deleted OpenNLP (#2223)
This commit is contained in:
parent
7bfceb34c7
commit
9e641358ff
|
@ -1 +0,0 @@
|
|||
Out of the night that covers me
|
|
@ -1,10 +0,0 @@
|
|||
GOOD good morning /
|
||||
GOOD good evening /
|
||||
GOOD have a good day /
|
||||
GOOD nice party! /
|
||||
GOOD fine pants /
|
||||
BAD nightmare volcano in the sea /
|
||||
BAD darkest sky /
|
||||
BAD greed and waste /
|
||||
BAD army attacks /
|
||||
BAD bomb explodes /
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -338,12 +338,6 @@
|
|||
<artifactId>netty-all</artifactId>
|
||||
<version>${netty.version}</version>
|
||||
</dependency>
|
||||
<!-- OpenNLP -->
|
||||
<dependency>
|
||||
<groupId>org.apache.opennlp</groupId>
|
||||
<artifactId>opennlp-tools</artifactId>
|
||||
<version>1.8.0</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>junit</groupId>
|
||||
<artifactId>junit</artifactId>
|
||||
|
|
|
@ -1,188 +0,0 @@
|
|||
package com.baeldung.opennlp;
|
||||
|
||||
import java.io.File;
|
||||
import java.io.FileInputStream;
|
||||
import java.io.IOException;
|
||||
import java.io.InputStream;
|
||||
import java.util.Arrays;
|
||||
import java.util.logging.Logger;
|
||||
|
||||
import opennlp.tools.chunker.ChunkerME;
|
||||
import opennlp.tools.chunker.ChunkerModel;
|
||||
import opennlp.tools.cmdline.postag.POSModelLoader;
|
||||
import opennlp.tools.doccat.DoccatFactory;
|
||||
import opennlp.tools.doccat.DoccatModel;
|
||||
import opennlp.tools.doccat.DocumentCategorizerME;
|
||||
import opennlp.tools.doccat.DocumentSample;
|
||||
import opennlp.tools.doccat.DocumentSampleStream;
|
||||
import opennlp.tools.namefind.NameFinderME;
|
||||
import opennlp.tools.namefind.TokenNameFinderModel;
|
||||
import opennlp.tools.postag.POSModel;
|
||||
import opennlp.tools.postag.POSSample;
|
||||
import opennlp.tools.postag.POSTaggerME;
|
||||
import opennlp.tools.sentdetect.SentenceDetectorME;
|
||||
import opennlp.tools.sentdetect.SentenceModel;
|
||||
import opennlp.tools.tokenize.Tokenizer;
|
||||
import opennlp.tools.tokenize.TokenizerME;
|
||||
import opennlp.tools.tokenize.TokenizerModel;
|
||||
import opennlp.tools.tokenize.WhitespaceTokenizer;
|
||||
import opennlp.tools.util.InputStreamFactory;
|
||||
import opennlp.tools.util.InvalidFormatException;
|
||||
import opennlp.tools.util.ObjectStream;
|
||||
import opennlp.tools.util.PlainTextByLineStream;
|
||||
import opennlp.tools.util.Span;
|
||||
import opennlp.tools.util.TrainingParameters;
|
||||
|
||||
public class OpenNLP {
|
||||
|
||||
private final static Logger LOGGER = Logger.getLogger(OpenNLP.class.getName());
|
||||
private final static String text = buildString();
|
||||
private final static String sentence[] = new String[] { "James", "Jordan", "live", "in", "Oklahoma", "city", "." };
|
||||
|
||||
private DoccatModel docCatModel;
|
||||
|
||||
public static void main(String[] args) {
|
||||
new OpenNLP();
|
||||
}
|
||||
|
||||
public static String buildString(){
|
||||
StringBuilder sb = new StringBuilder();
|
||||
sb.append("To get to the south:");
|
||||
sb.append(" Go to the store.");
|
||||
sb.append(" Buy a compass.");
|
||||
sb.append(" Use the compass.");
|
||||
sb.append(" Then walk to the south.");
|
||||
return sb.toString();
|
||||
}
|
||||
|
||||
public OpenNLP() {
|
||||
try {
|
||||
sentenceDetector();
|
||||
tokenizer();
|
||||
nameFinder();
|
||||
locationFinder();
|
||||
trainDocumentCategorizer();
|
||||
documentCategorizer();
|
||||
partOfSpeechTagger();
|
||||
chunker();
|
||||
} catch (InvalidFormatException e) {
|
||||
e.printStackTrace();
|
||||
} catch (IOException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
public void sentenceDetector() throws InvalidFormatException, IOException {
|
||||
|
||||
InputStream is = new FileInputStream("OpenNLP/en-sent.bin");
|
||||
SentenceModel model = new SentenceModel(is);
|
||||
SentenceDetectorME sdetector = new SentenceDetectorME(model);
|
||||
String sentences[] = sdetector.sentDetect(text);
|
||||
for (String sentence : sentences) {
|
||||
LOGGER.info(sentence);
|
||||
}
|
||||
is.close();
|
||||
}
|
||||
|
||||
public void tokenizer() throws InvalidFormatException, IOException {
|
||||
InputStream is = new FileInputStream("OpenNLP/en-token.bin");
|
||||
TokenizerModel model = new TokenizerModel(is);
|
||||
Tokenizer tokenizer = new TokenizerME(model);
|
||||
String tokens[] = tokenizer.tokenize(text);
|
||||
for (String token : tokens) {
|
||||
LOGGER.info(token);
|
||||
}
|
||||
is.close();
|
||||
}
|
||||
|
||||
public static void nameFinder() throws IOException {
|
||||
InputStream is = new FileInputStream("OpenNLP/en-ner-person.bin");
|
||||
TokenNameFinderModel model = new TokenNameFinderModel(is);
|
||||
is.close();
|
||||
NameFinderME nameFinder = new NameFinderME(model);
|
||||
Span nameSpans[] = nameFinder.find(sentence);
|
||||
String[] names = Span.spansToStrings(nameSpans, sentence);
|
||||
Arrays.stream(names).forEach(LOGGER::info);
|
||||
for (String name : names) {
|
||||
LOGGER.info(name);
|
||||
}
|
||||
}
|
||||
|
||||
public static void locationFinder() throws IOException {
|
||||
InputStream is = new FileInputStream("OpenNLP/en-ner-location.bin");
|
||||
TokenNameFinderModel model = new TokenNameFinderModel(is);
|
||||
is.close();
|
||||
NameFinderME nameFinder = new NameFinderME(model);
|
||||
Span locationSpans[] = nameFinder.find(sentence);
|
||||
String[] locations = Span.spansToStrings(locationSpans, sentence);
|
||||
Arrays.stream(locations).forEach(LOGGER::info);
|
||||
for (String location : locations) {
|
||||
LOGGER.info(location);
|
||||
}
|
||||
}
|
||||
|
||||
public void trainDocumentCategorizer() {
|
||||
|
||||
try {
|
||||
InputStreamFactory isf = new InputStreamFactory() {
|
||||
public InputStream createInputStream() throws IOException {
|
||||
return new FileInputStream("OpenNLP/doc-cat.train");
|
||||
}
|
||||
};
|
||||
ObjectStream<String> lineStream = new PlainTextByLineStream(isf, "UTF-8");
|
||||
ObjectStream<DocumentSample> sampleStream = new DocumentSampleStream(lineStream);
|
||||
DoccatFactory docCatFactory = new DoccatFactory();
|
||||
docCatModel = DocumentCategorizerME.train("en", sampleStream, TrainingParameters.defaultParams(), docCatFactory);
|
||||
} catch (IOException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
public void documentCategorizer() {
|
||||
DocumentCategorizerME myCategorizer = new DocumentCategorizerME(docCatModel);
|
||||
double[] outcomes = myCategorizer.categorize(sentence);
|
||||
String category = myCategorizer.getBestCategory(outcomes);
|
||||
|
||||
if (category.equalsIgnoreCase("GOOD")) {
|
||||
LOGGER.info("Document is positive :) ");
|
||||
} else {
|
||||
LOGGER.info("Document is negative :( ");
|
||||
}
|
||||
}
|
||||
|
||||
public static void partOfSpeechTagger() throws IOException {
|
||||
try {
|
||||
POSModel posModel = new POSModelLoader().load(new File("OpenNLP/en-pos-maxent.bin"));
|
||||
POSTaggerME posTaggerME = new POSTaggerME(posModel);
|
||||
InputStreamFactory isf = new InputStreamFactory() {
|
||||
public InputStream createInputStream() throws IOException {
|
||||
return new FileInputStream("OpenNLP/PartOfSpeechTag.txt");
