BAEL-771 (#2286)
* BAEL-771 * Corrected XOR from mislabeled AND * Unit tests added * Merged into libraries module - removed Neuroph module * Merged into libraries module - removed Neuroph module * Merged pom.xml * Merged pom.xml * libraries pom.xml - I removed a white space during merge so conflict persisted - here's the temporary reversion
This commit is contained in:
parent
a89462e7f1
commit
d4f245a275
|
@ -26,6 +26,7 @@
|
|||
- [A Guide to Apache Commons DbUtils](http://www.baeldung.com/apache-commons-dbutils)
|
||||
- [Introduction to Awaitility](http://www.baeldung.com/awaitlity-testing)
|
||||
- [Guide to the HyperLogLog Algorithm](http://www.baeldung.com/java-hyperloglog)
|
||||
- [Introduction to Neuroph](http://www.baeldung.com/intro-to-neuroph)
|
||||
|
||||
The libraries module contains examples related to small libraries that are relatively easy to use and does not require any separate module of its own.
|
||||
|
||||
|
|
|
@ -7,7 +7,6 @@
|
|||
<version>1.0.0-SNAPSHOT</version>
|
||||
</parent>
|
||||
<modelVersion>4.0.0</modelVersion>
|
||||
|
||||
<artifactId>libraries</artifactId>
|
||||
<name>libraries</name>
|
||||
<build>
|
||||
|
@ -71,9 +70,51 @@
|
|||
</execution>
|
||||
</executions>
|
||||
</plugin>
|
||||
<!-- Neuroph -->
|
||||
<plugin>
|
||||
<groupId>org.apache.maven.plugins</groupId>
|
||||
<artifactId>maven-jar-plugin</artifactId>
|
||||
<version>3.0.2</version>
|
||||
<configuration>
|
||||
<excludes>
|
||||
<exclude>**/log4j.properties</exclude>
|
||||
</excludes>
|
||||
<archive>
|
||||
<manifest>
|
||||
<mainClass>com.baeldung.neuroph.NeurophXOR</mainClass>
|
||||
</manifest>
|
||||
</archive>
|
||||
</configuration>
|
||||
</plugin>
|
||||
<plugin>
|
||||
<groupId>org.apache.maven.plugins</groupId>
|
||||
<artifactId>maven-surefire-plugin</artifactId>
|
||||
<version>2.18.1</version>
|
||||
<executions>
|
||||
<execution>
|
||||
<id>test</id>
|
||||
<phase>test</phase>
|
||||
<goals>
|
||||
<goal>test</goal>
|
||||
</goals>
|
||||
<configuration>
|
||||
<includes>
|
||||
<include>test/java/com/baeldung/neuroph/XORTest.java</include>
|
||||
</includes>
|
||||
</configuration>
|
||||
</execution>
|
||||
</executions>
|
||||
</plugin>
|
||||
<!-- /Neuroph -->
|
||||
</plugins>
|
||||
</build>
|
||||
<dependencies>
|
||||
<!-- https://mvnrepository.com/artifact/org.beykery/neuroph/2.92 -->
|
||||
<dependency>
|
||||
<groupId>org.beykery</groupId>
|
||||
<artifactId>neuroph</artifactId>
|
||||
<version>${neuroph.version}</version>
|
||||
</dependency>
|
||||
<!-- https://mvnrepository.com/artifact/cglib/cglib -->
|
||||
<dependency>
|
||||
<groupId>cglib</groupId>
|
||||
|
@ -327,7 +368,6 @@
|
|||
<artifactId>quartz</artifactId>
|
||||
<version>2.3.0</version>
|
||||
</dependency>
|
||||
|
||||
<dependency>
|
||||
<groupId>one.util</groupId>
|
||||
<artifactId>streamex</artifactId>
|
||||
|
@ -432,6 +472,7 @@
|
|||
<commons.io.version>2.5</commons.io.version>
|
||||
<flink.version>1.2.0</flink.version>
|
||||
<jackson.version>2.8.5</jackson.version>
|
||||
<neuroph.version>2.92</neuroph.version>
|
||||
<serenity.version>1.4.0</serenity.version>
|
||||
<serenity.jbehave.version>1.24.0</serenity.jbehave.version>
|
||||
<serenity.jira.version>1.1.3-rc.5</serenity.jira.version>
|
||||
|
|
|
@ -0,0 +1,73 @@
|
|||
package com.baeldung.neuroph;
|
||||
|
||||
import org.neuroph.core.Layer;
|
||||
import org.neuroph.core.NeuralNetwork;
|
||||
import org.neuroph.core.Neuron;
|
||||
import org.neuroph.core.data.DataSet;
|
||||
import org.neuroph.core.data.DataSetRow;
|
||||
import org.neuroph.nnet.learning.BackPropagation;
|
||||
import org.neuroph.util.ConnectionFactory;
|
||||
import org.neuroph.util.NeuralNetworkType;
|
||||
|
