Merge pull request #35 from cwiki-us-docs/feature/cluster

完成针对 Docker 的内容的翻译
This commit is contained in:
YuCheng Hu 2021-08-04 15:55:39 -04:00 committed by GitHub
commit f4421aab2a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 56 additions and 577 deletions

View File

@ -1,63 +0,0 @@
<!-- toc -->
<script async src="https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js"></script>
<ins class="adsbygoogle"
style="display:block; text-align:center;"
data-ad-layout="in-article"
data-ad-format="fluid"
data-ad-client="ca-pub-8828078415045620"
data-ad-slot="7586680510"></ins>
<script>
(adsbygoogle = window.adsbygoogle || []).push({});
</script>
## Docker
在这个部分中,我们将从 [Docker Hub](https://hub.docker.com/r/apache/druid) 下载Apache Druid镜像并使用 [Docker](https://www.docker.com/get-started) 和 [Docker Compose](https://docs.docker.com/compose/) 在一台机器上安装它。完成此初始设置后,集群将准备好加载数据。
在开始快速启动之前,阅读 [Druid概述](chapter-1.md) 和 [摄取概述](../DataIngestion/ingestion.md) 是很有帮助的因为教程将参考这些页面上讨论的概念。此外建议熟悉Docker。
### 前提条件
* Docker
### 快速开始
Druid源代码包含一个 [示例docker-compose.yml](https://github.com/apache/druid/blob/master/distribution/docker/docker-compose.yml) 它可以从Docker Hub中提取一个镜像适合用作示例环境并用于试验基于Docker的Druid配置和部署。
#### Compose文件
示例 `docker-compose.yml` 将为每个Druid服务创建一个容器包括Zookeeper和作为元数据存储PostgreSQL容器。深度存储将是本地目录默认配置为相对于 `docker-compose.yml`文件的 `./storage`,并将作为 `/opt/data` 挂载并在需要访问深层存储的Druid容器之间共享。Druid容器是通过 [环境文件](https://github.com/apache/druid/blob/master/distribution/docker/environment) 配置的。
#### 配置
Druid Docker容器的配置是通过环境变量完成的环境变量还可以指定到 [标准Druid配置文件](../configuration/human-readable-byte.md) 的路径
特殊环境变量:
* `JAVA_OPTS` -- 设置 java options
* `DRUID_LOG4J` -- 设置完成的 `log4j.xml`
* `DRUID_LOG_LEVEL` -- 覆盖在log4j中的默认日志级别
* `DRUID_XMX` -- 设置 Java `Xmx`
* `DRUID_XMS` -- 设置 Java `Xms`
* `DRUID_MAXNEWSIZE` -- 设置 Java最大新生代大小
* `DRUID_NEWSIZE` -- 设置 Java 新生代大小
* `DRUID_MAXDIRECTMEMORYSIZE` -- 设置Java最大直接内存大小
* `DRUID_CONFIG_COMMON` -- druid "common"属性文件的完整路径
* `DRUID_CONFIG_${service}` -- druid "service"属性文件的完整路径
除了特殊的环境变量外在容器中启动Druid的脚本还将尝试使用以 `druid_`前缀开头的任何环境变量作为命令行配置。例如Druid容器进程中的环境变量`druid_metadata_storage_type=postgresql` 将被转换为 `-Ddruid.metadata.storage.type=postgresql`
Druid `docker-compose.yml` 示例使用单个环境文件来指定完整的Druid配置但是在生产用例中我们建议使用 `DRUID_COMMON_CONFIG` 和`DRUID_CONFIG_${service}` 或专门定制的特定于服务的环境文件。
