Fix ML links (#3976)
* Fix ML links Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Fix style errors Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Fix RCF spelling Signed-off-by: Naarcha-AWS <naarcha@amazon.com> --------- Signed-off-by: Naarcha-AWS <naarcha@amazon.com>
This commit is contained in:
parent
8463c8f278
commit
72203306d4
|
@ -27,7 +27,7 @@ distance_type | enum, such as `EUCLIDEAN`, `COSINE`, or `L1` | The type of measu
|
|||
|
||||
### APIs
|
||||
|
||||
* [Train]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#training-a-model)
|
||||
* [Train]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#train-model)
|
||||
* [Predict]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#predict)
|
||||
* [Train and predict]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#train-and-predict)
|
||||
|
||||
|
@ -77,7 +77,7 @@ optimizerType | OptimizerType | The optimizer used in the model. | SIMPLE_SGD
|
|||
|
||||
### APIs
|
||||
|
||||
* [Train]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#training-a-model)
|
||||
* [Train]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#train-model)
|
||||
* [Predict]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#predict)
|
||||
|
||||
### Example
|
||||
|
@ -189,7 +189,7 @@ time_zone | string | The time zone for the `time_field` field. | "UTC"
|
|||
|
||||
### APIs
|
||||
|
||||
* [Train]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#training-a-model)
|
||||
* [Train]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#train-model)
|
||||
* [Predict]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#predict)
|
||||
* [Train and predict]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#train-and-predict)
|
||||
|
||||
|
@ -200,7 +200,7 @@ For FIT RCF, you can train the model with historical data and store the trained
|
|||
|
||||
## RCF Summarize
|
||||
|
||||
RCFSummarize is a clustering algorithm based on the Clustering Using REpresentatives (CURE) algorithm. Compared to [k-means](#k-means), which uses random iterations to cluster, RCFSummarize uses a hierarchical clustering technique. The algorithm starts, with a set of randomly selected centroids larger than the centroids' ground truth distribution. During iteration, centroid pairs too close to each other automatically merge. Therefore, the number of centroids (`max_k`) converge to a rational number of clusters that fits ground truth, as opposed to a fixed `k` number of clusters.
|
||||
RCF Summarize is a clustering algorithm based on the Clustering Using Representatives (CURE) algorithm. Compared to [k-means](#k-means), which uses random iterations to cluster, RCF Summarize uses a hierarchical clustering technique. The algorithm starts, with a set of randomly selected centroids larger than the centroids' ground truth distribution. During iteration, centroid pairs too close to each other automatically merge. Therefore, the number of centroids (`max_k`) converge to a rational number of clusters that fits ground truth, as opposed to a fixed `k` number of clusters.
|
||||
|
||||
### Parameters
|
||||
|
||||
|
@ -211,7 +211,7 @@ RCFSummarize is a clustering algorithm based on the Clustering Using REpresentat
|
|||
|
||||
### APIs
|
||||
|
||||
* [Train]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#training-a-model)
|
||||
* [Train]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#train-model)
|
||||
* [Predict]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#predict)
|
||||
* [Train and predict]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#train-and-predict)
|
||||
|
||||
|
@ -429,7 +429,7 @@ A classification algorithm, logistic regression models the probability of a disc
|
|||
|
||||
### APIs
|
||||
|
||||
* [Train]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#training-a-model)
|
||||
* [Train]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#train-model)
|
||||
* [Predict]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#predict)
|
||||
|
||||
### Example: Train/Predict with Iris data
|
||||
|
@ -651,7 +651,7 @@ PUT /_cluster/settings
|
|||
|
||||
### Parameters
|
||||
|
||||
To use the metrics correlation algorthim, include the following parameters.
|
||||
To use the metrics correlation algorithm, include the following parameters.
|
||||
|
||||
| Parameter | Type | Description | Default value |
|
||||
|---|---|---|---|
|
||||
|
@ -661,7 +661,7 @@ metrics | Array | A list of metrics within the time series that can be correlate
|
|||
|
||||
The metrics correlation input is an $M$ x $T$ array of metrics data, where M is the number of metrics and T is the length of each individual sequence of metric values.
|
||||
|
||||
When inputting metrics into the algorthim, assume the following:
|
||||
When inputting metrics into the algorithm, assume the following:
|
||||
|
||||
1. For each metric, the input sequence has the same length, $T$.
|
||||
2. All input metrics should have the same corresponding set of timestamps.
|
||||
|
|
|
@ -39,7 +39,7 @@ plugins.ml_commons.task_dispatch_policy: round_robin
|
|||
|
||||
### Values
|
||||
|
||||
- Dafault value: `round_robin`
|
||||
- Default value: `round_robin`
|
||||
- Value range: `round_robin` or `least_load`
|
||||
|
||||
## Set number of ML tasks per node
|
||||
|
@ -74,7 +74,7 @@ plugins.ml_commons.max_model_on_node: 10
|
|||
|
||||
## Set sync job intervals
|
||||
|
||||
When returning runtime information with the [Profile API]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api#returning-model-profile-information), ML Commons will run a regular job to sync newly deployed or undeployed models on each node. When set to `0`, ML Commons immediately stops sync-up jobs.
|
||||
When returning runtime information with the [Profile API]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api#profile), ML Commons will run a regular job to sync newly deployed or undeployed models on each node. When set to `0`, ML Commons immediately stops sync-up jobs.
|
||||
|
||||
|
||||
### Setting
|
||||
|
|
|
@ -12,7 +12,7 @@ ML Commons for OpenSearch eases the development of machine learning features by
|
|||
|
||||
Interaction with the ML Commons plugin occurs through either the [REST API]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api) or [`ad`]({{site.url}}{{site.baseurl}}/search-plugins/sql/ppl/functions#ad) and [`kmeans`]({{site.url}}{{site.baseurl}}/search-plugins/sql/ppl/functions#kmeans) Piped Processing Language (PPL) commands.
|
||||
|
||||
Models [trained]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api#training-a-model) through the ML Commons plugin support model-based algorithms such as kmeans. After you've trained a model enough so that it meets your precision requirements, you can apply the model to [predict]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api#predict) new data safely.
|
||||
Models [trained]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api#train-model) through the ML Commons plugin support model-based algorithms such as kmeans. After you've trained a model enough so that it meets your precision requirements, you can apply the model to [predict]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api#predict) new data safely.
|
||||
|
||||
Should you not want to use a model, you can use the [Train and Predict]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api#train-and-predict) API to test your model without having to evaluate the model's performance.
|
||||
|
||||
|
|
Loading…
Reference in New Issue