Table of Contents

Bootstrap a Web Application With SPring 4iiiiiii e 1
TADIE OF CONTENTS ...ttt e et e et e e et s 2
L OVEIVIBIW ettt et ettt e ettt e e et et e e ettt e e e et eeeab e aeae 2
2. The MaVven POMXIMI ...t e eaans 2
3. The Java based Web Configurationoooeuuiiiiiiiiiiiiii e 4
N @o g Tox U 1= T o PP UPPPR 6
Build a REST APl with Spring 4 and Java Configuvviiiiiiiiiiie e 6
TADIE OF CONTENTS ...ttt e et e et e e et s 7
L OVEIVIBIW ettt et ettt e ettt e e et et e e ettt e e e et eeeab e aeae 7
2. Understanding REST iN SPFiNG ...ceveiiniiiiee et 7
3. The Java CONFIGUIALIONcceuuiiieiii e e e e e e e e e e e eees 8
4. Testing the SPring CONTEXLEiiiiiii e e e e e e eens 8
I (= O g o] = PP UPPPT 8
6. Mapping the HTTP reSPONSE COUEScovuuiiiiiiieiiiiii et e eees 10
7. Additional Maven dependenCiesooveuuiiiiiiii e 11
8. CONCIUSION .ottt e e e e e b 11
Spring Security for @ REST AP ... e 11
TADIE OF CONTENTS ettt ettt e e et e e e e aa e e e eenes 12
L OVEIVIBIV ittt e ettt e et e e et e e 12
2. Spring Security in the Web.Xml ... 12
3. The Security Configurationuiviiiiiiiei e 13
4. Maven and other troubIe ... 16
B CONCIUSION .ttt e e e et e e et e e e b 16
Spring Security Basic AUNENLICAIIONccuuuiieiiiii e 16
L OVEIVIBIV ettt e et e et et e e 17
2. The Spring Security ConfigUrationoveiiuuiiieiiiiii e 17
3. Consuming The Secured APPHICALIONuuiiiiiiiiie e 18
4. Further Configuration — The Entry POINtcoviiiiiiiiiiiiii e 18
5. The Maven DEPENAENCIEScc.uuiiiiiii et e s 19
B. CONCIUSION .ottt et e e et e e e e b 19
Spring Security Digest AUNENTICAIIONcccevuiiiiiiiii e 19
L OVEIVIBIV ettt e et e et et e e 20
2. The Security XML Configurationooeeeuiieiiiiee e 20
3. Consuming the Secured APPIICALIONcouuiiiiii e 21
4. The Maven DEPEnTENCIESu it ettt e e et e e b eeees 22
B CONCIUSION .ttt ettt e e et e e e b 22
Basic and Digest Authentication for a REST Service with Spring SECUNtYcocvvvveviiiinneeiinnnnn. 23
TADIE OF CONTENTS ettt ettt e e et e e e e aa e e e eenes 23
L OVEIVIBIV ittt e ettt e et e e et e e 24
2. Configuration of Basic AUtNENtiCAtioNcoveveiiiiiiiiiiie e 24
3. Configuration of Digest AUtNENTICAtIONiiiiiiiiiiiiii e 24
4. Supporting both authentication protocolsin the same RESTful servicecccoeeeunn.. 25
5. Testing DOth SCENAITOSiiiii i e 26
B. CONCIUSION .ottt e et e e et e e e b s 26

Bootstrap a Web Application with Spring 4

Return to Content

Contents

Table of Contents

* 1. Overview

» 2. The Maven pom.xml

3. The Java based Web Configuration
* 4. Conclusion

If you're new here, you may want to get my "REST APIswith Spring" eBook [https://my.leadpages.net/
leadbox/146382273f72a2%3A 13a71ac76b46dc/5735865741475840/]. Thanks for visiting!

Table of Contents

* 1. Overview

e 2. The Maven pom.xml

« AAA 21 Justfication of the cglib dependency

« AAA 2.2 Thecglib dependency in Spring 3.2 and beyond
3. The Java based web configuration

« A A 3.1. Theweb.xml

» 4, Conclusion

1. Overview

Thetutorial illustrateshow to Bootstrap a Web Application with Spring and al so discusses how to make
the jump from XML to Java without having to completely migrate the entire XML configuration.

2. The Maven pom.xml

<proj ect xm ns="http://mven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schenmalLocat i on="
http:// maven. apache. org/ POM 4. 0. 0
http:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>or g</ gr oupl d>
<artifactld>rest</artifactld>
<ver si on>0. 0. 1- SNAPSHOT</ ver si on>
<packagi ng>war </ packagi ng>

<dependenci es>
<dependency>

<gr oupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-webnvc</artifactld>

https://my.leadpages.net/leadbox/146382273f72a2%3A13a71ac76b46dc/5735865741475840/
https://my.leadpages.net/leadbox/146382273f72a2%3A13a71ac76b46dc/5735865741475840/
https://my.leadpages.net/leadbox/146382273f72a2%3A13a71ac76b46dc/5735865741475840/

<versi on>${spring. versi on}</versi on>
<excl usi ons>

<excl usi on>
<artifactld>commons-| oggi ng</artifactld>
<groupl d>commons- | oggi ng</ gr oupl d>

</ excl usi on>

</ excl usi ons>

</ dependency>

</ dependenci es>

<bui | d>
<fi nal Nanme>r est </ f i nal Nanme>

<pl ugi ns>

<pl ugi n>

<gr oupl d>or g. apache. maven. pl ugi ns</ groupl d>
<artifactld>maven-conpil er-plugin</artifactld>
<versi on>3. 1</ ver si on>

<configuration>

<sour ce>1. 6</ sour ce>

<t arget >1. 6</target>

<encodi ng>UTF- 8</ encodi ng>

</ confi guration>

</ pl ugi n>

</ pl ugi ns>

</ bui | d>

<properties>
<spring.version>4.0.5. RELEASE</ spri ng. ver si on>
</ properties>

</ pr oj ect >

2.1. The cglib dependency before Spring 3.2

Y ou may wonder why cglib is adependency — it turns out there is avalid reason to include it — the entire
configuration cannot function without it. If removed, Spring will throw:

Caused by: java.lang.lllegal SateException: CGLIBisrequired to process @Configuration classes. Either
add CGLIB to the classpath or remove the following @Configuration bean definitions

The reason this happensis explained by the way Spring deals with @Configuration classes. These classes
are effectively beans, and because of this they need to be aware of the Context, and respect scope and
other bean semantics. Thisisachieved by dynamically creating a cglib proxy with this awareness for each
@Configuration class, hence the cglib dependency.

Also, because of this, there are afew restrictions for Configuration annotated classes:
 Configuration classes should not befinal

» They should have a constructor with no arguments
2.2. The cglib dependency in Spring 3.2 and beyond
Starting with Spring 3.2, itisnolonger necessary to add cglib asan explicit dependency. Thisisbecause

Spring is in now inlining cglib —which will ensure that all class based proxying functionality will work
out of the box with Spring 3.2.

The new cglib codeis placed under the Spring package: org.springframework.cglib (replacing the original
net.sf.cglib). The reason for the package change is to avoid conflicts with any cglib versions already
existing on the classpath.

Also, the new cglib 3.0 is now used, upgraded from the older 2.2 dependency (see this JIRA issue [https://
jira.springsource.org/browse/SPR-9669] for more details).

Finally, now that Spring 4.0 is out in the wild, changes like this one (removing the cglib dependency)
are to be expected with Java 8 just around the corner — you can watch this Spring Jira [https://
jira.springsource.org/browse/SPR-9639] to keep track of the Spring support, and the Java 8 Resources
page [http://www.baeldung.com/java8] to keep tabs on the that.

3. The Java based Web Configuration

@configuration

@ nmport Resource({ "classpath*:/rest_config.xm" })

@Conponent Scan(basePackages = "org.rest")

@ropertySource({ "classpath:rest.properties", "classpath:web. properties" })
public class AppConfi g{

@Bean
é é public static PropertySourcesPl acehol der Configurer properties() {
A A return new PropertySourcesPl acehol der Configurer();
AA)}
}

First, the @Configuration annotation — this is the main artifact used by the Java based Spring
configuration; it isitself meta-annotated with @Component, which makes the annotated classes standard
beans and as such, also candidates for component scanning. The main purpose of @Configuration classes
is to be sources of bean definitions for the Spring 10C Container. For a more detailed description,
see the official docs [http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/
beans.html#beans-javal.