### 启动集群
运行 `docker-compose up` 启动附加shell的集群或运行 `docker-compose up -d` 在后台运行集群。如果直接使用示例文件这个命令应该从Druid安装目录中的 `distribution/docker/` 运行。
启动集群后,可以导航到 [http://localhost:8888](http://localhost/) 。服务于 [Druid控制台](../operations/druid-console.md) 的 [Druid路由进程](../Design/Router.md) 位于这个地址。
![](img/tutorial-quickstart-01.png)
所有Druid进程需要几秒钟才能完全启动。如果在启动服务后立即打开控制台可能会看到一些可以安全忽略的错误。
从这里你可以跟着 [标准教程](chapter-2.md),或者详细说明你的 `docker-compose.yml` 根据需要添加任何其他外部服务依赖项。

View File

@ -1,69 +0,0 @@
<!-- toc -->
<script async src="https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js"></script>
<ins class="adsbygoogle"
style="display:block; text-align:center;"
data-ad-layout="in-article"
data-ad-format="fluid"
data-ad-client="ca-pub-8828078415045620"
data-ad-slot="7586680510"></ins>
<script>
(adsbygoogle = window.adsbygoogle || []).push({});
</script>
### 单服务器部署
Druid包括一组参考配置和用于单机部署的启动脚本
* `nano-quickstart`
* `micro-quickstart`
* `small`
* `medium`
* `large`
* `large`
* `xlarge`
`micro-quickstart`适合于笔记本电脑等小型机器,旨在用于快速评估测试使用场景。
`nano-quickstart`是一种甚至更小的配置目标是具有1个CPU和4GB内存的计算机。它旨在在资源受限的环境例如小型Docker容器中进行有限的评估测试。
其他配置旨在用于一般用途的单机部署,它们的大小适合大致基于亚马逊i3系列EC2实例的硬件。
这些示例配置的启动脚本与Druid服务一起运行单个ZK实例,您也可以选择单独部署ZK。
通过[Coordinator配置文档](../configuration/human-readable-byte.md#Coordinator)中描述的可选配置`druid.coordinator.asOverlord.enabled = true`可以在单个进程中同时运行Druid Coordinator和Overlord。
虽然为大型单台计算机提供了示例配置但在更高规模下我们建议在集群部署中运行Druid以实现容错和减少资源争用。
#### 单服务器参考配置
##### Nano-Quickstart: 1 CPU, 4GB 内存
* 启动命令: `bin/start-nano-quickstart`
* 配置目录: `conf/druid/single-server/nano-quickstart`
##### Micro-Quickstart: 4 CPU, 16GB 内存
* 启动命令: `bin/start-micro-quickstart`
* 配置目录: `conf/druid/single-server/micro-quickstart`
##### Small: 8 CPU, 64GB 内存 (~i3.2xlarge)
* 启动命令: `bin/start-small`
* 配置目录: `conf/druid/single-server/small`
##### Medium: 16 CPU, 128GB 内存 (~i3.4xlarge)
* 启动命令: `bin/start-medium`
* 配置目录: `conf/druid/single-server/medium`
##### Large: 32 CPU, 256GB 内存 (~i3.8xlarge)
* 启动命令: `bin/start-large`
* 配置目录: `conf/druid/single-server/large`
##### X-Large: 64 CPU, 512GB 内存 (~i3.16xlarge)
* 启动命令: `bin/start-xlarge`
* 配置目录: `conf/druid/single-server/xlarge`
---

View File

@ -1,421 +0,0 @@
<!-- toc -->
<script async src="https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js"></script>
