BAEL-1352 Multiswarm optimization algorithm.
This commit is contained in:
parent
4aa706ed8d
commit
b0d83a88be
|
@ -0,0 +1,47 @@
|
|||
package com.baeldung.algorithms.multiswarm;
|
||||
|
||||
/**
|
||||
* Constants used by the Multi-swarm optimization algorithms.
|
||||
*
|
||||
* @author Donato Rimenti
|
||||
*
|
||||
*/
|
||||
public class Constants {
|
||||
|
||||
/**
|
||||
* The inertia factor encourages a particle to continue moving in its
|
||||
* current direction.
|
||||
*/
|
||||
public static final double INERTIA_FACTOR = 0.729;
|
||||
|
||||
/**
|
||||
* The cognitive weight encourages a particle to move toward its historical
|
||||
* best-known position.
|
||||
*/
|
||||
public static final double COGNITIVE_WEIGHT = 1.49445;
|
||||
|
||||
/**
|
||||
* The social weight encourages a particle to move toward the best-known
|
||||
* position found by any of the particle’s swarm-mates.
|
||||
*/
|
||||
public static final double SOCIAL_WEIGHT = 1.49445;
|
||||
|
||||
/**
|
||||
* The global weight encourages a particle to move toward the best-known
|
||||
* position found by any particle in any swarm.
|
||||
*/
|
||||
public static final double GLOBAL_WEIGHT = 0.3645;
|
||||
|
||||
/**
|
||||
* Upper bound for the random generation. We use it to reduce the
|
||||
* computation time since we can rawly estimate it.
|
||||
*/
|
||||
public static final int PARTICLE_UPPER_BOUND = 10000000;
|
||||
|
||||
/**
|
||||
* Private constructor for utility class.
|
||||
*/
|
||||
private Constants() {
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,21 @@
|
|||
package com.baeldung.algorithms.multiswarm;
|
||||
|
||||
/**
|
||||
* Interface for a fitness function, used to decouple the main algorithm logic
|
||||
* from the specific problem solution.
|
||||
*
|
||||
* @author Donato Rimenti
|
||||
*
|
||||
*/
|
||||
public interface FitnessFunction {
|
||||
|
||||
/**
|
||||
* Returns the fitness of a particle given its position.
|
||||
*
|
||||
* @param particlePosition
|
||||
* the position of the particle
|
||||
* @return the fitness of the particle
|
||||
*/
|
||||
public double getFitness(long[] particlePosition);
|
||||
|
||||
}
|
|
@ -0,0 +1,227 @@
|
|||
package com.baeldung.algorithms.multiswarm;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.Random;
|
||||
|
||||
/**
|
||||
* Represents a collection of {@link Swarm}.
|
||||
*
|
||||
* @author Donato Rimenti
|
||||
*
|
||||
*/
|
||||
public class Multiswarm {
|
||||
|
||||
/**
|
||||
* The swarms managed by this multiswarm.
|
||||
*/
|
||||
private Swarm[] swarms;
|
||||
|
||||
/**
|
||||
* The best position found within all the {@link #swarms}.
|
||||
*/
|
||||
private long[] bestPosition;
|
||||
|
||||
/**
|
||||
* The best fitness score found within all the {@link #swarms}.
|
||||
*/
|
||||
private double bestFitness = Double.NEGATIVE_INFINITY;
|
||||
|
||||
/**
|
||||
* A random generator.
|
||||
*/
|
||||
private Random random = new Random();
|
||||
|
||||
/**
|
||||
* The fitness function used to determine how good is a particle.
|
||||
*/
|
||||
private FitnessFunction fitnessFunction;
|
||||
|
||||
/**
|
||||
* Instantiates a new Multiswarm.
|
||||
*
|
||||
* @param numSwarms
|
||||
* the number of {@link #swarms}
|
||||
* @param particlesPerSwarm
|
||||
* the number of particle for each {@link #swarms}
|
||||
* @param fitnessFunction
|
||||
* the {@link #fitnessFunction}
|
||||
*/
|
||||
public Multiswarm(int numSwarms, int particlesPerSwarm, FitnessFunction fitnessFunction) {
|
||||
this.fitnessFunction = fitnessFunction;
|
||||
this.swarms = new Swarm[numSwarms];
|
||||
for (int i = 0; i < numSwarms; i++) {
|
||||
swarms[i] = new Swarm(particlesPerSwarm);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Main loop of the algorithm. Iterates all particles of all
|
||||
* {@link #swarms}. For each particle, computes the new fitness and checks
|
||||
* if a new best position has been found among itself, the swarm and all the
|
||||
* swarms and finally updates the particle position and speed.
