Introduction to OpenNLP (#2024)
* Introduction to OpenNLP * Introduction to OpenNLP
This commit is contained in:
parent
40dc547558
commit
b00ec6abfd
|
@ -0,0 +1 @@
|
||||||
|
Out of the night that covers me
|
|
@ -0,0 +1,10 @@
|
||||||
|
GOOD good morning /
|
||||||
|
GOOD good evening /
|
||||||
|
GOOD have a good day /
|
||||||
|
GOOD nice party! /
|
||||||
|
GOOD fine pants /
|
||||||
|
BAD nightmare volcano in the sea /
|
||||||
|
BAD darkest sky /
|
||||||
|
BAD greed and waste /
|
||||||
|
BAD army attacks /
|
||||||
|
BAD bomb explodes /
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -323,6 +323,13 @@
|
||||||
<artifactId>netty-all</artifactId>
|
<artifactId>netty-all</artifactId>
|
||||||
<version>${netty.version}</version>
|
<version>${netty.version}</version>
|
||||||
</dependency>
|
</dependency>
|
||||||
|
<!-- OpenNLP -->
|
||||||
|
<dependency>
|
||||||
|
<groupId>org.apache.opennlp</groupId>
|
||||||
|
<artifactId>opennlp-tools</artifactId>
|
||||||
|
<version>1.8.0</version>
|
||||||
|
</dependency>
|
||||||
|
|
||||||
</dependencies>
|
</dependencies>
|
||||||
<properties>
|
<properties>
|
||||||
<multiverse.version>0.7.0</multiverse.version>
|
<multiverse.version>0.7.0</multiverse.version>
|
||||||
|
|
|
@ -0,0 +1,166 @@
|
||||||
|
package com.baeldung.opennlp;
|
||||||
|
|
||||||
|
import java.io.File;
|
||||||
|
import java.io.FileInputStream;
|
||||||
|
import java.io.IOException;
|
||||||
|
import java.io.InputStream;
|
||||||
|
import java.util.Arrays;
|
||||||
|
import java.util.logging.Logger;
|
||||||
|
|
||||||
|
import opennlp.tools.chunker.ChunkerME;
|
||||||
|
import opennlp.tools.chunker.ChunkerModel;
|
||||||
|
import opennlp.tools.cmdline.postag.POSModelLoader;
|
||||||
|
import opennlp.tools.doccat.DoccatFactory;
|
||||||
|
import opennlp.tools.doccat.DoccatModel;
|
||||||
|
import opennlp.tools.doccat.DocumentCategorizerME;
|
||||||
|
import opennlp.tools.doccat.DocumentSample;
|
||||||
|
import opennlp.tools.doccat.DocumentSampleStream;
|
||||||
|
import opennlp.tools.namefind.NameFinderME;
|
||||||
|
import opennlp.tools.namefind.TokenNameFinderModel;
|
||||||
|
import opennlp.tools.postag.POSModel;
|
||||||
|
import opennlp.tools.postag.POSSample;
|
||||||
|
import opennlp.tools.postag.POSTaggerME;
|
||||||
|
import opennlp.tools.sentdetect.SentenceDetectorME;
|
||||||
|
import opennlp.tools.sentdetect.SentenceModel;
|
||||||
|
import opennlp.tools.tokenize.Tokenizer;
|
||||||
|
import opennlp.tools.tokenize.TokenizerME;
|
||||||
|
import opennlp.tools.tokenize.TokenizerModel;
|
||||||
|
import opennlp.tools.tokenize.WhitespaceTokenizer;
|
||||||
|
import opennlp.tools.util.InputStreamFactory;
|
||||||
|
import opennlp.tools.util.InvalidFormatException;
|
||||||
|
import opennlp.tools.util.ObjectStream;
|
||||||
|
import opennlp.tools.util.PlainTextByLineStream;
|
||||||
|
import opennlp.tools.util.Span;
|
||||||
|
import opennlp.tools.util.TrainingParameters;
|
||||||
|
|
||||||
|
public class OpenNLP {
|
||||||
|
|
||||||
|
private final static Logger LOGGER = Logger.getLogger(OpenNLP.class.getName());
|
||||||
|
private final static String text = "To get to the south: Go to the store. Buy a compass. Use the compass. Then walk to the south.";
