[DOC] Add new doc for grok processor (#5019)
* Add new doc for grok processor Signed-off-by: Melissa Vagi <vagimeli@amazon.com> * Writing Signed-off-by: Melissa Vagi <vagimeli@amazon.com> * Writing Signed-off-by: Melissa Vagi <vagimeli@amazon.com> * Add custom patterns Signed-off-by: Melissa Vagi <vagimeli@amazon.com> * Update _api-reference/ingest-apis/processors/grok.md Co-authored-by: Heemin Kim <heemin@amazon.com> Signed-off-by: Melissa Vagi <vagimeli@amazon.com> * Update _api-reference/ingest-apis/processors/grok.md Co-authored-by: Heemin Kim <heemin@amazon.com> Signed-off-by: Melissa Vagi <vagimeli@amazon.com> * Address tech feedback Signed-off-by: Melissa Vagi <vagimeli@amazon.com> * Address tech feedback Signed-off-by: Melissa Vagi <vagimeli@amazon.com> * Revise content Signed-off-by: Melissa Vagi <vagimeli@amazon.com> * Revise intro section based on doc review Signed-off-by: Melissa Vagi <vagimeli@amazon.com> * Revise intro section based on doc review Signed-off-by: Melissa Vagi <vagimeli@amazon.com> * Revise intro section based on doc review Signed-off-by: Melissa Vagi <vagimeli@amazon.com> * Change example and intro sentences to examples Signed-off-by: Fanit Kolchina <kolchfa@amazon.com> * Link fix Signed-off-by: Fanit Kolchina <kolchfa@amazon.com> * Address doc review feedback Signed-off-by: Melissa Vagi <vagimeli@amazon.com> --------- Signed-off-by: Melissa Vagi <vagimeli@amazon.com> Signed-off-by: Fanit Kolchina <kolchfa@amazon.com> Co-authored-by: Heemin Kim <heemin@amazon.com> Co-authored-by: Fanit Kolchina <kolchfa@amazon.com>
This commit is contained in:
parent
3c94bc80d7
commit
06fdfd72d8
|
@ -0,0 +1,212 @@
|
||||||
|
---
|
||||||
|
layout: default
|
||||||
|
title: Grok
|
||||||
|
parent: Ingest processors
|
||||||
|
grand_parent: Ingest pipelines
|
||||||
|
nav_order: 140
|
||||||
|
---
|
||||||
|
|
||||||
|
# Grok
|
||||||
|
|
||||||
|
The `grok` processor is used to parse and structure unstructured data using pattern matching. You can use the `grok` processor to extract fields from log messages, web server access logs, application logs, and other log data that follows a consistent format.
|
||||||
|
|
||||||
|
## Grok basics
|
||||||
|
|
||||||
|
The `grok` processor uses a set of predefined patterns to match parts of the input text. Each pattern consists of a name and a regular expression. For example, the pattern `%{IP:ip_address}` matches an IP address and assigns it to the field `ip_address`. You can combine multiple patterns to create more complex expressions. For example, the pattern `%{IP:client} %{WORD:method} %{URIPATHPARM:request} %{NUMBER:bytes %NUMBER:duration}` matches a line from a web server access log and extracts the client IP address, the HTTP method, the request URI, the number of bytes sent, and the duration of the request.
|
||||||
|
|
||||||
|
The `grok` processor is built on the [Oniguruma regular expression library](https://github.com/kkos/oniguruma/blob/master/doc/RE) and supports all the patterns from that library. You can use the [Grok Debugger](https://grokdebugger.com/) tool to test and debug your grok expressions.
|
||||||
|
|
||||||
|
## Grok processor syntax
|
||||||
|
|
||||||
|
The following is the basic syntax for the `grok` processor:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"grok": {
|
||||||
|
"field": "your_message",
|
||||||
|
"patterns": ["your_patterns"]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
{% include copy-curl.html %}
|
||||||
|
|
||||||
|
## Configuration parameters
|
||||||
|
|
||||||
|
To configure the `grok` processor, you have various options that allow you to define patterns, match specific keys, and control the processor's behavior. The following table lists the required and optional parameters for the `grok` processor.