|
||||
*/
|
||||
public void mainLoop() {
|
||||
for (Swarm swarm : swarms) {
|
||||
for (Particle particle : swarm.getParticles()) {
|
||||
|
||||
long[] particleOldPosition = particle.getPosition().clone();
|
||||
|
||||
// Calculate the particle fitness.
|
||||
particle.setFitness(fitnessFunction.getFitness(particleOldPosition));
|
||||
|
||||
// Check if a new best position has been found for the particle
|
||||
// itself, within the swarm and the multiswarm.
|
||||
if (particle.getFitness() > particle.getBestFitness()) {
|
||||
particle.setBestFitness(particle.getFitness());
|
||||
particle.setBestPosition(particleOldPosition);
|
||||
|
||||
if (particle.getFitness() > swarm.getBestFitness()) {
|
||||
swarm.setBestFitness(particle.getFitness());
|
||||
swarm.setBestPosition(particleOldPosition);
|
||||
|
||||
if (swarm.getBestFitness() > bestFitness) {
|
||||
bestFitness = swarm.getBestFitness();
|
||||
bestPosition = swarm.getBestPosition().clone();
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// Updates the particle position by adding the speed to the
|
||||
// actual position.
|
||||
long[] position = particle.getPosition();
|
||||
long[] speed = particle.getSpeed();
|
||||
|
||||
position[0] += speed[0];
|
||||
position[1] += speed[1];
|
||||
|
||||
// Updates the particle speed.
|
||||
speed[0] = getNewParticleSpeedForIndex(particle, swarm, 0);
|
||||
speed[1] = getNewParticleSpeedForIndex(particle, swarm, 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes a new speed for a given particle of a given swarm on a given
|
||||
* axis. The new speed is computed using the formula:
|
||||
*
|
||||
* <pre>
|
||||
* ({@link Constants#INERTIA_FACTOR} * {@link Particle#getSpeed()}) +
|
||||
* (({@link Constants#COGNITIVE_WEIGHT} * random(0,1)) * ({@link Particle#getBestPosition()} - {@link Particle#getPosition()})) +
|
||||
* (({@link Constants#SOCIAL_WEIGHT} * random(0,1)) * ({@link Swarm#getBestPosition()} - {@link Particle#getPosition()})) +
|
||||
* (({@link Constants#GLOBAL_WEIGHT} * random(0,1)) * ({@link #bestPosition} - {@link Particle#getPosition()}))
|
||||
* </pre>
|
||||
*
|
||||
* @param particle
|
||||
* the particle whose new speed needs to be computed
|
||||
* @param swarm
|
||||
* the swarm which contains the particle
|
||||
* @param index
|
||||
* the index of the particle axis whose speeds needs to be
|
||||
* computed
|
||||
* @return the new speed of the particle passed on the given axis
|
||||
*/
|
||||
private int getNewParticleSpeedForIndex(Particle particle, Swarm swarm, int index) {
|
||||
return (int) ((Constants.INERTIA_FACTOR * particle.getSpeed()[index])
|
||||
+ (randomizePercentage(Constants.COGNITIVE_WEIGHT)
|
||||
* (particle.getBestPosition()[index] - particle.getPosition()[index]))
|
||||
+ (randomizePercentage(Constants.SOCIAL_WEIGHT)
|
||||
* (swarm.getBestPosition()[index] - particle.getPosition()[index]))
|
||||
+ (randomizePercentage(Constants.GLOBAL_WEIGHT)
|
||||
* (bestPosition[index] - particle.getPosition()[index])));
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a random number between 0 and the value passed as argument.
|
||||
*
|
||||
* @param value
|
||||
* the value to randomize
|
||||
* @return a random value between 0 and the one passed as argument
|
||||
*/
|
||||
private double randomizePercentage(double value) {
|
||||
return random.nextDouble() * value;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the {@link #bestPosition}.
|
||||
*
|
||||
* @return the {@link #bestPosition}
|
||||
*/
|
||||
public long[] getBestPosition() {
|
||||
return bestPosition;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the {@link #bestFitness}.
