Add custom pre and post processor functions (#5300)

* Add custom pre and post processor functions

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Uniform placeholder format

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Add custom pre and post processor blueprint

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Add a pretrained model

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Update _ml-commons-plugin/extensibility/blueprints.md

Co-authored-by: Yaliang Wu <ylwu@amazon.com>
Signed-off-by: kolchfa-aws <105444904+kolchfa-aws@users.noreply.github.com>

* Implemented tech review comments

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Add two more models

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

* Specify json code highlighter

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>

---------

Signed-off-by: Fanit Kolchina <kolchfa@amazon.com>
Signed-off-by: kolchfa-aws <105444904+kolchfa-aws@users.noreply.github.com>
Co-authored-by: Yaliang Wu <ylwu@amazon.com>
This commit is contained in:
kolchfa-aws 2023-11-08 09:30:11 -05:00 committed by GitHub
parent dadb6b1f14
commit 3dbcc34670
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 112 additions and 34 deletions

View File

@ -10,7 +10,7 @@ parent: Connecting to remote models
All connectors consist of a JSON blueprint created by machine learning (ML) developers. The blueprint allows administrators and data scientists to make connections between OpenSearch and an AI service or model-serving technology. All connectors consist of a JSON blueprint created by machine learning (ML) developers. The blueprint allows administrators and data scientists to make connections between OpenSearch and an AI service or model-serving technology.
The following example shows a blueprint that connects to Amazon SageMaker: The following example shows a blueprint of an Amazon SageMaker connector:
```json ```json
POST /_plugins/_ml/connectors/_create POST /_plugins/_ml/connectors/_create
@ -20,12 +20,12 @@ POST /_plugins/_ml/connectors/_create
"version": "<YOUR CONNECTOR VERSION>", "version": "<YOUR CONNECTOR VERSION>",
"protocol": "aws_sigv4", "protocol": "aws_sigv4",
"credential": { "credential": {
"access_key": "<ADD YOUR AWS ACCESS KEY HERE>", "access_key": "<YOUR AWS ACCESS KEY>",
"secret_key": "<ADD YOUR AWS SECRET KEY HERE>", "secret_key": "<YOUR AWS SECRET KEY>",
"session_token": "<ADD YOUR AWS SECURITY TOKEN HERE>" "session_token": "<YOUR AWS SECURITY TOKEN>"
}, },
"parameters": { "parameters": {
"region": "<ADD YOUR AWS REGION HERE>", "region": "<YOUR AWS REGION>",
"service_name": "sagemaker" "service_name": "sagemaker"
}, },
"actions": [ "actions": [
@ -35,8 +35,8 @@ POST /_plugins/_ml/connectors/_create
"headers": { "headers": {
"content-type": "application/json" "content-type": "application/json"
