* BAEL-3519
- Fibonacci Series
- Recursive method
- Iterative method

* - Added new method that uses Golden Ratio to calculate the given term of Fibonacci Series

* added binet formula implementation of constant time for fibonacci term
This commit is contained in:
vatsalgosar 2019-12-05 20:54:42 +05:30 committed by Sam Millington
parent 592d3e27d7
commit ac8d8b824f
2 changed files with 63 additions and 0 deletions

View File

@ -0,0 +1,34 @@
package com.baeldung.fibonacci;
import static java.lang.Math.pow;
public class FibonacciSeriesUtils {
public static int nthFibonacciTermRecursiveMethod(int n) {
if (n == 0 || n == 1) {
return n;
}
return nthFibonacciTermRecursiveMethod(n - 1) + nthFibonacciTermRecursiveMethod(n - 2);
}
public static int nthFibonacciTermIterativeMethod(int n) {
if (n == 0 || n == 1) {
return n;
}
int n0 = 0, n1 = 1;
int tempNthTerm;
for (int i = 2; i <= n; i++) {
tempNthTerm = n0 + n1;
n0 = n1;
n1 = tempNthTerm;
}
return n1;
}
public static int nthFibonacciTermUsingBinetsFormula(int n) {
final double squareRootOf5 = Math.sqrt(5);
final double phi = (1 + squareRootOf5)/2;
int nthTerm = (int) ((Math.pow(phi, n) - Math.pow(-phi, -n))/squareRootOf5);
return nthTerm;
}
}

View File

@ -0,0 +1,29 @@
package com.baeldung.fibonacci;
import static org.junit.Assert.assertEquals;
import org.junit.Test;
public class FibonacciSeriesUtilsUnitTest {
@Test
public void givenTermToCalculate_thenReturnThatTermUsingRecursion() {
int term = 10;
int expectedValue = 55;
assertEquals(FibonacciSeriesUtils.nthFibonacciTermRecursiveMethod(term), expectedValue);
}
@Test
public void givenTermToCalculate_thenReturnThatTermUsingIteration() {
int term = 10;
int expectedValue = 55;
assertEquals(FibonacciSeriesUtils.nthFibonacciTermIterativeMethod(term), expectedValue);
}
@Test
public void givenTermToCalculate_thenReturnThatTermUsingBinetsFormula() {
int term = 10;
int expectedValue = 55;
assertEquals(FibonacciSeriesUtils.nthFibonacciTermUsingBinetsFormula(term), expectedValue);
}
}