Then, @I mportResour ce is used to import the existing XML based Spring configuration. This may be
configuration which is still being migrated from XML to Java, or simply legacy configuration that you
wish to keep. Either way, importing it into the Container is essential for a successful migration, allowing
small steps without to much risk. The equivalent XML annotation that is replaced is:

<import resource="classpath*:/rest_config.xml" />

Moving on to @ComponentScan — this configures the component scanning directive, effectively
replacing the XML.:

<cont ext: component - scan base- package="org.rest" />

Asof Spring 3.1, the @Configuration are excluded from classpath scanning by default —seethisJIRA issue
[https://jira.springsource.org/browse/ SPR-8808] . Before Spring 3.1 though, these classes should have been
excluded explicitly:

excludeFilters = { @onponent Scan. Filter(Configuration.class) }

The @Configuration classes should not be autodiscovered because they are already specified and used
by the Container — allowing them to be rediscovered and introduced into the Spring context will result
in the following error:

Caused by: org.springframewor k.context.annotati on.ConflictingBeanDefinitionException: Annotation-
specified bean name ‘webConfig' for bean class [org.rest.spring.AppConfig] conflicts with existing, hon-
compatible bean definition of same name and class [org.rest.spring.AppConfig]

https://jira.springsource.org/browse/SPR-9669
https://jira.springsource.org/browse/SPR-9669
https://jira.springsource.org/browse/SPR-9669
https://jira.springsource.org/browse/SPR-9639
https://jira.springsource.org/browse/SPR-9639
https://jira.springsource.org/browse/SPR-9639
http://www.baeldung.com/java8
http://www.baeldung.com/java8
http://www.baeldung.com/java8
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java
https://jira.springsource.org/browse/SPR-8808
https://jira.springsource.org/browse/SPR-8808

And finally, using the @Bean annotation to configure the properties support -—
A PropertySourcesPlaceholder Configurer is initialized in a @Bean annotated method, indicating it will
produce a Spring bean managed by the Container. Thisnew configuration hasreplaced thefollowing XML.:

<cont ext : property-pl acehol der
| ocati on="cl asspat h: persi stence. properties, classpath:web. properties”
i gnore-unresol vabl e="true"/>

For a more in depth discussion on why it was necessary to manualy register the
PropertySourcesPlaceholderConfigurer bean, see the Properties with Spring Tutoria [http:/
www.bael dung.com/2012/02/06/properties-with-spring/].

3.1. The web.xml

<?xm version="1.0" encodi ng="UTF-8"?>

<web-app xm ns="

http://java. sun. coni xm / ns/j avaee"

A xm ns: web="http://java. sun. com xm / ns/j avaee/ web- app_3_0. xsd"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

xsi : schenmalLocat i on="

http://java. sun. coni xnm / ns/j avaee

http://java. sun. coni xm / ns/j avaee/ web- app_3_0. xsd"

A A Aid="rest" version="3.0">

>

> > >
> > >
> > >

<cont ext - par an>

<par am nane>cont ext d ass</ par am nane>

<par amval ue>

org. springfranmewor k. web. cont ext . support. Annot ati onConfi gWebAppl i cat i onCont ext

</ param val ue>

</ cont ext - par an

<cont ext - par an>

<par am nane>cont ext Conf i gLocat i on</ par am nane>

<par am val ue>org. rest. spring. root </ param val ue>

</ cont ext - par an

<listener>
<listener-class>org. springframework. web. cont ext. Cont ext Loader Li st ener </

i stener-class>

</listener>

<servl et>

<servl et - nane>r est </ servl et - nane>

<servl et-cl ass>

org. springfranewor k. web. servl et. Di spat cher Ser vl et
</servl et-cl ass>

<init-paranp

<par am nane>cont ext d ass</ par am nane>

<par amval ue>

org. springfranmewor k. web. cont ext . support. Annot ati onConf i gWebAppl i cat i onCont ext
</ param val ue>

</init-paranr

<init-paranp

<par am nane>cont ext Conf i gLocat i on</ par am nane>
<par amval ue>org.rest.spring.rest</paramval ue>
</init-paranr

<l oad-on-startup>1</| oad-on-start up>

</servlet>

<servl et - mappi ng>

<servl et - nane>r est </ servl et - nane>

<url -pattern>/api/*</url-pattern>

</ servl et - mappi ng>

http://www.baeldung.com/2012/02/06/properties-with-spring/
http://www.baeldung.com/2012/02/06/properties-with-spring/
http://www.baeldung.com/2012/02/06/properties-with-spring/

<wel cone-file-list>
<wel cone-file />
</wel come-file-list>
</ web- app>

First, the root context is defined and configured to use AnnotationConfigWebApplicationContext instead
of the default XmlWebApplicationContext. The newer AnnotationConfigWebApplicationContext accepts
@Configuration annotated classes as input for the Container configuration and is needed in order to set
up the Java based context. Unlike XmlWebApplicationContext, it assumes no default configuration class
locations, so the " contextConfiglLocation"init-param for the Servlet must be set. Thiswill point to the java
package where the @Configuration classes are located; the fully qualified name(s) of the classes are also
supported.

Next, the Dispatcher Serviet is configured to use the same kind of context, with the only difference that
it'sloading configuration classes out of a different package.

Other than this, the web.xml doesn’t really change from a XML to a Java based configuration.

4. Conclusion

The presented approach allows for a smooth migration of the Spring configuration from XML to Java,
mixing the old and the new. This is important for older projects, which may have a lot of XML based
configuration that cannot be migrated all at once.

Thisway, in amigration, the XML beans can be ported in small increments.

In the next article on REST with Spring [http://www.bael dung.com/2011/10/25/building-a-restful-web-
service-with-spring-3-1-and-java-based-configuration-part-2/], | cover setting up MVC in the project,
configuration of the HT TP status codes, payload marshalling and content negotiation.

The implementation of this Bootstrap a Spring Web App Tutorial can be downloaded as aworking sample
project. [https://my.leadpages.net/leadbox/147e9e473f72a2%3A 13a71ac76b46dc/5745710343389184/]

Thisis an Eclipse based project, so it should be easy to import and run asit is.
A
http://twitter.com/share

java[http://mww.bael dung.com/tag/java-2/], Spring [http://www.bael dung.com/tag/spring/]
© 2014 Baeldung. All Rights Reserved.

Build a REST API with Spring 4 and Java
Config

Return to Content
Contents
» Table of Contents

e 1. Overview

http://www.baeldung.com/2011/10/25/building-a-restful-web-service-with-spring-3-1-and-java-based-configuration-part-2/
http://www.baeldung.com/2011/10/25/building-a-restful-web-service-with-spring-3-1-and-java-based-configuration-part-2/
http://www.baeldung.com/2011/10/25/building-a-restful-web-service-with-spring-3-1-and-java-based-configuration-part-2/
https://my.leadpages.net/leadbox/147e9e473f72a2%3A13a71ac76b46dc/5745710343389184/
https://my.leadpages.net/leadbox/147e9e473f72a2%3A13a71ac76b46dc/5745710343389184/
https://my.leadpages.net/leadbox/147e9e473f72a2%3A13a71ac76b46dc/5745710343389184/
http://twitter.com/share
http://www.baeldung.com/tag/java-2/
http://www.baeldung.com/tag/java-2/
http://www.baeldung.com/tag/spring/
http://www.baeldung.com/tag/spring/

e 2. Understanding REST in Spring

» 3. The Javaconfiguration

4. Testing the Spring context

5. The Controller

* 6. Mapping the HT TP response codes

7. Additional Maven dependencies
» 8. Conclusion

If you're new here, you may want to get my "REST APIswith Spring" eBook [https://my.leadpages.net/
leadbox/146382273f 72a2%3A 13a71ac76b46dc/5735865741475840/]. Thanks for visiting!

A
Table of Contents

1. Overview

2. Understanding REST in Spring

3. The Java configuration

4. Testing the Spring context

5. The Controller

* 6. Mapping the HTTP response codes

A A A 6.1. Unmapped requests
« AAA 6.2.Valid, mapped requests

A A A 6.3.Client error

A A A 6.4. Using @ExceptionHandler

7. Additional Maven dependencies

8. Conclusion

1. Overview

Thisarticleshowshow to set up REST in Spring—the Controller and HT TP response codes, configuration
of payload marshalling and content negotiation.

