Merge remote-tracking branch 'origin/feature/roll-up' into feature/roll-up

# Conflicts:
#	tutorials/tutorial-rollup.md
This commit is contained in:
YuCheng Hu 2021-07-31 18:00:47 -04:00
commit d994362f95
No known key found for this signature in database
GPG Key ID: C395DC68EF030B59
1 changed files with 175 additions and 4 deletions

View File

@ -1,4 +1,8 @@
# Roll-up ---
id: tutorial-rollup
title: "Tutorial: Roll-up"
sidebar_label: "Roll-up"
---
Apache Druid 可以在数据摄取阶段对原始数据进行汇总,这个过程我们称为 "roll-up"。 Apache Druid 可以在数据摄取阶段对原始数据进行汇总,这个过程我们称为 "roll-up"。
Roll-up 是第一级对选定列集的一级聚合操作,通过这个操作我们能够减少存储数据的大小。 Roll-up 是第一级对选定列集的一级聚合操作,通过这个操作我们能够减少存储数据的大小。
@ -83,11 +87,11 @@ Roll-up 是第一级对选定列集的一级聚合操作,通过这个操作我
} }
``` ```
通过在 `granularitySpec` 选项中设置 `rollup : true` 来启用 Roll-up。 Roll-up has been enabled by setting `"rollup" : true` in the `granularitySpec`.
请注意,我们将 `srcIP``dstIP` 定义为 **维度dimensions**,将 `packets``bytes` 列定义为了 longSum 类型的**指标metric**,并将 `queryGranularity` 配置定义为 `minute` Note that we have `srcIP` and `dstIP` defined as dimensions, a longSum metric is defined for the `packets` and `bytes` columns, and the `queryGranularity` has been defined as `minute`.
在加载这些数据后,我们将看到如何使用这些定义。 We will see how these definitions are used after we load this data.
## Load the example data ## Load the example data
@ -176,6 +180,173 @@ For the last event recording traffic between 1.1.1.1 and 2.2.2.2, no roll-up too
Note that the `count` metric shows how many rows in the original input data contributed to the final "rolled up" row. Note that the `count` metric shows how many rows in the original input data contributed to the final "rolled up" row.
## Roll-up
Apache Druid可以通过roll-up在数据摄取阶段对原始数据进行汇总。 Roll-up是对选定列集的一级聚合操作它可以减小存储数据的大小。
本教程中将讨论在一个示例数据集上进行roll-up的结果。
本教程我们假设您已经按照[单服务器部署](../GettingStarted/chapter-3.md)中描述下载了Druid并运行在本地机器上。
完成[加载本地文件](tutorial-batch.md)和[数据查询](./chapter-4.md)两部分内容也是非常有帮助的。
### 示例数据
对于本教程我们将使用一个网络流事件数据的小样本表示在特定时间内从源到目标IP地址的流量的数据包和字节计数。
```json
{"timestamp":"2018-01-01T01:01:35Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":20,"bytes":9024}
{"timestamp":"2018-01-01T01:01:51Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":255,"bytes":21133}
{"timestamp":"2018-01-01T01:01:59Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":11,"bytes":5780}
{"timestamp":"2018-01-01T01:02:14Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":38,"bytes":6289}
{"timestamp":"2018-01-01T01:02:29Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":377,"bytes":359971}
{"timestamp":"2018-01-01T01:03:29Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":49,"bytes":10204}
{"timestamp":"2018-01-02T21:33:14Z","srcIP":"7.7.7.7", "dstIP":"8.8.8.8","packets":38,"bytes":6289}
{"timestamp":"2018-01-02T21:33:45Z","srcIP":"7.7.7.7", "dstIP":"8.8.8.8","packets":123,"bytes":93999}
{"timestamp":"2018-01-02T21:35:45Z","srcIP":"7.7.7.7", "dstIP":"8.8.8.8","packets":12,"bytes":2818}
```
位于 `quickstart/tutorial/rollup-data.json` 的文件包含了样例输入数据
我们将使用 `quickstart/tutorial/rollup-index.json` 的摄入数据规范来摄取数据
```json
{
"type" : "index_parallel",
"spec" : {
"dataSchema" : {
"dataSource" : "rollup-tutorial",
"dimensionsSpec" : {
"dimensions" : [
"srcIP",
"dstIP"
]
},
"timestampSpec": {
"column": "timestamp",
"format": "iso"
},
"metricsSpec" : [
{ "type" : "count", "name" : "count" },
{ "type" : "longSum", "name" : "packets", "fieldName" : "packets" },
{ "type" : "longSum", "name" : "bytes", "fieldName" : "bytes" }
],
"granularitySpec" : {
"type" : "uniform",
"segmentGranularity" : "week",
"queryGranularity" : "minute",
"intervals" : ["2018-01-01/2018-01-03"],
"rollup" : true
}
},
"ioConfig" : {
"type" : "index_parallel",