|
||||
}
|
||||
};
|
||||
ObjectStream<String> lineStream = new PlainTextByLineStream(isf, "UTF-8");
|
||||
String line;
|
||||
while ((line = lineStream.read()) != null) {
|
||||
String whitespaceTokenizerLine[] = WhitespaceTokenizer.INSTANCE.tokenize(line);
|
||||
String[] tags = posTaggerME.tag(whitespaceTokenizerLine);
|
||||
POSSample posSample = new POSSample(whitespaceTokenizerLine, tags);
|
||||
LOGGER.info(posSample.toString());
|
||||
}
|
||||
lineStream.close();
|
||||
} catch (IOException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
public static void chunker() throws IOException {
|
||||
InputStream is = new FileInputStream("OpenNLP/en-chunker.bin");
|
||||
ChunkerModel cModel = new ChunkerModel(is);
|
||||
ChunkerME chunkerME = new ChunkerME(cModel);
|
||||
String[] taggedSentence = new String[] {"Out", "of", "the", "night", "that", "covers", "me"};
|
||||
String pos[] = new String[] { "IN", "IN", "DT", "NN", "WDT", "VBZ", "PRP"};
|
||||
String chunks[] = chunkerME.chunk(taggedSentence, pos);
|
||||
for (String chunk : chunks) {
|
||||
LOGGER.info(chunk);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
|
@ -1,151 +0,0 @@
|
|||
package com.baeldung.opennlp;
|
||||
|
||||
import opennlp.tools.chunker.ChunkerME;
|
||||
import opennlp.tools.chunker.ChunkerModel;
|
||||
import opennlp.tools.cmdline.postag.POSModelLoader;
|
||||
import opennlp.tools.doccat.DoccatFactory;
|
||||
import opennlp.tools.doccat.DoccatModel;
|
||||
import opennlp.tools.doccat.DocumentCategorizerME;
|
||||
import opennlp.tools.doccat.DocumentSample;
|
||||
import opennlp.tools.doccat.DocumentSampleStream;
|
||||
import opennlp.tools.namefind.NameFinderME;
|
||||
import opennlp.tools.namefind.TokenNameFinderModel;
|
||||
import opennlp.tools.postag.POSModel;
|
||||
import opennlp.tools.postag.POSSample;
|
||||
import opennlp.tools.postag.POSTaggerME;
|
||||
import opennlp.tools.sentdetect.SentenceDetectorME;
|
||||
import opennlp.tools.sentdetect.SentenceModel;
|
||||
import opennlp.tools.tokenize.WhitespaceTokenizer;
|
||||
import opennlp.tools.util.InputStreamFactory;
|
||||
import opennlp.tools.util.ObjectStream;
|
||||
import opennlp.tools.util.PlainTextByLineStream;
|
||||
import opennlp.tools.util.Span;
|
||||
import opennlp.tools.util.TrainingParameters;
|
||||
import org.junit.Test;
|
||||
|
||||
import java.io.File;
|
||||
import java.io.FileInputStream;
|
||||
import java.io.FileNotFoundException;
|
||||
import java.io.IOException;
|
||||
import java.io.InputStream;
|
||||
|
||||
import static org.junit.Assert.assertEquals;
|
||||
|
||||
public class OpenNLPTests {
|
||||
|
||||
private final static String text = "To get to the south: Go to the store. Buy a compass. Use the compass. Then walk to the south.";
|
||||
private final static String sentence[] = new String[]{"James", "Jordan", "live", "in", "Oklahoma", "city", "."};
|
||||
|
||||
@Test
|
||||
public void givenText_WhenDetectSentences_ThenCountSentences() {
|
||||
InputStream is;
|
||||
SentenceModel model;
|
||||
try {
|
||||
is = new FileInputStream("OpenNLP/en-sent.bin");
|
||||
model = new SentenceModel(is);
|
||||
SentenceDetectorME sdetector = new SentenceDetectorME(model);
|
||||
String sentences[] = sdetector.sentDetect(text);
|
||||
assertEquals(4, sentences.length);
|
||||
is.close();
|
||||
} catch (IOException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void givenText_WhenDetectTokens_ThenVerifyNames() {
|
||||
InputStream is;
|
||||
TokenNameFinderModel model;
|
||||
try {
|
||||
is = new FileInputStream("OpenNLP/en-ner-person.bin");