|
||||||
|
private final static String sentence[] = new String[] { "James", "Jordan", "live", "in", "Oklahoma", "city", "." };
|
||||||
|
|
||||||
|
private DoccatModel docCatModel;
|
||||||
|
|
||||||
|
public static void main(String[] args) {
|
||||||
|
new OpenNLP();
|
||||||
|
}
|
||||||
|
|
||||||
|
public OpenNLP() {
|
||||||
|
try {
|
||||||
|
sentenceDetector();
|
||||||
|
tokenizer();
|
||||||
|
nameFinder();
|
||||||
|
locationFinder();
|
||||||
|
trainDocumentCategorizer();
|
||||||
|
documentCategorizer();
|
||||||
|
partOfSpeechTagger();
|
||||||
|
chunker();
|
||||||
|
} catch (InvalidFormatException e) {
|
||||||
|
e.printStackTrace();
|
||||||
|
} catch (IOException e) {
|
||||||
|
e.printStackTrace();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
public void sentenceDetector() throws InvalidFormatException, IOException {
|
||||||
|
|
||||||
|
InputStream is = new FileInputStream("OpenNLP/en-sent.bin");
|
||||||
|
SentenceModel model = new SentenceModel(is);
|
||||||
|
SentenceDetectorME sdetector = new SentenceDetectorME(model);
|
||||||
|
String sentences[] = sdetector.sentDetect(text);
|
||||||
|
Arrays.stream(sentences).forEach(LOGGER::info);
|
||||||
|
is.close();
|
||||||
|
}
|
||||||
|
|
||||||
|
public void tokenizer() throws InvalidFormatException, IOException {
|
||||||
|
InputStream is = new FileInputStream("OpenNLP/en-token.bin");
|
||||||
|
TokenizerModel model = new TokenizerModel(is);
|
||||||
|
Tokenizer tokenizer = new TokenizerME(model);
|
||||||
|
String tokens[] = tokenizer.tokenize(text);
|
||||||
|
Arrays.stream(tokens).forEach(LOGGER::info);
|
||||||
|
is.close();
|
||||||
|
}
|
||||||
|
|
||||||
|
public static void nameFinder() throws IOException {
|
||||||
|
InputStream is = new FileInputStream("OpenNLP/en-ner-person.bin");
|
||||||
|
TokenNameFinderModel model = new TokenNameFinderModel(is);
|
||||||
|
is.close();
|
||||||
|
NameFinderME nameFinder = new NameFinderME(model);
|
||||||
|
Span nameSpans[] = nameFinder.find(sentence);
|
||||||
|
String[] names = Span.spansToStrings(nameSpans, sentence);
|
||||||
|
Arrays.stream(names).forEach(LOGGER::info);
|
||||||
|
}
|
||||||
|
|
||||||
|
public static void locationFinder() throws IOException {
|
||||||
|
InputStream is = new FileInputStream("OpenNLP/en-ner-location.bin");
|
||||||
|
TokenNameFinderModel model = new TokenNameFinderModel(is);
|
||||||
|
is.close();
|
||||||
|
NameFinderME nameFinder = new NameFinderME(model);
|
||||||
|
Span locationSpans[] = nameFinder.find(sentence);
|
||||||
|
String[] locations = Span.spansToStrings(locationSpans, sentence);
|
||||||
|
Arrays.stream(locations).forEach(LOGGER::info);
|
||||||
|
}
|
||||||
|
|
||||||
|
public void trainDocumentCategorizer() {
|
||||||
|
|
||||||
|
try {
|
||||||
|
InputStreamFactory isf = new InputStreamFactory() {
|
||||||
|
public InputStream createInputStream() throws IOException {
|
||||||
|
return new FileInputStream("OpenNLP/doc-cat.train");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
ObjectStream<String> lineStream = new PlainTextByLineStream(isf, "UTF-8");
|
||||||
|
ObjectStream<DocumentSample> sampleStream = new DocumentSampleStream(lineStream);
|
||||||
|
DoccatFactory docCatFactory = new DoccatFactory();
|
||||||
|
docCatModel = DocumentCategorizerME.train("en", sampleStream, TrainingParameters.defaultParams(), docCatFactory);
|
||||||
|
} catch (IOException e) {
|
||||||
|
e.printStackTrace();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
public void documentCategorizer() {
|
||||||
|
DocumentCategorizerME myCategorizer = new DocumentCategorizerME(docCatModel);
|
||||||
|
double[] outcomes = myCategorizer.categorize(sentence);
|
||||||
|
String category = myCategorizer.getBestCategory(outcomes);
|
||||||
|
|
||||||
|
if (category.equalsIgnoreCase("GOOD")) {
|
||||||
|
LOGGER.info("Document is positive :) ");
|
||||||
|
} else {
|
||||||
|
LOGGER.info("Document is negative :( ");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
public static void partOfSpeechTagger() throws IOException {
|
||||||
|
try {
|
||||||
|
POSModel posModel = new POSModelLoader().load(new File("OpenNLP/en-pos-maxent.bin"));
|
||||||
|
POSTaggerME posTaggerME = new POSTaggerME(posModel);
|
||||||
|
InputStreamFactory isf = new InputStreamFactory() {
|
||||||
|
public InputStream createInputStream() throws IOException {
|
||||||
|
return new FileInputStream("OpenNLP/PartOfSpeechTag.txt");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
ObjectStream<String> lineStream = new PlainTextByLineStream(isf, "UTF-8");
|
||||||
|
String line;
|
||||||
|
while ((line = lineStream.read()) != null) {
|
||||||
|
String whitespaceTokenizerLine[] = WhitespaceTokenizer.INSTANCE.tokenize(line);
|
||||||
|
String[] tags = posTaggerME.tag(whitespaceTokenizerLine);
|
||||||
|
POSSample posSample = new POSSample(whitespaceTokenizerLine, tags);
|
||||||
|
LOGGER.info(posSample.toString());
|
||||||
|
}
|
||||||
|
lineStream.close();
|
||||||
|
} catch (IOException e) {
|
||||||
|
e.printStackTrace();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
public static void chunker() throws IOException {
|
||||||
|
InputStream is = new FileInputStream("OpenNLP/en-chunker.bin");
|
||||||
|
ChunkerModel cModel = new ChunkerModel(is);
|
||||||
|
ChunkerME chunkerME = new ChunkerME(cModel);
|
||||||
|
String[] taggedSentence = new String[] {"Out", "of", "the", "night", "that", "covers", "me"};
|
||||||
|
String pos[] = new String[] { "IN", "IN", "DT", "NN", "WDT", "VBZ", "PRP"};
|
||||||
|
String chunks[] = chunkerME.chunk(taggedSentence, pos);
|
||||||
|
Arrays.stream(chunks).forEach(LOGGER::info);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
|
@ -0,0 +1,158 @@
|
||||||
|
package com.baeldung.opennlp;
|
||||||
|
|
||||||
|
import static org.junit.Assert.assertEquals;
|
||||||
|
|
||||||
|
import java.io.File;
|
||||||
|
import java.io.FileInputStream;
|
||||||
|
import java.io.FileNotFoundException;
|
||||||
|
import java.io.IOException;
|
||||||
|
import java.io.InputStream;
|
||||||
|
|
||||||
|
import org.junit.Test;
|
||||||
|
|
||||||
|
import opennlp.tools.chunker.ChunkerME;
|
||||||
|
import opennlp.tools.chunker.ChunkerModel;
|
||||||
|
import opennlp.tools.cmdline.postag.POSModelLoader;
|
||||||
|
import opennlp.tools.doccat.DoccatFactory;
|
||||||
|
import opennlp.tools.doccat.DoccatModel;
|
||||||
|
import opennlp.tools.doccat.DocumentCategorizerME;
|
||||||
|
import opennlp.tools.doccat.DocumentSample;
|
||||||
|
import opennlp.tools.doccat.DocumentSampleStream;
|
||||||
|
import opennlp.tools.namefind.NameFinderME;
|
||||||
|
import opennlp.tools.namefind.TokenNameFinderModel;
|
||||||
|
import opennlp.tools.postag.POSModel;
|
||||||
|
import opennlp.tools.postag.POSSample;
|
||||||
|
import opennlp.tools.postag.POSTaggerME;
|
||||||
|
import opennlp.tools.sentdetect.SentenceDetectorME;
|
||||||
|
import opennlp.tools.sentdetect.SentenceModel;
|
||||||
|
import opennlp.tools.tokenize.WhitespaceTokenizer;
|
||||||
|
import opennlp.tools.util.InputStreamFactory;
|
||||||
|
import opennlp.tools.util.ObjectStream;
|
||||||
|
import opennlp.tools.util.PlainTextByLineStream;
|
||||||
|
import opennlp.tools.util.Span;
|
||||||
|
import opennlp.tools.util.TrainingParameters;
|
||||||
|
|
||||||
|
public class OpenNLPTests {
|
||||||
|
|
||||||
|
private final static String text = "To get to the south: Go to the store. Buy a compass. Use the compass. Then walk to the south.";
|
||||||
|
private final static String sentence[] = new String[] { "James", "Jordan", "live", "in", "Oklahoma", "city", "." };
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void givenText_WhenDetectSentences_ThenCountSentences(){
|
||||||
|
InputStream is;
|
||||||
|
SentenceModel model;
|
||||||
|
try {
|
||||||
|
is = new FileInputStream("OpenNLP/en-sent.bin");
|
||||||
|
model = new SentenceModel(is);
|
||||||
|
SentenceDetectorME sdetector = new SentenceDetectorME(model);
|
||||||
|
String sentences[] = sdetector.sentDetect(text);
|
||||||
|
assertEquals(4, sentences.length);
|
||||||
|
is.close();
|
||||||
|
} catch (FileNotFoundException e) {
|
||||||
|
e.printStackTrace();
|
||||||
|
} catch (IOException e) {
|
||||||
|
e.printStackTrace();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void givenText_WhenDetectTokens_ThenVerifyNames(){
|
||||||
|
InputStream is;
|
||||||
|
TokenNameFinderModel model;
|
||||||
|
try {
|
||||||
|
is = new FileInputStream("OpenNLP/en-ner-person.bin");
|
||||||
|
model = new TokenNameFinderModel(is);
|
||||||
|
is.close();
|
||||||
|
NameFinderME nameFinder = new NameFinderME(model);
|
||||||
|
Span nameSpans[] = nameFinder.find(sentence);
|
||||||
|
String[] names = Span.spansToStrings(nameSpans, sentence);
|
||||||
|
assertEquals(1, names.length);
|
||||||
|
assertEquals("James Jordan", names[0]);
|
||||||
|
} catch (FileNotFoundException e) {
|
||||||
|
e.printStackTrace();
|
||||||
|
} catch (IOException e) {
|
||||||
|
e.printStackTrace();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void givenText_WhenDetectTokens_ThenVerifyLocations(){
|
||||||
|
InputStream is;
|
||||||
|
TokenNameFinderModel model;
|
||||||
|
try {
|
||||||
|
is = new FileInputStream("OpenNLP/en-ner-location.bin");
|
||||||
|
model = new TokenNameFinderModel(is);
|
||||||
|
is.close();
|
||||||
|
NameFinderME nameFinder = new NameFinderME(model);
|
||||||
|
Span locationSpans[] = nameFinder.find(sentence);
|
||||||
|
String[] locations = Span.spansToStrings(locationSpans, sentence);
|
||||||
|
assertEquals(1, locations.length);
|
||||||
|
assertEquals("Oklahoma", locations[0]);
|
||||||
|
} catch (FileNotFoundException e) {
|
||||||
|
e.printStackTrace();
|
||||||
|
} catch (IOException e) {
|
||||||
|
e.printStackTrace();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void givenText_WhenCategorizeDocument_ThenVerifyDocumentContent(){
|
||||||
|
DoccatModel docCatModel;
|
||||||
|
try {
|
||||||
|
InputStreamFactory isf = new InputStreamFactory() {
|
||||||
|
public InputStream createInputStream() throws IOException {
|
||||||
|
return new FileInputStream("OpenNLP/doc-cat.train");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
ObjectStream<String> lineStream = new PlainTextByLineStream(isf, "UTF-8");
|
||||||
|
ObjectStream<DocumentSample> sampleStream = new DocumentSampleStream(lineStream);
|
||||||
|
DoccatFactory docCatFactory = new DoccatFactory();
|
||||||
|
docCatModel = DocumentCategorizerME.train("en", sampleStream, TrainingParameters.defaultParams(), docCatFactory);
|
||||||
|
DocumentCategorizerME myCategorizer = new DocumentCategorizerME(docCatModel);
|
||||||
|
double[] outcomes = myCategorizer.categorize(sentence);
|
||||||
|
String category = myCategorizer.getBestCategory(outcomes);
|
||||||
|
assertEquals("GOOD", category);
|
||||||
|
} catch (IOException e) {
|
||||||
|
e.printStackTrace();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void givenText_WhenTagDocument_ThenVerifyTaggedString(){
|
||||||
|
try {
|
||||||
|
POSModel posModel = new POSModelLoader().load(new File("OpenNLP/en-pos-maxent.bin"));
|
||||||
|
POSTaggerME posTaggerME = new POSTaggerME(posModel);
|
||||||
|
InputStreamFactory isf = new InputStreamFactory() {
|
||||||
|
public InputStream createInputStream() throws IOException {
|
||||||
|
return new FileInputStream("OpenNLP/PartOfSpeechTag.txt");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
ObjectStream<String> lineStream = new PlainTextByLineStream(isf, "UTF-8");
|
||||||
|
String line;
|
||||||
|
while ((line = lineStream.read()) != null) {
|
||||||
|
String whitespaceTokenizerLine[] = WhitespaceTokenizer.INSTANCE.tokenize(line);
|
||||||
|
String[] tags = posTaggerME.tag(whitespaceTokenizerLine);
|
||||||
|
POSSample posSample = new POSSample(whitespaceTokenizerLine, tags);
|
||||||
|
assertEquals("Out_IN of_IN the_DT night_NN that_WDT covers_VBZ me_PRP", posSample.toString());
|
||||||
|
}
|
||||||
|
lineStream.close();
|
||||||
|
} catch (IOException e) {
|
||||||
|
e.printStackTrace();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void givenText_WhenChunked_ThenCountChunks(){
|
||||||
|
try {
|
||||||
|
InputStream is = new FileInputStream("OpenNLP/en-chunker.bin");
|
||||||
|
ChunkerModel cModel = new ChunkerModel(is);
|
||||||
|
ChunkerME chunkerME = new ChunkerME(cModel);
|
||||||
|
String pos[] = new String[] { "NNP", "NNP", "NNP", "POS", "NNP", "NN", "VBD"};
|
||||||
|
String chunks[] = chunkerME.chunk(sentence, pos);
|
||||||
|
assertEquals(7, chunks.length);
|
||||||
|
} catch (IOException e) {
|
||||||
|
e.printStackTrace();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
Loading…
Reference in New Issue