“..”
Signed-off-by: ashwinkumar12345 <kumarjao@users.noreply.github.com>
This commit is contained in:
parent
1e23a9348e
commit
c36de56088
|
@ -0,0 +1,319 @@
|
||||||
|
---
|
||||||
|
layout: default
|
||||||
|
title: Anomaly result mapping
|
||||||
|
parent: Anomaly detection
|
||||||
|
nav_order: 6
|
||||||
|
---
|
||||||
|
|
||||||
|
# Anomaly result mapping
|
||||||
|
|
||||||
|
If you enabled custom result index, the anomaly detection plugin stores the results in your own index.
|
||||||
|
|
||||||
|
If the anomaly detector doesn’t detect an anomaly, the result has the following format:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"detector_id": "kzcZ43wBgEQAbjDnhzGF",
|
||||||
|
"schema_version": 5,
|
||||||
|
"data_start_time": 1635898161367,
|
||||||
|
"data_end_time": 1635898221367,
|
||||||
|
"feature_data": [
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_max",
|
||||||
|
"feature_name": "processing bytes max",
|
||||||
|
"data": 2322
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_avg",
|
||||||
|
"feature_name": "processing bytes avg",
|
||||||
|
"data": 1718.6666666666667
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_min",
|
||||||
|
"feature_name": "processing bytes min",
|
||||||
|
"data": 1375
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_sum",
|
||||||
|
"feature_name": "processing bytes sum",
|
||||||
|
"data": 5156
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_time_max",
|
||||||
|
"feature_name": "processing time max",
|
||||||
|
"data": 31198
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"execution_start_time": 1635898231577,
|
||||||
|
"execution_end_time": 1635898231622,
|
||||||
|
"anomaly_score": 1.8124904404395776,
|
||||||
|
"anomaly_grade": 0,
|
||||||
|
"confidence": 0.9802940756605277,
|
||||||
|
"entity": [
|
||||||
|
{
|
||||||
|
"name": "process_name",
|
||||||
|
"value": "process_3"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"model_id": "kzcZ43wBgEQAbjDnhzGF_entity_process_3",
|
||||||
|
"threshold": 1.2368549346675202
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Response body fields
|
||||||
|
|
||||||
|
Field | Description
|
||||||
|
:--- | :---
|
||||||
|
`detector_id` | A unique ID for identifying a detector.
|
||||||
|
`schema_version` | The mapping version of the result index.
|
||||||
|
`data_start_time` | The start of the detection range of the aggregated data.
|
||||||
|
`data_end_time` | The end of the detection range of the aggregated data.
|
||||||
|
`feature_data` | An array of the aggregated data points between the `data_start_time` and `data_end_time`.
|
||||||
|
`execution_start_time` | The actual start time of the detector for a specific run that produces the anomaly result. This start time includes the window delay parameter that you can set to delay data collection. Window delay is the difference between the `execution_start_time` and `data_start_time`.
|
||||||
|
`execution_end_time` | The actual end time of the detector for a specific run that produces the anomaly result.
|
||||||
|
`anomaly_score` | Indicates relative severity of an anomaly. The higher the score, the more anomalous a data point is.
|
||||||
|
`anomaly_grade` | A normalized version of the `anomaly_score` on a scale between 0 and 1.
|
||||||
|
`confidence` | The probability of the accuracy of the `anomaly_score`. The closer this number is to 1, the higher the accuracy. During the probation period of a running detector, the confidence is low (< 0.9) because of its exposure to limited data.
|
||||||
|
`entity` | An entity is a combination of specific category fields’ values. It includes the name and value of the category field. In the previous example, `process_name` is the category field and one of the processes such as `process_3` is the field's value. The `entity` field is only present for a high-cardinality detector (where you've selected a category field).
|
||||||
|
`model_id` | A unique ID that identifies a model. If a detector is a single-stream detector (with no category field), it has only one model. If a detector is a high-cardinality detector (with one or more category fields), it might have multiple models, one for each entity.
|
||||||
|
`threshold` | One of the criteria for a detector to classify a data point as an anomaly is that its `anomaly_score` must surpass a dynamic threshold. This field records the current threshold.
|
||||||
|
|
||||||
|
If an anomaly detector detects an anomaly, the result has the following format:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"detector_id": "fylE53wBc9MCt6q12tKp",
|
||||||
|
"schema_version": 0,
|
||||||
|
"data_start_time": 1635927900000,
|
||||||
|
"data_end_time": 1635927960000,
|
||||||
|
"feature_data": [
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_max",
|
||||||
|
"feature_name": "processing bytes max",
|
||||||
|
"data": 2291
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_avg",
|
||||||
|
"feature_name": "processing bytes avg",
|
||||||
|
"data": 1677.3333333333333
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_min",
|
||||||
|
"feature_name": "processing bytes min",
|
||||||
|
"data": 1054
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_sum",
|
||||||
|
"feature_name": "processing bytes sum",
|
||||||
|
"data": 5032
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_time_max",
|
||||||
|
"feature_name": "processing time max",
|
||||||
|
"data": 11422
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"anomaly_score": 1.1986675882872033,
|
||||||
|
"anomaly_grade": 0.26806225550178464,
|
||||||
|
"confidence": 0.9607519742565531,
|
||||||
|
"entity": [
|
||||||
|
{
|
||||||
|
"name": "process_name",
|
||||||
|
"value": "process_3"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"approx_anomaly_start_time": 1635927900000,
|
||||||
|
"relevant_attribution": [
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_max",
|
||||||
|
"data": 0.03628638020431366
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_avg",
|
||||||
|
"data": 0.03384479053991436
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_min",
|
||||||
|
"data": 0.058812549572819096
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_sum",
|
||||||
|
"data": 0.10154576265526988
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_time_max",
|
||||||
|
"data": 0.7695105170276828
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"expected_values": [
|
||||||
|
{
|
||||||
|
"likelihood": 1,
|
||||||
|
"value_list": [
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_max",
|
||||||
|
"data": 2291
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_avg",
|
||||||
|
"data": 1677.3333333333333
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_min",
|
||||||
|
"data": 1054
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_sum",
|
||||||
|
"data": 6062
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_time_max",
|
||||||
|
"data": 23379
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"threshold": 1.0993584705913992,
|
||||||
|
"execution_end_time": 1635898427895,
|
||||||
|
"execution_start_time": 1635898427803
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
You can see the following additional fields:
|
||||||
|
|
||||||
|
Field | Description
|
||||||
|
:--- | :---
|
||||||
|
`relevant_attribution` | Represents the contribution of each input variable. The sum of the attributions is normalized to 1.
|
||||||
|
`expected_values` | The expected value for each feature.
|
||||||
|
|
||||||
|
At times, the detector might detect an anomaly late.
|
||||||
|
Let's say the detector sees a random mix of the triples {1, 2, 3} and {2, 4, 5} that correspond to `slow weeks` and `busy weeks`, respectively. For example 1, 2, 3, 1, 2, 3, 2, 4, 5, 1, 2, 3, 2, 4, 5, ... and so on.
|
||||||
|
If the detector comes across a pattern {2, 2, X} and it's yet to see X, the detector infers that the pattern is anomalous, but it can't determine at this point which of the 2's is the cause. If X = 3, then the detector knows it's the first 2 in that unfinished triple, and if X = 5, then it's the second 2. If it's the first 2, then the detector detects the anomaly late.
|
||||||
|
|
||||||
|
If a detector detects an anomaly late, the result has the following additional fields:
|
||||||
|
|
||||||
|
Field | Description
|
||||||
|
:--- | :---
|
||||||
|
`past_values` | The actual input that triggered an anomaly. If `past_values` is null, the attributions or expected values are from the current input. If `past_values` is not null, the attributions or expected values are from a past input (for example, the previous two steps of the data [1,2,3]).
|
||||||
|
`approx_anomaly_start_time` | The approximate time of the actual input that triggers an anomaly. This field helps you understand when a detector flags an anomaly. If the data is not continuous, the actual time that the detector detects the anomaly can be earlier. Single-stream detectors query previous anomaly results of a few data points while high-cardinality detectors don't do this because querying previous results is an expensive operation when performed on a lot of entities. So, the accuracy of this field is less for high-cardinality detectors as compared to single-stream detectors.
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"detector_id": "kzcZ43wBgEQAbjDnhzGF",
|
||||||
|
"confidence": 0.9746820962328963,
|
||||||
|
"relevant_attribution": [
|
||||||
|
{
|
||||||
|
"feature_id": "deny_max1",
|
||||||
|
"data": 0.07339452532666227
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "deny_avg",
|
||||||
|
"data": 0.04934972719948845
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "deny_min",
|
||||||
|
"data": 0.01803003656061806
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "deny_sum",
|
||||||
|
"data": 0.14804918212089874
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "accept_max5",
|
||||||
|
"data": 0.7111765287923325
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"task_id": "9Dck43wBgEQAbjDn4zEe",
|
||||||
|
"threshold": 1,
|
||||||
|
"model_id": "kzcZ43wBgEQAbjDnhzGF_entity_app_0",
|
||||||
|
"schema_version": 5,
|
||||||
|
"anomaly_score": 1.141419389056506,
|
||||||
|
"execution_start_time": 1635898427803,
|
||||||
|
"past_values": [
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_max",
|
||||||
|
"data": 905
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_avg",
|
||||||
|
"data": 479
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_min",
|
||||||
|
"data": 128
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_sum",
|
||||||
|
"data": 1437
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_time_max",
|
||||||
|
"data": 8440
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"data_end_time": 1635883920000,
|
||||||
|
"data_start_time": 1635883860000,
|
||||||
|
"feature_data": [
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_max",
|
||||||
|
"feature_name": "processing bytes max",
|
||||||
|
"data": 1360
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_avg",
|
||||||
|
"feature_name": "processing bytes avg",
|
||||||
|
"data": 990
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_min",
|
||||||
|
"feature_name": "processing bytes min",
|
||||||
|
"data": 608
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_sum",
|
||||||
|
"feature_name": "processing bytes sum",
|
||||||
|
"data": 2970
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_time_max",
|
||||||
|
"feature_name": "processing time max",
|
||||||
|
"data": 9670
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"expected_values": [
|
||||||
|
{
|
||||||
|
"likelihood": 1,
|
||||||
|
"value_list": [
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_max",
|
||||||
|
"data": 905
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_avg",
|
||||||
|
"data": 479
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_min",
|
||||||
|
"data": 128
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_bytes_sum",
|
||||||
|
"data": 4847
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"feature_id": "processing_time_max",
|
||||||
|
"data": 15713
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"execution_end_time": 1635898427895,
|
||||||
|
"anomaly_grade": 0.5514172746375128,
|
||||||
|
"entity": [
|
||||||
|
{
|
||||||
|
"name": "process_name",
|
||||||
|
"value": "process_3"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"approx_anomaly_start_time": 1635883620000
|
||||||
|
}
|
||||||
|
```
|
Loading…
Reference in New Issue