||||
public class NeurophXOR {
|
||||
|
||||
public static NeuralNetwork assembleNeuralNetwork() {
|
||||
|
||||
Layer inputLayer = new Layer();
|
||||
inputLayer.addNeuron(new Neuron());
|
||||
inputLayer.addNeuron(new Neuron());
|
||||
|
||||
Layer hiddenLayerOne = new Layer();
|
||||
hiddenLayerOne.addNeuron(new Neuron());
|
||||
hiddenLayerOne.addNeuron(new Neuron());
|
||||
hiddenLayerOne.addNeuron(new Neuron());
|
||||
hiddenLayerOne.addNeuron(new Neuron());
|
||||
|
||||
Layer hiddenLayerTwo = new Layer();
|
||||
hiddenLayerTwo.addNeuron(new Neuron());
|
||||
hiddenLayerTwo.addNeuron(new Neuron());
|
||||
hiddenLayerTwo.addNeuron(new Neuron());
|
||||
hiddenLayerTwo.addNeuron(new Neuron());
|
||||
|
||||
Layer outputLayer = new Layer();
|
||||
outputLayer.addNeuron(new Neuron());
|
||||
|
||||
NeuralNetwork ann = new NeuralNetwork();
|
||||
|
||||
ann.addLayer(0, inputLayer);
|
||||
ann.addLayer(1, hiddenLayerOne);
|
||||
ConnectionFactory.fullConnect(ann.getLayerAt(0), ann.getLayerAt(1));
|
||||
ann.addLayer(2, hiddenLayerTwo);
|
||||
ConnectionFactory.fullConnect(ann.getLayerAt(1), ann.getLayerAt(2));
|
||||
ann.addLayer(3, outputLayer);
|
||||
ConnectionFactory.fullConnect(ann.getLayerAt(2), ann.getLayerAt(3));
|
||||
ConnectionFactory.fullConnect(ann.getLayerAt(0), ann.getLayerAt(ann.getLayersCount()-1), false);
|
||||
|
||||
ann.setInputNeurons(inputLayer.getNeurons());
|
||||
ann.setOutputNeurons(outputLayer.getNeurons());
|
||||
|
||||
ann.setNetworkType(NeuralNetworkType.MULTI_LAYER_PERCEPTRON);
|
||||
return ann;
|
||||
}
|
||||
|
||||
public static NeuralNetwork trainNeuralNetwork(NeuralNetwork ann) {
|
||||
int inputSize = 2;
|
||||
int outputSize = 1;
|
||||
DataSet ds = new DataSet(inputSize, outputSize);
|
||||
|
||||
DataSetRow rOne = new DataSetRow(new double[] {0, 1}, new double[] {1});
|
||||
ds.addRow(rOne);
|
||||
DataSetRow rTwo = new DataSetRow(new double[] {1, 1}, new double[] {0});
|
||||
ds.addRow(rTwo);
|
||||
DataSetRow rThree = new DataSetRow(new double[] {0, 0}, new double[] {0});
|
||||
ds.addRow(rThree);
|
||||
DataSetRow rFour = new DataSetRow(new double[] {1, 0}, new double[] {1});
|
||||
ds.addRow(rFour);
|
||||
|
||||
BackPropagation backPropagation = new BackPropagation();
|
||||
backPropagation.setMaxIterations(1000);
|
||||
|
||||
ann.learn(ds, backPropagation);
|
||||
return ann;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,50 @@
|
|||
package com.baeldung.neuroph;
|
||||
|
||||
import org.junit.After;
|
||||
import org.junit.Before;
|
||||
import org.junit.Test;
|
||||
import org.neuroph.core.NeuralNetwork;
|
||||
|
||||
import static org.junit.Assert.*;
|
||||
|
||||
public class XORTest {
|
||||
private NeuralNetwork ann = null;
|
||||
|
||||
@Before
|
||||
public void annInit() {
|
||||
ann = NeurophXOR.trainNeuralNetwork(NeurophXOR.assembleNeuralNetwork());
|
||||
}
|
||||
|
||||
@Test
|
||||
public void leftDisjunctTest() {
|
||||
ann.setInput(0, 1);
|
||||
ann.calculate();
|
||||
assertEquals(ann.getOutput()[0], 1.0,0.0);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void rightDisjunctTest() {
|
||||
ann.setInput(1, 0);
|
||||
ann.calculate();
|
||||
assertEquals(ann.getOutput()[0], 1.0,0.0);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void bothFalseConjunctTest() {
|
||||
ann.setInput(0, 0);
|
||||
ann.calculate();
|
||||
assertEquals(ann.getOutput()[0], 0.0,0.0);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void bothTrueConjunctTest() {
|
||||
ann.setInput(1, 1);
|
||||
ann.calculate();
|
||||
assertEquals(ann.getOutput()[0], 0.0,0.0);
|
||||
}
|
||||
|
||||
@After
|
||||
public void annClose() {
|
||||
ann = null;
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue