To use Data Prepper, you define pipelines in a configuration YAML file. Each pipeline is a combination of a source, a buffer, zero or more preppers, and one or more sinks. For example:
delay: 5000 # in milliseconds, how long workers wait between read attempts
source:
random:
buffer:
bounded_blocking:
buffer_size: 1024 # max number of records the buffer accepts
batch_size: 256 # max number of records the buffer drains after each read
processor:
- string_converter:
upper_case: true
sink:
- stdout:
```
- Sources define where your data comes from. In this case, the source is a random UUID generator (`random`).
- Buffers store data as it passes through the pipeline.
By default, Data Prepper uses its one and only buffer, the `bounded_blocking` buffer, so you can omit this section unless you developed a custom buffer or need to tune the buffer settings.
- Preppers perform some action on your data: filter, transform, enrich, etc.
You can have multiple preppers, which run sequentially from top to bottom, not in parallel. The `string_converter` prepper transform the strings by making them uppercase.
- Sinks define where your data goes. In this case, the sink is stdout.
This section provides some pipeline examples that you can use to start creating your own pipelines. For more information, see [Data Prepper configuration reference]({{site.url}}{{site.baseurl}}/clients/data-prepper/data-prepper-reference/) guide.
The Data Prepper repository has several [sample applications](https://github.com/opensearch-project/data-prepper/tree/main/examples) to help you get started.
### Log ingestion pipeline
The following example demonstrates how to use HTTP source and Grok prepper plugins to process unstructured log data.
The following example demonstrates how to build a pipeline that supports the [Trace Analytics OpenSearch Dashboards plugin]({{site.url}}{{site.baseurl}}/clients/trace/ta-dashboards/). This pipeline takes data from the OpenTelemetry Collector and uses two other pipelines as sinks. These two separate pipelines index trace and the service map documents for the dashboard plugin.
This feature is limited by feature parity of Data Prepper. As of Data Prepper 1.2 release, the following plugins from the Logstash configuration are supported:
Data Prepper itself provides administrative HTTP endpoints such as `/list` to list pipelines and `/metrics/prometheus` to provide Prometheus-compatible metrics data. The port that has these endpoints has a TLS configuration and is specified by a separate YAML file. By default, these endpoints are secured by Data Prepper docker images. We strongly recommend providing your own configuration file for securing production environments. Here is an example `data-prepper-config.yaml`: