Determine if an Integer's Square Root Is an Integer in Java Article by Abdallah Sawan
This commit is contained in:
parent
6526ccbf35
commit
18727de7c5
|
@ -6,22 +6,21 @@ import static org.junit.Assert.assertEquals;
|
|||
public class PerfectSquareUnitTest {
|
||||
|
||||
@Test
|
||||
public void test0xFFAssignedToInteger() {
|
||||
public void testIsNumberPerfectSquare() {
|
||||
long n = 18676209273604L; // 18676209273604 = 43621598 * 43621598
|
||||
boolean expectedValue = true;
|
||||
assertEquals(expectedValue, PerfectSquareUtil.isPerfectSquareByUsingSqrt(n));
|
||||
assertEquals(expectedValue, PerfectSquareUtil.isPerfectSquareByUsingBinarySearch(1, Integer.MAX_VALUE, n));
|
||||
assertEquals(expectedValue, PerfectSquareUtil.isPerfectSquareByUsingNewtonMethod(n));
|
||||
assertEquals(expectedValue, PerfectSquareUtil.isPerfectSquareWithOptimization(n));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test0xFFAssignedToByte() {
|
||||
long n = 549790047707L; // prime number
|
||||
boolean expectedValue = false;
|
||||
n = 549790047707L; // prime number
|
||||
expectedValue = false;
|
||||
assertEquals(expectedValue, PerfectSquareUtil.isPerfectSquareByUsingSqrt(n));
|
||||
assertEquals(expectedValue, PerfectSquareUtil.isPerfectSquareByUsingBinarySearch(1, Integer.MAX_VALUE, n));
|
||||
assertEquals(expectedValue, PerfectSquareUtil.isPerfectSquareByUsingNewtonMethod(n));
|
||||
assertEquals(expectedValue, PerfectSquareUtil.isPerfectSquareWithOptimization(n));
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue