druid-docs-cn/Tutorials/chapter-11.md

126 lines
5.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!-- toc -->
## 输入数据变换
本教程将演示如何使用转换规范在接收期间过滤和转换输入数据
本教程我们假设您已经按照[单服务器部署](../GettingStarted/chapter-3.md)中描述下载了Druid并运行在本地机器上。
完成[加载本地文件](./chapter-1.md)、[数据查询](./chapter-4.md)和[roll-up](./chapter-5.md)部分内容也是非常有帮助的
### 样例数据
我们在 `quickstart/tutorial/transform-data.json` 中包括了样例数据,为了方便我们展示一下:
```
{"timestamp":"2018-01-01T07:01:35Z","animal":"octopus", "location":1, "number":100}
{"timestamp":"2018-01-01T05:01:35Z","animal":"mongoose", "location":2,"number":200}
{"timestamp":"2018-01-01T06:01:35Z","animal":"snake", "location":3, "number":300}
{"timestamp":"2018-01-01T01:01:35Z","animal":"lion", "location":4, "number":300}
```
### 使用转换规范加载数据
我们将使用以下规范摄取示例数据,该规范演示了转换规范的使用:
```
{
"type" : "index_parallel",
"spec" : {
"dataSchema" : {
"dataSource" : "transform-tutorial",
"timestampSpec": {
"column": "timestamp",
"format": "iso"
},
"dimensionsSpec" : {
"dimensions" : [
"animal",
{ "name": "location", "type": "long" }
]
},
"metricsSpec" : [
{ "type" : "count", "name" : "count" },
{ "type" : "longSum", "name" : "number", "fieldName" : "number" },
{ "type" : "longSum", "name" : "triple-number", "fieldName" : "triple-number" }
],
"granularitySpec" : {
"type" : "uniform",
"segmentGranularity" : "week",
"queryGranularity" : "minute",
"intervals" : ["2018-01-01/2018-01-03"],
"rollup" : true
},
"transformSpec": {
"transforms": [
{
"type": "expression",
"name": "animal",
"expression": "concat('super-', animal)"
},
{
"type": "expression",
"name": "triple-number",
"expression": "number * 3"
}
],
"filter": {
"type":"or",
"fields": [
{ "type": "selector", "dimension": "animal", "value": "super-mongoose" },
{ "type": "selector", "dimension": "triple-number", "value": "300" },
{ "type": "selector", "dimension": "location", "value": "3" }
]
}
}
},
"ioConfig" : {
"type" : "index_parallel",
"inputSource" : {
"type" : "local",
"baseDir" : "quickstart/tutorial",
"filter" : "transform-data.json"
},
"inputFormat" : {
"type" :"json"
},
"appendToExisting" : false
},
"tuningConfig" : {
"type" : "index_parallel",
"maxRowsPerSegment" : 5000000,
"maxRowsInMemory" : 25000
}
}
}
```
在转换规范中,我们有两个表达式转换:
* `super-animal`: 在 `"animal"` 列的值前加上"super-"。这将用转换后的版本覆盖 `animal` 列,因为转换的名称是 `animal`
* `triple-number`: 将数字列乘以3, 这将创建一个新的三位数列。注意,我们同时接收原始列和转换列
另外我们有一个包含三个子句的OR过滤器
* `super-animal` 值匹配"super-mongoose"
* `triple-number` 值匹配300
* `location`值匹配3
这个过滤器选择前3行它将排除输入数据中的最后一个"lion"行。请注意,过滤器是在转换之后应用的。
现在提交位于 `quickstart/tutorial/transform-index.json` 的任务:
```
bin/post-index-task --file quickstart/tutorial/transform-index.json --url http://localhost:8081
```
### 查询已转换的数据
运行 `bin/dsql` 提交 `select * from "transform-tutorial"` 查询来看摄入的数据:
```
dsql> select * from "transform-tutorial";
┌──────────────────────────┬────────────────┬───────┬──────────┬────────┬───────────────┐
│ __time │ animal │ count │ location │ number │ triple-number │
├──────────────────────────┼────────────────┼───────┼──────────┼────────┼───────────────┤
│ 2018-01-01T05:01:00.000Z │ super-mongoose │ 1 │ 2 │ 200 │ 600 │
│ 2018-01-01T06:01:00.000Z │ super-snake │ 1 │ 3 │ 300 │ 900 │
│ 2018-01-01T07:01:00.000Z │ super-octopus │ 1 │ 1 │ 100 │ 300 │
└──────────────────────────┴────────────────┴───────┴──────────┴────────┴───────────────┘
Retrieved 3 rows in 0.03s.
```
"Lion"列被丢弃,`animal`列被转换,我们既有原始列,也有转换后的数字列。