2. Understanding REST in Spring

The Spring framework supports 2 ways of creating RESTful services:
» using MV C with Model AndView

 using HTTP message converters

https://my.leadpages.net/leadbox/146382273f72a2%3A13a71ac76b46dc/5735865741475840/
https://my.leadpages.net/leadbox/146382273f72a2%3A13a71ac76b46dc/5735865741475840/
https://my.leadpages.net/leadbox/146382273f72a2%3A13a71ac76b46dc/5735865741475840/

The ModelAndView approach is older and much better documented, but also more verbose and
configuration heavy. It tries to shoehorn the REST paradigm into the old model, which is not without
problems. The Spring team understood thisand provided first-class REST support starting with Spring 3.0.

The new approach, based on HttpM essageConverter and annotations, is much more lightweight and easy
to implement. Configuration is minimal and it provides sensible defaults for what you would expect from
aRESTful service. It ishowever newer and aabit on the light side concerning documentation; what’s, the
reference doesn’t go out of it's way to make the distinction and the tradeoffs between the two approaches
as clear asthey should be. Nevertheless, thisisthe way RESTful services should be build after Spring 3.0.

3. The Java configuration

http://mww.bael dung.com/wp-content/upl 0ads/2013/11/SPRING-JAVA-CONFIGURATION.jpg

@Configuration

@nabl eWebM/c

public class WebConfi g{
11

}

The new @EnablewW ebM vc annotation does anumber of useful things— specifically, inthe case of REST,
it detect the existence of Jackson and JAXB 2 on the classpath and automatically creates and registers
default JSON and XML converters. Thefunctionality of the annotation isequivalent to the XML version:

<mvc: annotation-driven />

This is a shortcut, and though it may be useful in many situations, it's not perfect. When more complex
configuration is needed, remove the annotation and extend WebMvcConfigurationSupport directly.

4. Testing the Spring context

Starting with Spring 3.1, we get [http://spring.io/blog/2011/06/21/spring-3-1-m2-testing-with-
configuration-classes-and-profiles/] first-class testing support for @Configuration classes:
@unW t h(SpringJUni t4C assRunner. cl ass)
@Cont ext Confi gurati on(cl asses = { Appl i cationConfig. cl ass,
Per si st enceConfi g. cl ass },
| oader = Annot ati onConfi gCont ext Loader. cl ass)
public class SpringTest{

@rest
public void whenSpringCont extlslnstantiated_t henNoExcepti ons(){
/1 \When

}
}

The Java configuration classes are simply specified with the @ContextConfigur ation annotation and the
new AnnotationConfigContextLoader |oads the bean definitions from the @Configuration classes.

Notice that the WebConfig configuration class was not included in the test because it needsto runin a
Servlet context, which is not provided.

5. The Controller

The @Controller isthe central artifact in the entire Web Tier of the RESTful API. For the purpose of this
post, the controller is modeling a simple REST resource — Foo:

@controller
@Request Mappi ng(value = "/foos")

http://www.baeldung.com/wp-content/uploads/2013/11/SPRING-JAVA-CONFIGURATION.jpg
http://spring.io/blog/2011/06/21/spring-3-1-m2-testing-with-configuration-classes-and-profiles/
http://spring.io/blog/2011/06/21/spring-3-1-m2-testing-with-configuration-classes-and-profiles/
http://spring.io/blog/2011/06/21/spring-3-1-m2-testing-with-configuration-classes-and-profiles/

cl ass FooController{

@\ut owi r ed
| FooServi ce servi ce;

@Request Mappi ng(nethod = Request Met hod. GET)
@ResponseBody

public List< Foo > findAll(){

return service.findA I ();

}

@Request Mappi ng(value = "/{id}", method = Request Met hod. GET)
@ResponseBody

public Foo findOne(@PathVariable("id") Long id){

return RestPreconditions.checkFound(service.findOne(id));

}

@Request Mappi ng(net hod = Request Met hod. POST)
@ResponseSt at us(Htt pSt at us. CREATED)
@ResponseBody

public Long create(@RequestBody Foo resource){
Precondi ti ons. checkNot Nul | (resource);

return service.create(resource);

}

@Request Mappi ng(value = "/{id}", method = Request Met hod. PUT)
@ResponseStatus(HttpStatus. OK)

public void update(@athVariable("id") Long id, @RequestBody Foo resource){
Precondi ti ons. checkNot Nul | (resource);

Rest Precondi ti ons. checkNot Nul | (service.getByld(resource.getld()));

servi ce. update(resource);

}

@Request Mappi ng(value = "/{id}", nmethod = Request Met hod. DELETE)
@ResponseStatus(HttpStatus. OK)

public void delete(@athVariable("id") Long id){

service.del eteByld(id);

}
}

Y ou may have noticed I’ m using a very simple, guava style RestPreconditions utility:

public class RestPreconditions {
public static <T> T checkFound(final T resource) {

if (resource == null) {

t hr ow new MyResour ceNot FoundExcepti on();
}

return resource;

}

}

The Controller implementation isnon-public —thisisbecauseit doesn’t need to be. Usually the controller
isthe last in the chain of dependencies — it receives HT TP requests from the Spring front controller (the
Dispathcer Serviet) and simply delegate them forward to a service layer. If there is no use case where the
controller has to be injected or manipulated through a direct reference, then | prefer not to declare it as
public.

The request mappings are straightforward — as with any controller, the actual value of the mapping as
well asthe HTTP method are used to determine the target method for the request. @RequestBody will bind

the parameters of the method to the body of the HTTP request, whereas @ResponseBody does the same
for the response and return type. They also ensure that the resource will be marshalled and unmarshalled
using the correct HTTP converter. Content negotiation will take place to choose which one of the active
converters will be used, based mostly on the Accept header, although other HTTP headers may be used
to determine the representation as well.

6. Mapping the HTTP response codes

The status codes of the HTTP response are one of the most important parts of the REST service, and the
subject can quickly become very complex. Getting these right can be what makes or breaks the service.

6.1. Unmapped requests

If Spring MV C receives arequest which doesn’t have amapping, it considersthe request not to be allowed
and returns a405 METHOD NOT ALLOWED back to the client. It is also good practice to include the
Allow HTTP header when returning a405 to the client, in order to specify which operations ar e allowed.
Thisisthe standard behavior of Spring MV C and does not require any additional configuration.

6.2. Valid, mapped requests

For any request that does have a mapping, Spring MV C considers the request valid and responds with 200
OK if no other status code is specified otherwise. It is because of this that controller declares different
@ResponseStatus for the create, update and delete actions but not for get, which should indeed return
the default 200 OK.

6.3. Client error

Incaseof aclient error, custom exceptions are defined and mapped to the appropriate error codes. Simply
throwing these exceptionsfrom any of thelayers of theweb tier will ensure Spring mapsthe corresponding
status code on the HTTP response.

@ResponseStatus(value = HttpStatus. BAD REQUEST)
public class BadRequest Excepti on extends Runti neExcepti on{
/1

}
@ResponseStatus(value = HttpStatus. NOT_FOUND)

public class ResourceNot FoundException extends Runti meExcepti on{
11

}

These exceptions are part of the REST API and, as such, should only be used in the appropriate layers
corresponding to REST; if for instance a DAO/DAL layer exist, it should not use the exceptions directly.
Note also that these are not checked exceptions but runtime exceptions —in line with Spring practices
and idioms.

6.4. Using @ExceptionHandler

Another option to map custom exceptions on specific status codes is to use the @ExceptionHandler
annotation in the controller. The problem with that approach is that the annotation only applies
to the controller in which it is defined, not to the entire Spring Container, which means that it
needs to be declared in each controller individually. This quickly becomes cumbersome, especialy
in more complex applications which many controllers. There are a few JIRA issues opened with
Spring at this time to handle this and other related limitations. SPR-8124 [https:.//jira.springsource.org/
browse/SPR-8124], SPR-7278 [https.//jira.springsource.org/browse/SPR-7278], SPR-8406 [https./
jira.springsource.org/browse/ SPR-8406] .

10

https://jira.springsource.org/browse/SPR-8124
https://jira.springsource.org/browse/SPR-8124
https://jira.springsource.org/browse/SPR-8124
https://jira.springsource.org/browse/SPR-7278
https://jira.springsource.org/browse/SPR-7278
https://jira.springsource.org/browse/SPR-8406
https://jira.springsource.org/browse/SPR-8406
https://jira.springsource.org/browse/SPR-8406

7. Additional Maven dependencies

In addition to the spring-webmvc dependency required for the standard web application [http://
www.bael dung.com/spring-with-maven#mvc], we' [l need to set up content marshalling and unmarshalling
for the REST API:

<dependenci es>
<dependency>
A A <groupld>com fasterxni.jackson. core</groupl d>
A A <artifactld>j ackson-databind</artifactld>
A A <version>${j ackson. ver si on} </ ver si on>
</ dependency>
<dependency>
<groupl d>j avax. xm . bi nd</ gr oupl d>
<artifactld> axb-api</artifactld>
<ver si on>${j axb- api . ver si on} </ ver si on>
<scope>runti ne</ scope>
</ dependency>
</ dependenci es>

<properties>

<j ackson. versi on>2. 4. 0</j ackson. ver si on>

<j axb-api . versi on>2. 2. 11</j axb- api . ver si on>
</ properties>

These are the libraries used to convert the representation of the REST resource to either JSON or XML.

