Ant Colony Optimization updates (#1306)

* Ant Colony Optimization

* Updated code for Ant Colony
This commit is contained in:
maibin 2017-03-05 19:21:35 +01:00 committed by GitHub
parent 492b21caa0
commit f0c4486cb1
2 changed files with 47 additions and 52 deletions

View File

@ -1,7 +1,10 @@
package com.baeldung.algorithms.ga.ant_colony;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Random;
import java.util.stream.IntStream;
public class AntColonyOptimization {
@ -19,7 +22,7 @@ public class AntColonyOptimization {
public int numberOfAnts;
private double graph[][];
private double trails[][];
private Ant ants[];
private List<Ant> ants = new ArrayList<>();
private Random random = new Random();
private double probabilities[];
@ -35,101 +38,92 @@ public class AntColonyOptimization {
trails = new double[numberOfCities][numberOfCities];
probabilities = new double[numberOfCities];
ants = new Ant[numberOfAnts];
for (int j = 0; j < numberOfAnts; j++) {
ants[j] = new Ant(numberOfCities);
}
IntStream.range(0, numberOfAnts).forEach(i -> ants.add(new Ant(numberOfCities)));
}
/**
* Generate initial solution
*
* @param n
* @return
*/
public double[][] generateRandomMatrix(int n) {
double[][] randomMatrix = new double[n][n];
random.setSeed(System.currentTimeMillis());
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
IntStream.range(0, n).forEach(i -> {
IntStream.range(0, n).forEach(j -> {
Integer r = random.nextInt(100) + 1;
randomMatrix[i][j] = Math.abs(r);
}
}
});
});
return randomMatrix;
}
/**
* Perform ant optimization
*
* @return
*/
public int[] startAntOptimization() {
int[] finalResult = null;
for (int i = 1; i <= 3; i++) {
public void startAntOptimization() {
IntStream.rangeClosed(1, 3).forEach(i -> {
System.out.println("Attempt #" + i);
finalResult = solve();
}
return finalResult;
solve();
});
}
/**
* Use this method to run the main logic
*
* @return
*/
private int[] solve() {
public int[] solve() {
setupAnts();
clearTrails();
int iteration = 0;
while (iteration < maxIterations) {
IntStream.range(0, maxIterations).forEach(i -> {
moveAnts();
updateTrails();
updateBest();
iteration++;
}
});
System.out.println("Best tour length: " + (bestTourLength - numberOfCities));
System.out.println("Best tour order: " + Arrays.toString(bestTourOrder));
return bestTourOrder.clone();
}
/**
* Prepare ants for the simulation
*/
private void setupAnts() {
currentIndex = -1;
for (int i = 0; i < numberOfAnts; i++) {
ants[i].clear();
ants[i].visitCity(currentIndex, random.nextInt(numberOfCities));
}
currentIndex++;
IntStream.range(0, numberOfAnts).forEach(i -> {
ants.stream().forEach(ant -> {
ant.clear();
ant.visitCity(-1, random.nextInt(numberOfCities));
});
});
currentIndex = 0;
}
/**
* At each iteration, move ants
*/
private void moveAnts() {
while (currentIndex < numberOfCities - 1) {
for (Ant a : ants)
a.visitCity(currentIndex, selectNextCity(a));
IntStream.range(currentIndex, numberOfCities - 1).forEach(i -> {
ants.stream().forEach(ant -> {
ant.visitCity(currentIndex, selectNextCity(ant));
});
currentIndex++;
}
});
}
/**
* Select next city for each ant
*
* @param ant
* @return
*/
private int selectNextCity(Ant ant) {
int t = random.nextInt(numberOfCities - currentIndex);
if (random.nextDouble() < randomFactor) {
int t = random.nextInt(numberOfCities - currentIndex);
int j = -1;
for (int i = 0; i < numberOfCities; i++) {
if (!ant.visited(i)) {
j++;
}
if (j == t) {
return i;
}
}
IntStream.range(0, numberOfCities).filter(i -> i == t && !ant.visited(i)).findFirst();
}
calculateProbabilities(ant);
double r = random.nextDouble();
@ -146,9 +140,10 @@ public class AntColonyOptimization {
/**
* Calculate the next city picks probabilites
*
* @param ant
*/
private void calculateProbabilities(Ant ant) {
public void calculateProbabilities(Ant ant) {
int i = ant.trail[currentIndex];
double pheromone = 0.0;
for (int l = 0; l < numberOfCities; l++) {
@ -189,8 +184,8 @@ public class AntColonyOptimization {
*/
private void updateBest() {
if (bestTourOrder == null) {
bestTourOrder = ants[0].trail;
bestTourLength = ants[0].trailLength(graph);
bestTourOrder = ants.get(0).trail;
bestTourLength = ants.get(0).trailLength(graph);
}
for (Ant a : ants) {
if (a.trailLength(graph) < bestTourLength) {
@ -204,9 +199,9 @@ public class AntColonyOptimization {
* Clear trails after simulation
*/
private void clearTrails() {
for (int i = 0; i < numberOfCities; i++)
for (int j = 0; j < numberOfCities; j++)
trails[i][j] = c;
IntStream.range(0, numberOfCities).forEach(i -> {
IntStream.range(0, numberOfCities).forEach(j -> trails[i][j] = c);
});
}
}

View File

@ -16,7 +16,7 @@ public class AntColonyOptimizationTest {
@Test
public void testStartAntOptimization() {
AntColonyOptimization antTSP = new AntColonyOptimization(5);
Assert.assertNotNull(antTSP.startAntOptimization());
Assert.assertNotNull(antTSP.solve());
}
}