BAEL-6868: Implement Distance Calculation formulas. (#14576)

This commit is contained in:
Harry9656 2023-08-22 05:39:38 +02:00 committed by GitHub
parent 854f240059
commit 12a678018f
4 changed files with 122 additions and 0 deletions

View File

@ -0,0 +1,19 @@
package com.baeldung.algorithms.latlondistance;
public class EquirectangularApproximation {
private static final int EARTH_RADIUS = 6371; // Approx Earth radius in KM
public static double calculateDistance(double lat1, double lon1, double lat2, double lon2) {
double lat1Rad = Math.toRadians(lat1);
double lat2Rad = Math.toRadians(lat2);
double lon1Rad = Math.toRadians(lon1);
double lon2Rad = Math.toRadians(lon2);
double x = (lon2Rad - lon1Rad) * Math.cos((lat1Rad + lat2Rad) / 2);
double y = (lat2Rad - lat1Rad);
double distance = Math.sqrt(x * x + y * y) * EARTH_RADIUS;
return distance;
}
}

View File

@ -0,0 +1,24 @@
package com.baeldung.algorithms.latlondistance;
public class HaversineDistance {
private static final int EARTH_RADIUS = 6371; // Approx Earth radius in KM
public static double calculateDistance(double startLat, double startLong,
double endLat, double endLong) {
double dLat = Math.toRadians((endLat - startLat));
double dLong = Math.toRadians((endLong - startLong));
startLat = Math.toRadians(startLat);
endLat = Math.toRadians(endLat);
double a = haversine(dLat) + Math.cos(startLat) * Math.cos(endLat) * haversine(dLong);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
return EARTH_RADIUS * c;
}
public static double haversine(double val) {
return Math.pow(Math.sin(val / 2), 2);
}
}

View File

@ -0,0 +1,53 @@
package com.baeldung.algorithms.latlondistance;
public class VincentyDistance {
// Constants for WGS84 ellipsoid model of Earth
private static final double SEMI_MAJOR_AXIS_MT = 6378137;
private static final double SEMI_MINOR_AXIS_MT = 6356752.314245;
private static final double FLATTENING = 1 / 298.257223563;
private static final double ERROR_TOLERANCE = 1e-12;
public static double calculateDistance(double latitude1, double longitude1, double latitude2, double longitude2) {
double U1 = Math.atan((1 - FLATTENING) * Math.tan(Math.toRadians(latitude1)));
double U2 = Math.atan((1 - FLATTENING) * Math.tan(Math.toRadians(latitude2)));
double sinU1 = Math.sin(U1);
double cosU1 = Math.cos(U1);
double sinU2 = Math.sin(U2);
double cosU2 = Math.cos(U2);
double longitudeDifference = Math.toRadians(longitude2 - longitude1);
double previousLongitudeDifference;
double sinSigma, cosSigma, sigma, sinAlpha, cosSqAlpha, cos2SigmaM;
do {
sinSigma = Math.sqrt(Math.pow(cosU2 * Math.sin(longitudeDifference), 2) +
Math.pow(cosU1 * sinU2 - sinU1 * cosU2 * Math.cos(longitudeDifference), 2));
cosSigma = sinU1 * sinU2 + cosU1 * cosU2 * Math.cos(longitudeDifference);
sigma = Math.atan2(sinSigma, cosSigma);
sinAlpha = cosU1 * cosU2 * Math.sin(longitudeDifference) / sinSigma;
cosSqAlpha = 1 - Math.pow(sinAlpha, 2);
cos2SigmaM = cosSigma - 2 * sinU1 * sinU2 / cosSqAlpha;
if (Double.isNaN(cos2SigmaM)) {
cos2SigmaM = 0;
}
previousLongitudeDifference = longitudeDifference;
double C = FLATTENING / 16 * cosSqAlpha * (4 + FLATTENING * (4 - 3 * cosSqAlpha));
longitudeDifference = Math.toRadians(longitude2 - longitude1) + (1 - C) * FLATTENING * sinAlpha *
(sigma + C * sinSigma * (cos2SigmaM + C * cosSigma * (-1 + 2 * Math.pow(cos2SigmaM, 2))));
} while (Math.abs(longitudeDifference - previousLongitudeDifference) > ERROR_TOLERANCE);
double uSq = cosSqAlpha * (Math.pow(SEMI_MAJOR_AXIS_MT, 2) - Math.pow(SEMI_MINOR_AXIS_MT, 2)) / Math.pow(SEMI_MINOR_AXIS_MT, 2);
double A = 1 + uSq / 16384 * (4096 + uSq * (-768 + uSq * (320 - 175 * uSq)));
double B = uSq / 1024 * (256 + uSq * (-128 + uSq * (74 - 47 * uSq)));
double deltaSigma = B * sinSigma * (cos2SigmaM + B / 4 * (cosSigma * (-1 + 2 * Math.pow(cos2SigmaM, 2)) -
B / 6 * cos2SigmaM * (-3 + 4 * Math.pow(sinSigma, 2)) * (-3 + 4 * Math.pow(cos2SigmaM, 2))));
double distanceMt = SEMI_MINOR_AXIS_MT * A * (sigma - deltaSigma);
return distanceMt / 1000;
}
}

View File

@ -0,0 +1,26 @@
package com.baeldung.algorithms.latlondistance;
import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.assertTrue;
class GeoDistanceUnitTest {
@Test
public void testCalculateDistance() {
double lat1 = 40.714268; // New York
double lon1 = -74.005974;
double lat2 = 34.0522; // Los Angeles
double lon2 = -118.2437;
double equirectangularDistance = EquirectangularApproximation.calculateDistance(lat1, lon1, lat2, lon2);
double haversineDistance = HaversineDistance.calculateDistance(lat1, lon1, lat2, lon2);
double vincentyDistance = VincentyDistance.calculateDistance(lat1, lon1, lat2, lon2);
double expectedDistance = 3944;
assertTrue(Math.abs(equirectangularDistance - expectedDistance) < 100);
assertTrue(Math.abs(haversineDistance - expectedDistance) < 10);
assertTrue(Math.abs(vincentyDistance - expectedDistance) < 0.5);
}
}