}, },
"url": "<ADD YOUR Sagemaker MODEL ENDPOINT URL>", "url": "<YOUR SAGEMAKER MODEL ENDPOINT URL>",
"request_body": "<ADD YOUR REQUEST BODY. Example: ${parameters.inputs}>" "request_body": "<YOUR REQUEST BODY. Example: ${parameters.inputs}>"
} }
] ]
} }
@ -105,9 +105,9 @@ POST /_plugins/_ml/connectors/_create
"version": 1, "version": 1,
"protocol": "aws_sigv4", "protocol": "aws_sigv4",
"credential": { "credential": {
"access_key": "<REPLACE WITH SAGEMAKER ACCESS KEY>", "access_key": "<YOUR SAGEMAKER ACCESS KEY>",
"secret_key": "<REPLACE WITH SAGEMAKER SECRET KEY>", "secret_key": "<YOUR SAGEMAKER SECRET KEY>",
"session_token": "<REPLACE WITH AWS SECURITY TOKEN>" "session_token": "<YOUR AWS SECURITY TOKEN>"
}, },
"parameters": { "parameters": {
"region": "ap-northeast-1", "region": "ap-northeast-1",
@ -173,6 +173,43 @@ The remote text embedding model output must be a two-dimensional float array, ea
] ]
``` ```
## Custom pre- and post-processing functions
You can write your own pre- and post-processing functions specifically for your model format. For example, the following Amazon Bedrock connector definition contains custom pre- and post-processing functions for the Amazon Bedrock Titan embedding model:
```json
POST /_plugins/_ml/connectors/_create
{
"name": "Amazon Bedrock Connector: embedding",
"description": "The connector to the Bedrock Titan embedding model",
"version": 1,
"protocol": "aws_sigv4",
"parameters": {
"region": "<YOUR AWS REGION>",
"service_name": "bedrock"
},
"credential": {
"access_key": "<YOUR AWS ACCESS KEY>",
"secret_key": "<YOUR AWS SECRET KEY>",
"session_token": "<YOUR AWS SECURITY TOKEN>"
},
"actions": [
{
"action_type": "predict",
"method": "POST",
"url": "https://bedrock-runtime.us-east-1.amazonaws.com/model/amazon.titan-embed-text-v1/invoke",
"headers": {
"content-type": "application/json",
"x-amz-content-sha256": "required"
},
"request_body": "{ \"inputText\": \"${parameters.inputText}\" }",
"pre_process_function": "\n StringBuilder builder = new StringBuilder();\n builder.append(\"\\\"\");\n String first = params.text_docs[0];\n builder.append(first);\n builder.append(\"\\\"\");\n def parameters = \"{\" +\"\\\"inputText\\\":\" + builder + \"}\";\n return \"{\" +\"\\\"parameters\\\":\" + parameters + \"}\";",
"post_process_function": "\n def name = \"sentence_embedding\";\n def dataType = \"FLOAT32\";\n if (params.embedding == null || params.embedding.length == 0) {\n return params.message;\n }\n def shape = [params.embedding.length];\n def json = \"{\" +\n \"\\\"name\\\":\\\"\" + name + \"\\\",\" +\n \"\\\"data_type\\\":\\\"\" + dataType + \"\\\",\" +\n \"\\\"shape\\\":\" + shape + \",\" +\n \"\\\"data\\\":\" + params.embedding +\n \"}\";\n return json;\n "
}
]
}
```
{% include copy-curl.html %}
## Next step ## Next step