<ins class="adsbygoogle"
style="display:block; text-align:center;"
data-ad-layout="in-article"
data-ad-format="fluid"
data-ad-client="ca-pub-8828078415045620"
data-ad-slot="7586680510"></ins>
<script>
(adsbygoogle = window.adsbygoogle || []).push({});
</script>
## 集群部署
Apache Druid旨在作为可伸缩的容错集群进行部署。
在本文档中,我们将安装一个简单的集群,并讨论如何对其进行进一步配置以满足您的需求。
这个简单的集群将具有以下特点:
* 一个Master服务同时起Coordinator和Overlord进程
* 两个可伸缩、容错的Data服务来运行Historical和MiddleManager进程
* 一个Query服务运行Druid Broker和Router进程
在生产中我们建议根据您的特定容错需求部署多个Master服务器和多个Query服务器但是您可以使用一台Master服务器和一台Query服务器将服务快速运行起来然后再添加更多服务器。
### 选择硬件
#### 首次部署
如果您现在没有Druid集群并打算首次以集群模式部署运行Druid则本指南提供了一个包含预先配置的集群部署示例。
##### Master服务
Coordinator进程和Overlord进程负责处理集群的元数据和协调需求它们可以运行在同一台服务器上。
在本示例中我们将在等效于AWS[m5.2xlarge](https://aws.amazon.com/ec2/instance-types/m5/)实例的硬件环境上部署。
硬件规格为:
* 8核CPU
* 31GB内存
可以在`conf/druid/cluster/master`下找到适用于此硬件规格的Master示例服务配置。
##### Data服务
Historical和MiddleManager可以分配在同一台服务器上运行以处理集群中的实际数据这两个服务受益于CPU、内存和固态硬盘。
在本示例中我们将在等效于AWS[i3.4xlarge](https://aws.amazon.com/cn/ec2/instance-types/i3/)实例的硬件环境上部署。
硬件规格为:
* 16核CPU
* 122GB内存
* 2 * 1.9TB 固态硬盘
可以在`conf/druid/cluster/data`下找到适用于此硬件规格的Data示例服务配置。
##### Query服务
Druid Broker服务接收查询请求并将其转发到集群中的其他部分同时其可以可选的配置内存缓存。 Broker服务受益于CPU和内存。
在本示例中我们将在等效于AWS[m5.2xlarge](https://aws.amazon.com/ec2/instance-types/m5/)实例的硬件环境上部署。
硬件规格为:
* 8核CPU
* 31GB内存
您可以考虑将所有的其他开源UI工具或者查询依赖等与Broker服务部署在同一台服务器上。
可以在`conf/druid/cluster/query`下找到适用于此硬件规格的Query示例服务配置。
##### 其他硬件配置
上面的示例集群是从多种确定Druid集群大小的可能方式中选择的一个示例。
您可以根据自己的特定需求和限制选择较小/较大的硬件或较少/更多的服务器。
如果您的使用场景具有复杂的扩展要求则还可以选择不将Druid服务混合部署例如独立的Historical Server
[基本集群调整指南](../operations/basic-cluster-tuning.md)中的信息可以帮助您进行决策,并可以调整配置大小。
#### 从单服务器环境迁移部署
如果您现在已有单服务器部署的环境,例如[单服务器部署示例](./chapter-3.md)中的部署并且希望迁移到类似规模的集群部署则以下部分包含一些选择Master/Data/Query服务等效硬件的准则。
##### Master服务
Master服务的主要考虑点是可用CPU以及用于Coordinator和Overlord进程的堆内存。
首先计算出来在单服务器环境下Coordinator和Overlord已分配堆内存之和然后选择具有足够内存的Master服务硬件同时还需要考虑到为服务器上其他进程预留一些额外的内存。
对于CPU可以选择接近于单服务器环境核数1/4的硬件。
##### Data服务
在为集群Data服务选择硬件时主要考虑可用的CPU和内存可行时使用SSD存储。
在集群化部署时出于容错的考虑最好是部署多个Data服务。
在选择Data服务的硬件时可以假定一个分裂因子`N`将原来的单服务器环境的CPU和内存除以`N`,然后在新集群中部署`N`个硬件规格缩小的Data服务。
##### Query服务
Query服务的硬件选择主要考虑可用的CPU、Broker服务的堆内和堆外内存、Router服务的堆内存。
首先计算出来在单服务器环境下Broker和Router已分配堆内存之和然后选择可以覆盖Broker和Router内存的Query服务硬件同时还需要考虑到为服务器上其他进程预留一些额外的内存。
对于CPU可以选择接近于单服务器环境核数1/4的硬件。
[基本集群调优指南](../operations/basic-cluster-tuning.md)包含有关如何计算Broker和Router服务内存使用量的信息。
### 选择操作系统
我们建议运行您喜欢的Linux发行版同时还需要
* **Java 8**
> [!WARNING]
> Druid服务运行依赖Java 8可以使用环境变量`DRUID_JAVA_HOME`或`JAVA_HOME`指定在何处查找Java,有关更多详细信息,请运行`verify-java`脚本。
### 下载发行版
首先,下载并解压缩发布安装包。最好首先在单台计算机上执行此操作,因为您将编辑配置,然后将修改后的配置分发到所有服务器上。
[下载](https://www.apache.org/dyn/closer.cgi?path=/druid/0.17.0/apache-druid-0.17.0-bin.tar.gz)Druid最新0.17.0release安装包
在终端中运行以下命令来提取Druid
```
tar -xzf apache-druid-0.17.0-bin.tar.gz
cd apache-druid-0.17.0
```
在安装包中有以下文件:
* `LICENSE`和`NOTICE`文件
* `bin/*` - 启停等脚本
* `conf/druid/cluster/*` - 用于集群部署的模板配置
* `extensions/*` - Druid核心扩展
* `hadoop-dependencies/*` - Druid Hadoop依赖
* `lib/*` - Druid核心库和依赖
* `quickstart/*` - 与[快速入门](./chapter-2.md)相关的文件
我们主要是编辑`conf/druid/cluster/`中的文件。
#### 从单服务器环境迁移部署
在以下各节中,我们将在`conf/druid/cluster`下编辑配置。
如果您已经有一个单服务器部署,请将您的现有配置复制到`conf/druid /cluster`以保留您所做的所有配置更改。
### 配置元数据存储和深度存储
#### 从单服务器环境迁移部署
如果您已经有一个单服务器部署,并且希望在整个迁移过程中保留数据,请在更新元数据/深层存储配置之前,按照[元数据迁移](../operations/metadataMigration.md)和[深层存储迁移](../operations/DeepstorageMigration.md)中的说明进行操作。
这些指南针对使用Derby元数据存储和本地深度存储的单服务器部署。 如果您已经在单服务器集群中使用了非Derby元数据存储则可以在新集群中可以继续使用当前的元数据存储。
这些指南还提供了有关从本地深度存储迁移段的信息。集群部署需要分布式深度存储例如S3或HDFS。 如果单服务器部署已在使用分布式深度存储,则可以在新集群中继续使用当前的深度存储。
#### 元数据存储
在`conf/druid/cluster/_common/common.runtime.properties`中,使用您将用作元数据存储的服务器地址来替换"metadata.storage.*":
* `druid.metadata.storage.connector.connectURI`
* `druid.metadata.storage.connector.host`
在生产部署中我们建议运行专用的元数据存储例如具有复制功能的MySQL或PostgreSQL与Druid服务器分开部署。
[MySQL扩展](../configuration/core-ext/mysql.md)和[PostgreSQL](../configuration/core-ext/postgresql.md)扩展文档包含有关扩展配置和初始数据库安装的说明。
#### 深度存储
Druid依赖于分布式文件系统或大对象blob存储来存储数据最常用的深度存储实现是S3适合于在AWS上和HDFS适合于已有Hadoop集群
##### S3
在`conf/druid/cluster/_common/common.runtime.properties`中,
* 在`druid.extension.loadList`配置项中增加"druid-s3-extensions"扩展
* 注释掉配置文件中用于本地存储的"Deep Storage"和"Indexing service logs"
* 打开配置文件中关于"For S3"部分中"Deep Storage"和"Indexing service logs"的配置
上述操作之后,您将看到以下的变化:
```json
druid.extensions.loadList=["druid-s3-extensions"]
#druid.storage.type=local
#druid.storage.storageDirectory=var/druid/segments
druid.storage.type=s3
druid.storage.bucket=your-bucket
druid.storage.baseKey=druid/segments
druid.s3.accessKey=...
druid.s3.secretKey=...
#druid.indexer.logs.type=file
#druid.indexer.logs.directory=var/druid/indexing-logs
druid.indexer.logs.type=s3
druid.indexer.logs.s3Bucket=your-bucket
druid.indexer.logs.s3Prefix=druid/indexing-logs
```
更多信息可以看[S3扩展](../configuration/core-ext/s3.md)部分的文档。
##### HDFS
在`conf/druid/cluster/_common/common.runtime.properties`中,
* 在`druid.extension.loadList`配置项中增加"druid-hdfs-storage"扩展
* 注释掉配置文件中用于本地存储的"Deep Storage"和"Indexing service logs"
* 打开配置文件中关于"For HDFS"部分中"Deep Storage"和"Indexing service logs"的配置
上述操作之后,您将看到以下的变化:
```json
druid.extensions.loadList=["druid-hdfs-storage"]
#druid.storage.type=local
#druid.storage.storageDirectory=var/druid/segments
druid.storage.type=hdfs
druid.storage.storageDirectory=/druid/segments
#druid.indexer.logs.type=file
#druid.indexer.logs.directory=var/druid/indexing-logs
druid.indexer.logs.type=hdfs
druid.indexer.logs.directory=/druid/indexing-logs
```
同时:
* 需要将Hadoop的配置文件core-site.xml, hdfs-site.xml, yarn-site.xml, mapred-site.xml放置在Druid进程的classpath中可以将他们拷贝到`conf/druid/cluster/_common`目录中
更多信息可以看[HDFS扩展](../configuration/core-ext/hdfs.md)部分的文档。
### Hadoop连接配置
如果要从Hadoop集群加载数据那么此时应对Druid做如下配置
* 在`conf/druid/cluster/_common/common.runtime.properties`文件中更新`druid.indexer.task.hadoopWorkingPath`配置项将其更新为您期望的一个用于临时文件存储的HDFS路径。 通常会配置为`druid.indexer.task.hadoopWorkingPath=/tmp/druid-indexing`
* 需要将Hadoop的配置文件core-site.xml, hdfs-site.xml, yarn-site.xml, mapred-site.xml放置在Druid进程的classpath中可以将他们拷贝到`conf/druid/cluster/_common`目录中
请注意您无需为了可以从Hadoop加载数据而使用HDFS深度存储。例如如果您的集群在Amazon Web Services上运行即使您使用Hadoop或Elastic MapReduce加载数据我们也建议使用S3进行深度存储。
更多信息可以看[基于Hadoop的数据摄取](../DataIngestion/hadoopbased.md)部分的文档。
### Zookeeper连接配置
在生产集群中我们建议使用专用的ZK集群该集群与Druid服务器分开部署。
`conf/druid/cluster/_common/common.runtime.properties` 中,将 `druid.zk.service.host` 设置为包含用逗号分隔的hostport对列表的连接字符串每个对与ZK中的ZooKeeper服务器相对应。例如" 127.0.0.1:4545"或"127.0.0.1:3000,127.0.0.1:3001、127.0.0.1:3002"
您也可以选择在Master服务上运行ZK而不使用专用的ZK集群。如果这样做我们建议部署3个Master服务以便您具有ZK仲裁。
### 配置调整
#### 从单服务器环境迁移部署
##### Master服务
如果您使用的是[单服务器部署示例](./chapter-3.md)中的示例配置则这些示例中将Coordinator和Overlord进程合并为一个合并的进程。
`conf/druid/cluster/master/coordinator-overlord` 下的示例配置同样合并了Coordinator和Overlord进程。
您可以将现有的 `coordinator-overlord` 配置从单服务器部署复制到`conf/druid/cluster/master/coordinator-overlord`
##### Data服务
假设我们正在从一个32CPU和256GB内存的单服务器部署环境进行迁移在老的环境中Historical和MiddleManager使用了如下的配置
Historical单服务器
```json
druid.processing.buffer.sizeBytes=500000000
druid.processing.numMergeBuffers=8
druid.processing.numThreads=31
```
MiddleManager单服务器
```json
druid.worker.capacity=8
druid.indexer.fork.property.druid.processing.numMergeBuffers=2
druid.indexer.fork.property.druid.processing.buffer.sizeBytes=100000000
druid.indexer.fork.property.druid.processing.numThreads=1
```
在集群部署中我们选择一个分裂因子假设为2则部署2个16CPU和128GB内存的Data服务各项的调整如下
Historical
* `druid.processing.numThreads`设置为新硬件的(`CPU核数 - 1`
* `druid.processing.numMergeBuffers` 使用分裂因子去除单服务部署环境的值
* `druid.processing.buffer.sizeBytes` 该值保持不变
MiddleManager:
* `druid.worker.capacity`: 使用分裂因子去除单服务部署环境的值
* `druid.indexer.fork.property.druid.processing.numMergeBuffers`: 该值保持不变
* `druid.indexer.fork.property.druid.processing.buffer.sizeBytes`: 该值保持不变
* `druid.indexer.fork.property.druid.processing.numThreads`: 该值保持不变
调整后的结果配置如下:
新的Historical(2 Data服务器)
```json
druid.processing.buffer.sizeBytes=500000000
druid.processing.numMergeBuffers=8
druid.processing.numThreads=31
```
新的MiddleManager2 Data服务器
```json
druid.worker.capacity=4
druid.indexer.fork.property.druid.processing.numMergeBuffers=2
druid.indexer.fork.property.druid.processing.buffer.sizeBytes=100000000
druid.indexer.fork.property.druid.processing.numThreads=1
```
##### Query服务
您可以将现有的Broker和Router配置复制到`conf/druid/cluster/query`下的目录中,无需进行任何修改.
