## 输入数据变换 本教程将演示如何使用转换规范在接收期间过滤和转换输入数据 本教程我们假设您已经按照[单服务器部署](../GettingStarted/chapter-3.md)中描述下载了Druid,并运行在本地机器上。 完成[加载本地文件](./chapter-1.md)、[数据查询](./chapter-4.md)和[roll-up](./chapter-5.md)部分内容也是非常有帮助的 ### 样例数据 我们在 `quickstart/tutorial/transform-data.json` 中包括了样例数据,为了方便我们展示一下: ``` {"timestamp":"2018-01-01T07:01:35Z","animal":"octopus", "location":1, "number":100} {"timestamp":"2018-01-01T05:01:35Z","animal":"mongoose", "location":2,"number":200} {"timestamp":"2018-01-01T06:01:35Z","animal":"snake", "location":3, "number":300} {"timestamp":"2018-01-01T01:01:35Z","animal":"lion", "location":4, "number":300} ``` ### 使用转换规范加载数据 我们将使用以下规范摄取示例数据,该规范演示了转换规范的使用: ``` { "type" : "index_parallel", "spec" : { "dataSchema" : { "dataSource" : "transform-tutorial", "timestampSpec": { "column": "timestamp", "format": "iso" }, "dimensionsSpec" : { "dimensions" : [ "animal", { "name": "location", "type": "long" } ] }, "metricsSpec" : [ { "type" : "count", "name" : "count" }, { "type" : "longSum", "name" : "number", "fieldName" : "number" }, { "type" : "longSum", "name" : "triple-number", "fieldName" : "triple-number" } ], "granularitySpec" : { "type" : "uniform", "segmentGranularity" : "week", "queryGranularity" : "minute", "intervals" : ["2018-01-01/2018-01-03"], "rollup" : true }, "transformSpec": { "transforms": [ { "type": "expression", "name": "animal", "expression": "concat('super-', animal)" }, { "type": "expression", "name": "triple-number", "expression": "number * 3" } ], "filter": { "type":"or", "fields": [ { "type": "selector", "dimension": "animal", "value": "super-mongoose" }, { "type": "selector", "dimension": "triple-number", "value": "300" }, { "type": "selector", "dimension": "location", "value": "3" } ] } } }, "ioConfig" : { "type" : "index_parallel", "inputSource" : { "type" : "local", "baseDir" : "quickstart/tutorial", "filter" : "transform-data.json" }, "inputFormat" : { "type" :"json" }, "appendToExisting" : false }, "tuningConfig" : { "type" : "index_parallel", "maxRowsPerSegment" : 5000000, "maxRowsInMemory" : 25000 } } } ``` 在转换规范中,我们有两个表达式转换: * `super-animal`: 在 `"animal"` 列的值前加上"super-"。这将用转换后的版本覆盖 `animal` 列,因为转换的名称是 `animal` * `triple-number`: 将数字列乘以3, 这将创建一个新的三位数列。注意,我们同时接收原始列和转换列 另外,我们有一个包含三个子句的OR过滤器: * `super-animal` 值匹配"super-mongoose" * `triple-number` 值匹配300 * `location`值匹配3 这个过滤器选择前3行,它将排除输入数据中的最后一个"lion"行。请注意,过滤器是在转换之后应用的。 现在提交位于 `quickstart/tutorial/transform-index.json` 的任务: ``` bin/post-index-task --file quickstart/tutorial/transform-index.json --url http://localhost:8081 ``` ### 查询已转换的数据 运行 `bin/dsql` 提交 `select * from "transform-tutorial"` 查询来看摄入的数据: ``` dsql> select * from "transform-tutorial"; ┌──────────────────────────┬────────────────┬───────┬──────────┬────────┬───────────────┐ │ __time │ animal │ count │ location │ number │ triple-number │ ├──────────────────────────┼────────────────┼───────┼──────────┼────────┼───────────────┤ │ 2018-01-01T05:01:00.000Z │ super-mongoose │ 1 │ 2 │ 200 │ 600 │ │ 2018-01-01T06:01:00.000Z │ super-snake │ 1 │ 3 │ 300 │ 900 │ │ 2018-01-01T07:01:00.000Z │ super-octopus │ 1 │ 1 │ 100 │ 300 │ └──────────────────────────┴────────────────┴───────┴──────────┴────────┴───────────────┘ Retrieved 3 rows in 0.03s. ``` "Lion"列被丢弃,`animal`列被转换,我们既有原始列,也有转换后的数字列。