View File

@ -192,17 +192,17 @@ The `parameters` section requires the following options when using `aws_sigv4` a
## Cohere connector ## Cohere connector
The following example request creates a standalone Cohere connection: The following example request creates a standalone Cohere connector:
```json ```json
POST /_plugins/_ml/connectors/_create POST /_plugins/_ml/connectors/_create
{ {
"name": "YOUR CONNECTOR NAME", "name": "<YOUR CONNECTOR NAME>",
"description": "YOUR CONNECTOR DESCRIPTION", "description": "<YOUR CONNECTOR DESCRIPTION>",
"version": "YOUR CONNECTOR VERSION", "version": "<YOUR CONNECTOR VERSION>",
"protocol": "http", "protocol": "http",
"credential": { "credential": {
"cohere_key": "ADD YOUR Cohere API KEY HERE" "cohere_key": "<YOUR Cohere API KEY HERE>"
}, },
"parameters": { "parameters": {
"model": "embed-english-v2.0", "model": "embed-english-v2.0",
@ -216,13 +216,52 @@ POST /_plugins/_ml/connectors/_create
"headers": { "headers": {
"Authorization": "Bearer ${credential.cohere_key}" "Authorization": "Bearer ${credential.cohere_key}"
}, },
"request_body": "{ \"texts\": ${parameters.texts}, \"truncate\": \"${parameters.truncate}\", \"model\": \"${parameters.model}\" }" "request_body": "{ \"texts\": ${parameters.texts}, \"truncate\": \"${parameters.truncate}\", \"model\": \"${parameters.model}\" }",
"pre_process_function": "connector.pre_process.cohere.embedding",
"post_process_function": "connector.post_process.cohere.embedding"
} }
] ]
} }
``` ```
{% include copy-curl.html %} {% include copy-curl.html %}
## Amazon Bedrock connector
The following example request creates a standalone Amazon Bedrock connector:
```json
POST /_plugins/_ml/connectors/_create
{
"name": "Amazon Bedrock Connector: embedding",
"description": "The connector to the Bedrock Titan embedding model",
"version": 1,
"protocol": "aws_sigv4",
"parameters": {
"region": "<YOUR AWS REGION>",
"service_name": "bedrock"
},
"credential": {
"access_key": "<YOUR AWS ACCESS KEY>",
"secret_key": "<YOUR AWS SECRET KEY>",
"session_token": "<YOUR AWS SECURITY TOKEN>"
},
"actions": [
{
"action_type": "predict",
"method": "POST",
"url": "https://bedrock-runtime.us-east-1.amazonaws.com/model/amazon.titan-embed-text-v1/invoke",
"headers": {
"content-type": "application/json",
"x-amz-content-sha256": "required"
},
"request_body": "{ \"inputText\": \"${parameters.inputText}\" }",
"pre_process_function": "\n StringBuilder builder = new StringBuilder();\n builder.append(\"\\\"\");\n String first = params.text_docs[0];\n builder.append(first);\n builder.append(\"\\\"\");\n def parameters = \"{\" +\"\\\"inputText\\\":\" + builder + \"}\";\n return \"{\" +\"\\\"parameters\\\":\" + parameters + \"}\";",
"post_process_function": "\n def name = \"sentence_embedding\";\n def dataType = \"FLOAT32\";\n if (params.embedding == null || params.embedding.length == 0) {\n return params.message;\n }\n def shape = [params.embedding.length];\n def json = \"{\" +\n \"\\\"name\\\":\\\"\" + name + \"\\\",\" +\n \"\\\"data_type\\\":\\\"\" + dataType + \"\\\",\" +\n \"\\\"shape\\\":\" + shape + \",\" +\n \"\\\"data\\\":\" + params.embedding +\n \"}\";\n return json;\n "
}
]
}
```
{% include copy-curl.html %}
## Next steps ## Next steps

View File

@ -32,7 +32,8 @@ PUT /_cluster/settings
"plugins.ml_commons.trusted_connector_endpoints_regex": [ "plugins.ml_commons.trusted_connector_endpoints_regex": [
"^https://runtime\\.sagemaker\\..*[a-z0-9-]\\.amazonaws\\.com/.*$", "^https://runtime\\.sagemaker\\..*[a-z0-9-]\\.amazonaws\\.com/.*$",
"^https://api\\.openai\\.com/.*$", "^https://api\\.openai\\.com/.*$",
"^https://api\\.cohere\\.ai/.*$" "^https://api\\.cohere\\.ai/.*$",
"^https://bedrock-runtime\\..*[a-z0-9-]\\.amazonaws\\.com/.*$"
] ]
} }
} }