#### 首次部署
如果您正在使用如下描述的示例集群规格:
* 1 Master 服务器(m5.2xlarge)
* 2 Data 服务器(i3.4xlarge)
* 1 Query 服务器(m5.2xlarge)
`conf/druid/cluster`下的配置已经为此硬件确定了,一般情况下您无需做进一步的修改。
如果您选择了其他硬件,则[基本的集群调整指南](../operations/basic-cluster-tuning.md)可以帮助您调整配置大小。
### 开启端口(如果使用了防火墙)
如果您正在使用防火墙或其他仅允许特定端口上流量准入的系统,请在以下端口上允许入站连接:
#### Master服务
* 1527Derby元数据存储如果您正在使用一个像MySQL或者PostgreSQL的分离的元数据存储则不需要
* 2181Zookeeper如果使用了独立的ZK集群则不需要
* 8081Coordinator
* 8090Overlord
#### Data服务
* 8083Historical
* 80918100-8199Druid MiddleManager如果`druid.worker.capacity`参数设置较大的话则需要更多高于8199的端口
#### Query服务
* 8082Broker
* 8088Router如果使用了
> [!WARNING]
> 在生产中我们建议将ZooKeeper和元数据存储部署在其专用硬件上而不是在Master服务器上。
### 启动Master服务
将Druid发行版和您编辑的配置文件复制到Master服务器上。
如果您一直在本地计算机上编辑配置则可以使用rsync复制它们
```json
rsync -az apache-druid-0.17.0/ MASTER_SERVER:apache-druid-0.17.0/
```
#### 不带Zookeeper启动
在发行版根目录中运行以下命令以启动Master服务
```json
bin/start-cluster-master-no-zk-server
```
#### 带Zookeeper启动
如果计划在Master服务器上运行ZK请首先更新`conf/zoo.cfg`以标识您计划如何运行ZK然后您可以使用以下命令与ZK一起启动Master服务进程
```json
bin/start-cluster-master-with-zk-server
```
> [!WARNING]
> 在生产中我们建议将ZooKeeper运行在其专用硬件上。
### 启动Data服务
将Druid发行版和您编辑的配置文件复制到您的Data服务器。
在发行版根目录中运行以下命令以启动Data服务
```json
bin/start-cluster-data-server
```
您可以在需要的时候增加更多的Data服务器。
> [!WARNING]
> 对于具有复杂资源分配需求的集群您可以将Historical和MiddleManager分开部署并分别扩容组件。这也使您能够利用Druid的内置MiddleManager自动伸缩功能。
### 启动Query服务
将Druid发行版和您编辑的配置文件复制到您的Query服务器。
在发行版根目录中运行以下命令以启动Query服务
```json
bin/start-cluster-query-server
```
您可以根据查询负载添加更多查询服务器。 如果增加了查询服务器的数量,请确保按照[基本集群调优指南](../operations/basic-cluster-tuning.md)中的说明调整Historical和Task上的连接池。
### 加载数据
恭喜您现在有了Druid集群下一步是根据使用场景来了解将数据加载到Druid的推荐方法。
了解有关[加载数据](../DataIngestion/index.md)的更多信息。

Binary file not shown.