8. Conclusion

This tutoria illustrated how to implement and configure a REST Service using Spring 4 and Java based
configuration, discussing HTTP response codes, basic Content Negotiation and marshaling.

In the next articles of the series | will focus on Discoverability of the AP
[http://www.bael dung.com/2011/11/06/restful -web-service-discoverability-part-4/], advanced content
negotiation and working with additional representations of a Resource.

The implementation of this Spring REST API Tutorial can be downloaded as a working sample project.
[https://my.leadpages.net/l eadbox/143echd73f 7282%3A 13a7 1ac76b46dc/5762893836451840/]

Thisis an Eclipse based project, so it should be easy to import and run asit is.

http://twitter.com/share

java [http://www.baeldung.com/tag/java-2/], REST [http://www.baeldung.com/tag/rest/], Spring [http://
www.baeldung.com/tag/spring/], testing [http://www.bael dung.com/tag/testing/]

© 2014 Baeldung. All Rights Reserved.

Spring Security for a REST API

Return to Content
Contents

» Table of Contents

11

http://www.baeldung.com/spring-with-maven#mvc
http://www.baeldung.com/spring-with-maven#mvc
http://www.baeldung.com/spring-with-maven#mvc
http://www.baeldung.com/2011/11/06/restful-web-service-discoverability-part-4/
http://www.baeldung.com/2011/11/06/restful-web-service-discoverability-part-4/
https://my.leadpages.net/leadbox/143ecbd73f72a2%3A13a71ac76b46dc/5762893836451840/
https://my.leadpages.net/leadbox/143ecbd73f72a2%3A13a71ac76b46dc/5762893836451840/
http://twitter.com/share
http://www.baeldung.com/tag/java-2/
http://www.baeldung.com/tag/java-2/
http://www.baeldung.com/tag/rest/
http://www.baeldung.com/tag/rest/
http://www.baeldung.com/tag/spring/
http://www.baeldung.com/tag/spring/
http://www.baeldung.com/tag/spring/
http://www.baeldung.com/tag/testing/
http://www.baeldung.com/tag/testing/

* 1. Overview

2. Spring Security in the web.xml
* 3. The Security Configuration

* 4. Maven and other trouble

e 5, Conclusion

Table of Contents

e 1. Overview

2. Introducing Spring Security in theweb. xni

* 3. The Security Configuration

« AAAA3.1 Thebasics

« AAAA 3.2. The Entry Point

« AAAA33. TheLogin

« A A A 3.4. Authentication should return 200 instead of 301

« A A A 35. Failed Authentication should return 401 instead of 302
« A A A A 3.6. The Authentication Manager and Provider

« AAA 3.7 Finaly &€" Authentication against the running REST Service

4. Maven and other trouble

» 5. Conclusion

1. Overview

This tutorial shows how to Secure a REST Service using Spring and Spring Security 3.1 with Java
based configuration. The article will focus on how to set up the Security Configuration specifically for the
REST API using a Login and Cookie approach.

2. Spring Security in the web.xml

The architecture of Spring Security is based entirely on Servlet Filters and, as such, comes before Spring
MV C in regards to the processing of HTTP requests. Keeping this in mind, to begin with, afilter needs
to be declared in the web.xml of the application:

<filter>
<filter-nanme>springSecurityFilterChain</filter-name>
<filter-class>org.springfranmework.web.filter.Del egatingFilterProxy</filter-
cl ass>
</filter>
<filter-mppi ng>

12

<filter-nanme>springSecurityFilterChain</filter-name>
<url-pattern>/*</url-pattern>
</filter-mappi ng>

The filter must necessarily be named ‘ springSecurityFilter Chain’ A to match the default bean created by
Spring Security in the container.

Note that the defined filter is not the actual class implementing the security logic but a
DelegatingFilter Proxy with the purpose of delegating the Filter’ s methodsto aninternal bean. Thisisdone
so that the target bean can still benefit from the Spring context lifecycle and flexibility.

The URL pattern used to configure the Filter is /* even though the entire web service is mapped to /api/*
so that the security configuration has the option to secure other possible mappings as well, if required.

3. The Security Configuration

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans: beans

xm ns="http://ww. springfranmework. org/ schema/ security"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

xm ns: beans="http://ww. spri ngfranewor k. or g/ schema/ beans"

xm ns:sec="http://ww. springfranmework. org/ schema/ security"

Xsi : schenalLocati on="

http://ww. springfranmework. org/ schema/ security

http://ww. springfranework. org/ schena/ security/spring-security-3.2.xsd
http://ww. springfranmework. or g/ schenma/ beans

http://ww. springfranewor k. or g/ schena/ beans/ spri ng- beans-4. 0. xsd" >

<http entry-point-ref="restAuthenticati onEntryPoint">
<intercept-url pattern="/api/adm n/**" access="ROLE_ADM N'/ >

<formlogin

aut henti cati on-success- handl er-ref ="nmySuccessHandl er"
aut henti cation-fail ure-handl er-ref="nyFail ureHandl er"
/>

<l ogout />
</ http>

<beans: bean i d="nySuccessHandl er"
class="org.rest.security. MySavedRequest Awar eAut henti cati onSuccessHandl er"/ >
<beans: bean i d="nyFai |l ureHandl er"

<aut henti cati on- manager al i as="authenti cati onManager" >

<aut henti cati on- provi der >

<user-service>

<user nanme="tenporary" password="tenporary" authorities="ROLE_ADM N'/ >
<user nanme="user" password="user" authorities="ROLE USER"'/>

</ user-service>

</ aut henti cati on- provi der >

</ aut henti cati on- manager >

</ beans: beans>

Most of the configuration is done using the security namespace — for this to be enabled, the schema
locations must be defined and pointed to the correct 3.1 or 3.2 X SD versions. The namespaceis designed so
that it expressesthe common uses of Spring Security whilestill providing hooksraw beansto accommodate

13

more advanced scenarios. >> Signup for my upcoming Video Course on Building a REST API with
Spring 4 [http://products.bael dung.com/rest-api-with-spring]

3.1. The <http> element

The <http> element is the main container element for HTTP security configuration. In the current
implementation, it only secured a single mapping: /api/admin/**. Note that the mapping isrelativeto the
root context of theweb application, not to therest Servlet; thisis because the entire security configuration
livesin the root Spring context and not in the child context of the Servlet.

3.2. The Entry Point

In a standard web application, the authentication process may be automatically triggered when the client
triesto access a secured resource without being authenticated —thisis usually done by redirectingtoalogin
page so that the user can enter credentials. However, for aREST Web Ser vice this behavior doesn’'t make
much sense — Authentication should only be done by a request to the correct URI and all other requests
should simply fail with a401 UNAUTHORIZED status code if the user is not authenticated.

Spring Security handlesthisautomatic triggering of the authentication processwith the concept of an Entry
Point —thisis arequired part of the configuration, and can be injected viathe entry-point-ref attribute of
the <http> element. Keeping in mind that thisfunctionality doesn’t make sensein the context of the REST
Service, the new custom entry point is defined to simply return 401 whenever it is triggered:

@Conponent ("rest Aut henti cati onEntryPoint")
public class Rest Aut henti cati onEntryPoi nt inplements Authenticati onEntryPoi nt{

@verride
public void comrence(HttpServletRequest request, Ht t pSer vl et Response
response,
Aut henti cati onExcepti on aut hException) throws | OException{
response. sendError(HttpServl et Response. SC_ UNAUTHORI ZED, " Unaut hori zed");

}
}

A quick sidenote here is that the 401 is sent without the WMW\V-Authenticate header, as required by the
HTTP Spec —we can of course set the value manually if we need to.

3.3. The Login Form for REST

There are multiple ways to do Authentication for a REST APl — one of the default
Spring Security provides is Form Login — which uses an authentication processing filter —
org.springframewor k.security.web.authenti cation.User namePasswor dAuthenticationFilter.

The <form-login> element will create this filter and will also allow us to set our custom authentication
success handler on it. This can also be done manually by using the <custom-filter> element to register a
filter a the position FORM_LOGIN_FILTER — but the namespace support is flexible enough.

Note that for a standard web application, the auto-config attribute of the <http> element is shorthand
syntax for some useful security configuration. While this may be appropriate for some very ssimple
configurations, it doesn't fit and should not be used for aREST API.

3.4. Authentication should return 200 instead of 301

By default, form login will answer a successful authentication request with a 301 MOVED
PERMANENTLY status code; this makes sense in the context of an actual login form which needs
to redirect after login. For a RESTful web service however, the desired response for a successful
authentication should be 200 OK.

14

http://products.baeldung.com/rest-api-with-spring
http://products.baeldung.com/rest-api-with-spring
http://products.baeldung.com/rest-api-with-spring

This is done by injecting a custom authentication success handler in the form login filter,
to replace the default one. The new handler implements the exact same login as the default
org.springframewor k.security.web.authenti cati on. SavedRequest Awar eAuthenti cationSuccessHandl er
with one notable difference — the redirect logic is removed:

public class MySavedRequest Awar eAut henti cati onSuccessHandl er
extends Sinpl eUrl Aut henti cati onSuccessHandl er {

private Request Cache request Cache = new Ht t pSessi onRequest Cache();

@verride

public voi d onAut henti cati onSuccess(Htt pServl et Request request,
Ht t pSer vl et Response response,
Aut henti cation authentication) throws Servlet Exception, | COException {
SavedRequest savedRequest = request Cache. get Request (request, response);

if (savedRequest == null) {

cl ear Aut henti cationAttributes(request);
return;

}

String target Ul Param = get Target Url Paraneter ();

if (isAl waysUseDefaultTargetUl () ||

(targetUl Param!= null &&

StringUtils. hasText (request. getParameter(targetUrl Param))) ({
request Cache. renoveRequest (request, response);

cl ear Aut henti cationAttributes(request);

return;

}

cl ear Aut henti cati onAttributes(request);

}

public void set Request Cache(Request Cache request Cache) {
t hi s. request Cache = request Cache;

}
}

3.5. Failed Authentication should return 401 instead of 302

Similarly —we configured the authentication failure handler — same way we did with the success handler.

Luckily — in this case, we don’t need to actually define a new class for this handler — the standard
implementation — SmpleUr| AuthenticationFailureHandler — does just fine.

The only differenceisthat — now that we' re defining this explicitly in our XML config —it’s not going to
get a default defaultFailureUr| from Spring —and so it won't redirect.

3.6. The Authentication Manager and Provider

The authentication process uses an in-memory provider to perform authentication — this is meant to
simplify the configuration asaproduction implementation of these artifactsis outside the scope of thispost.

3.7 Finally — Authentication against the running REST Service

Now let's see how we can authenticate against the REST APl — the URL for login isA /
j_spring_security _check —and asimple curl command performing login would be:

curl -i -X POST -d j_usernane=user -d j_password=userPass
http://1ocal host: 8080/ spring-security-rest/j_spring_security_check

15

This request will return the Cookie which will then be used by any subsequent request against the REST
Service.

We can use curl to authentication and store the cookieit receivesin afile:

curl -i -X POST -d j_username=user -d j_password=userPass -c /opt/cookies.txt
http://1ocal host: 8080/ spring-security-rest/j_spring_security_check

Then we can use the cookie from thefile to do further authenticated requests:

curl -i --header "Accept:application/json" -X GET -b /opt/cookies.txt
http://1ocal host: 8080/ spring-security-rest/api/foos

This authenticated request will correctly result in a 200 OK:

HTTP/ 1.1 200 K

Server: Apache-Coyote/1.1

Cont ent - Type: application/json;charset=UTF-8
Transf er- Encodi ng: chunked

Date: Wed, 24 Jul 2013 20:31:13 GVI

[{"id":0,"name":"Jbi dXc"}]
4. Maven and other trouble

The Spring core dependencies [http://www.bael dung.com/spring-with-maven#mvc] necessary for a web
application and for the REST Service have been discussed in detail. For security, we'll need to add: spring-
security-web and spring-security-config — all of these have also been covered in the Maven for Spring
Security [http://www.bael dung.com/spring-security-with-maven] tutorial.

It's worth paying close attention to the way Maven will resolve the older Spring dependencies
— the resolution strategy will start causing problems [http://www.bael dung.com/spring-security-with-
maven#maven_problem] once the security artifacts are added to the pom. To address this problem, some
of the core dependencies will need to be overridden in order to keep them at the right version.

5. Conclusion

This post covered the basic security configuration and implementation for a RESTful Service using
Spring Security 3.1, discussing the web.xml, the security configuration, the HTTP status codes for the
authentication process and the Maven resolution of the security artifacts.

Theimplementation of this Spring Security REST Tutorial can be downl oaded asaworking sample project.
[https://my.leadpages.net/leadbox/14476¢373f 72a2%3A 1387 1ac76b46dc/5664530495438848/ Thisisan
Eclipse based project, so it should be easy to import and run asit is.

http://twitter.com/share

REST [http://www.baeldung.com/tag/rest/], security [http://www.baeldung.com/tag/security/], Spring
[http://www.bael dung.com/tag/spring/]

© 2014 Baeldung. All Rights Reserved.

Spring Security Basic Authentication

Return to Content

Contents

16

http://www.baeldung.com/spring-with-maven#mvc
http://www.baeldung.com/spring-with-maven#mvc
http://www.baeldung.com/spring-security-with-maven
http://www.baeldung.com/spring-security-with-maven
http://www.baeldung.com/spring-security-with-maven
http://www.baeldung.com/spring-security-with-maven#maven_problem
http://www.baeldung.com/spring-security-with-maven#maven_problem
http://www.baeldung.com/spring-security-with-maven#maven_problem
https://my.leadpages.net/leadbox/14476c373f72a2%3A13a71ac76b46dc/5664530495438848/
https://my.leadpages.net/leadbox/14476c373f72a2%3A13a71ac76b46dc/5664530495438848/
http://twitter.com/share
http://www.baeldung.com/tag/rest/
http://www.baeldung.com/tag/rest/
http://www.baeldung.com/tag/security/
http://www.baeldung.com/tag/security/
http://www.baeldung.com/tag/spring/
http://www.baeldung.com/tag/spring/

e 1. Overview

2. The Spring Security Configuration

» 3. Consuming The Secured Application

4. Further Configuration — The Entry Point
» 5. The Maven Dependencies
+ 6. Conclusion

If you're new here, you may want to get my "REST APIswith Spring" eBook [https://my.leadpages.net/
leadbox/146382273f72a2%3A 13a71ac76b46dc/5735865741475840/]. Thanks for visiting!

1. Overview

This tutorial shows how to set up, configure and customize Basic Authentication with Spring. We're
going to built on top of the simple Spring MV C exampl e [http://www.bael dung.com/spring-mvc-tutorial],
and secure the Ul of the MV C application with the Basic Auth mechanism provided by Spring Security.

2. The Spring Security Configuration

The Configuration for Spring Security is still XML:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xm ns="http://ww. spri ngfranmework. org/schema/ security"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: beans="http://ww. spri ngfranewor k. or g/ schema/ beans"
Xsi : schenalLocati on="
http://ww. springfranework. org/ schema/ security
http://ww. springfranework. org/ schena/ security/spring-security-3.1.xsd
http://ww. springfranework. or g/ schena/ beans
http://ww. springfranework. or g/ schena/ beans/ spri ng- beans- 3. 2. xsd" >

<http use-expressions="true">
<intercept-url pattern="/**" access="isAuthenticated()" />

<http-basic />
</ http>

<aut henti cati on- manager >

<aut henti cati on- provi der >

<user-service>

<user nane="user1" password="user1lPass" authorities="ROLE_USER' />
</ user-service>

</ aut henti cati on- provi der >

</ aut henti cati on- manager >

</ beans: beans>

Thisisoneof thelast pieces of configuration in Spring that still need XML —Java Configuration for Spring
Security [https://github.com/SpringSource/spring-security-javaconfig] is still awork in progress.

What is relevant here is the <http-basic> element inside the main <http> element of the configuration —
this is enough to enable Basic Authentication for the entire application. The Authentication Manager is

17

https://my.leadpages.net/leadbox/146382273f72a2%3A13a71ac76b46dc/5735865741475840/
https://my.leadpages.net/leadbox/146382273f72a2%3A13a71ac76b46dc/5735865741475840/
https://my.leadpages.net/leadbox/146382273f72a2%3A13a71ac76b46dc/5735865741475840/
http://www.baeldung.com/spring-mvc-tutorial
http://www.baeldung.com/spring-mvc-tutorial
https://github.com/SpringSource/spring-security-javaconfig
https://github.com/SpringSource/spring-security-javaconfig
https://github.com/SpringSource/spring-security-javaconfig

not the focus of this tutorial, so we are using an in memory manager with the user and password defined
in plaintext.

The web.xml of the web application enabling Spring Security has already been discussed in the Spring
Logout tutorial [http://www.bael dung.com/spring-security-login#web_xml].

3. Consuming The Secured Application

The curl command is our go to tool for consuming the secured application.

First, let’ stry to request the /homepage.html without providing any security credentials:
curl -i http://1ocal host:8080/spring-security-mc-basic-auth/ honepage. ht m

We get back the expected 401 Unauthorized and the Authentication Challenge [http://tools.ietf.org/html/
rfc1945#section-10.16]:

HTTP/ 1.1 401 Unaut hori zed

Server: Apache-Coyote/ 1.1

Set - Cooki e: JSESSI ONI D=E5A8D3C16B65A0A007 CFAACAEEEG916B; Pat h=/ spri ng-
security-nmvc-basic-auth/; HtpOnly

WAV Aut hent i cate: Basic real m="Spring Security Application”

Content - Type: text/htm ;charset=utf-8

Content -Length: 1061

Date: Wed, 29 May 2013 15:14:08 GV

The browser would interpret this challenge and prompt us for credentials with a simple dialog, but since
we're using curl, thisisn't the case.

Now, let’s request the same resource — the homepage — but provide the credentialsto accessit aswell:

curl -i --user userl:userlPass http://|ocal host: 8080/ spring-security-nvc-basic-
aut h/ homepage. ht m

Now, the response from the server is 200 OK along with a Cookie:

HTTP/ 1.1 200 K

Server: Apache-Coyote/1.1

Set - Cooki e: JSESSI ONI D=301225C7AE7C74B0892887389996785D; Pat h=/ spri ng-
security-mvc-basic-auth/; HtpOnly

Cont ent - Type: text/htm ;charset=l SO 8859-1

Cont ent - Language: en-US

Cont ent - Lengt h: 90

Date: Wed, 29 May 2013 15:19: 38 GMI

From the browser, the application can be consumed normally — the only difference isthat alogin pageis
no longer a hard requirement since all browsers support Basic Authentication and use a dialog to prompt
the user for credentials.

4. Further Configuration — The Entry Point

By default, the Basi cAuthenticationEntryPoint provisioned by Spring Security returnsafull html page for
a 401 Unauthorized response back to the client. This html representation of the error renders well in a
browser, but it not well suited for other scenarios, such as a REST APl where a json representation may
be preferred.

The namespace is flexible enough for this new requirement as well —to address this— the entry point can
be overridden:

<htt p-basic entry-point-ref="nyBasi cAut henti cati onEntryPoint" />

18

http://www.baeldung.com/spring-security-login#web_xml
http://www.baeldung.com/spring-security-login#web_xml
http://www.baeldung.com/spring-security-login#web_xml
http://tools.ietf.org/html/rfc1945#section-10.16
http://tools.ietf.org/html/rfc1945#section-10.16
http://tools.ietf.org/html/rfc1945#section-10.16

The new entry point is defined as a standard bean:

@onponent
public cl ass MyBasi cAut henti cati onEnt r yPoi nt ext ends
Basi cAut henti cati onEntryPoi nt {

@verride
public void conmence
(Ht t pSer vl et Request request, Ht t pSer vl et Response response,

Aut henti cati onExcepti on aut hEx)
throws | OException, ServletException {
response. addHeader (" WAV Aut henti cate", "Basic realms\"" + getReal mNane() +

V')

response. set Stat us(Htt pSer vl et Response. SC_UNAUTHCRI ZED) ;
PrintWiter witer = response.getWiter();
witer.println("HTTP Status 401 - " + aut hEx.get Message());

}
@verride
public void afterPropertiesSet() throws Exception {

set Real mName(" Bael dung") ;
super . afterPropertiesSet();

}
}

By writing directly to the HTTP Response we now have full control over the format of the response body.

5. The Maven Dependencies

The Maven dependencies for Spring Security have been discussed before in the Spring Security
with Maven article [http://www.bael dung.com/spring-security-with-maven] — we will need both spring-
security-web and spring-security-config available at runtime.

6. Conclusion

In this example we secured an MV C application with Spring Security and Basic Authentication. We
discussed the XML configuration and we consumed the application with simple curl commands. Finally
took control of the exact error message format — moving from the standard HTML error page to a custom
text or json format.

Theimplementation of this SpringA tutorial can be found in the github project [https://github.com/eugenp/
tutorial s/tree/master/spring-security-basi c-auth#readme] &€" this is an Eclipse based project, so it should
be easy to import and run asit is. When the project runs locally, the sample html can be accessed at:

http://local host:8080/spring-security-mvc-basi c-auth/homepage.html

http://twitter.com/share
security [http://www.baeldung.com/tag/security/], Spring [http://www.bael dung.com/tag/spring/]

© 2014 Baeldung. All Rights Reserved.

Spring Security Digest Authentication

Return to Content

19

http://www.baeldung.com/spring-security-with-maven
http://www.baeldung.com/spring-security-with-maven
http://www.baeldung.com/spring-security-with-maven
https://github.com/eugenp/tutorials/tree/master/spring-security-basic-auth#readme
https://github.com/eugenp/tutorials/tree/master/spring-security-basic-auth#readme
https://github.com/eugenp/tutorials/tree/master/spring-security-basic-auth#readme
http://localhost:8080/spring-security-mvc-basic-auth/homepage.html
http://twitter.com/share
http://www.baeldung.com/tag/security/
http://www.baeldung.com/tag/security/
http://www.baeldung.com/tag/spring/
http://www.baeldung.com/tag/spring/

Contents

* 1. Overview

» 2. The Security XML Configuration

3. Consuming the Secured Application
» 4. The Maven Dependencies

» 5. Conclusion

If you're new here, you may want to get my "REST APIswith Spring" eBook [https://my.leadpages.net/
leadbox/146382273f 72a2%3A 13a71ac76b46dc/5735865741475840/]. Thanks for visiting!

1. Overview

This tutorial shows how to set up, configure and customize Digest Authentication with Spring. Similar
to the previous article covering Basic Authentication [http://www.bael dung.com/spring-security-basic-
authentication], wed€™re going to built on top of the Spring MV C tutorial, and secure the application
with the Digest Auth mechanism provided by Spring Security.

2. The Security XML Configuration

First thing to understand about the configuration is that, while Spring Security does have full out of the
box support for the Digest authentication mechanism, this support is not as well integrated into the
namespace as Basic Authentication was.

Inthiscase, we needto manually definether aw beansthat are going to make up the security configuration
— the DigestAuthenticationFilter and the DigestAuthenticationEntryPoint:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans: beans xm ns="http://ww. spri ngfranmework. org/schema/security"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: beans="http://ww. spri ngfranewor k. or g/ schema/ beans"
Xsi : schenalLocati on="
http://ww. springfranework. org/ schenma/ security
http://ww. springfranework. org/ schena/ security/spring-security-3.1.xsd
http://ww. springfranework. or g/ schena/ beans
http://ww. springfranewor k. or g/ schena/ beans/ spri ng- beans- 3. 2. xsd" >

A A A <beans:bean id="digestFilter"
cl ass="org. spri ngfranewor k. security.web. aut henti cati on. ww. Di gest Aut henticationFilter">

A AAAAAA <beans:property nane="userDetail sService" ref="userService" />
A A A A A A A <beans: property nanme="authenticati onEntryPoint"
ref ="di gestEntryPoi nt" />

er =
A A A </beans: bean>
A A A <beans:bean id="digestEntryPoint"A
cl ass="org. springframework. security.web. aut henti cati on. ww. Di gest Aut henti cati onEntryPoi nt"
AAAAAAA <beans:property name="real nNane" val ue="Cont acts Real mvi a Di gest
Aut henti cation" />

A AAAAAA <beans:property name="key" val ue="acegi" />
A A A </beans: bean>

<l-- the security nanespace configuration -->
<http use-expressions="true" entry-point-ref="di gestEntryPoint">
<intercept-url pattern="/**" access="isAuthenticated()" />

20

https://my.leadpages.net/leadbox/146382273f72a2%3A13a71ac76b46dc/5735865741475840/
https://my.leadpages.net/leadbox/146382273f72a2%3A13a71ac76b46dc/5735865741475840/
https://my.leadpages.net/leadbox/146382273f72a2%3A13a71ac76b46dc/5735865741475840/
http://www.baeldung.com/spring-security-basic-authentication
http://www.baeldung.com/spring-security-basic-authentication
http://www.baeldung.com/spring-security-basic-authentication

<customfilter ref="digestFilter" after="BASI C_AUTH FILTER"' />
</ http>

<aut henti cati on- manager >

<aut henti cati on- provi der >

<user-service id="user Service">

<user nanme="user1" password="user1lPass" authorities="ROLE_USER' />
</ user-service>

</ aut henti cati on- provi der >

</ aut henti cati on- manager >

</ beans: beans>

Next, we need to integrate these beans into the overall security configuration — and in this case, the
namespace is still flexible enough to allow usto do that.

