Simulated Annealing algorithm (#900)

* @Async and Spring Security

* @Async with SecurityContext propagated

* Spring and @Async

* Simulated Annealing algorithm

* Simulated Annealing algorithm

* Rebase

* Rebase
This commit is contained in:
maibin 2016-12-16 21:10:54 +01:00 committed by Grzegorz Piwowarek
parent 2fe2e2a971
commit 7f45d8f9c9
4 changed files with 129 additions and 0 deletions

View File

@ -85,6 +85,12 @@
<artifactId>log4j-over-slf4j</artifactId>
<version>${org.slf4j.version}</version>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.16.12</version>
<scope>provided</scope>
</dependency>
<!-- test scoped -->

View File

@ -0,0 +1,22 @@
package com.baeldung.algorithms;
import lombok.Data;
@Data
public class City {
private int x;
private int y;
public City() {
this.x = (int) (Math.random() * 500);
this.y = (int) (Math.random() * 500);
}
public double distanceToCity(City city) {
int x = Math.abs(getX() - city.getX());
int y = Math.abs(getY() - city.getY());
return Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2));
}
}

View File

@ -0,0 +1,41 @@
package com.baeldung.algorithms;
public class SimulatedAnnealing {
private static Travel travel = new Travel(10);
public static double simulateAnnealing(double startingTemperature, int numberOfIterations, double coolingRate) {
System.out.println("Starting SA with temperature: " + startingTemperature + ", # of iterations: "
+ numberOfIterations + " and colling rate: " + coolingRate);
double t = startingTemperature;
travel.generateInitialTravel();
double bestDistance = travel.getDistance();
System.out.println("Initial distance of travel: " + bestDistance);
Travel bestSolution = travel;
Travel currentSolution = bestSolution;
for (int i = 0; i < numberOfIterations; i++) {
if (t > 0.1) {
currentSolution.swapCities();
double currentDistance = currentSolution.getDistance();
if (currentDistance == 0)
continue;
if (currentDistance < bestDistance) {
bestDistance = currentDistance;
} else if (Math.exp((currentDistance - bestDistance) / t) < Math.random()) {
currentSolution.revertSwap();
}
t *= coolingRate;
}
if (i % 100 == 0) {
System.out.println("Iteration #" + i);
}
}
return bestDistance;
}
public static void main(String[] args) {
System.out.println("Optimized distance for travel: " + simulateAnnealing(10, 10000, 0.9));
}
}

View File

@ -0,0 +1,60 @@
package com.baeldung.algorithms;
import java.util.ArrayList;
import java.util.Collections;
import lombok.Data;
@Data
public class Travel {
private ArrayList<City> travel = new ArrayList<>();
private ArrayList<City> previousTravel = new ArrayList<>();
public Travel(int numberOfCities) {
for (int i = 0; i < numberOfCities; i++) {
travel.add(new City());
}
}
public void generateInitialTravel() {
if (travel.isEmpty())
new Travel(10);
Collections.shuffle(travel);
}
public void swapCities() {
int a = generateRandomIndex();
int b = generateRandomIndex();
previousTravel = travel;
travel.set(a, travel.get(b));
}
public void revertSwap() {
travel = previousTravel;
}
private int generateRandomIndex() {
return (int) (Math.random() * travel.size());
}
public City getCity(int index) {
return travel.get(index);
}
public int getDistance() {
int distance = 0;
for (int index = 0; index < travel.size(); index++) {
City starting = getCity(index);
City destination;
if (index + 1 < travel.size()) {
destination = getCity(index + 1);
} else {
destination = getCity(0);
}
distance += starting.distanceToCity(destination);
}
return distance;
}
}