"inputSource" : {
"type" : "local",
"baseDir" : "quickstart/tutorial",
"filter" : "rollup-data.json"
},
"inputFormat" : {
"type" : "json"
},
"appendToExisting" : false
},
"tuningConfig" : {
"type" : "index_parallel",
"maxRowsPerSegment" : 5000000,
"maxRowsInMemory" : 25000
}
}
}
```
通过在 `granularitySpec` 选项中设置 `rollup : true` 来启用Roll-up
注意,我们将`srcIP`和`dstIP`定义为**维度**,将`packets`和`bytes`列定义为了`longSum`类型的**指标**,并将 `queryGranularity` 配置定义为 `minute`
加载这些数据后,我们将看到如何使用这些定义。
### 加载示例数据
在Druid的根目录下运行以下命令
```json
bin/post-index-task --file quickstart/tutorial/rollup-index.json --url http://localhost:8081
```
脚本运行完成以后,我们将查询数据。
### 查询示例数据
现在运行 `bin/dsql` 然后执行查询 `select * from "rollup-tutorial";` 来查看已经被摄入的数据。
```json
$ bin/dsql
Welcome to dsql, the command-line client for Druid SQL.
Type "\h" for help.
dsql> select * from "rollup-tutorial";
┌──────────────────────────┬────────┬───────┬─────────┬─────────┬─────────┐
│ __time │ bytes │ count │ dstIP │ packets │ srcIP │
├──────────────────────────┼────────┼───────┼─────────┼─────────┼─────────┤
│ 2018-01-01T01:01:00.000Z │ 35937 │ 3 │ 2.2.2.2 │ 286 │ 1.1.1.1 │
│ 2018-01-01T01:02:00.000Z │ 366260 │ 2 │ 2.2.2.2 │ 415 │ 1.1.1.1 │
│ 2018-01-01T01:03:00.000Z │ 10204 │ 1 │ 2.2.2.2 │ 49 │ 1.1.1.1 │
│ 2018-01-02T21:33:00.000Z │ 100288 │ 2 │ 8.8.8.8 │ 161 │ 7.7.7.7 │
│ 2018-01-02T21:35:00.000Z │ 2818 │ 1 │ 8.8.8.8 │ 12 │ 7.7.7.7 │
└──────────────────────────┴────────┴───────┴─────────┴─────────┴─────────┘
Retrieved 5 rows in 1.18s.
dsql>
```
我们来看发生在 `2018-01-01T01:01` 的三条原始数据:
```json
{"timestamp":"2018-01-01T01:01:35Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":20,"bytes":9024}
{"timestamp":"2018-01-01T01:01:51Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":255,"bytes":21133}
{"timestamp":"2018-01-01T01:01:59Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":11,"bytes":5780}
```
这三条数据已经被roll up为以下一行数据
```json
┌──────────────────────────┬────────┬───────┬─────────┬─────────┬─────────┐
│ __time │ bytes │ count │ dstIP │ packets │ srcIP │
├──────────────────────────┼────────┼───────┼─────────┼─────────┼─────────┤
│ 2018-01-01T01:01:00.000Z │ 35937 │ 3 │ 2.2.2.2 │ 286 │ 1.1.1.1 │
└──────────────────────────┴────────┴───────┴─────────┴─────────┴─────────┘
```
这输入的数据行已经被按照时间列和维度列 `{timestamp, srcIP, dstIP}` 在指标列 `{packages, bytes}` 上做求和聚合
在进行分组之前,原始输入数据的时间戳按分钟进行标记/布局,这是由于摄取规范中的 `"queryGranularity""minute"` 设置造成的。
同样,`2018-01-01T01:02` 期间发生的这两起事件也已经汇总。
```json
{"timestamp":"2018-01-01T01:02:14Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":38,"bytes":6289}
{"timestamp":"2018-01-01T01:02:29Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":377,"bytes":359971}
```
```json
┌──────────────────────────┬────────┬───────┬─────────┬─────────┬─────────┐
│ __time │ bytes │ count │ dstIP │ packets │ srcIP │
├──────────────────────────┼────────┼───────┼─────────┼─────────┼─────────┤
│ 2018-01-01T01:02:00.000Z │ 366260 │ 2 │ 2.2.2.2 │ 415 │ 1.1.1.1 │
└──────────────────────────┴────────┴───────┴─────────┴─────────┴─────────┘
```
对于记录1.1.1.1和2.2.2.2之间流量的最后一个事件没有发生汇总,因为这是 `2018-01-01T01:03` 期间发生的唯一事件
```json
{"timestamp":"2018-01-01T01:03:29Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2","packets":49,"bytes":10204}
```
```json
┌──────────────────────────┬────────┬───────┬─────────┬─────────┬─────────┐
│ __time │ bytes │ count │ dstIP │ packets │ srcIP │
├──────────────────────────┼────────┼───────┼─────────┼─────────┼─────────┤
│ 2018-01-01T01:03:00.000Z │ 10204 │ 1 │ 2.2.2.2 │ 49 │ 1.1.1.1 │
└──────────────────────────┴────────┴───────┴─────────┴─────────┴─────────┘
```
请注意,`计数指标 count` 显示原始输入数据中有多少行贡献给最终的"roll up"行。
### 示例数据 ### 示例数据