|
||||
*
|
||||
* @return the {@link #bestFitness}
|
||||
*/
|
||||
public double getBestFitness() {
|
||||
return bestFitness;
|
||||
}
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* @see java.lang.Object#hashCode()
|
||||
*/
|
||||
@Override
|
||||
public int hashCode() {
|
||||
final int prime = 31;
|
||||
int result = 1;
|
||||
long temp;
|
||||
temp = Double.doubleToLongBits(bestFitness);
|
||||
result = prime * result + (int) (temp ^ (temp >>> 32));
|
||||
result = prime * result + Arrays.hashCode(bestPosition);
|
||||
result = prime * result + ((fitnessFunction == null) ? 0 : fitnessFunction.hashCode());
|
||||
result = prime * result + ((random == null) ? 0 : random.hashCode());
|
||||
result = prime * result + Arrays.hashCode(swarms);
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* @see java.lang.Object#equals(java.lang.Object)
|
||||
*/
|
||||
@Override
|
||||
public boolean equals(Object obj) {
|
||||
if (this == obj)
|
||||
return true;
|
||||
if (obj == null)
|
||||
return false;
|
||||
if (getClass() != obj.getClass())
|
||||
return false;
|
||||
Multiswarm other = (Multiswarm) obj;
|
||||
if (Double.doubleToLongBits(bestFitness) != Double.doubleToLongBits(other.bestFitness))
|
||||
return false;
|
||||
if (!Arrays.equals(bestPosition, other.bestPosition))
|
||||
return false;
|
||||
if (fitnessFunction == null) {
|
||||
if (other.fitnessFunction != null)
|
||||
return false;
|
||||
} else if (!fitnessFunction.equals(other.fitnessFunction))
|
||||
return false;
|
||||
if (random == null) {
|
||||
if (other.random != null)
|
||||
return false;
|
||||
} else if (!random.equals(other.random))
|
||||
return false;
|
||||
if (!Arrays.equals(swarms, other.swarms))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* @see java.lang.Object#toString()
|
||||
*/
|
||||
@Override
|
||||
public String toString() {
|
||||
return "Multiswarm [swarms=" + Arrays.toString(swarms) + ", bestPosition=" + Arrays.toString(bestPosition)
|
||||
+ ", bestFitness=" + bestFitness + ", random=" + random + ", fitnessFunction=" + fitnessFunction + "]";
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,204 @@
|
|||
package com.baeldung.algorithms.multiswarm;
|
||||
|
||||
import java.util.Arrays;
|
||||
|
||||
/**
|
||||
* Represents a particle, the basic component of a {@link Swarm}.
|
||||
*
|
||||
* @author Donato Rimenti
|
||||
*
|
||||
*/
|
||||
public class Particle {
|
||||
|
||||
/**
|
||||
* The current position of this particle.
|
||||
*/
|
||||
private long[] position;
|
||||
|
||||
/**
|
||||
* The speed of this particle.
|
||||
*/
|
||||
private long[] speed;
|
||||
|
||||
/**
|
||||
* The fitness of this particle for the current position.
|
||||
*/
|
||||
private double fitness;
|
||||
|
||||
/**
|
||||
* The best position found by this particle.
|
||||
*/
|
||||
private long[] bestPosition;
|
||||
|
||||
/**
|
||||
* The best fitness found by this particle.
|
||||
*/
|
||||
private double bestFitness = Double.NEGATIVE_INFINITY;
|
||||
|
||||
/**
|
||||
* Instantiates a new Particle.
|
||||
*
|
||||
* @param initialPosition
|
||||
* the initial {@link #position}
|
||||
* @param initialSpeed
|
||||
* the initial {@link #speed}
|
||||
*/
|
||||
public Particle(long[] initialPosition, long[] initialSpeed) {
|
||||
this.position = initialPosition;
|
||||
this.speed = initialSpeed;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the {@link #position}.
|
||||
*
|
||||
* @return the {@link #position}
|
||||
*/
|
||||
public long[] getPosition() {
|
||||
return position;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the {@link #speed}.
|
||||
*
|
||||
* @return the {@link #speed}
|
||||
*/
|
||||
public long[] getSpeed() {
|
||||
return speed;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the {@link #fitness}.