|
||||||
|
|
||||||
|
Parameter | Required | Description |
|
||||||
|
|-----------|-----------|-----------|
|
||||||
|
`field` | Required | The name of the field containing the text that should be parsed. |
|
||||||
|
`patterns` | Required | A list of grok expressions used to match and extract named captures. The first matching expression in the list is returned. |
|
||||||
|
`pattern_definitions` | Optional | A dictionary of pattern names and pattern tuples used to define custom patterns for the current processor. If a pattern matches an existing name, it overrides the pre-existing definition. |
|
||||||
|
`trace_match` | Optional | When the parameter is set to `true`, the processor adds a field named `_grok_match_index` to the processed document. This field contains the index of the pattern within the `patterns` array that successfully matched the document. This information can be useful for debugging and understanding which pattern was applied to the document. Default is `false`. |
|
||||||
|
`description` | Optional | A brief description of the processor. |
|
||||||
|
`if` | Optional | A condition for running this processor. |
|
||||||
|
`ignore_failure` | Optional | If set to `true`, failures are ignored. Default is `false`. |
|
||||||
|
`ignore_missing` | Optional | If set to `true`, the processor does not modify the document if the field does not exist or is `null`. Default is `false`. |
|
||||||
|
`on_failure` | Optional | A list of processors to run if the processor fails. |
|
||||||
|
`tag` | Optional | An identifier tag for the processor. Useful for debugging to distinguish between processors of the same type. |
|
||||||
|
|
||||||
|
## Creating a pipeline
|
||||||
|
|
||||||
|
The following steps guide you through creating an [ingest pipeline]({{site.url}}{{site.baseurl}}/ingest-pipelines/index/) with the `grok` processor.
|
||||||
|
|
||||||
|
**Step 1: Create a pipeline.**
|
||||||
|
|
||||||
|
The following query creates a pipeline, named `log_line`. It extracts fields from the `message` field of the document using the specified pattern. In this case, it extracts the `clientip`, `timestamp`, and `response_status` fields:
|
||||||
|
|
||||||
|
```json
|
||||||
|
PUT _ingest/pipeline/log_line
|
||||||
|
{
|
||||||
|
"description": "Extract fields from a log line",
|
||||||
|
"processors": [
|
||||||
|
{
|
||||||
|
"grok": {
|
||||||
|
"field": "message",
|
||||||
|
"patterns": ["%{IPORHOST:clientip} %{HTTPDATE:timestamp} %{NUMBER:response_status:int}"]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
{% include copy-curl.html %}
|
||||||
|
|
||||||
|
**Step 2 (Optional): Test the pipeline.**
|
||||||
|
|
||||||
|
{::nomarkdown}<img src="{{site.url}}{{site.baseurl}}/images/icons/alert-icon.png" class="inline-icon" alt="alert icon"/>{:/} **NOTE**<br>It is recommended that you test your pipeline before you ingest documents.