Before

Width:  |  Height:  |  Size: 65 KiB

View File

@ -1,50 +1,82 @@
# Docker
在本 Docker 的快速指南中,我们将从 [Docker Hub](https://hub.docker.com/r/apache/druid) 下载 Apache Druid 镜像,在一台机器上安装并使用
[Docker](https://www.docker.com/get-started) 和 [Docker Compose](https://docs.docker.com/compose/) 。
在这个部分中,我们将从 [Docker Hub](https://hub.docker.com/r/apache/druid) 下载Apache Druid镜像并使用 [Docker](https://www.docker.com/get-started) 和 [Docker Compose](https://docs.docker.com/compose/) 在一台机器上安装它。完成此初始设置后,集群将准备好加载数据。
在完成初始设置后,集群将准备好加载数据。
在开始快速启动之前,阅读 [Druid概述](../GettingStarted/chapter-1.md) 和 [摄取概述](../DataIngestion/ingestion.md) 是很有帮助的因为教程将参考这些页面上讨论的概念。此外建议熟悉Docker
同时,如果你已经完成了下面内容的阅读的话将会更好的帮助你理解 Docker 安装配置的相关内容
### 前提条件
* [Druid 基本概述](../design/index.md)
* [数据导入概述](../ingestion/index.md)
如果你还能对 Docker 使用的相关知识有所了解的,也能够更好的帮助你在 Docker 上使用 Druid。
## 安装前提
* Docker
### 快速开始
## 开始安装
Druid源代码包含一个 [示例docker-compose.yml](https://github.com/apache/druid/blob/master/distribution/docker/docker-compose.yml) 它可以从Docker Hub中提取一个镜像适合用作示例环境并用于试验基于Docker的Druid配置和部署。
Druid 的源代码中包含一个用于示例的 [docker-compose.yml](https://github.com/apache/druid/blob/master/distribution/docker/docker-compose.yml) 文件。
这个文件可以从 Docker Hub中获取一个镜像并可以使用这个镜像进行 Docker 的 Druid 配置和部署。
#### Compose文件
### Compose 文件
`docker-compose.yml` 示例文件将会为每一个 Druid 服务创建一个容器,包括 Zookeeper 和作为元数据存储 PostgreSQL 容器。
示例 `docker-compose.yml` 将为每个Druid服务创建一个容器包括Zookeeper和作为元数据存储PostgreSQL容器。深度存储将是本地目录默认配置为相对于 `docker-compose.yml`文件的 `./storage`,并将作为 `/opt/data` 挂载并在需要访问深层存储的Druid容器之间共享。Druid容器是通过 [环境文件](https://github.com/apache/druid/blob/master/distribution/docker/environment) 配置的
同时还会创建一个 `druid_shared` 的卷,并且这个卷将会在容器的挂载点为 `opt/shared`。这个挂载点将会被用在深度存储来保证在段和任务日志之间进行共享
#### 配置
Druid 容器是通过 [environment file](https://github.com/apache/druid/blob/master/distribution/docker/environment) 进行配置的。
Druid Docker容器的配置是通过环境变量完成的环境变量还可以指定到 [标准Druid配置文件](../configuration/human-readable-byte.md) 的路径
### 配置
Druid Docker 容器的配置是通过环境变量完成的。环境变量的路径指定请参考文档:[标准 Druid 配置文件](../configuration/human-readable-byte.md) 中的内容。
特殊环境变量:
特殊环境变量:
* `JAVA_OPTS` -- 设置 java options
* `DRUID_LOG4J` -- 设置完成的 `log4j.xml`
* `DRUID_LOG_LEVEL` -- 覆盖在log4j中的默认日志级别
* `DRUID_LOG_LEVEL` -- 覆盖在 log4j 中的默认日志级别
* `DRUID_XMX` -- 设置 Java `Xmx`
* `DRUID_XMS` -- 设置 Java `Xms`
