[![Slack](https://img.shields.io/badge/slack-%23druid-72eff8?logo=slack)](https://s.apache.org/slack-invite) [![Build Status](https://api.travis-ci.com/apache/druid.svg?branch=master)](https://travis-ci.com/apache/druid) [![Language grade: Java](https://img.shields.io/lgtm/grade/java/g/apache/druid.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/apache/druid/context:java) [![Coverage Status](https://img.shields.io/codecov/c/gh/apache/druid)](https://codecov.io/gh/apache/druid) [![Docker](https://img.shields.io/badge/container-docker-blue.svg)](https://hub.docker.com/r/apache/druid) [![Helm](https://img.shields.io/badge/helm-druid-5F90AB?logo=helm)](https://artifacthub.io/packages/helm/helm-incubator/druid) --- [中文文档](https://druid.apache.org/docs/latest/design/) | [官方网站](https://druid.apache.org/) | [官方文档(英文)](https://druid.apache.org/docs/latest/design/) | [开发者邮件地址](https://lists.apache.org/list.html?dev@druid.apache.org) | [用户邮件地址](https://groups.google.com/forum/#!forum/druid-user) | [Slack](https://s.apache.org/slack-invite) | [下载地址](https://druid.apache.org/downloads.html) --- ## Apache Druid Apache Druid 是一个高性能的实时分析型数据库。 ### 云原生、流原生的分析型数据库 Druid专为需要快速数据查询与摄入的工作流程而设计,在即时数据可见性、即席查询、运营分析以及高并发等方面表现非常出色。 在实际中[众多场景](Misc/usercase.md)下数据仓库解决方案中,可以考虑将Druid当做一种开源的替代解决方案。 ### 可轻松与现有的数据管道进行集成 Druid原生支持从[Kafka](http://kafka.apache.org/)、[Amazon Kinesis](https://aws.amazon.com/cn/kinesis/)等消息总线中流式的消费数据,也同时支持从[HDFS](https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html)、[Amazon S3](https://aws.amazon.com/cn/s3/)等存储服务中批量的加载数据文件。 ### 较传统方案提升近百倍的效率 Druid创新地在架构设计上吸收和结合了[数据仓库](https://en.wikipedia.org/wiki/Data_warehouse)、[时序数据库](https://en.wikipedia.org/wiki/Time_series_database)以及[检索系统](https://en.wikipedia.org/wiki/Search_engine_(computing))的优势,在已经完成的[基准测试](https://imply.io/post/performance-benchmark-druid-presto-hive)中展现出来的性能远远超过数据摄入与查询的传统解决方案。 ### 解锁了一种新型的工作流程 Druid为点击流、APM、供应链、网络监测、市场营销以及其他事件驱动类型的数据分析解锁了一种[新型的查询与工作流程](Misc/usercase.md),它专为实时和历史数据高效快速的即席查询而设计。 ### 可部署在AWS/GCP/Azure,混合云,Kubernetes, 以及裸机上 无论在云上还是本地,Druid可以轻松的部署在商用硬件上的任何*NIX环境。部署Druid也是非常简单的,包括集群的扩容或者下线都也同样很简单。 ```text 在国内Druid的使用者越来越多,但是并没有一个很好的中文版本的使用文档。 本文档根据Apache Druid官方文档0.20.1版本进行翻译,目前托管在Github上,欢迎更多的Druid使用者以及爱好者加入翻译行列,为国内的使用者提供一个高质量的中文版本使用文档。 ```