add having filter
This commit is contained in:
parent
3629913a11
commit
7f32f38b84
|
@ -1,2 +1,234 @@
|
||||||
<!-- toc -->
|
<!-- toc -->
|
||||||
|
|
||||||
|
<script async src="https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js"></script>
|
||||||
|
<ins class="adsbygoogle"
|
||||||
|
style="display:block; text-align:center;"
|
||||||
|
data-ad-layout="in-article"
|
||||||
|
data-ad-format="fluid"
|
||||||
|
data-ad-client="ca-pub-8828078415045620"
|
||||||
|
data-ad-slot="7586680510"></ins>
|
||||||
|
<script>
|
||||||
|
(adsbygoogle = window.adsbygoogle || []).push({});
|
||||||
|
</script>
|
||||||
|
|
||||||
## Having过滤器(groupBy)
|
## Having过滤器(groupBy)
|
||||||
|
|
||||||
|
> [!WARNING]
|
||||||
|
> Apache Druid支持两种查询语言: [Druid SQL](druidsql.md) 和 [原生查询](makeNativeQueries.md)。该文档描述了原生查询中的一种查询方式。 对于Druid SQL中使用的该种类型的信息,可以参考 [SQL文档](druidsql.md)。
|
||||||
|
|
||||||
|
|
||||||
|
having语法用来通过对聚合后的值指定特定条件来决定从GroupBy的结果中返回符合条件的行,基本等价于SQL语法中的**HAVING**
|
||||||
|
|
||||||
|
Apache Druid支持下列类型的having语法
|
||||||
|
|
||||||
|
### 查询过滤器(Query Filters)
|
||||||
|
|
||||||
|
所有的[Druid查询过滤器](filters.md)都可以被用来使用在查询体的Having部分中。 一个查询过滤器的HavingSpec如下:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"queryType": "groupBy",
|
||||||
|
"dataSource": "sample_datasource",
|
||||||
|
...
|
||||||
|
"having":
|
||||||
|
{
|
||||||
|
"type" : "filter",
|
||||||
|
"filter" : <any Druid query filter>
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
例如,使用一个选择过滤器(selector filter):
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"queryType": "groupBy",
|
||||||
|
"dataSource": "sample_datasource",
|
||||||
|
...
|
||||||
|
"having":
|
||||||
|
{
|
||||||
|
"type" : "filter",
|
||||||
|
"filter" : {
|
||||||
|
"type": "selector",
|
||||||
|
"dimension" : "<dimension>",
|
||||||
|
"value" : "<dimension_value>"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
对结果行的时间戳进行使用Having语法的时候也可以生效,如同在 "__time" 字段上使用过滤器。
|
||||||
|
|
||||||
|
### 数值过滤器(Numeric Filters)
|
||||||
|
|
||||||
|
最简单的having子句是数字过滤器。数字过滤器可以用作过滤器的更复杂布尔表达式的基过滤器。
|
||||||
|
|
||||||
|
下面是having子句数字筛选器的示例:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"queryType": "groupBy",
|
||||||
|
"dataSource": "sample_datasource",
|
||||||
|
...
|
||||||
|
"having":
|
||||||
|
{
|
||||||
|
"type": "greaterThan",
|
||||||
|
"aggregation": "<aggregate_metric>",
|
||||||
|
"value": <numeric_value>
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
**等于(equalTo)**
|
||||||
|
|
||||||
|
`equalTo`过滤器根据指定的聚合后的值进行匹配,返回等于值的行,语法如下:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"queryType": "groupBy",
|
||||||
|
"dataSource": "sample_datasource",
|
||||||
|
...
|
||||||
|
"having":
|
||||||
|
{
|
||||||
|
"type": "equalTo",
|
||||||
|
"aggregation": "<aggregate_metric>",
|
||||||
|
"value": <numeric_value>
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
这种方式等价于 `HAVING <aggregate> > <value>`
|
||||||
|
|
||||||
|
**大于(Greater Than)**
|
||||||
|
|
||||||
|
`greaterThan`过滤器根据指定的聚合后的值进行匹配,返回大于值的行,语法如下:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"queryType": "groupBy",
|
||||||
|
"dataSource": "sample_datasource",
|
||||||
|
...
|
||||||
|
"having":
|
||||||
|
{
|
||||||
|
"type": "greaterThan",
|
||||||
|
"aggregation": "<aggregate_metric>",
|
||||||
|
"value": <numeric_value>
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
这种方式等价于 `HAVING <aggregate> > <value>`
|
||||||
|
|
||||||
|
**小于(Less Than)**
|
||||||
|
|
||||||
|
`lessThan`过滤器根据指定的聚合后的值进行匹配,返回大于值的行,语法如下:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"queryType": "groupBy",
|
||||||
|
"dataSource": "sample_datasource",
|
||||||
|
...
|
||||||
|
"having":
|
||||||
|
{
|
||||||
|
"type": "lessThan",
|
||||||
|
"aggregation": "<aggregate_metric>",
|
||||||
|
"value": <numeric_value>
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
这种方式等价于 `HAVING <aggregate> < <value>`
|
||||||
|
|
||||||
|
### 维度选择过滤器(Dimension Selector Filter)
|
||||||
|
|
||||||
|
**dimSelector**
|
||||||
|
|
||||||
|
dimSelector过滤器根据维度值等于特定值来匹配行,语法如下:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"queryType": "groupBy",
|
||||||
|
"dataSource": "sample_datasource",
|
||||||
|
...
|
||||||
|
"having":
|
||||||
|
{
|
||||||
|
"type": "dimSelector",
|
||||||
|
"dimension": "<dimension>",
|
||||||
|
"value": <dimension_value>
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### 逻辑表达式过滤器(Logical Expression Filters)
|
||||||
|
|
||||||
|
**AND**
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"queryType": "groupBy",
|
||||||
|
"dataSource": "sample_datasource",
|
||||||
|
...
|
||||||
|
"having":
|
||||||
|
{
|
||||||
|
"type": "and",
|
||||||
|
"havingSpecs": [
|
||||||
|
{
|
||||||
|
"type": "greaterThan",
|
||||||
|
"aggregation": "<aggregate_metric>",
|
||||||
|
"value": <numeric_value>
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "lessThan",
|
||||||
|
"aggregation": "<aggregate_metric>",
|
||||||
|
"value": <numeric_value>
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
**OR**
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"queryType": "groupBy",
|
||||||
|
"dataSource": "sample_datasource",
|
||||||
|
...
|
||||||
|
"having":
|
||||||
|
{
|
||||||
|
"type": "or",
|
||||||
|
"havingSpecs": [
|
||||||
|
{
|
||||||
|
"type": "greaterThan",
|
||||||
|
"aggregation": "<aggregate_metric>",
|
||||||
|
"value": <numeric_value>
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "equalTo",
|
||||||
|
"aggregation": "<aggregate_metric>",
|
||||||
|
"value": <numeric_value>
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOT**
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"queryType": "groupBy",
|
||||||
|
"dataSource": "sample_datasource",
|
||||||
|
...
|
||||||
|
"having":
|
||||||
|
{
|
||||||
|
"type": "not",
|
||||||
|
"havingSpec":
|
||||||
|
{
|
||||||
|
"type": "equalTo",
|
||||||
|
"aggregation": "<aggregate_metric>",
|
||||||
|
"value": <numeric_value>
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
Loading…
Reference in New Issue