* `DRUID_MAXNEWSIZE` -- 设置 Java最大新生代大小
* `DRUID_NEWSIZE` -- 设置 Java 新生代大小
* `DRUID_MAXDIRECTMEMORYSIZE` -- 设置Java最大直接内存大小
* `DRUID_CONFIG_COMMON` -- druid "common"属性文件的完整路径
* `DRUID_CONFIG_${service}` -- druid "service"属性文件的完整路径
* `DRUID_MAXNEWSIZE` -- 设置 Java 最大 new 的大小
* `DRUID_NEWSIZE` -- 设置 Java new 的大小
* `DRUID_MAXDIRECTMEMORYSIZE` -- 设置 Java 最大直接内存大小
* `DRUID_CONFIG_COMMON` -- druid "common" 属性文件的完整路径
* `DRUID_CONFIG_${service}` -- druid "service" 属性文件的完整路径
*
除了特殊的环境变量外在容器中启动Druid的脚本还将尝试使用以 `druid_`前缀开头的任何环境变量作为命令行配置。例如Druid容器进程中的环境变量`druid_metadata_storage_type=postgresql` 将被转换为 `-Ddruid.metadata.storage.type=postgresql`
Druid `docker-compose.yml` 示例使用单个环境文件来指定完整的Druid配置但是在生产用例中我们建议使用 `DRUID_COMMON_CONFIG` 和`DRUID_CONFIG_${service}` 或专门定制的特定于服务的环境文件
除了上面的特殊的环境变量外,在容器启动的时候 Druid 的脚本还将尝试使用以 `druid_` 为前缀的环境变量来对变量进行配置
### 启动集群
例如,针对 Druid 在容器中的进程使用的环境变量:
运行 `docker-compose up` 启动附加shell的集群或运行 `docker-compose up -d` 在后台运行集群。如果直接使用示例文件这个命令应该从Druid安装目录中的 `distribution/docker/` 运行。
`druid_metadata_storage_type=postgresql`
启动集群后,可以导航到 [http://localhost:8888](http://localhost/) 。服务于 [Druid控制台](../operations/druid-console.md) 的 [Druid路由进程](../design/router.md) 位于这个地址。
将被转换为
![](img/tutorial-quickstart-01.png)
Druid 的 `docker-compose.yml` 文件,展示了如何使用一个环境配置文件来完成所有 Druid 的配置。
所有Druid进程需要几秒钟才能完全启动。如果在启动服务后立即打开控制台可能会看到一些可以安全忽略的错误
但是,在生产环境中,建议使用 `DRUID_COMMON_CONFIG` 和`DRUID_CONFIG_${service}` 来为服务相关的环境指派专门的配置参数
从这里你可以跟着 [标准教程](../GettingStarted/chapter-2.md),或者详细说明你的 `docker-compose.yml` 根据需要添加任何其他外部服务依赖项。
## 启动集群
`docker-compose up` 命令来在 shell 中直接启动集群。
如果你希望在后台环境中启动集群,请运行 `docker-compose up -d` 命令。
如果你使用的是示例文件目录,那么你需要从 `distribution/docker/` 目录来启动 Docker 的集群。
当你的集群完成所有的启动后,你可以通过浏览器访问 [http://localhost:8888](http://localhost:8888) 控制台页面。
[Druid router 进程](../design/router.md) 提供了 [Druid 控制台Druid console](../operations/druid-console.md) 显示的界面。
![Druid console](../assets/tutorial-quickstart-01.png "Druid console")
所有的 Druid 进程完全启动需要几秒钟的时间。如果在 Druid 进程启动的时候,立即打开控制台的话,你可能会看到一些可安全错误,这些安全错误是可以忽略的,直接刷新页面即可。
至此,你可以继续 [快速使用Quickstart](./index.md#step-4-load-data) 页面中的内容。
如果你还希望加载一些其他的依赖的话,你可以直接对 `docker-compose.yml` 文件进行编辑后重启 Docker。
## Docker 内存的需求
如果你在 Docker 启动的时候发现存在进程崩溃,并且错误代码为 137 的话,表明你的 Docker 的内存不够。
在测试阶段,你可以为你的 Docker 指派 6G 左右的内存。