Add GPU acceleration documentation (#2384)
* Add GPU acceleration documentation Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Address tech feedback Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Address technical feedback Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Adjust model size sentence Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Add optional to neuron step Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Add Jeff's feedback Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Add copy and customize for Inferntia examples Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Update _ml-commons-plugin/gpu-acceleration.md Co-authored-by: Nate Bower <nbower@amazon.com> * Update _ml-commons-plugin/gpu-acceleration.md Co-authored-by: Nate Bower <nbower@amazon.com> * Apply suggestions from code review Co-authored-by: Nate Bower <nbower@amazon.com> * Fix link Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Apply suggestions from code review Co-authored-by: Caroline <113052567+carolxob@users.noreply.github.com> * Apply suggestions from code review Co-authored-by: Caroline <113052567+carolxob@users.noreply.github.com> * Update _ml-commons-plugin/gpu-acceleration.md Co-authored-by: Caroline <113052567+carolxob@users.noreply.github.com> * Update _ml-commons-plugin/gpu-acceleration.md Co-authored-by: Caroline <113052567+carolxob@users.noreply.github.com> * Update _ml-commons-plugin/gpu-acceleration.md Co-authored-by: Caroline <113052567+carolxob@users.noreply.github.com> * Fix numbering in final section Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Add final tech feedback Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * A couple more suggestion Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Apply suggestions from code review Co-authored-by: Yaliang Wu <ylwu@amazon.com> * Fix Neural Search link Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Add experimental warning Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Update _ml-commons-plugin/gpu-acceleration.md Co-authored-by: Yaliang Wu <ylwu@amazon.com> * Final tech feedback Signed-off-by: Naarcha-AWS <naarcha@amazon.com> * Move OpenSearch to step 2. Signed-off-by: Naarcha-AWS <naarcha@amazon.com> Signed-off-by: Naarcha-AWS <naarcha@amazon.com> Co-authored-by: Nate Bower <nbower@amazon.com> Co-authored-by: Caroline <113052567+carolxob@users.noreply.github.com> Co-authored-by: Yaliang Wu <ylwu@amazon.com>
This commit is contained in:
parent
f89e111983
commit
efa9f99e8d
|
@ -15,7 +15,7 @@ This page provides an overview of `opensearch.yml` settings that can be configur
|
|||
### Setting
|
||||
|
||||
```
|
||||
plugins.ml_commons.only_run_on_ml_node: false
|
||||
plugins.ml_commons.only_run_on_ml_node: true
|
||||
```
|
||||
|
||||
### Description
|
||||
|
|
|
@ -0,0 +1,304 @@
|
|||
---
|
||||
layout: default
|
||||
title: GPU acceleration
|
||||
parent: Model-serving framework
|
||||
nav_order: 150
|
||||
---
|
||||
|
||||
|
||||
# GPU acceleration
|
||||
|
||||
GPU acceleration is an experimental feature. For updates on the progress of GPU acceleration, or if you want to leave feedback that could help improve the feature, join the discussion in the [OpenSearch forum](https://forum.opensearch.org/).
|
||||
{: .warning}
|
||||
|
||||
When running a natural language processing (NLP) model in your OpenSearch cluster with a machine learning (ML) node, you can achieve better performance on the ML node using graphics processing unit (GPU) acceleration. GPUs can work in tandem with the CPU of your cluster to speed up the model upload and training.
|
||||
|
||||
## Supported GPUs
|
||||
|
||||
Currently, ML nodes following GPU instances:
|
||||
|
||||
- [NVIDIA instances with CUDA 11.6](https://aws.amazon.com/nvidia/)
|
||||
- [AWS Inferentia](https://aws.amazon.com/machine-learning/inferentia/)
|
||||
|
||||
If you need GPU power, you can provision GPU instances through [Amazon Elastic Compute Cloud (Amazon EC2)](https://aws.amazon.com/ec2/). For more information on how to provision a GPU instance, see [Recommended GPU Instances](https://docs.aws.amazon.com/dlami/latest/devguide/gpu.html).
|
||||
|
||||
## Supported images
|
||||
|
||||
You can use GPU acceleration with both [Docker images](https://gitlab.com/nvidia/container-images/cuda/blob/master/doc/supported-tags.md) with CUDA 11.6 and [Amazon Machine Images (AMIs)](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html).
|
||||
|
||||
## PyTorch
|
||||
|
||||
GPU-accelerated ML nodes require [PyTorch](https://pytorch.org/docs/stable/index.html) 1.12.1 work with ML models.
|
||||
|
||||
## Setting up a GPU-accelerated ML node
|
||||
|
||||
Depending on the GPU, you can provision a GPU-accelerated ML node manually or by using automated initialization scripts.
|
||||
|
||||
### Preparing an NVIDIA ML node
|
||||
|
||||
NVIDIA uses CUDA to increase node performance. In order to take advantage of CUDA, you need to make sure that your drivers include the `nvidia-uvm` kernel inside the `/dev` directory. To check for the kernel, enter `ls -al /dev | grep nvidia-uvm`.
|
||||
|
||||
If the `nvidia-uvm` kernel does not exist, run `nvidia-uvm-init.sh`:
|
||||
|
||||
```
|
||||
#!/bin/bash
|
||||
## Script to initialize nvidia device nodes.
|
||||
## https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#runfile-verifications
|
||||
/sbin/modprobe nvidia
|
||||
if [ "$?" -eq 0 ]; then
|
||||
# Count the number of NVIDIA controllers found.
|
||||
NVDEVS=`lspci | grep -i NVIDIA`
|
||||
N3D=`echo "$NVDEVS" | grep "3D controller" | wc -l`
|
||||
NVGA=`echo "$NVDEVS" | grep "VGA compatible controller" | wc -l`
|
||||
N=`expr $N3D + $NVGA - 1`
|
||||
for i in `seq 0 $N`; do
|
||||
mknod -m 666 /dev/nvidia$i c 195 $i
|
||||
done
|
||||
mknod -m 666 /dev/nvidiactl c 195 255
|
||||
else
|
||||
exit 1
|
||||
fi
|
||||
/sbin/modprobe nvidia-uvm
|
||||
if [ "$?" -eq 0 ]; then
|
||||
# Find out the major device number used by the nvidia-uvm driver
|
||||
D=`grep nvidia-uvm /proc/devices | awk '{print $1}'`
|
||||
mknod -m 666 /dev/nvidia-uvm c $D 0
|
||||
mknod -m 666 /dev/nvidia-uvm-tools c $D 0
|
||||
else
|
||||
exit 1
|
||||
fi
|
||||
```
|
||||
|
||||
After verifying that `nvidia-uvm` exists under `/dev`, you can start OpenSearch inside your cluster.
|
||||
|
||||
### Preparing AWS Inferentia ML node
|
||||
|
||||
Depending on the Linux operating system running on AWS Inferentia, you can use the following commands and scripts to provision an ML node and run OpenSearch inside your cluster.
|
||||
|
||||
To start, [download and install OpenSearch]({{site.url}}{{site.baseurl}}/install-and-configure/index/) on your cluster.
|
||||
|
||||
Then export OpenSearch and set up your environment variables. This example exports OpenSearch into the directory `opensearch-2.5.0`, so `OPENSEARCH_HOME` = `opensearch-2.5.0`:
|
||||
|
||||
```
|
||||
echo "export OPENSEARCH_HOME=~/opensearch-2.5.0" | tee -a ~/.bash_profile
|
||||
echo "export PYTORCH_VERSION=1.12.1" | tee -a ~/.bash_profile
|
||||
source ~/.bash_profile
|
||||
```
|
||||
|
||||
Next, create a shell script file called `prepare_torch_neuron.sh`. You can copy and customize one of the following examples based on your Linux operating system:
|
||||
|
||||
- [Ubuntu 20.04](#ubuntu-2004)
|
||||
- [Amazon Linux 2](#amazon-linux2)
|
||||
|
||||
After you've run the scripts, exit your current terminal and open a new terminal to start OpenSearch.
|
||||
|
||||
GPU acceleration has only been tested on Ubuntu 20.04 and Amazon Linux 2. However, you can use other Linux operating systems.