View File

@ -20,7 +20,7 @@ To use a pretrained model in your OpenSearch cluster:
1. Select the model you want to upload. For a list of pretrained models, see [supported pretrained models](#supported-pretrained-models). 1. Select the model you want to upload. For a list of pretrained models, see [supported pretrained models](#supported-pretrained-models).
2. Upload the model using the [upload API]({{site.url}}{{site.baseurl}}/ml-commons-plugin/model-serving-framework#upload-model-to-opensearch). Because a pretrained model originates from the ML Commons model repository, you only need to provide the `name`, `version`, and `model_format` in the upload API request. 2. Upload the model using the [upload API]({{site.url}}{{site.baseurl}}/ml-commons-plugin/model-serving-framework#upload-model-to-opensearch). Because a pretrained model originates from the ML Commons model repository, you only need to provide the `name`, `version`, and `model_format` in the upload API request.
``` ```json
POST /_plugins/_ml/models/_upload POST /_plugins/_ml/models/_upload
{ {
"name": "huggingface/sentence-transformers/all-MiniLM-L12-v2", "name": "huggingface/sentence-transformers/all-MiniLM-L12-v2",
@ -31,7 +31,7 @@ POST /_plugins/_ml/models/_upload
Note that for sparse encoding models, you still need to upload the full request body, as shown in the following example: Note that for sparse encoding models, you still need to upload the full request body, as shown in the following example:
``` ```json
POST /_plugins/_ml/models/_upload POST /_plugins/_ml/models/_upload
{ {
"name": "amazon/neural-sparse/opensearch-neural-sparse-encoding-doc-v1", "name": "amazon/neural-sparse/opensearch-neural-sparse-encoding-doc-v1",
@ -61,20 +61,22 @@ OpenSearch supports the following models, categorized by type. Text embedding mo
Sentence transformer models map sentences and paragraphs across a dimensional dense vector space. The number of vectors depends on the type of model. You can use these models for use cases such as clustering or semantic search. Sentence transformer models map sentences and paragraphs across a dimensional dense vector space. The number of vectors depends on the type of model. You can use these models for use cases such as clustering or semantic search.
The following table provides a list of sentence transformer models and artifact links you can use to download them. Note that you must prefix the model name with `huggingface/`, as shown in the **Model name** column. As of OpenSearch 2.6, all artifacts are set to version 1.0.1. The following table provides a list of sentence transformer models and artifact links you can use to download them. Note that you must prefix the model name with `huggingface/`, as shown in the **Model name** column.
| Model name | Vector dimensions | Auto-truncation | TorchScript artifact | ONNX artifact |
|---|---|---|---|
| `huggingface/sentence-transformers/all-distilroberta-v1` | 768-dimensional dense vector space. | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-distilroberta-v1/1.0.1/torch_script/sentence-transformers_all-distilroberta-v1-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-distilroberta-v1/1.0.1/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-distilroberta-v1/1.0.1/onnx/sentence-transformers_all-distilroberta-v1-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-distilroberta-v1/1.0.1/onnx/config.json) |
| `huggingface/sentence-transformers/all-MiniLM-L6-v2` | 384-dimensional dense vector space. | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L6-v2/1.0.1/torch_script/sentence-transformers_all-MiniLM-L6-v2-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L6-v2/1.0.1/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L6-v2/1.0.1/onnx/sentence-transformers_all-MiniLM-L6-v2-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L6-v2/1.0.1/onnx/config.json) |
| `huggingface/sentence-transformers/all-MiniLM-L12-v2` | 384-dimensional dense vector space. | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L12-v2/1.0.1/torch_script/sentence-transformers_all-MiniLM-L12-v2-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L12-v2/1.0.1/onnx/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L12-v2/1.0.1/onnx/sentence-transformers_all-MiniLM-L12-v2-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L12-v2/1.0.1/onnx/config.json) |
| `huggingface/sentence-transformers/all-mpnet-base-v2` | 768-dimensional dense vector space. | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-mpnet-base-v2/1.0.1/torch_script/sentence-transformers_all-mpnet-base-v2-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-mpnet-base-v2/1.0.1/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-mpnet-base-v2/1.0.1/onnx/sentence-transformers_all-mpnet-base-v2-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-mpnet-base-v2/1.0.1/onnx/config.json) |
| `huggingface/sentence-transformers/msmarco-distilbert-base-tas-b` | 768-dimensional dense vector space. Optimized for semantic search. | No | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/msmarco-distilbert-base-tas-b/1.0.1/torch_script/sentence-transformers_msmarco-distilbert-base-tas-b-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/msmarco-distilbert-base-tas-b/1.0.1/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/msmarco-distilbert-base-tas-b/1.0.1/onnx/sentence-transformers_msmarco-distilbert-base-tas-b-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/msmarco-distilbert-base-tas-b/1.0.1/onnx/config.json) |
| `huggingface/sentence-transformers/multi-qa-MiniLM-L6-cos-v1` | 384-dimensional dense vector space. Designed for semantic search and trained on 215 million question/answer pairs. | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/1.0.1/torch_script/sentence-transformers_multi-qa-MiniLM-L6-cos-v1-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/1.0.1/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/1.0.1/onnx/sentence-transformers_multi-qa-MiniLM-L6-cos-v1-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/1.0.1/onnx/config.json) |
| `huggingface/sentence-transformers/multi-qa-mpnet-base-dot-v1` | 384-dimensional dense vector space. | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/multi-qa-mpnet-base-dot-v1/1.0.1/torch_script/sentence-transformers_multi-qa-mpnet-base-dot-v1-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/multi-qa-mpnet-base-dot-v1/1.0.1/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/multi-qa-mpnet-base-dot-v1/1.0.1/onnx/sentence-transformers_multi-qa-mpnet-base-dot-v1-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/multi-qa-mpnet-base-dot-v1/1.0.1/onnx/config.json) |
| `huggingface/sentence-transformers/paraphrase-MiniLM-L3-v2` | 384-dimensional dense vector space. | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-MiniLM-L3-v2/1.0.1/torch_script/sentence-transformers_paraphrase-MiniLM-L3-v2-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-MiniLM-L3-v2/1.0.1/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-MiniLM-L3-v2/1.0.1/onnx/sentence-transformers_paraphrase-MiniLM-L3-v2-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-MiniLM-L3-v2/1.0.1/onnx/config.json) |
| `huggingface/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2` | 384-dimensional dense vector space. | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2/1.0.1/torch_script/sentence-transformers_paraphrase-multilingual-MiniLM-L12-v2-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2/1.0.1/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2/1.0.1/onnx/sentence-transformers_paraphrase-multilingual-MiniLM-L12-v2-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2/1.0.1/onnx/config.json) |
| Model name | Version | Vector dimensions | Auto-truncation | TorchScript artifact | ONNX artifact |
|:---|:---|:---|:---|:---|
| `huggingface/sentence-transformers/all-distilroberta-v1` | 1.0.1 | 768-dimensional dense vector space. | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-distilroberta-v1/1.0.1/torch_script/sentence-transformers_all-distilroberta-v1-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-distilroberta-v1/1.0.1/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-distilroberta-v1/1.0.1/onnx/sentence-transformers_all-distilroberta-v1-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-distilroberta-v1/1.0.1/onnx/config.json) |
| `huggingface/sentence-transformers/all-MiniLM-L6-v2` | 1.0.1 | 384-dimensional dense vector space. | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L6-v2/1.0.1/torch_script/sentence-transformers_all-MiniLM-L6-v2-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L6-v2/1.0.1/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L6-v2/1.0.1/onnx/sentence-transformers_all-MiniLM-L6-v2-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L6-v2/1.0.1/onnx/config.json) |
| `huggingface/sentence-transformers/all-MiniLM-L12-v2` | 1.0.1 | 384-dimensional dense vector space. | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L12-v2/1.0.1/torch_script/sentence-transformers_all-MiniLM-L12-v2-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L12-v2/1.0.1/onnx/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L12-v2/1.0.1/onnx/sentence-transformers_all-MiniLM-L12-v2-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L12-v2/1.0.1/onnx/config.json) |