Thefirst part of thisis pointing to the custom entry point bean, viathe entry-point-ref attribute of the main
<http> element.

The second part is adding the newly defined digest filter into the security filter chain. Since thisfilter
is functionally equivalent to the BasicAuthenticationFilter, we are using the same relative position in
the chain — this is specified by the BASC_AUTH_FILTER dlias in the overall Spring Security Standard
Filters [http://stati c.springsource.org/spring-security/site/docs/3.1.x/reference/ns-config.html#ns-custom-
filters].

Finally, notice that the Digest Filter is configured to point to the user service bean — and here, the
namespace is again very useful asit allows us to specify a bean name for the default user service created
by the <user-service> element:

<user-service id="user Service">

3. Consuming the Secured Application

WEe're going to be using the curl command to consume the secured application and understand how a
client can interact with it.

Let’s start by requesting the homepage — without providing security credentialsin the request:
curl -i http://1ocal host/spring-security-mc-digest-auth/honepage. ht m

As expected, we get back a response with a401 Unauthorized status code:

HTTP/ 1.1 401 Unaut hori zed
Server: Apache-Coyote/1.1

Set - Cooki e: JSESSI ONIl D=CF0233C. . . ; Pat h=/ spri ng-security-nvc-di gest-auth/;
HtpOnly

WAV Aut henti cate: Digest realn="Contacts Realm via Digest Authentication”,
gop="aut h",

nonce="MI'VBMz Yz ODE2NTg30T0o3MYxN2Jk ONYxZTc4Mzdmvz Bi N2QOYmYOZTUON2Rk Zg=="
Cont ent - Type: text/htm ;charset=utf-8
Cont ent - Lengt h: 1061
Date: Fri, 12 Jul 2013 14:04:25 GVIT

If thisrequest were sent by the browser, the authenti cation challenge would prompt the user for credentials
using a simple user/password dial og.

Let’s now providethe correct credentials and send the request again:

curl -i --digest --user

21

http://static.springsource.org/spring-security/site/docs/3.1.x/reference/ns-config.html#ns-custom-filters
http://static.springsource.org/spring-security/site/docs/3.1.x/reference/ns-config.html#ns-custom-filters
http://static.springsource.org/spring-security/site/docs/3.1.x/reference/ns-config.html#ns-custom-filters
http://static.springsource.org/spring-security/site/docs/3.1.x/reference/ns-config.html#ns-custom-filters

user 1: user 1Pass http://1 ocal host/spring-security-nmvc-digest-auth/
homepage. ht m

Notice that we are enabling Digest Authentication for the curl command via the —digest flag.

The first response from the server will be the same — the 401 Unauthorized — but the challenge will now
be interpreted and acted upon by a second request — which will succeed with a 200 OK:

HTTP/ 1.1 401 Unaut hori zed
Server: Apache-Coyote/1.1

Set - Cooki e: JSESSI ONIl D=A961EOQD. . . ; Pat h=/ spri ng-security-nvc-di gest-auth/;
HtpOnly

WAV Aut henti cate: Digest realne"Contacts Realm via Digest Authentication”,
gop="aut h",

nonce="MIMBMz YzODgy OTczMro3Yj MAOANZ MEUOYTgwZDg0YmywZj R ZWJj MDQz ZWZk QA=="
Cont ent - Type: text/htm ;charset=utf-8
Cont ent - Lengt h: 1061
Date: Fri, 12 Jul 2013 14:15:29 GV

HTTP/ 1.1 200 K

Server: Apache-Coyote/1.1

Set - Cooki e: JSESSI ONl D=55F9968B. . . ; Pat h=/ spri ng-security-nvc-di gest-auth/;
HtpOnly

Cont ent - Type: text/htm ;charset=l SO 8859-1

Cont ent - Language: en-US

Cont ent - Lengt h: 90

Date: Fri, 12 Jul 2013 14:15:29 GJI

<ht ml >
<head></ head>

<body>

<h1>This is the honepage</hl>
</ body>
</htm >

A final note on thisinteraction isthat a client can preemptively send the correct Authorization header
with the first request, and thus entirely avoid the server security challenge and the second request.

4. The Maven Dependencies

The security dependencies are discussed in depth in the Spring Security Maven tutoria [http://
www.bael dung.com/spring-security-with-maven]. In short, we will need to define spring-security-web and
spring-security-config as dependencies in our pom.xml.

5. Conclusion

In this tutorial we introduce security into a simple Spring MVC project by leveraging the Digest
Authentication support in the framework.

The implementation of these examples can be found in the github project [https://github.com/eugenp/
tutorial s/tree/master/spring-security-mvc-digest-auth#readme] &€ this is an Eclipse based project, so it
should be easy to import and run asit is.

When the project runs locally, the homepage html can be accessed at (or, with minima Tomcat
configuration, on port 80):

http://local host: 8080/ spring-security-mvc-digest-auth/homepage.html

22

http://www.baeldung.com/spring-security-with-maven
http://www.baeldung.com/spring-security-with-maven
http://www.baeldung.com/spring-security-with-maven
https://github.com/eugenp/tutorials/tree/master/spring-security-mvc-digest-auth#readme
https://github.com/eugenp/tutorials/tree/master/spring-security-mvc-digest-auth#readme
https://github.com/eugenp/tutorials/tree/master/spring-security-mvc-digest-auth#readme
http://localhost:8080/spring-security-mvc-digest-auth/homepage.html

Finally, there is no reason an application needs to choose between Basic and
Digest authentication [http://www.baeldung.com/2011/11/20/basi c-and-digest-authenti cation-for-a-
restful-service-with-spring-security-3-1/] — both can be set up simultaneously on the same URI
structure, in such away that the client can pick between the two mechanisms when consuming the web
application.

http://twitter.com/share

security [http://www.baeldung.com/tag/security/], Spring [http://www.bael dung.com/tag/spring/]

© 2014 Baeldung. All Rights Reserved.

Basic and Digest Authentication for a REST
Service with Spring Security

Return to Content

Contents

» Table of Contents

* 1. Overview

2. Configuration of Basic Authentication

3. Configuration of Digest Authentication

* 4. Supporting both authentication protocols in the same RESTful service
5. Testing both scenarios

+ 6. Conclusion

If you're new here, you may want to get my "REST APIswith Spring" eBook [https.//my.leadpages.net/
leadbox/146382273f72a2%3A 13a71ac76b46dc/5735865741475840/]. Thanks for visiting!

Table of Contents

* 1. Overview

» 2. Configuration of Basic Authentication

A A A 2.1. Satisfying the statel ess constraint — getting rid of sessions
3. Configuration of Digest Authentication

* 4. Supporting both authentication protocols in the same RESTful service

A A A 4.1. Anonymous request

« AAA 4.2 Request with authentication credentials

5. Testing both scenarios

» 6. Conclusion

23

http://www.baeldung.com/2011/11/20/basic-and-digest-authentication-for-a-restful-service-with-spring-security-3-1/
http://www.baeldung.com/2011/11/20/basic-and-digest-authentication-for-a-restful-service-with-spring-security-3-1/
http://www.baeldung.com/2011/11/20/basic-and-digest-authentication-for-a-restful-service-with-spring-security-3-1/
http://www.baeldung.com/2011/11/20/basic-and-digest-authentication-for-a-restful-service-with-spring-security-3-1/
http://twitter.com/share
http://www.baeldung.com/tag/security/
http://www.baeldung.com/tag/security/
http://www.baeldung.com/tag/spring/
http://www.baeldung.com/tag/spring/
https://my.leadpages.net/leadbox/146382273f72a2%3A13a71ac76b46dc/5735865741475840/
https://my.leadpages.net/leadbox/146382273f72a2%3A13a71ac76b46dc/5735865741475840/
https://my.leadpages.net/leadbox/146382273f72a2%3A13a71ac76b46dc/5735865741475840/

1. Overview

This article discusses how to set up both Basic and Digest Authentication on the same URI structure
of aREST API. Inaprevious article, we discussed another method of securing the REST Service—form
based authentication [http://www.baeldung.com/2011/10/31/securing-a-restful -web-service-with-spring-
security-3-1-part-3/], so Basic and Digest authentication is the natural alternative, as well as the more
RESTful one.

2. Configuration of Basic Authentication

The main reason that form based authentication is not ideal for aRESTful Serviceisthat Spring Security
will make use of Sessions—thisisof course state on the server, so the statelessness constraintsin REST
ispractically ignored.

WEe'll start by setting up Basic Authentication —first we remove the old custom entry point and filter from
the main <http> security element:

<http create-session="statel ess">
<intercept-url pattern="/api/admnmin/**" access="ROLE_ADM N' />

<http-basic />
</ http>

Note how support for basic authentication has been added with a single configuration line — <http-
basic /> — which handles the creation and wiring of both the BasicAuthenticationFilter and the
Basi cAuthenti cationEntryPoint.

2.1. Satisfying the stateless constraint — getting rid of sessions

One of the main constraints of the RESTful architectural style is that the client-server communication
is fully stateless, as the original dissertation [http://www.ics.uci.edu/~fielding/pubs/dissertation/
rest_arch_style.htm] reads:

A A A 513 Stateless

We next add a constraint to the client-server interaction: communication must be
stateless in nature, as in the client-stateless-server (CSS) style of Section 3.4.3 (Figure
5-3), such that each request from client to server must contain al of the information
necessary to understand the request, and cannot take advantage of any stored context on
the server. Session state istherefore kept entirely on the client.

The concept of Session on the server is one with a long history in Spring Security, and removing it
entirely has been difficult until now, especially when configuration was done by using the namespace.
However, Spring Security 3.1 augments [https://jira.springsource.org/browse/SEC-1424] the namespace
configuration with anew statelessoption for session creation, which effectively guaranteesthat no session
will be created or used by Spring. What this new option does is completely removes al session related
filters from the security filter chain, ensuring that authentication is performed for each request.

3. Configuration of Digest Authentication

Starting with the previous configuration, the filter and entry point necessary to set up digest authentication
will bedefined as beans. Then, thedigest entry point will overridethe one created by <http-basic> behind
the scenes. Finally, the custom digest filter will be introduced in the security filter chain using the after
semantics of the security namespace to position it directly after the basic authentication filter.

24

http://www.baeldung.com/2011/10/31/securing-a-restful-web-service-with-spring-security-3-1-part-3/
http://www.baeldung.com/2011/10/31/securing-a-restful-web-service-with-spring-security-3-1-part-3/
http://www.baeldung.com/2011/10/31/securing-a-restful-web-service-with-spring-security-3-1-part-3/
http://www.baeldung.com/2011/10/31/securing-a-restful-web-service-with-spring-security-3-1-part-3/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://jira.springsource.org/browse/SEC-1424
https://jira.springsource.org/browse/SEC-1424

<http create-session="statel ess" entry-point-ref="di gest EntryPoi nt">
<intercept-url pattern="/api/admn/**" access="ROLE_ADM N' />

<http-basic />
<customfilter ref="digestFilter" after="BASI C_AUTH FILTER' />
</ http>

<beans: bean id="digestFilter" class=

"org. springframework. security.web. aut henticati on. ww. Di gest Aut henti cationFilter">
<beans: property name="userDetail sServi ce" ref="userService" />

<beans: property nane="aut henti cationEntryPoint" ref="digestEntryPoint" />

</ beans: bean>

<beans: bean i d="di gest EntryPoi nt" cl ass=

"org. springframework. security.web. aut henti cati on. wwv. Di gest Aut henti cati onEntryPoi nt">
<beans: property nane="r eal nNane" val ue="Cont act s Realm via Di gest

Aut henti cation"/>

<beans: property nanme="key" val ue="acegi" />

</ beans: bean>

<aut henti cati on- manager >

<aut henti cati on- provi der >

<user-service id="user Service">

<user nane="eparaschiv"' password="eparaschiv" authorities="ROLE_ADM N' />
<user nane="user" password="user" authorities="ROLE USER' />

</ user-service>

</ aut henti cati on- provi der >

</ aut henti cati on- manager >

Unfortunately there is no support [https://jira.springsource.org/browse/SEC-1860] in the security
namespace to automatically configure the digest authentication the way basic authentication can be
configured with <http-basic>. Because of that, the necessary beans had to be defined and wired manually
into the security configuration.

4. Supporting both authentication protocols in the same
RESTful service

Basic or Digest authentication alone can be easily implemented in Spring Security 3.x; it is supporting
both of them for the same RESTful web service, on the same URI mappings that introduces a new level
of complexity into the configuration and testing of the service.

4.1. Anonymous request

With both basic and digest filters in the security chain, the way a anonymous request — a request
containing no authentication credentials (Authorization HTTP header) — is processed by Spring Security
is—the two authentication filters will find no credentials and will continue execution of the filter chain.
Then, seeing how the request wasn'’t authenticated, an AccessDeniedException isthrown and caught inthe
ExceptionTranglationFilter, which commences the digest entry point, prompting the client for credentials.

The responsibilities of both the basic and digest filters are very narrow — they will continue to execute the
security filter chain if they are unable to identify the type of authentication credentials in the request. It
is because of this that Spring Security can have the flexibility to be configured with support for multiple
authentication protocols on the same URI.

When a request is made containing the correct authentication credentials — either basic or digest — that
protocol will be rightly used. However, for an anonymous request, the client will get prompted only for

25

https://jira.springsource.org/browse/SEC-1860
https://jira.springsource.org/browse/SEC-1860

digest authentication credentials. Thisisbecause the digest entry point is configured asthemain and single
entry point of the Spring Security chain; as such digest authentication can be considered the default.

4.2. Request with authentication credentials

A request with credentialsfor Basic authentication will be identified by the Authorization header starting
with the prefix "Basic". When processing such a regquest, the credentials will be decoded in the basic
authentication filter and the request will be authorized. Similarly, a request with credentials for Digest
authentication will use the prefix "Digest"A for it’s Authorization header.

5. Testing both scenarios

Thetestswill consume the REST service by creating a new resource after authenticating with either basic
or digest:

@rest
public voi d
gi venAut hent i cat edByBasi cAut h_whenAResour cel sCr eat ed_t hen201l sRecei ved() {
/'l G ven
/'] \When
Response response = given()
.auth().preenptive().basic(ADM N_USERNAME, ADM N_PASSWORD)
.content Type(HttpConstants. M ME_JSON) . body(new Foo(randomAl phabetic(6)))
. post (paths. get FoOoURL());

/'l Then
assert That (response. get St at usCode(), is(201));

}
@rest
public voi d
gi venAut hent i cat edByDi gest Aut h_whenAResour cel sCreat ed_t hen201l sRecei ved() {
/'l G ven
/'] \When
Response response = given()
.auth().digest(ADM N_USERNAME, ADM N_PASSWORD)
.content Type(HttpConstants. M ME_JSON) . body(new Foo(randomAl phabetic(6)))
. post (paths. get FoOoURL());

/'l Then
assert That (response. get St at usCode(), is(201));

}

Note that the test using basic authentication adds credential s to the request preemptively, regardlessif the
server has challenged for authentication or not. Thisis to ensure that the server doesn’t need to challenge
the client for credentials, because if it did, the challenge would be for Digest credentias, since that is the
default.

6. Conclusion

This article covered the configuration and implementation of both Basic and Digest authentication for a
RESTTful service, using mostly Spring Security 3.0 namespace support aswell as some new features added
by Spring Security 3.1.

For the full implementation, check out the github project [https://github.com/eugenp/REST#readme].

http://twitter.com/share

26

https://github.com/eugenp/REST#readme
https://github.com/eugenp/REST#readme
http://twitter.com/share

REST [http://www.baeldung.com/tag/rest/], security [http://www.baeldung.com/tag/security/], Spring
[http://www.bael dung.com/tag/spring/]

© 2014 Baeldung. All Rights Reserved.

27

http://www.baeldung.com/tag/rest/
http://www.baeldung.com/tag/rest/
http://www.baeldung.com/tag/security/
http://www.baeldung.com/tag/security/
http://www.baeldung.com/tag/spring/
http://www.baeldung.com/tag/spring/

