Slope One Algorithm (#917)
* @Async and Spring Security * @Async with SecurityContext propagated * Spring and @Async * Simulated Annealing algorithm * Simulated Annealing algorithm * Rebase * Rebase * SA further fixes * Slope One plus package refactoring
This commit is contained in:
parent
5226c5f414
commit
1a17166d36
|
@ -0,0 +1,31 @@
|
|||
package com.baeldung.algorithms;
|
||||
|
||||
import java.util.Scanner;
|
||||
|
||||
import com.baeldung.algorithms.annealing.SimulatedAnnealing;
|
||||
import com.baeldung.algorithms.slope_one.SlopeOne;
|
||||
|
||||
public class RunAlgorithm {
|
||||
|
||||
public static void main(String[] args) {
|
||||
Scanner in = new Scanner(System.in);
|
||||
System.out.println("Run algorithm:");
|
||||
System.out.println("1 - Simulated Annealing");
|
||||
System.out.println("2 - Slope One");
|
||||
int decision = in.nextInt();
|
||||
switch (decision) {
|
||||
case 1:
|
||||
System.out.println(
|
||||
"Optimized distance for travel: " + SimulatedAnnealing.simulateAnnealing(10, 10000, 0.9995));
|
||||
break;
|
||||
case 2:
|
||||
SlopeOne.slopeOne(3);
|
||||
break;
|
||||
default:
|
||||
System.out.println("Unknown option");
|
||||
break;
|
||||
}
|
||||
in.close();
|
||||
}
|
||||
|
||||
}
|
|
@ -1,4 +1,4 @@
|
|||
package com.baeldung.algorithms;
|
||||
package com.baeldung.algorithms.annealing;
|
||||
|
||||
import lombok.Data;
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
package com.baeldung.algorithms;
|
||||
package com.baeldung.algorithms.annealing;
|
||||
|
||||
public class SimulatedAnnealing {
|
||||
|
||||
|
@ -33,8 +33,4 @@ public class SimulatedAnnealing {
|
|||
return bestDistance;
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
System.out.println("Optimized distance for travel: " + simulateAnnealing(10, 10000, 0.9995));
|
||||
}
|
||||
|
||||
}
|
|
@ -1,4 +1,4 @@
|
|||
package com.baeldung.algorithms;
|
||||
package com.baeldung.algorithms.annealing;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collections;
|
|
@ -0,0 +1,36 @@
|
|||
package com.baeldung.algorithms.slope_one;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.HashMap;
|
||||
import java.util.HashSet;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.Set;
|
||||
|
||||
import lombok.Data;
|
||||
|
||||
@Data
|
||||
public class InputData {
|
||||
|
||||
protected static List<Item> items = Arrays.asList(new Item("Candy"), new Item("Drink"), new Item("Soda"), new Item("Popcorn"),
|
||||
new Item("Snacks"));
|
||||
|
||||
public static Map<User, HashMap<Item, Double>> initializeData(int numberOfUsers) {
|
||||
Map<User, HashMap<Item, Double>> data = new HashMap<>();
|
||||
HashMap<Item, Double> newUser;
|
||||
Set<Item> newRecommendationSet;
|
||||
for (int i = 0; i < numberOfUsers; i++) {
|
||||
newUser = new HashMap<Item, Double>();
|
||||
newRecommendationSet = new HashSet<>();
|
||||
for (int j = 0; j < 3; j++) {
|
||||
newRecommendationSet.add(items.get((int) (Math.random() * 5)));
|
||||
}
|
||||
for (Item item : newRecommendationSet) {
|
||||
newUser.put(item, Math.random());
|
||||
}
|
||||
data.put(new User("User " + i), newUser);
|
||||
}
|
||||
return data;
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,13 @@
|
|||
package com.baeldung.algorithms.slope_one;
|
||||
|
||||
import lombok.AllArgsConstructor;
|
||||
import lombok.Data;
|
||||
import lombok.NoArgsConstructor;
|
||||
|
||||
@Data
|
||||
@NoArgsConstructor
|
||||
@AllArgsConstructor
|
||||
public class Item {
|
||||
|
||||
private String itemName;
|
||||
}
|
|
@ -0,0 +1,120 @@
|
|||
package com.baeldung.algorithms.slope_one;
|
||||
|
||||
import java.text.DecimalFormat;
|
||||
import java.text.NumberFormat;
|
||||
import java.util.HashMap;
|
||||
import java.util.Map;
|
||||
import java.util.Map.Entry;
|
||||
|
||||
/**
|
||||
* Slope One algorithm implementation
|
||||
*/
|
||||
public class SlopeOne {
|
||||
|
||||
private static Map<Item, Map<Item, Double>> differencesMatrix = new HashMap<>();
|
||||
private static Map<Item, Map<Item, Integer>> frequenciesMatrix = new HashMap<>();
|
||||
private static Map<User, HashMap<Item, Double>> inputData;
|
||||
private static Map<User, HashMap<Item, Double>> outputData = new HashMap<>();
|
||||
|
||||
public static void slopeOne(int numberOfUsers) {
|
||||
inputData = InputData.initializeData(numberOfUsers);
|
||||
System.out.println("Slope One - Before the Prediction\n");
|
||||
buildDifferencesMatrix(inputData);
|
||||
System.out.println("\nSlope One - With Predictions\n");
|
||||
predict(inputData);
|
||||
}
|
||||
|
||||
/**
|
||||
* Based on the available data, calculate the relationships between the