| `huggingface/sentence-transformers/all-mpnet-base-v2` | 1.0.1 | 768-dimensional dense vector space. | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-mpnet-base-v2/1.0.1/torch_script/sentence-transformers_all-mpnet-base-v2-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-mpnet-base-v2/1.0.1/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-mpnet-base-v2/1.0.1/onnx/sentence-transformers_all-mpnet-base-v2-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-mpnet-base-v2/1.0.1/onnx/config.json) |
| `huggingface/sentence-transformers/msmarco-distilbert-base-tas-b` | 1.0.1 | 768-dimensional dense vector space. Optimized for semantic search. | No | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/msmarco-distilbert-base-tas-b/1.0.1/torch_script/sentence-transformers_msmarco-distilbert-base-tas-b-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/msmarco-distilbert-base-tas-b/1.0.1/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/msmarco-distilbert-base-tas-b/1.0.1/onnx/sentence-transformers_msmarco-distilbert-base-tas-b-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/msmarco-distilbert-base-tas-b/1.0.1/onnx/config.json) |
| `huggingface/sentence-transformers/multi-qa-MiniLM-L6-cos-v1` | 1.0.1 | 384-dimensional dense vector space. Designed for semantic search and trained on 215 million question/answer pairs. | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/1.0.1/torch_script/sentence-transformers_multi-qa-MiniLM-L6-cos-v1-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/1.0.1/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/1.0.1/onnx/sentence-transformers_multi-qa-MiniLM-L6-cos-v1-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/multi-qa-MiniLM-L6-cos-v1/1.0.1/onnx/config.json) |
| `huggingface/sentence-transformers/multi-qa-mpnet-base-dot-v1` | 1.0.1 | 384-dimensional dense vector space. | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/multi-qa-mpnet-base-dot-v1/1.0.1/torch_script/sentence-transformers_multi-qa-mpnet-base-dot-v1-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/multi-qa-mpnet-base-dot-v1/1.0.1/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/multi-qa-mpnet-base-dot-v1/1.0.1/onnx/sentence-transformers_multi-qa-mpnet-base-dot-v1-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/multi-qa-mpnet-base-dot-v1/1.0.1/onnx/config.json) |
| `huggingface/sentence-transformers/paraphrase-MiniLM-L3-v2` | 1.0.1 | 384-dimensional dense vector space. | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-MiniLM-L3-v2/1.0.1/torch_script/sentence-transformers_paraphrase-MiniLM-L3-v2-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-MiniLM-L3-v2/1.0.1/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-MiniLM-L3-v2/1.0.1/onnx/sentence-transformers_paraphrase-MiniLM-L3-v2-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-MiniLM-L3-v2/1.0.1/onnx/config.json) |
| `huggingface/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2` | 1.0.1 | 384-dimensional dense vector space. | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2/1.0.1/torch_script/sentence-transformers_paraphrase-multilingual-MiniLM-L12-v2-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2/1.0.1/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2/1.0.1/onnx/sentence-transformers_paraphrase-multilingual-MiniLM-L12-v2-1.0.1-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2/1.0.1/onnx/config.json) |
| `huggingface/sentence-transformers/paraphrase-mpnet-base-v2` | 1.0.0 | 768-dimensional dense vector space. | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-mpnet-base-v2/1.0.0/torch_script/sentence-transformers_paraphrase-mpnet-base-v2-1.0.0-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-mpnet-base-v2/1.0.0/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-mpnet-base-v2/1.0.0/onnx/sentence-transformers_paraphrase-mpnet-base-v2-1.0.0-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-mpnet-base-v2/1.0.0/onnx/config.json) |
| `huggingface/sentence-transformers/distiluse-base-multilingual-cased-v1` | 1.0.1 | 512-dimensional dense vector space. | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/distiluse-base-multilingual-cased-v1/1.0.1/torch_script/sentence-transformers_distiluse-base-multilingual-cased-v1-1.0.1-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/distiluse-base-multilingual-cased-v1/1.0.1/torch_script/config.json) | Not available |
