Fix ML links (#3976)

* Fix ML links

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>

* Fix style errors

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>

* Fix RCF spelling

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>

---------

Signed-off-by: Naarcha-AWS <naarcha@amazon.com>
This commit is contained in:
Naarcha-AWS 2023-05-04 11:17:15 -05:00 committed by GitHub
parent 8463c8f278
commit 72203306d4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 13 additions and 13 deletions

View File

@ -27,7 +27,7 @@ distance_type | enum, such as `EUCLIDEAN`, `COSINE`, or `L1` | The type of measu
### APIs
* [Train]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#training-a-model)
* [Train]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#train-model)
* [Predict]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#predict)
* [Train and predict]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#train-and-predict)
@ -77,7 +77,7 @@ optimizerType | OptimizerType | The optimizer used in the model. | SIMPLE_SGD
### APIs
* [Train]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#training-a-model)
* [Train]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#train-model)
* [Predict]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#predict)
### Example
@ -189,7 +189,7 @@ time_zone | string | The time zone for the `time_field` field. | "UTC"
### APIs
* [Train]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#training-a-model)
* [Train]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#train-model)
* [Predict]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#predict)
* [Train and predict]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#train-and-predict)
@ -200,7 +200,7 @@ For FIT RCF, you can train the model with historical data and store the trained
## RCF Summarize
RCFSummarize is a clustering algorithm based on the Clustering Using REpresentatives (CURE) algorithm. Compared to [k-means](#k-means), which uses random iterations to cluster, RCFSummarize uses a hierarchical clustering technique. The algorithm starts, with a set of randomly selected centroids larger than the centroids' ground truth distribution. During iteration, centroid pairs too close to each other automatically merge. Therefore, the number of centroids (`max_k`) converge to a rational number of clusters that fits ground truth, as opposed to a fixed `k` number of clusters.
RCF Summarize is a clustering algorithm based on the Clustering Using Representatives (CURE) algorithm. Compared to [k-means](#k-means), which uses random iterations to cluster, RCF Summarize uses a hierarchical clustering technique. The algorithm starts, with a set of randomly selected centroids larger than the centroids' ground truth distribution. During iteration, centroid pairs too close to each other automatically merge. Therefore, the number of centroids (`max_k`) converge to a rational number of clusters that fits ground truth, as opposed to a fixed `k` number of clusters.
### Parameters
@ -211,7 +211,7 @@ RCFSummarize is a clustering algorithm based on the Clustering Using REpresentat
### APIs
* [Train]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#training-a-model)
* [Train]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#train-model)
* [Predict]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#predict)
* [Train and predict]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#train-and-predict)
@ -429,7 +429,7 @@ A classification algorithm, logistic regression models the probability of a disc
### APIs
* [Train]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#training-a-model)
* [Train]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#train-model)
* [Predict]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api/#predict)
### Example: Train/Predict with Iris data
@ -651,7 +651,7 @@ PUT /_cluster/settings
### Parameters
To use the metrics correlation algorthim, include the following parameters.
To use the metrics correlation algorithm, include the following parameters.
| Parameter | Type | Description | Default value |
|---|---|---|---|
@ -661,7 +661,7 @@ metrics | Array | A list of metrics within the time series that can be correlate
The metrics correlation input is an $M$ x $T$ array of metrics data, where M is the number of metrics and T is the length of each individual sequence of metric values.
When inputting metrics into the algorthim, assume the following:
When inputting metrics into the algorithm, assume the following:
1. For each metric, the input sequence has the same length, $T$.
2. All input metrics should have the same corresponding set of timestamps.

View File

@ -39,7 +39,7 @@ plugins.ml_commons.task_dispatch_policy: round_robin
### Values
- Dafault value: `round_robin`
- Default value: `round_robin`
- Value range: `round_robin` or `least_load`
## Set number of ML tasks per node
@ -74,7 +74,7 @@ plugins.ml_commons.max_model_on_node: 10
## Set sync job intervals
When returning runtime information with the [Profile API]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api#returning-model-profile-information), ML Commons will run a regular job to sync newly deployed or undeployed models on each node. When set to `0`, ML Commons immediately stops sync-up jobs.
When returning runtime information with the [Profile API]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api#profile), ML Commons will run a regular job to sync newly deployed or undeployed models on each node. When set to `0`, ML Commons immediately stops sync-up jobs.
### Setting

View File

@ -12,7 +12,7 @@ ML Commons for OpenSearch eases the development of machine learning features by
Interaction with the ML Commons plugin occurs through either the [REST API]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api) or [`ad`]({{site.url}}{{site.baseurl}}/search-plugins/sql/ppl/functions#ad) and [`kmeans`]({{site.url}}{{site.baseurl}}/search-plugins/sql/ppl/functions#kmeans) Piped Processing Language (PPL) commands.
Models [trained]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api#training-a-model) through the ML Commons plugin support model-based algorithms such as kmeans. After you've trained a model enough so that it meets your precision requirements, you can apply the model to [predict]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api#predict) new data safely.
Models [trained]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api#train-model) through the ML Commons plugin support model-based algorithms such as kmeans. After you've trained a model enough so that it meets your precision requirements, you can apply the model to [predict]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api#predict) new data safely.
Should you not want to use a model, you can use the [Train and Predict]({{site.url}}{{site.baseurl}}/ml-commons-plugin/api#train-and-predict) API to test your model without having to evaluate the model's performance.