial, we will use Kafka 2.1.0. To download Kafka, issue the following
commands in your terminal:
[Apache Kafka](http://kafka.apache.org/) 是一个高吞吐量消息总线,可与 Druid 很好地配合使用。
在本指南中,我们将使用 Kafka 2.1.0 版本。下载 Kafka 后,在你的控制终端上运行下面的命令:
```bash
curl -O https://archive.apache.org/dist/kafka/2.1.0/kafka_2.12-2.1.0.tgz
@ -44,138 +16,138 @@ tar -xzf kafka_2.12-2.1.0.tgz
cd kafka_2.12-2.1.0
```
Start a Kafka broker by running the following command in a new terminal:
如果你需要启动 Kafka broker你需要通过控制台运行下面的命令
```bash
./bin/kafka-server-start.sh config/server.properties
```
Run this command to create a Kafka topic called *wikipedia*, to which we'll send data:
使用下面的命令在 Kafka 中创建一个称为 *wikipedia* 的主题,这个主题就是你需要将消息数据发送到的主题:
```bash
./bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic wikipedia
```
## Load data into Kafka
## 将数据载入到 Kafka
现在让我们为我们的主题运行一个生成器producer然后向主题中发送一些数据
Let's launch a producer for our topic and send some data!
In your Druid directory, run the following command:
在你的 Druid 目录中,运行下面的命令:
```bash
cd quickstart/tutorial
gunzip -c wikiticker-2015-09-12-sampled.json.gz > wikiticker-2015-09-12-sampled.json
```
In your Kafka directory, run the following command, where {PATH_TO_DRUID} is replaced by the path to the Druid directory:
在你的 Kafka 的安装目录中,运行下面的命令。请将 {PATH_TO_DRUID} 替换为 Druid 的安装目录:
```bash
export KAFKA_OPTS="-Dfile.encoding=UTF-8"
./bin/kafka-console-producer.sh --broker-list localhost:9092 --topic wikipedia < {PATH_TO_DRUID}/quickstart/tutorial/wikiticker-2015-09-12-sampled.json
```
The previous command posted sample events to the *wikipedia* Kafka topic.
Now we will use Druid's Kafka indexing service to ingest messages from our newly created topic.
上面的控制台命令将会把示例消息载入到 Kafka 的 *wikipedia* 主题。
现在我们将会使用 Druid 的 Kafka 索引服务indexing service来将我们加载到 Kafka 中的消息导入到 Druid 中。
## Loading data with the data loader
Navigate to [localhost:8888](http://localhost:8888) and click `Load data` in the console header.
## 使用数据加载器data loader来加载数据
在 URL 中导航到 [localhost:8888](http://localhost:8888) 页面,然后在控制台的顶部单击`Load data`。
![Data loader init](../assets/tutorial-kafka-data-loader-01.png "Data loader init")
Select `Apache Kafka` and click `Connect data`.
选择 `Apache Kafka` 然后单击 `Connect data`
![Data loader sample](../assets/tutorial-kafka-data-loader-02.png "Data loader sample")
Enter `localhost:9092` as the bootstrap server and `wikipedia` as the topic.
输入 Kafka 的服务器地址为 `localhost:9092` 然后选择 `wikipedia` 为主题。
Click `Apply` and make sure that the data you are seeing is correct.
然后单击 `Apply`。请确定你在界面中看到的数据只正确的。
Once the data is located, you can click "Next: Parse data" to go to the next step.
一旦数据被载入后,你可以单击按钮 "Next: Parse data" 来进行下一步的操作。
![Data loader parse data](../assets/tutorial-kafka-data-loader-03.png "Data loader parse data")
The data loader will try to automatically determine the correct parser for the data.
In this case it will successfully determine `json`.
Feel free to play around with different parser options to get a preview of how Druid will parse your data.