|
||||
*
|
||||
* @return the {@link #fitness}
|
||||
*/
|
||||
public double getFitness() {
|
||||
return fitness;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the {@link #bestPosition}.
|
||||
*
|
||||
* @return the {@link #bestPosition}
|
||||
*/
|
||||
public long[] getBestPosition() {
|
||||
return bestPosition;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the {@link #bestFitness}.
|
||||
*
|
||||
* @return the {@link #bestFitness}
|
||||
*/
|
||||
public double getBestFitness() {
|
||||
return bestFitness;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the {@link #position}.
|
||||
*
|
||||
* @param position
|
||||
* the new {@link #position}
|
||||
*/
|
||||
public void setPosition(long[] position) {
|
||||
this.position = position;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the {@link #speed}.
|
||||
*
|
||||
* @param speed
|
||||
* the new {@link #speed}
|
||||
*/
|
||||
public void setSpeed(long[] speed) {
|
||||
this.speed = speed;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the {@link #fitness}.
|
||||
*
|
||||
* @param fitness
|
||||
* the new {@link #fitness}
|
||||
*/
|
||||
public void setFitness(double fitness) {
|
||||
this.fitness = fitness;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the {@link #bestPosition}.
|
||||
*
|
||||
* @param bestPosition
|
||||
* the new {@link #bestPosition}
|
||||
*/
|
||||
public void setBestPosition(long[] bestPosition) {
|
||||
this.bestPosition = bestPosition;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the {@link #bestFitness}.
|
||||
*
|
||||
* @param bestFitness
|
||||
* the new {@link #bestFitness}
|
||||
*/
|
||||
public void setBestFitness(double bestFitness) {
|
||||
this.bestFitness = bestFitness;
|
||||
}
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* @see java.lang.Object#hashCode()
|
||||
*/
|
||||
@Override
|
||||
public int hashCode() {
|
||||
final int prime = 31;
|
||||
int result = 1;
|
||||
long temp;
|
||||
temp = Double.doubleToLongBits(bestFitness);
|
||||
result = prime * result + (int) (temp ^ (temp >>> 32));
|
||||
result = prime * result + Arrays.hashCode(bestPosition);
|
||||
temp = Double.doubleToLongBits(fitness);
|
||||
result = prime * result + (int) (temp ^ (temp >>> 32));
|
||||
result = prime * result + Arrays.hashCode(position);
|
||||
result = prime * result + Arrays.hashCode(speed);
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* @see java.lang.Object#equals(java.lang.Object)
|
||||
*/
|
||||
@Override
|
||||
public boolean equals(Object obj) {
|
||||
if (this == obj)
|
||||
return true;
|
||||
if (obj == null)
|
||||
return false;
|
||||
if (getClass() != obj.getClass())
|
||||
return false;
|
||||
Particle other = (Particle) obj;
|
||||
if (Double.doubleToLongBits(bestFitness) != Double.doubleToLongBits(other.bestFitness))
|
||||
return false;
|
||||
if (!Arrays.equals(bestPosition, other.bestPosition))
|
||||
return false;
|
||||
if (Double.doubleToLongBits(fitness) != Double.doubleToLongBits(other.fitness))
|
||||
return false;
|
||||
if (!Arrays.equals(position, other.position))
|
||||
return false;
|
||||
if (!Arrays.equals(speed, other.speed))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* @see java.lang.Object#toString()
|
||||
*/
|
||||
@Override
|
||||
public String toString() {
|
||||
return "Particle [position=" + Arrays.toString(position) + ", speed=" + Arrays.toString(speed) + ", fitness="
|
||||
+ fitness + ", bestPosition=" + Arrays.toString(bestPosition) + ", bestFitness=" + bestFitness + "]";
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,156 @@
|
|||
package com.baeldung.algorithms.multiswarm;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.Random;
|
||||
|
||||
// TODO: Auto-generated Javadoc
|
||||
/**
|
||||
* Represents a collection of {@link Particle}.
|
||||
*
|
||||
* @author Donato Rimenti
|
||||
*
|
||||
*/
|
||||
public class Swarm {
|
||||
|
||||
/**
|
||||
* The particles of this swarm.
|
||||
*/
|
||||
private Particle[] particles;
|
||||
|
||||
/**
|
||||
* The best position found within the particles of this swarm.
|
||||
*/
|
||||
private long[] bestPosition;
|
||||
|
||||
/**
|
||||
* The best fitness score found within the particles of this swarm.
