Data Prepper is an independent component, not an OpenSearch plugin, that converts data for use with OpenSearch. It's not bundled with the all-in-one OpenSearch installation packages.
If you are migrating from Open Distro Data Prepper, visit the [Migrating from Open Distro]({{site.url}}{{site.baseurl}}/data-prepper/migrate-open-distro/) page.
* [Log Ingestion](https://github.com/opensearch-project/data-prepper/blob/main/docs/log_analytics.md): Learn how to set up Data Prepper for log observability.
* [Simple Pipeline](https://github.com/opensearch-project/data-prepper/blob/main/docs/simple_pipelines.md): Learn the basics of Data Prepper pipelines with some simple configurations.
## 3. Defining a pipeline
Create a Data Prepper pipeline file, `pipelines.yaml`, with the following configuration:
This sample pipeline configuration above demonstrates a simple pipeline with a source (`random`) sending data to a sink (`stdout`). For more examples and details on more advanced pipeline configurations, see [Pipelines]({{site.url}}{{site.baseurl}}/clients/data-prepper/pipelines).
2021-09-30T20:19:44,147 [main] INFO com.amazon.dataprepper.pipeline.server.DataPrepperServer - Data Prepper server running at :4900
2021-09-30T20:19:44,681 [random-source-pool-0] INFO com.amazon.dataprepper.plugins.source.RandomStringSource - Writing to buffer
2021-09-30T20:19:45,183 [random-source-pool-0] INFO com.amazon.dataprepper.plugins.source.RandomStringSource - Writing to buffer
2021-09-30T20:19:45,687 [random-source-pool-0] INFO com.amazon.dataprepper.plugins.source.RandomStringSource - Writing to buffer
2021-09-30T20:19:46,191 [random-source-pool-0] INFO com.amazon.dataprepper.plugins.source.RandomStringSource - Writing to buffer
2021-09-30T20:19:46,694 [random-source-pool-0] INFO com.amazon.dataprepper.plugins.source.RandomStringSource - Writing to buffer
2021-09-30T20:19:47,200 [random-source-pool-0] INFO com.amazon.dataprepper.plugins.source.RandomStringSource - Writing to buffer
2021-09-30T20:19:49,181 [simple-test-pipeline-processor-worker-1-thread-1] INFO com.amazon.dataprepper.pipeline.ProcessWorker - simple-test-pipeline Worker: Processing 6 records from buffer
The remainder of this page provides examples for running Data Prepper from the Docker image. If you
built from source, refer to the [Developer Guide](https://github.com/opensearch-project/data-prepper/blob/main/docs/developer_guide.md) for more information.
However you configure your pipeline, you will run Data Prepper the same way. You run the Docker
image and supply both the `pipelines.yaml` and `data-prepper-config.yaml` files.
For Data Prepper 2.0 or later, the Log4j 2 configuration file is read from `config/log4j2.properties` in the application's home directory.
By default, it uses `log4j2-rolling.properties` in the *shared-config* directory.
For Data Prepper 1.5 or earlier, optionally add `"-Dlog4j.configurationFile=config/log4j2.properties"` to the command if you would
like to pass a custom log4j2 properties file. If no properties file is provided, Data Prepper will default to the log4j2.properties file in the *shared-config* directory.
## Next steps
Trace Analytics is an important Data Prepper use case. If you haven't yet configured it,
see the [Trace Analytics](https://github.com/opensearch-project/data-prepper/blob/main/docs/trace_analytics.md).
Log Ingestion is also an important Data Prepper use case. To learn more, see the [Log Ingestion Documentation](https://github.com/opensearch-project/data-prepper/blob/main/docs/log_analytics.md).
To learn how to run Data Prepper with a Logstash configuration, see the [Logstash Migration Guide]({{site.url}}{{site.baseurl}}/data-prepper/configure-logstash-data-prepper/).
For information on how to monitor Data Prepper, see the [Monitoring](https://github.com/opensearch-project/data-prepper/blob/main/docs/monitoring.md) page.
## Other examples
We have several other Docker [examples](https://github.com/opensearch-project/data-prepper/tree/main/examples/)
that allow you to run Data Prepper in different scenarios.