This page lists all full-text query types and common options. Given the sheer number of options and subtle behaviors, the best method of ensuring useful search results is to test different queries against representative indices and verify the output.
Creates a [boolean query](https://lucene.apache.org/core/8_9_0/core/org/apache/lucene/search/BooleanQuery.html) that returns results if the search term is present in the field.
Similar to [match](#match), but searches multiple fields.
The `^` lets you "boost" certain fields. Boosts are multipliers that weigh matches in one field more heavily than matches in other fields. In the following example, a match for "wind" in the title field influences `_score` four times as much as a match in the plot field. The result is that films like *The Wind Rises* and *Gone with the Wind* are near the top of the search results, and films like *Twister* and *Sharknado*, which presumably have "wind" in their plot summaries, are near the bottom.
Similar to [match](#match), but creates a [prefix query](https://lucene.apache.org/core/8_9_0/core/org/apache/lucene/search/PrefixQuery.html) out of the last term in the query string.
Similar to [match phrase](#match-phrase), but creates a [prefix query](https://lucene.apache.org/core/8_9_0/core/org/apache/lucene/search/PrefixQuery.html) out of the last term in the query string.
<!-- Common terms query has been deprecated. Saving docs in-case we get a request to add it back later. See code deprecation https://github.com/opensearch-project/OpenSearch/blob/main/server/src/main/java/org/opensearch/index/query/CommonTermsQueryBuilder.java#L72-L73>
The common terms query separates the query string into high- and low-frequency terms based on number of occurrences on the shard. Low-frequency terms are weighed more heavily in the results, and high-frequency terms are considered only for documents that already matched one or more low-frequency terms. In that sense, you can think of this query as having a built-in, ever-changing list of stop words.
The simple query string query is like the query string query, but it lets advanced users specify many arguments directly in the query string. The query discards any invalid portions of the query string.
`~n` | When used after a term (e.g. `wnid~3`), sets `fuzziness`. When used after a phrase, sets `slop`. See [Optional Query Fields](#optional-query-fields).
OpenSearch provides the analyzer option to convert your structured text into the format that works best for your searches. You can use the following options with the analyzer field: standard, simple, whitespace, stop, keyword, pattern, fingerprint, and language. Different analyzers have different character filters, tokenizers, and token filters. The stop analyzer, for example, removes stop words (e.g., “an,” “but,” “this”) from the query string.
OpenSearch supports the following language values with the `analyzer` option:
To use the analyzer when you map an index, specify the value within your query. For example, to map your index with the French language analyzer, specify the `french` value for the analyzer field:
```json
"analyzer": "french"
```
#### Sample Request
The following query maps an index with the language analyzer set to `french`:
```json
PUT my-index-000001
{
"mappings": {
"properties": {
"text": {
"type": "text",
"fields": {
"french": {
"type": "text",
"analyzer": "french"
}
}
}
}
}
}
```
<!-- TO do: each of the options needs its own section with an example. Convert table to individual sections, and then give a streamlined list with valid values. -->
`analyze_wildcard` | Boolean | Whether OpenSearch should attempt to analyze wildcard terms. Some analyzers do a poor job at this task, so the default is false.
`analyzer` | `standard, simple, whitespace, stop, keyword, pattern, language, fingerprint` | The analyzer you want to use for the query. Different analyzers have different character filters, tokenizers, and token filters. The `stop` analyzer, for example, removes stop words (e.g., "an," "but," "this") from the query string. For a full list of acceptable language values, see [Convert text with analyzers](#convert-text-with-analyzers) on this page.
`quote_analyzer` | String | This option lets you choose to use the standard analyzer without any options, such as `language` or other analyzers. Usage is `"quote_analyzer": "standard"`.
### Run fuzzy queries
Option | Valid values | Description
:--- | :--- | :---
`fuzziness` | `AUTO`, `0`, or a positive integer | The number of character edits (insert, delete, substitute) that it takes to change one word to another when determining whether a term matched a value. For example, the distance between `wined` and `wind` is 1. The default, `AUTO`, chooses a value based on the length of each term and is a good choice for most use cases.
`fuzzy_transpositions` | Boolean | Setting `fuzzy_transpositions` to true (default) adds swaps of adjacent characters to the insert, delete, and substitute operations of the `fuzziness` option. For example, the distance between `wind` and `wnid` is 1 if `fuzzy_transpositions` is true (swap "n" and "i") and 2 if it is false (delete "n", insert "n"). <br/><br/>If `fuzzy_transpositions` is false, `rewind` and `wnid` have the same distance (2) from `wind`, despite the more human-centric opinion that `wnid` is an obvious typo. The default is a good choice for most use cases.
`fuzzy_max_expansions` | Positive integer | Fuzzy queries "expand to" a number of matching terms that are within the distance specified in `fuzziness`. Then OpenSearch tries to match those terms against its indexes.
### Use synonyms with a query
You can also run multi-term queries that allow for generating synonyms. Use the `auto_generate_synonyms_phrase_query` Boolean field. By default it is set to `true`. It automatically generates [phrase queries](https://lucene.apache.org/core/8_9_0/core/org/apache/lucene/search/PhraseQuery.html) for multi-term synonyms. For example, if you have the synonym `"ba, batting average"` and search for "ba," OpenSearch searches for `ba OR "batting average"` (if this option is true) or `ba OR (batting AND average)` (if this option is false).
