Add Execute Command to API documentation. (#711)
* Add Execute Command to API documentation. Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Remove Anomaly Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Add editorial review Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Final feedback Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Make sure note renders properly Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Fix capitalization Signed-off-by: Naarcha-AWS <naarcha@amazon.com>
This commit is contained in:
parent
f0b4eab1c9
commit
16b3099e2f
|
@ -198,9 +198,9 @@ time_zone | string | The time zone for the time_field field | "UTC"
|
|||
|
||||
For FIT RCF, you can train the model with historical data and store the trained model in your index. The model will be deserialized and predict new data points when using the Predict API. However, the model in the index will not be refreshed with new data, because the model is fixed in time.
|
||||
|
||||
## Anomaly Localization
|
||||
## Localization
|
||||
|
||||
The Anomaly Localization algorithm finds subset level-information for aggregate data (for example, aggregated over time) that demonstrates the activity of interest, such as spikes, drops, changes, or anomalies. Localization can be applied in different scenarios, such as data exploration or root cause analysis, to expose the contributors driving the activity of interest in the aggregate data.
|
||||
The Localization algorithm finds subset-level information for aggregate data (for example, aggregated over time) that demonstrates the activity of interest, such as spikes, drops, changes, or anomalies. Localization can be applied in different scenarios, such as data exploration or root cause analysis, to expose the contributors driving the activity of interest in the aggregate data.
|
||||
|
||||
### Parameters
|
||||
|
||||
|
@ -219,9 +219,9 @@ num_outputs | integer | The maximum number of values from localization/slicing |
|
|||
filter_query | Long | (Optional) Reduces the collection of data for analysis | Optional.empty()
|
||||
anomaly_star | QueryBuilder | (Optional) The time after which the data will be analyzed | Optional.empty()
|
||||
|
||||
### Example
|
||||
### Example: Execute localization
|
||||
|
||||
The following example executes Anomaly Localization against an RCA index.
|
||||
The following example executes Localization against an RCA index.
|
||||
|
||||
**Request**
|
||||
|
||||
|
|
|
@ -644,6 +644,9 @@ GET /_plugins/_ml/tasks/_search
|
|||
|
||||
Delete a task based on the task_id.
|
||||
|
||||
ML Commons does not check the task status when running the `Delete` request. There is a risk that a currently running task could be deleted before the task completes. To check the status of a task, run `GET /_plugins/_ml/tasks/<task_id>` before task deletion.
|
||||
{: .note}
|
||||
|
||||
```json
|
||||
DELETE /_plugins/_ml/tasks/{task_id}
|
||||
```
|
||||
|
@ -729,8 +732,147 @@ GET /_plugins/_ml/stats
|
|||
}
|
||||
```
|
||||
|
||||
## Execute
|
||||
|
||||
Some algorithms, such as [Localization]({{site.url}}{{site.baseurl}}/ml-commons-plugin/algorithms#localization), don't require trained models. You can run no-model-based algorithms using the `execute` API.
|
||||
|
||||
```json
|
||||
POST _plugins/_ml/_execute/<algorithm_name>
|
||||
```
|
||||
|
||||
### Example: Execute localization
|
||||
|
||||
The following example uses the Localization algorithm to find subset-level information for aggregate data (for example, aggregated over time) that demonstrates the activity of interest, such as spikes, drops, changes, or anomalies.
|
||||
|
||||
```json
|
||||
POST /_plugins/_ml/_execute/anomaly_localization
|
||||
{
|
||||
"index_name": "rca-index",
|
||||
"attribute_field_names": [
|
||||
"attribute"
|
||||
],
|
||||
"aggregations": [
|
||||
{
|
||||
"sum": {
|
||||
"sum": {
|
||||
"field": "value"
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"time_field_name": "timestamp",
|
||||
"start_time": 1620630000000,
|
||||
"end_time": 1621234800000,
|
||||
"min_time_interval": 86400000,
|
||||
"num_outputs": 10
|
||||
}
|
||||
```
|
||||
|
||||
Upon execution, the API returns the following:
|
||||
|
||||
```json
|
||||
"results" : [
|
||||
{
|
||||
"name" : "sum",
|
||||
"result" : {
|
||||
"buckets" : [
|
||||
{
|
||||
"start_time" : 1620630000000,
|
||||
"end_time" : 1620716400000,
|
||||
"overall_aggregate_value" : 65.0
|
||||
},
|
||||
{
|
||||
"start_time" : 1620716400000,
|
||||
"end_time" : 1620802800000,
|
||||
"overall_aggregate_value" : 75.0,
|
||||
"entities" : [
|
||||
{
|
||||
"key" : [
|
||||
"attr0"
|
||||
],
|
||||
"contribution_value" : 1.0,
|
||||
"base_value" : 2.0,
|
||||
"new_value" : 3.0
|
||||
},
|
||||
{
|
||||
"key" : [
|
||||
"attr1"
|
||||
],
|
||||
"contribution_value" : 1.0,
|
||||
"base_value" : 3.0,
|
||||
"new_value" : 4.0
|
||||
},
|
||||
{
|
||||
"key" : [
|
||||
"attr2"
|
||||
],
|
||||
"contribution_value" : 1.0,
|
||||
"base_value" : 4.0,
|
||||
"new_value" : 5.0
|
||||
},
|
||||
{
|
||||
"key" : [
|
||||
"attr3"
|
||||
],
|
||||
"contribution_value" : 1.0,
|
||||
"base_value" : 5.0,
|
||||
"new_value" : 6.0
|
||||
},
|
||||
{
|
||||
"key" : [
|
||||
"attr4"
|
||||
],
|
||||
"contribution_value" : 1.0,
|
||||
"base_value" : 6.0,
|
||||
"new_value" : 7.0
|
||||
},
|
||||
{
|
||||
"key" : [
|
||||
"attr5"
|
||||
],
|
||||
"contribution_value" : 1.0,
|
||||
"base_value" : 7.0,
|
||||
"new_value" : 8.0
|
||||
},
|
||||
{
|
||||
"key" : [
|
||||
"attr6"
|
||||
],
|
||||
"contribution_value" : 1.0,
|
||||
"base_value" : 8.0,
|
||||
"new_value" : 9.0
|
||||
},
|
||||
{
|
||||
"key" : [
|
||||
"attr7"
|
||||
],
|
||||
"contribution_value" : 1.0,
|
||||
"base_value" : 9.0,
|
||||
"new_value" : 10.0
|
||||
},
|
||||
{
|
||||
"key" : [
|
||||
"attr8"
|
||||
],
|
||||
"contribution_value" : 1.0,
|
||||
"base_value" : 10.0,
|
||||
"new_value" : 11.0
|
||||
},
|
||||
{
|
||||
"key" : [
|
||||
"attr9"
|
||||
],
|
||||
"contribution_value" : 1.0,
|
||||
"base_value" : 11.0,
|
||||
"new_value" : 12.0
|
||||
}
|
||||
]
|
||||
},
|
||||
...
|
||||
]
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
|
|
Loading…
Reference in New Issue