|
||||||
|
{: .note}
|
||||||
|
|
||||||
|
To test the pipeline, run the following query:
|
||||||
|
|
||||||
|
```json
|
||||||
|
POST _ingest/pipeline/log_line/_simulate
|
||||||
|
{
|
||||||
|
"docs": [
|
||||||
|
{
|
||||||
|
"_source": {
|
||||||
|
"message": "127.0.0.1 198.126.12 10/Oct/2000:13:55:36 -0700 200"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
{% include copy-curl.html %}
|
||||||
|
|
||||||
|
#### Response
|
||||||
|
|
||||||
|
The following response confirms that the pipeline is working as expected:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"docs": [
|
||||||
|
{
|
||||||
|
"doc": {
|
||||||
|
"_index": "_index",
|
||||||
|
"_id": "_id",
|
||||||
|
"_source": {
|
||||||
|
"message": "127.0.0.1 198.126.12 10/Oct/2000:13:55:36 -0700 200",
|
||||||
|
"response_status": 200,
|
||||||
|
"clientip": "198.126.12",
|
||||||
|
"timestamp": "10/Oct/2000:13:55:36 -0700"
|
||||||
|
},
|
||||||
|
"_ingest": {
|
||||||
|
"timestamp": "2023-09-13T21:41:52.064540505Z"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
**Step 3: Ingest a document.**
|
||||||
|
|
||||||
|
The following query ingests a document into an index named `testindex1`:
|
||||||
|
|
||||||
|
```json
|
||||||
|
PUT testindex1/_doc/1?pipeline=log_line
|
||||||
|
{
|
||||||
|
"message": "127.0.0.1 198.126.12 10/Oct/2000:13:55:36 -0700 200"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
{% include copy-curl.html %}
|
||||||
|
|
||||||
|
**Step 4 (Optional): Retrieve the document.**
|
||||||
|
|
||||||
|
To retrieve the document, run the following query:
|
||||||
|
|
||||||
|
```json
|
||||||
|
GET testindex1/_doc/1
|
||||||
|
```
|
||||||
|
{% include copy-curl.html %}
|
||||||
|
|
||||||
|
## Custom patterns
|
||||||
|
|
||||||
|
You can use default patterns, or you can add custom patterns to your pipelines using the `patterns_definitions` parameter. Custom grok patterns can be used in a pipeline to extract structured data from log messages that do not match the built-in grok patterns. This can be useful for parsing log messages from custom applications or for parsing log messages that have been modified in some way. Custom patterns adhere to a straightforward structure: each pattern has a unique name and the corresponding regular expression that defines its matching behavior.
|
||||||
|
|
||||||
|
The following is an example of how to include a custom pattern in your configuration. In this example, the issue number is between 3 and 4 digits and is parsed into the `issue_number` field and the status is parsed into the `status` field:
|
||||||
|
|
||||||
|
```json
|
||||||
|
PUT _ingest/pipeline/log_line
|
||||||
|
{
|
||||||
|
"processors": [
|
||||||
|
{
|
||||||
|
"grok": {
|
||||||
|
"field": "message",
|
||||||
|
"patterns": ["The issue number %{NUMBER:issue_number} is %{STATUS:status}"],
|
||||||
|
"pattern_definitions" : {
|
||||||
|
"NUMBER" : "\\d{3,4}",
|
||||||
|
"STATUS" : "open|closed"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
{% include copy-curl.html %}
|
||||||
|
|
||||||
|
## Tracing which patterns matched
|
||||||
|
|
||||||
|
To trace which patterns matched and populated the fields, you can use the `trace_match` parameter. The following is an example of how to include this parameter in your configuration:
|
||||||
|
|
||||||
|
```json
|
||||||
|
PUT _ingest/pipeline/log_line
|
||||||
|
{
|
||||||
|
"description": "Extract fields from a log line",
|
||||||
|
"processors": [
|
||||||
|
{
|
||||||
|
"grok": {
|
||||||
|
"field": "message",
|
||||||
|
"patterns": ["%{HTTPDATE:timestamp} %{IPORHOST:clientip}", "%{IPORHOST:clientip} %{HTTPDATE:timestamp} %{NUMBER:response_status:int}"],
|
||||||
|
"trace_match": true
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
{% include copy-curl.html %}
|
||||||
|
|
||||||
|
When you simulate the pipeline, OpenSearch returns the `_ingest` metadata that includes the `grok_match_index`, as shown in the following output:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"docs": [
|
||||||
|
{
|
||||||
|
"doc": {
|
||||||
|
"_index": "_index",
|
||||||
|
"_id": "_id",
|
||||||
|
"_source": {
|
||||||
|
"message": "127.0.0.1 198.126.12 10/Oct/2000:13:55:36 -0700 200",
|
||||||
|
"response_status": 200,
|
||||||
|
"clientip": "198.126.12",
|
||||||
|
"timestamp": "10/Oct/2000:13:55:36 -0700"
|
||||||
|
},
|
||||||
|
"_ingest": {
|
||||||
|
"_grok_match_index": "1",
|
||||||
|
"timestamp": "2023-11-02T18:48:40.455619084Z"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
Loading…
Reference in New Issue