|
||||
*/
|
||||
private double bestFitness = Double.NEGATIVE_INFINITY;
|
||||
|
||||
/**
|
||||
* A random generator.
|
||||
*/
|
||||
private Random random = new Random();
|
||||
|
||||
/**
|
||||
* Instantiates a new Swarm.
|
||||
*
|
||||
* @param numParticles
|
||||
* the number of particles of the swarm
|
||||
*/
|
||||
public Swarm(int numParticles) {
|
||||
particles = new Particle[numParticles];
|
||||
for (int i = 0; i < numParticles; i++) {
|
||||
long[] initialParticlePosition = { random.nextInt(Constants.PARTICLE_UPPER_BOUND),
|
||||
random.nextInt(Constants.PARTICLE_UPPER_BOUND) };
|
||||
long[] initialParticleSpeed = { random.nextInt(Constants.PARTICLE_UPPER_BOUND),
|
||||
random.nextInt(Constants.PARTICLE_UPPER_BOUND) };
|
||||
particles[i] = new Particle(initialParticlePosition, initialParticleSpeed);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the {@link #particles}.
|
||||
*
|
||||
* @return the {@link #particles}
|
||||
*/
|
||||
public Particle[] getParticles() {
|
||||
return particles;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the {@link #bestPosition}.
|
||||
*
|
||||
* @return the {@link #bestPosition}
|
||||
*/
|
||||
public long[] getBestPosition() {
|
||||
return bestPosition;
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the {@link #bestFitness}.
|
||||
*
|
||||
* @return the {@link #bestFitness}
|
||||
*/
|
||||
public double getBestFitness() {
|
||||
return bestFitness;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the {@link #bestPosition}.
|
||||
*
|
||||
* @param bestPosition
|
||||
* the new {@link #bestPosition}
|
||||
*/
|
||||
public void setBestPosition(long[] bestPosition) {
|
||||
this.bestPosition = bestPosition;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the {@link #bestFitness}.
|
||||
*
|
||||
* @param bestFitness
|
||||
* the new {@link #bestFitness}
|
||||
*/
|
||||
public void setBestFitness(double bestFitness) {
|
||||
this.bestFitness = bestFitness;
|
||||
}
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* @see java.lang.Object#hashCode()
|
||||
*/
|
||||
@Override
|
||||
public int hashCode() {
|
||||
final int prime = 31;
|
||||
int result = 1;
|
||||
long temp;
|
||||
temp = Double.doubleToLongBits(bestFitness);
|
||||
result = prime * result + (int) (temp ^ (temp >>> 32));
|
||||
result = prime * result + Arrays.hashCode(bestPosition);
|
||||
result = prime * result + Arrays.hashCode(particles);
|
||||
result = prime * result + ((random == null) ? 0 : random.hashCode());
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* @see java.lang.Object#equals(java.lang.Object)
|
||||
*/
|
||||
@Override
|
||||
public boolean equals(Object obj) {
|
||||
if (this == obj)
|
||||
return true;
|
||||
if (obj == null)
|
||||
return false;
|
||||
if (getClass() != obj.getClass())
|
||||
return false;
|
||||
Swarm other = (Swarm) obj;
|
||||
if (Double.doubleToLongBits(bestFitness) != Double.doubleToLongBits(other.bestFitness))
|
||||
return false;
|
||||
if (!Arrays.equals(bestPosition, other.bestPosition))
|
||||
return false;
|
||||
if (!Arrays.equals(particles, other.particles))
|
||||
return false;
|
||||
if (random == null) {
|
||||
if (other.random != null)
|
||||
return false;
|
||||
} else if (!random.equals(other.random))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* @see java.lang.Object#toString()
|
||||
*/
|
||||
@Override
|
||||
public String toString() {
|
||||
return "Swarm [particles=" + Arrays.toString(particles) + ", bestPosition=" + Arrays.toString(bestPosition)
|
||||
+ ", bestFitness=" + bestFitness + ", random=" + random + "]";
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,78 @@
|
|||
package com.baeldung.algorithms.multiswarm;
|
||||
|
||||
import org.junit.Assert;
|
||||
import org.junit.Rule;
|
||||
import org.junit.Test;
|
||||
|
||||
import com.baeldung.algorithms.support.MayFailRule;
|
||||
|
||||
/**
|
||||
* Test for {@link Multiswarm}.
|
||||
*
|
||||
* @author Donato Rimenti
|
||||
*
|
||||
*/
|
||||
public class MultiswarmUnitTest {
|
||||
|
||||
/**
|
||||
* Rule for handling expected failures. We use this since this test may
|
||||
* actually fail due to bad luck in the random generation.
|
||||
*/
|
||||
@Rule
|
||||
public MayFailRule mayFailRule = new MayFailRule();
|
||||
|
||||
/**
|
||||
* Tests the multiswarm algorithm with a generic problem.
|
||||
*
|
||||
* The problem is the following:
|
||||
*
|
||||
* In League of Legends, a player's Effective Health when defending against
|
||||
* physical damage is given by E=H(100+A)/100, where H is health and A is
|
||||
* armor.
|
||||
*
|
||||
* Health costs 2.5 gold per unit, and Armor costs 18 gold per unit. You
|
||||
* have 3600 gold, and you need to optimize the effectiveness E of your
|
||||
* health and armor to survive as long as possible against the enemy team's
|
||||
* attacks. How much of each should you buy?
|
||||
*
|
||||
* The solution is H = 1080, A = 50 for a total fitness of 1620.
|
||||
*
|
||||
* Tested with 50 swarms each with 1000 particles.
|
||||
*/
|
||||
@Test
|
||||
public void givenMultiswarm_whenThousandIteration_thenSolutionFound() {
|
||||
Multiswarm multiswarm = new Multiswarm(50, 1000, values -> {
|
||||
|
||||
// No negatives values accepted.
|
||||
if (values[0] < 0 && values[1] < 0) {
|
||||
return -(values[0] * values[1]);
|
||||
} else if (values[0] < 0) {
|
||||
return values[0];
|
||||
} else if (values[1] < 0) {
|
||||
return values[1];
|
||||
}
|
||||
|
||||
// Checks if the solution is actually feasible provided our gold.
|
||||
double cost = (values[0] * 2.5) + (values[1] * 18);
|
||||
if (cost > 3600) {
|
||||
return 3600 - cost;
|
||||
} else {
|
||||
// Check how good is the solution.
|
||||
long fitness = (values[0] * (100 + values[1])) / 100;
|
||||
return fitness;
|
||||
}
|
||||
});
|
||||
|
||||
// Iterates 1000 times through the main loop and prints the result.
|
||||
for (int i = 0; i < 1000; i++) {
|
||||
multiswarm.mainLoop();
|
||||
}
|
||||
|
||||
System.out.println("Best fitness found: " + multiswarm.getBestFitness() + "[" + multiswarm.getBestPosition()[0]
|
||||
+ "," + multiswarm.getBestPosition()[1] + "]");
|
||||
Assert.assertEquals(1080, multiswarm.getBestPosition()[0]);
|
||||
Assert.assertEquals(50, multiswarm.getBestPosition()[1]);
|
||||
Assert.assertEquals(1620, (int) multiswarm.getBestFitness());
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,38 @@
|
|||
package com.baeldung.algorithms.support;
|
||||
|
||||
import org.junit.Rule;
|
||||
import org.junit.rules.TestRule;
|
||||
import org.junit.runner.Description;
|
||||
import org.junit.runners.model.Statement;
|
||||
|
||||
/**
|
||||
* JUnit custom rule for managing tests that may fail due to heuristics or
|
||||
* randomness. In order to use this, just instantiate this object as a public
|
||||
* field inside the test class and annotate it with {@link Rule}.
|
||||
*
|
||||
* @author Donato Rimenti
|
||||
*
|
||||
*/
|
||||
public class MayFailRule implements TestRule {
|
||||
|
||||
/*
|
||||
* (non-Javadoc)
|
||||
*
|
||||
* @see org.junit.rules.TestRule#apply(org.junit.runners.model.Statement,
|
||||
* org.junit.runner.Description)
|
||||
*/
|
||||
@Override
|
||||
public Statement apply(Statement base, Description description) {
|
||||
return new Statement() {
|
||||
@Override
|
||||
public void evaluate() throws Throwable {
|
||||
try {
|
||||
base.evaluate();
|
||||
} catch (Throwable e) {
|
||||
// Ignore the exception since we expect this.
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
}
|
Loading…
Reference in New Issue