| `huggingface/sentence-transformers/paraphrase-mpnet-base-v2` | 1.0.0 | 768-dimensional dense vector space. | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-mpnet-base-v2/1.0.0/torch_script/sentence-transformers_paraphrase-mpnet-base-v2-1.0.0-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-mpnet-base-v2/1.0.0/torch_script/config.json) | - [model_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-mpnet-base-v2/1.0.0/onnx/sentence-transformers_paraphrase-mpnet-base-v2-1.0.0-onnx.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/paraphrase-mpnet-base-v2/1.0.0/onnx/config.json) |
### Sparse encoding models ### Sparse encoding models
@ -92,5 +94,4 @@ The following table provides a list of sparse encoding models and artifact links
|---|---|---| |---|---|---|
| `amazon/neural-sparse/opensearch-neural-sparse-encoding-v1` | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/amazon/neural-sparse/opensearch-neural-sparse-encoding-v1/1.0.0/torch_script/opensearch-neural-sparse-encoding-v1-1.0.0-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/amazon/neural-sparse/opensearch-neural-sparse-encoding-v1/1.0.0/torch_script/config.json) | A neural sparse encoding model. The model transforms text into a sparse vector, identifies the indexes of non-zero elements in the vector, and then converts the vector into `<entry, weight>` pairs, where each entry corresponds to a non-zero element index. | | `amazon/neural-sparse/opensearch-neural-sparse-encoding-v1` | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/amazon/neural-sparse/opensearch-neural-sparse-encoding-v1/1.0.0/torch_script/opensearch-neural-sparse-encoding-v1-1.0.0-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/amazon/neural-sparse/opensearch-neural-sparse-encoding-v1/1.0.0/torch_script/config.json) | A neural sparse encoding model. The model transforms text into a sparse vector, identifies the indexes of non-zero elements in the vector, and then converts the vector into `<entry, weight>` pairs, where each entry corresponds to a non-zero element index. |
| `amazon/neural-sparse/opensearch-neural-sparse-encoding-doc-v1` | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/amazon/neural-sparse/opensearch-neural-sparse-encoding-doc-v1/1.0.0/torch_script/opensearch-neural-sparse-encoding-doc-v1-1.0.0-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/amazon/neural-sparse/opensearch-neural-sparse-encoding-doc-v1/1.0.0/torch_script/config.json) | A neural sparse encoding model. The model transforms text into a sparse vector, identifies the indexes of non-zero elements in the vector, and then converts the vector into `<entry, weight>` pairs, where each entry corresponds to a non-zero element index. | | `amazon/neural-sparse/opensearch-neural-sparse-encoding-doc-v1` | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/amazon/neural-sparse/opensearch-neural-sparse-encoding-doc-v1/1.0.0/torch_script/opensearch-neural-sparse-encoding-doc-v1-1.0.0-torch_script.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/amazon/neural-sparse/opensearch-neural-sparse-encoding-doc-v1/1.0.0/torch_script/config.json) | A neural sparse encoding model. The model transforms text into a sparse vector, identifies the indexes of non-zero elements in the vector, and then converts the vector into `<entry, weight>` pairs, where each entry corresponds to a non-zero element index. |
| `amazon/neural-sparse/opensearch-neural-sparse-tokenizer-v1` | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/amazon/neural-sparse/opensearch-neural-sparse-tokenizer-v1/1.0.0/torch_script/opensearch-neural-sparse-tokenizer-v1-1.0.0.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/amazon/neural-sparse/opensearch-neural-sparse-tokenizer-v1/1.0.0/torch_script/config.json) | A neural sparse tokenizer model. The model tokenizes text into tokens and assigns each token a predefined weight, which is the token's IDF (if the IDF file is not provided, the weight defaults to 1). For more information, see [Uploading your own model]({{site.url}}{{site.baseurl}}/ml-commons-plugin/ml-framework/#uploading-your-own-model). | | `amazon/neural-sparse/opensearch-neural-sparse-tokenizer-v1` | Yes | - [model_url](https://artifacts.opensearch.org/models/ml-models/amazon/neural-sparse/opensearch-neural-sparse-tokenizer-v1/1.0.0/torch_script/opensearch-neural-sparse-tokenizer-v1-1.0.0.zip)<br>- [config_url](https://artifacts.opensearch.org/models/ml-models/amazon/neural-sparse/opensearch-neural-sparse-tokenizer-v1/1.0.0/torch_script/config.json) | A neural sparse tokenizer model. The model tokenizes text into tokens and assigns each token a predefined weight, which is the token's IDF (if the IDF file is not provided, the weight defaults to 1). For more information, see [Uploading your own model]({{site.url}}{{site.baseurl}}/ml-commons-plugin/ml-framework/#uploading-your-own-model). |