Druid 的数据加载器将会为需要加载的数据确定正确的处理器。
在本用例中,我们成功的确定了需要处理的数据格式为 `json` 格式。
你可以在本页面中选择不同的数据处理器,通过选择不同的数据处理器,能够帮你更好的了解 Druid 是如何帮助你处理数据的。
With the `json` parser selected, click `Next: Parse time` to get to the step centered around determining your primary timestamp column.
`json` 格式的数据处理器被选择后,单击 `Next: Parse time` 来进行入下一个界面,在这个界面中你需要确定 timestamp 主键字段的的列。
![Data loader parse time](../assets/tutorial-kafka-data-loader-04.png "Data loader parse time")
Druid's architecture requires a primary timestamp column (internally stored in a column called `__time`).
If you do not have a timestamp in your data, select `Constant value`.
In our example, the data loader will determine that the `time` column in our raw data is the only candidate that can be used as the primary time column.
Druid 要求所有数据必须有一个 timestamp 的主键字段(这个主键字段被定义和存储在 `__time`)中。
如果你需要导入的数据没有时间字段的话,那么请选择 `Constant value`
在我们现在的示例中,数据载入器确定 `time` 字段是唯一可以被用来作为数据时间字段的数据。
Click `Next: ...` twice to go past the `Transform` and `Filter` steps.
You do not need to enter anything in these steps as applying ingestion time transforms and filters are out of scope for this tutorial.
单击 `Next: ...` 2 次,来跳过 `Transform``Filter` 步骤。
针对本教程来说,你并不需要对导入时间进行换行,所以你不需要调整 转换Transform 和 过滤器Filter 的配置。
![Data loader schema](../assets/tutorial-kafka-data-loader-05.png "Data loader schema")
In the `Configure schema` step, you can configure which [dimensions](../ingestion/index.md#dimensions) and [metrics](../ingestion/index.md#metrics) will be ingested into Druid.
This is exactly what the data will appear like in Druid once it is ingested.
Since our dataset is very small, go ahead and turn off [`Rollup`](../ingestion/index.md#rollup) by clicking on the switch and confirming the change.
配置摘要schema 是你对 [dimensions](../ingestion/index.md#dimensions) 和 [metrics](../ingestion/index.md#metrics) 在导入数据的时候配置的地方。
这个界面显示的是当我们对数据在 Druid 中进行导入的时候,数据是如何在 Druid 中进行存储和表现的。
因为我们提交的数据集非常小,因此我们可以关闭 [回滚rollup](../ingestion/index.md#rollup) **Rollup** 的开关将不会在这个时候显示来供你选择。
Once you are satisfied with the schema, click `Next` to go to the `Partition` step where you can fine tune how the data will be partitioned into segments.
如果你对当前的配置满意的话,单击 `Next` 来进入 `Partition` 步骤。在这个步骤中你可以定义数据是如何在段中进行分区的。
![Data loader partition](../assets/tutorial-kafka-data-loader-06.png "Data loader partition")
Here, you can adjust how the data will be split up into segments in Druid.
Since this is a small dataset, there are no adjustments that need to be made in this step.
在这一步中,你可以调整你的数据是如何在段中进行分配的。
因为当前的数据集是一个非常小的数据库,我们在这一步不需要进行调制。
Click `Next: Tune` to go to the tuning step.
单击 `Next: Tune` 来进入性能配置页面。
![Data loader tune](../assets/tutorial-kafka-data-loader-07.png "Data loader tune")
In the `Tune` step is it *very important* to set `Use earliest offset` to `True` since we want to consume the data from the start of the stream.
There are no other changes that need to be made hear, so click `Next: Publish` to go to the `Publish` step.
`Tune` 这一步中一个 *非常重要* 的参数是 `Use earliest offset` 设置为 `True`
因为我们希望从流的开始来读取数据。
针对其他的配置,我们不需要进行修改,单击 `Next: Publish` 来进入 `Publish` 步骤。
![Data loader publish](../assets/tutorial-kafka-data-loader-08.png "Data loader publish")
Let's name this datasource `wikipedia-kafka`.