### Other optional query fields
You can also use the following optional query fields to filter your query results.
`boost` | Floating-point | Boosts the clause by the given multiplier. Useful for weighing clauses in compound queries. The default is 1.0.
`enable_position_increments` | Boolean | When true, result queries are aware of position increments. This setting is useful when the removal of stop words leaves an unwanted "gap" between terms. The default is true.
`fields` | String array | The list of fields to search (e.g. `"fields": ["title^4", "description"]`). If unspecified, defaults to the `index.query.default_field` setting, which defaults to `["*"]`.
`flags` | String | A `|`-delimited string of [flags](#simple-query-string) to enable (e.g., `AND|OR|NOT`). The default is `ALL`. You can explicitly set the value for `default_field`. For example, to return all titles, set it to `"default_field": "title"`.
`lenient` | Boolean | Setting `lenient` to true lets you ignore data type mismatches between the query and the document field. For example, a query string of "8.2" could match a field of type `float`. The default is false.
`max_determinized_states` | Positive integer | The maximum number of "[states](https://lucene.apache.org/core/8_9_0/core/org/apache/lucene/util/automaton/Operations.html#DEFAULT_MAX_DETERMINIZED_STATES)" (a measure of complexity) that Lucene can create for query strings that contain regular expressions (e.g. `"query": "/wind.+?/"`). Larger numbers allow for queries that use more memory. The default is 10,000.
`minimum_should_match` | Positive or negative integer, positive or negative percentage, combination | If the query string contains multiple search terms and you used the `or` operator, the number of terms that need to match for the document to be considered a match. For example, if `minimum_should_match` is 2, "wind often rising" does not match "The Wind Rises." If `minimum_should_match` is 1, it matches.
`operator` | `or, and` | If the query string contains multiple search terms, whether all terms need to match (`and`) or only one term needs to match (`or`) for a document to be considered a match.
`phrase_slop` | `0` (default) or a positive integer | See `slop`.
`prefix_length` | `0` (default) or a positive integer | The number of leading characters that are not considered in fuzziness.
`quote_field_suffix` | String | This option lets you search different fields depending on whether terms are wrapped in quotes. For example, if `quote_field_suffix` is `".exact"` and you search for `"lightly"` (in quotes) in the `title` field, OpenSearch searches the `title.exact` field. This second field might use a different type (e.g. `keyword` rather than `text`) or a different analyzer. The default is null.
`rewrite` | `constant_score, scoring_boolean, constant_score_boolean, top_terms_N, top_terms_boost_N, top_terms_blended_freqs_N` | Determines how OpenSearch rewrites and scores multi-term queries. The default is `constant_score`.
`slop` | `0` (default) or a positive integer | Controls the degree to which words in a query can be misordered and still be considered a match. From the [Lucene documentation](https://lucene.apache.org/core/8_9_0/core/org/apache/lucene/search/PhraseQuery.html#getSlop--): "The number of other words permitted between words in query phrase. For example, to switch the order of two words requires two moves (the first move places the words atop one another), so to permit re-orderings of phrases, the slop must be at least two. A value of zero requires an exact match."
`tie_breaker` | `0.0` (default) to `1.0` | Changes the way OpenSearch scores searches. For example, a `type` of `best_fields` typically uses the highest score from any one field. If you specify a `tie_breaker` value between 0.0 and 1.0, the score changes to highest score + `tie_breaker` * score for all other matching fields. If you specify a value of 1.0, OpenSearch adds together the scores for all matching fields (effectively defeating the purpose of `best_fields`).
`time_zone` | UTC offset hours | Specifies the number of hours to offset the desired time zone from `UTC`. You need to indicate the time zone offset number if the query string contains a date range. For example, set `time_zone": "-08:00"` for a query with a date range such as `"query": "wind rises release_date[2012-01-01 TO 2014-01-01]"`). The default time zone format used to specify number of offset hours is `UTC`.
`type` | `best_fields, most_fields, cross_fields, phrase, phrase_prefix` | Determines how OpenSearch executes the query and scores the results. The default is `best_fields`.
`zero_terms_query` | `none, all` | If the analyzer removes all terms from a query string, whether to match no documents (default) or all documents. For example, the `stop` analyzer removes all terms from the string "an but this."
<!-- cutoff_frequency is now deprecated. See https://github.com/opensearch-project/OpenSearch/blob/main/server/src/main/java/org/opensearch/index/query/MatchQueryBuilder.java#L61-L72 >
`cutoff_frequency` | Between `0.0` and `1.0` or a positive integer | This value lets you define high and low frequency terms based on number of occurrences in the index. Numbers between 0 and 1 are treated as a percentage. For example, 0.10 is 10%. This value means that if a word occurs within the search field in more than 10% of the documents on the shard, OpenSearch considers the word "high frequency" and deemphasizes it when calculating search score.<br/><br/>Because this setting is *per shard*, testing its impact on search results can be challenging unless a cluster has many documents. -->