|
||||
model = new TokenNameFinderModel(is);
|
||||
is.close();
|
||||
NameFinderME nameFinder = new NameFinderME(model);
|
||||
Span nameSpans[] = nameFinder.find(sentence);
|
||||
String[] names = Span.spansToStrings(nameSpans, sentence);
|
||||
assertEquals(1, names.length);
|
||||
assertEquals("James Jordan", names[0]);
|
||||
} catch (IOException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void givenText_WhenDetectTokens_ThenVerifyLocations() {
|
||||
InputStream is;
|
||||
TokenNameFinderModel model;
|
||||
try {
|
||||
is = new FileInputStream("OpenNLP/en-ner-location.bin");
|
||||
model = new TokenNameFinderModel(is);
|
||||
is.close();
|
||||
NameFinderME nameFinder = new NameFinderME(model);
|
||||
Span locationSpans[] = nameFinder.find(sentence);
|
||||
String[] locations = Span.spansToStrings(locationSpans, sentence);
|
||||
assertEquals(1, locations.length);
|
||||
assertEquals("Oklahoma", locations[0]);
|
||||
} catch (IOException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void givenText_WhenCategorizeDocument_ThenVerifyDocumentContent() {
|
||||
DoccatModel docCatModel;
|
||||
try {
|
||||
InputStreamFactory isf = new InputStreamFactory() {
|
||||
public InputStream createInputStream() throws IOException {
|
||||
return new FileInputStream("OpenNLP/doc-cat.train");
|
||||
}
|
||||
};
|
||||
ObjectStream<String> lineStream = new PlainTextByLineStream(isf, "UTF-8");
|
||||
ObjectStream<DocumentSample> sampleStream = new DocumentSampleStream(lineStream);
|
||||
DoccatFactory docCatFactory = new DoccatFactory();
|
||||
docCatModel = DocumentCategorizerME.train("en", sampleStream, TrainingParameters.defaultParams(), docCatFactory);
|
||||
DocumentCategorizerME myCategorizer = new DocumentCategorizerME(docCatModel);
|
||||
double[] outcomes = myCategorizer.categorize(sentence);
|
||||
String category = myCategorizer.getBestCategory(outcomes);
|
||||
assertEquals("GOOD", category);
|
||||
} catch (IOException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void givenText_WhenTagDocument_ThenVerifyTaggedString() {
|
||||
try {
|
||||
POSModel posModel = new POSModelLoader().load(new File("OpenNLP/en-pos-maxent.bin"));
|
||||
POSTaggerME posTaggerME = new POSTaggerME(posModel);
|
||||
InputStreamFactory isf = new InputStreamFactory() {
|
||||
public InputStream createInputStream() throws IOException {
|
||||
return new FileInputStream("OpenNLP/PartOfSpeechTag.txt");
|
||||
}
|
||||
};
|
||||
ObjectStream<String> lineStream = new PlainTextByLineStream(isf, "UTF-8");
|
||||
String line;
|
||||
while ((line = lineStream.read()) != null) {
|
||||
String whitespaceTokenizerLine[] = WhitespaceTokenizer.INSTANCE.tokenize(line);
|
||||
String[] tags = posTaggerME.tag(whitespaceTokenizerLine);
|
||||
POSSample posSample = new POSSample(whitespaceTokenizerLine, tags);
|
||||
assertEquals("Out_IN of_IN the_DT night_NN that_WDT covers_VBZ me_PRP", posSample.toString());
|
||||
}
|
||||
lineStream.close();
|
||||
} catch (IOException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void givenText_WhenChunked_ThenCountChunks() {
|
||||
try {
|
||||
InputStream is = new FileInputStream("OpenNLP/en-chunker.bin");
|
||||
ChunkerModel cModel = new ChunkerModel(is);
|
||||
ChunkerME chunkerME = new ChunkerME(cModel);
|
||||
String pos[] = new String[]{"NNP", "NNP", "NNP", "POS", "NNP", "NN", "VBD"};
|
||||
String chunks[] = chunkerME.chunk(sentence, pos);
|
||||
assertEquals(7, chunks.length);
|
||||
} catch (IOException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
}
|
Loading…
Reference in New Issue