|
||||
* items and number of occurences
|
||||
*
|
||||
* @param data existing user data and their items' ratings
|
||||
*/
|
||||
private static void buildDifferencesMatrix(Map<User, HashMap<Item, Double>> data) {
|
||||
for (HashMap<Item, Double> user : data.values()) {
|
||||
for (Entry<Item, Double> entry : user.entrySet()) {
|
||||
if (!differencesMatrix.containsKey(entry.getKey())) {
|
||||
differencesMatrix.put(entry.getKey(), new HashMap<Item, Double>());
|
||||
frequenciesMatrix.put(entry.getKey(), new HashMap<Item, Integer>());
|
||||
}
|
||||
for (Entry<Item, Double> entry2 : user.entrySet()) {
|
||||
int oldCount = 0;
|
||||
if (frequenciesMatrix.get(entry.getKey()).containsKey(entry2.getKey()))
|
||||
oldCount = frequenciesMatrix.get(entry.getKey()).get(entry2.getKey()).intValue();
|
||||
double oldDiff = 0.0;
|
||||
if (differencesMatrix.get(entry.getKey()).containsKey(entry2.getKey()))
|
||||
oldDiff = differencesMatrix.get(entry.getKey()).get(entry2.getKey()).doubleValue();
|
||||
double observedDiff = entry.getValue() - entry2.getValue();
|
||||
frequenciesMatrix.get(entry.getKey()).put(entry2.getKey(), oldCount + 1);
|
||||
differencesMatrix.get(entry.getKey()).put(entry2.getKey(), oldDiff + observedDiff);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (Item j : differencesMatrix.keySet()) {
|
||||
for (Item i : differencesMatrix.get(j).keySet()) {
|
||||
double oldvalue = differencesMatrix.get(j).get(i).doubleValue();
|
||||
int count = frequenciesMatrix.get(j).get(i).intValue();
|
||||
differencesMatrix.get(j).put(i, oldvalue / count);
|
||||
}
|
||||
}
|
||||
printData(data);
|
||||
}
|
||||
|
||||
/**
|
||||
* Based on existing data predict all missing ratings. If prediction is not
|
||||
* possible, the value will be equal to -1
|
||||
*
|
||||
* @param data existing user data and their items' ratings
|
||||
*/
|
||||
private static void predict(Map<User, HashMap<Item, Double>> data) {
|
||||
HashMap<Item, Double> predictions = new HashMap<Item, Double>();
|
||||
HashMap<Item, Integer> frequencies = new HashMap<Item, Integer>();
|
||||
for (Item j : differencesMatrix.keySet()) {
|
||||
frequencies.put(j, 0);
|
||||
predictions.put(j, 0.0);
|
||||
}
|
||||
for (Entry<User, HashMap<Item, Double>> entry : data.entrySet()) {
|
||||
for (Item j : entry.getValue().keySet()) {
|
||||
for (Item k : differencesMatrix.keySet()) {
|
||||
try {
|
||||
double newValue = (differencesMatrix.get(k).get(j).doubleValue()
|
||||
+ entry.getValue().get(j).doubleValue()) * frequenciesMatrix.get(k).get(j).intValue();
|
||||
predictions.put(k, predictions.get(k) + newValue);
|
||||
frequencies.put(k, frequencies.get(k) + frequenciesMatrix.get(k).get(j).intValue());
|
||||
} catch (NullPointerException e) {
|
||||
}
|
||||
}
|
||||
}
|
||||
HashMap<Item, Double> cleanPredictions = new HashMap<Item, Double>();
|
||||
for (Item j : predictions.keySet()) {
|
||||
if (frequencies.get(j) > 0) {
|
||||
cleanPredictions.put(j, predictions.get(j).doubleValue() / frequencies.get(j).intValue());
|
||||
}
|
||||
}
|
||||
for (Item j : InputData.items) {
|
||||
if (entry.getValue().containsKey(j)) {
|
||||
cleanPredictions.put(j, entry.getValue().get(j));
|
||||
} else {
|
||||
cleanPredictions.put(j, -1.0);
|
||||
}
|
||||
}
|
||||
outputData.put(entry.getKey(), cleanPredictions);
|
||||
}
|
||||
printData(outputData);
|
||||
}
|
||||
|
||||
private static void printData(Map<User, HashMap<Item, Double>> data) {
|
||||
for (User user : data.keySet()) {
|
||||
System.out.println(user.getUsername() + ":");
|
||||
print(data.get(user));
|
||||
}
|
||||
}
|
||||
|
||||
private static void print(HashMap<Item, Double> hashMap) {
|
||||
NumberFormat formatter = new DecimalFormat("#0.000");
|
||||
for (Item j : hashMap.keySet()) {
|
||||
System.out.println(" " + j.getItemName() + " --> " + formatter.format(hashMap.get(j).doubleValue()));
|
||||
}
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,14 @@
|
|||
package com.baeldung.algorithms.slope_one;
|
||||
|
||||
import lombok.AllArgsConstructor;
|
||||
import lombok.Data;
|
||||
import lombok.NoArgsConstructor;
|
||||
|
||||
@Data
|
||||
@NoArgsConstructor
|
||||
@AllArgsConstructor
|
||||
public class User {
|
||||
|
||||
private String username;
|
||||
|
||||
}
|
|
@ -3,6 +3,8 @@ package com.baeldung.algorithms;
|
|||
import org.junit.Assert;
|
||||
import org.junit.Test;
|
||||
|
||||
import com.baeldung.algorithms.annealing.SimulatedAnnealing;
|
||||
|
||||
public class SimulatedAnnealingTest {
|
||||
|
||||
@Test
|
||||
|
|
Loading…
Reference in New Issue