让我们将数据源命名为 `wikipedia-kafka`
Finally, click `Next` to review your spec.
最后,单击 `Next` 来查看你的配置。
![Data loader spec](../assets/tutorial-kafka-data-loader-09.png "Data loader spec")
This is the spec you have constructed.
Feel free to go back and make changes in previous steps to see how changes will update the spec.
Similarly, you can also edit the spec directly and see it reflected in the previous steps.
等到这一步的时候,你就可以看到如何使用数据导入来创建一个数据导入规范。
你可以随意的通过页面中的导航返回到前面的页面中对配置进行调整。
简单来说你可以对特性目录进行编辑,来查看编辑后的配置是如何对前面的步骤产生影响的。
Once you are satisfied with the spec, click `Submit` and an ingestion task will be created.
当你对所有的配置都满意并且觉得没有问题的时候,单击 **提交Submit**.
![Tasks view](../assets/tutorial-kafka-data-loader-10.png "Tasks view")
You will be taken to the task view with the focus on the newly created supervisor.
现在你需要到界面下半部分的任务视图task view中来查看通过 supervisor 创建的任务。
The task view is set to auto refresh, wait until your supervisor launches a task.
任务视图task view是被设置为自动刷新的请等候 supervisor 来运行一个任务。
When a tasks starts running, it will also start serving the data that it is ingesting.
当一个任务启动运行后,这个任务将会对数据进行处理后导入到 Druid 中。
Navigate to the `Datasources` view from the header.
在页面的顶部,请导航到 `Datasources` 视图。
![Datasource view](../assets/tutorial-kafka-data-loader-11.png "Datasource view")
When the `wikipedia-kafka` datasource appears here it can be queried.
`wikipedia-kafka` 数据源成功显示,这个数据源中的数据就可以进行查询了。
*Note:* if the datasource does not appear after a minute you might have not set the supervisor to read from the start of the stream (in the `Tune` step).
*请注意:* 如果数据源在经过一段时间的等待后还是没有数据的话,那么很有可能是你的 supervisor 没有设置从 Kafka 的开头读取流数据(`Tune` 步骤中的配置)。
At this point, you can go to the `Query` view to run SQL queries against the datasource.
在数据源完成所有的数据导入后,你可以进入 `Query` 视图,来针对导入的数据源来运行 SQL 查询。
Since this is a small dataset, you can simply run a `SELECT * FROM "wikipedia-kafka"` query to see your results.
因为我们当前导入的数据库很小,你可以直接运行`SELECT * FROM "wikipedia-kafka"` 查询来查看数据导入的结果。
![Query view](../assets/tutorial-kafka-data-loader-12.png "Query view")
Check out the [query tutorial](../tutorials/tutorial-query.md) to run some example queries on the newly loaded data.
请访问 [query tutorial](../tutorials/tutorial-query.md) 页面中的内容来了解如何针对一个新载入的数据如何运行查询。
### Submit a supervisor via the console
### 通过控制台来提交一个 supervisor
In the console, click `Submit supervisor` to open the submit supervisor dialog.
在控制台中,单击 `Submit supervisor` 来打开一个 supervisor 对话框。
![Submit supervisor](../assets/tutorial-kafka-submit-supervisor-01.png "Submit supervisor")
Paste in this spec and click `Submit`.
请将下面的内容配置参数拷贝张贴到打开的对话框中,然后单击 `Submit` 提交。
```json
{
@ -238,260 +210,40 @@ Paste in this spec and click `Submit`.
}
```
This will start the supervisor that will in turn spawn some tasks that will start listening for incoming data.
上面将会启动一个 supervisor启动 supervisor 将会负责对任务进行管理,使用启动的任务来完成对数据的输入和从 Kafka 中获取数据。
### Submit a supervisor directly
### 直接提交一个 supervisor
To start the service directly, we will need to submit a supervisor spec to the Druid overlord by running the following from the Druid package root:
为了能够直接启动一个服务,我们需要提交一个 supervisor 配置参数到 Druid overlord 进程中,你可以直接通过 Druid 的包运行下面的命令:
```bash
curl -XPOST -H'Content-Type: application/json' -d @quickstart/tutorial/wikipedia-kafka-supervisor.json http://localhost:8081/druid/indexer/v1/supervisor
```
If the supervisor was successfully created, you will get a response containing the ID of the supervisor; in our case we should see `{"id":"wikipedia"}`.
如果提交的 supervisor 被成功创建的话,在返回的结果中将会有一个创建的 supervisor ID在我们当前的示例中你应该可以看到返回的结果为 `{"id":"wikipedia"}`
For more details about what's going on here, check out the
[Druid Kafka indexing service documentation](../development/extensions-core/kafka-ingestion.md).
如果想了解更多有关 Kafka 的数据导入相关的信息,请参考
[Druid Kafka indexing service documentation](../development/extensions-core/kafka-ingestion.md) 页面中的内容。
You can view the current supervisors and tasks in the Druid Console: [http://localhost:8888/unified-console.html#tasks](http://localhost:8888/unified-console.html#tasks).
你也可以从 Druid 的控制台中查看当前的 supervisors 和任务。针对本地服务器的访问地址为: [http://localhost:8888/unified-console.html#tasks](http://localhost:8888/unified-console.html#tasks)
## Querying your data
## 查询你的数据
After data is sent to the Kafka stream, it is immediately available for querying.
当数据发送到 Kafka 后Druid 应该能够马上查询到导入的数据的。
Please follow the [query tutorial](../tutorials/tutorial-query.md) to run some example queries on the newly loaded data.
请访问 [query tutorial](../tutorials/tutorial-query.md) 页面中的内容来了解如何针对新导入的数据运行一些查询。
## Cleanup
## 清理
如果你希望其他的一些入门教程的话,你需要首先关闭 Druid 集群;删除 `var` 目录中的所有内容;再重新启动 Druid 集群。
这是因为本教程中其他的导入数据方式也会写入相同的 "wikipedia" 数据源,如果你使用不同的数据源的话就不需要进行清理了。
To go through any of the other ingestion tutorials, you will need to shut down the cluster and reset the cluster state by removing the contents of the `var` directory in the Druid home, as the other tutorials will write to the same "wikipedia" datasource.
You should additionally clear out any Kafka state. Do so by shutting down the Kafka broker with CTRL-C before stopping ZooKeeper and the Druid services, and then deleting the Kafka log directory at `/tmp/kafka-logs`:
同时你可能也希望清理掉 Kafka 中的数据。你可以通过 <kbd>CTRL-C</kbd> 来关闭 Kafka 的进程。在关闭 Kafka 进程之前,请不要关闭 ZooKeeper 和 Druid 服务。
然后删除 Kafka 的 log 目录`/tmp/kafka-logs`:
```bash
rm -rf /tmp/kafka-logs
```
## Further reading
For more information on loading data from Kafka streams, please see the [Druid Kafka indexing service documentation](../development/extensions-core/kafka-ingestion.md).
## 教程从Kafka中加载流式数据
### 入门
本教程演示了如何使用Druid的Kafka索引服务将数据从Kafka流加载到Apache Druid中。
在本教程中我们假设您已经按照快速入门中的说明下载了Druid并使用 `micro-quickstart`单机配置使其在本地计算机上运行。您不需要加载任何数据。
### 下载并启动Kafka
[Apache Kafka](http://kafka.apache.org/)是一种高吞吐量消息总线可与Druid很好地配合使用。在本教程中我们将使用Kafka2.1.0。要下载Kafka请在终端中执行以下命令
```json
curl -O https://archive.apache.org/dist/kafka/2.1.0/kafka_2.12-2.1.0.tgz
tar -xzf kafka_2.12-2.1.0.tgz
cd kafka_2.12-2.1.0
```
通过在终端中运行以下命令来启动一个Kafka Broker
```json
./bin/kafka-server-start.sh config/server.properties
```
执行以下命令来创建一个我们用来发送数据的Kafka主题称为"*wikipedia*":
```json
./bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic wikipedia
```
### 发送数据到Kafka
让我们为该主题启动一个生产者并发送一些数据
在Druid目录下运行下边的命令
```json
cd quickstart/tutorial
gunzip -c wikiticker-2015-09-12-sampled.json.gz > wikiticker-2015-09-12-sampled.json
```
在Kafka目录下运行以下命令{PATH_TO_DRUID}替换为Druid目录的路径
```json
export KAFKA_OPTS="-Dfile.encoding=UTF-8"
./bin/kafka-console-producer.sh --broker-list localhost:9092 --topic wikipedia < {PATH_TO_DRUID}/quickstart/tutorial/wikiticker-2015-09-12-sampled.json
```
上一个命令将示例事件发布到名称为*wikipedia*的Kafka主题。现在我们将使用Druid的Kafka索引服务从新创建的主题中提取消息。
### 使用数据加载器Data Loader
浏览器访问 [localhost:8888](http://localhost:8888) 然后点击控制台中的 `Load data`
![](img-2/tutorial-kafka-data-loader-01.png)
选择 `Apache Kafka` 然后点击 `Connect data`
![](img-2/tutorial-kafka-data-loader-02.png)
`Bootstrap servers` 输入 `localhost:9092`, 在 `Topic` 输入 `wikipedia`
点击 `Preview` 后确保您看到的数据是正确的
数据定位后,您可以点击"Next: Parse data"来进入下一步。
![](img-2/tutorial-kafka-data-loader-03.png)
数据加载器将尝试自动为数据确定正确的解析器。在这种情况下,它将成功确定`json`。可以随意使用不同的解析器选项来预览Druid如何解析您的数据。
`json` 选择器被选中后,点击 `NextParse time` 进入下一步来决定您的主时间列。
![](img-2/tutorial-kafka-data-loader-04.png)
Druid的体系结构需要一个主时间列内部存储为名为__time的列。如果您的数据中没有时间戳请选择 `固定值Constant Value` 。在我们的示例中,数据加载器将确定原始数据中的时间列是唯一可用作主时间列的候选者。
点击"Next:..."两次完成 `Transform``Filter` 步骤。您无需在这些步骤中输入任何内容,因为使用摄取时间变换和过滤器不在本教程范围内。
![](img-2/tutorial-kafka-data-loader-05.png)
`Configure schema` 步骤中您可以配置将哪些维度和指标摄入到Druid中这些正是数据在被Druid中摄取后出现的样子。 由于我们的数据集非常小关掉rollup、确认更改。
一旦对schema满意后点击 `Next` 后进入 `Partition` 步骤,该步骤中可以调整数据如何划分为段文件的方式。
![](img-2/tutorial-kafka-data-loader-06.png)
在这里您可以调整如何在Druid中将数据拆分为多个段。 由于这是一个很小的数据集,因此在此步骤中无需进行任何调整。
点击完成 `Tune` 步骤。
![](img-2/tutorial-kafka-data-loader-07.png)
`Tune` 步骤中,将 `Use earliest offset` 设置为 `True` *非常重要*,因为我们需要从流的开始位置消费数据。 其他没有任何需要更改的地方,进入到 `Publish`
![](img-2/tutorial-kafka-data-loader-08.png)
我们将该数据源命名为 `wikipedia-kafka`
最后点击 `Next` 预览摄入规范:
![](img-2/tutorial-kafka-data-loader-09.png)
这就是您构建的规范,为了查看更改将如何更新规范是可以随意返回之前的步骤中进行更改,同样,您也可以直接编辑规范,并在前面的步骤中看到它。
对摄取规范感到满意后,请单击 `Submit`,然后将创建一个数据摄取任务
![](img-2/tutorial-kafka-data-loader-10.png)
您可以进入任务视图重点关注新创建的supervisor。任务视图设置为自动刷新请等待直到Supervisor启动了一个任务。
当一项任务开始运行时,它将开始处理其摄入的数据。
从标题导航到 `Datasources` 视图。
![](img-2/tutorial-kafka-data-loader-11.png)
`wikipedia-kafka` 数据源出现在这儿的时候就可以被查询了。
> ![TIPS]
> 如果过了几分钟之后数据源还是没有出现在这里,可能是在 `Tune` 步骤中没有设置为从流的开始进行消费数据
此时,就可以在 `Query` 视图中运行SQL查询了因为这是一个小的数据集你可以简单的运行 `SELECT * FROM "wikipedia-kafka"` 来查询结果。
![](img-2/tutorial-kafka-data-loader-12.png)
查看[查询教程](../querying/makeNativeQueries.md)以对新加载的数据运行一些示例查询。
#### 通过控制台提交supervisor
在控制台中点击 `Submit supervisor` 打开提交supervisor对话框
![](img-2/tutorial-kafka-submit-supervisor-01.png)
粘贴以下规范后点击 `Submit`
```json
{
"type": "kafka",
"spec" : {
"dataSchema": {
"dataSource": "wikipedia",
"timestampSpec": {
"column": "time",
"format": "auto"
},
"dimensionsSpec": {
"dimensions": [
"channel",
"cityName",
"comment",
"countryIsoCode",
"countryName",
"isAnonymous",
"isMinor",
"isNew",
"isRobot",
"isUnpatrolled",
"metroCode",
"namespace",
"page",
"regionIsoCode",
"regionName",
"user",
{ "name": "added", "type": "long" },
{ "name": "deleted", "type": "long" },
{ "name": "delta", "type": "long" }
]
},
"metricsSpec" : [],
"granularitySpec": {
"type": "uniform",
"segmentGranularity": "DAY",
"queryGranularity": "NONE",
"rollup": false
}
},
"tuningConfig": {
"type": "kafka",
"reportParseExceptions": false
},
"ioConfig": {
"topic": "wikipedia",
"inputFormat": {
"type": "json"
},
"replicas": 2,
"taskDuration": "PT10M",
"completionTimeout": "PT20M",
"consumerProperties": {
"bootstrap.servers": "localhost:9092"
}
}
}
}
```
这将启动supervisor该supervisor继而产生一些任务这些任务将开始监听传入的数据。
#### 直接提交supervisor
为了直接启动服务我们可以在Druid的根目录下运行以下命令来提交一个supervisor规范到Druid Overlord中
```json
curl -XPOST -H'Content-Type: application/json' -d @quickstart/tutorial/wikipedia-kafka-supervisor.json http://localhost:8081/druid/indexer/v1/supervisor
```
如果supervisor被成功创建后将会返回一个supervisor的ID在本例中看到的是 `{"id":"wikipedia"}`
更详细的信息可以查看[Druid Kafka索引服务文档](../ingestion/kafka.md)
您可以在[Druid控制台]( http://localhost:8888/unified-console.html#tasks)中查看现有的supervisors和tasks
### 数据查询
数据被发送到Kafka流之后立刻就可以被查询了。
按照[查询教程](./chapter-4.md)的操作,对新加载的数据执行一些示例查询
### 清理数据
如果您希望阅读其他任何入门教程则需要关闭集群并通过删除druid软件包下的`var`目录的内容来重置集群状态,因为其他教程将写入相同的"wikipedia"数据源。
### 进一步阅读
更多关于从Kafka流加载数据的信息可以查看[Druid Kafka索引服务文档](../ingestion/kafka.md)
## 延伸阅读
有关更多如何从 Kafka 中载入流数据的方法,请参考 [Druid Kafka indexing service documentation](../development/extensions-core/kafka-ingestion.md) 页面中的内容。