50 lines
1.4 KiB
Java
50 lines
1.4 KiB
Java
|
|
package com.baeldung.perfectsquare;
|
||
|
|
|
||
|
|
public class PerfectSquareUtil {
|
||
|
|
|
||
|
|
public static boolean isPerfectSquareByUsingSqrt(long n) {
|
||
|
|
if (n <= 0)
|
||
|
|
return false;
|
||
|
|
double perfectSquare = Math.sqrt(n);
|
||
|
|
long tst = (long)(perfectSquare + 0.5);
|
||
|
|
return tst*tst == n;
|
||
|
|
}
|
||
|
|
|
||
|
|
public static boolean isPerfectSquareByUsingBinarySearch(long low, long high, long number) {
|
||
|
|
long check = (low + high) / 2L;
|
||
|
|
if (high < low)
|
||
|
|
return false;
|
||
|
|
if (number == check * check) {
|
||
|
|
return true;
|
||
|
|
} else if (number < check * check) {
|
||
|
|
high = check - 1L;
|
||
|
|
return isPerfectSquareByUsingBinarySearch(low, high, number);
|
||
|
|
} else {
|
||
|
|
low = check + 1L;
|
||
|
|
return isPerfectSquareByUsingBinarySearch(low, high, number);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
public static boolean isPerfectSquareByUsingNewtonMethod(long n) {
|
||
|
|
long x1 = n;
|
||
|
|
long x2 = 1L;
|
||
|
|
while (x1 > x2) {
|
||
|
|
x1 = (x1 + x2) / 2L;
|
||
|
|
x2 = n / x1;
|
||
|
|
}
|
||
|
|
return x1 == x2 && n % x1 == 0L;
|
||
|
|
}
|
||
|
|
|
||
|
|
public static boolean isSquareNumberWithOptimization(long n) {
|
||
|
|
if (n < 0)
|
||
|
|
return false;
|
||
|
|
switch ((int) (n & 0xF)) {
|
||
|
|
case 0: case 1: case 4: case 9:
|
||
|
|
long tst = (long) Math.sqrt(n);
|
||
|
|
return tst * tst == n;
|
||
|
|
default:
|
||
|
|
return false;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|