|
||||
{: .note}
|
||||
|
||||
#### Ubuntu 20.04
|
||||
|
||||
```
|
||||
. /etc/os-release
|
||||
sudo tee /etc/apt/sources.list.d/neuron.list > /dev/null <<EOF
|
||||
deb https://apt.repos.neuron.amazonaws.com ${VERSION_CODENAME} main
|
||||
EOF
|
||||
wget -qO - https://apt.repos.neuron.amazonaws.com/GPG-PUB-KEY-AMAZON-AWS-NEURON.PUB | sudo apt-key add -
|
||||
|
||||
# Update OS packages
|
||||
sudo apt-get update -y
|
||||
|
||||
################################################################################################################
|
||||
# To install or update to Neuron versions 1.19.1 and newer from previous releases:
|
||||
# - DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade to latest Neuron driver
|
||||
################################################################################################################
|
||||
|
||||
# Install OS headers
|
||||
sudo apt-get install linux-headers-$(uname -r) -y
|
||||
|
||||
# Install Neuron Driver
|
||||
sudo apt-get install aws-neuronx-dkms -y
|
||||
|
||||
####################################################################################
|
||||
# Warning: If Linux kernel is updated as a result of OS package update
|
||||
# Neuron driver (aws-neuron-dkms) should be re-installed after reboot
|
||||
####################################################################################
|
||||
|
||||
# Install Neuron Tools
|
||||
sudo apt-get install aws-neuronx-tools -y
|
||||
|
||||
######################################################
|
||||
# Only for Ubuntu 20 - Install Python3.7
|
||||
sudo add-apt-repository ppa:deadsnakes/ppa
|
||||
sudo apt-get install python3.7
|
||||
######################################################
|
||||
# Install Python venv and activate Python virtual environment to install
|
||||
# Neuron pip packages.
|
||||
cd ~
|
||||
sudo apt-get install -y python3.7-venv g++
|
||||
python3.7 -m venv pytorch_venv
|
||||
source pytorch_venv/bin/activate
|
||||
pip install -U pip
|
||||
|
||||
# Set pip repository to point to the Neuron repository
|
||||
pip config set global.extra-index-url https://pip.repos.neuron.amazonaws.com
|
||||
|
||||
#Install Neuron PyTorch
|
||||
pip install torch-neuron torchvision
|
||||
# If you need to trace the neuron model, install torch neuron with this command
|
||||
# pip install torch-neuron neuron-cc[tensorflow] "protobuf==3.20.1" torchvision
|
||||
|
||||
# If you need to trace neuron model, install the transformers for tracing the Huggingface model.
|
||||
# pip install transformers
|
||||
|
||||
# Copy torch neuron lib to OpenSearch
|
||||
PYTORCH_NEURON_LIB_PATH=~/pytorch_venv/lib/python3.7/site-packages/torch_neuron/lib/
|
||||
mkdir -p $OPENSEARCH_HOME/lib/torch_neuron; cp -r $PYTORCH_NEURON_LIB_PATH/ $OPENSEARCH_HOME/lib/torch_neuron
|
||||
export PYTORCH_EXTRA_LIBRARY_PATH=$OPENSEARCH_HOME/lib/torch_neuron/lib/libtorchneuron.so
|
||||
echo "export PYTORCH_EXTRA_LIBRARY_PATH=$OPENSEARCH_HOME/lib/torch_neuron/lib/libtorchneuron.so" | tee -a ~/.bash_profile
|
||||
|
||||
# Increase JVm stack size to >=2MB
|
||||
echo "-Xss2m" | tee -a $OPENSEARCH_HOME/config/jvm.options
|
||||
# Increase max file descriptors to 65535
|
||||
echo "$(whoami) - nofile 65535" | sudo tee -a /etc/security/limits.conf
|
||||
# max virtual memory areas vm.max_map_count to 262144
|
||||
sudo sysctl -w vm.max_map_count=262144
|
||||
```
|
||||
|
||||
#### Amazon Linux 2
|
||||
|
||||
```
|
||||
# Configure Linux for Neuron repository updates
|
||||
sudo tee /etc/yum.repos.d/neuron.repo > /dev/null <<EOF
|
||||
[neuron]
|
||||
name=Neuron YUM Repository
|
||||
baseurl=https://yum.repos.neuron.amazonaws.com
|
||||
enabled=1
|
||||
metadata_expire=0
|
||||
EOF
|
||||
sudo rpm --import https://yum.repos.neuron.amazonaws.com/GPG-PUB-KEY-AMAZON-AWS-NEURON.PUB
|
||||
# Update OS packages
|
||||
sudo yum update -y
|
||||
################################################################################################################
|
||||
# To install or update to Neuron versions 1.19.1 and newer from previous releases:
|
||||
# - DO NOT skip 'aws-neuron-dkms' install or upgrade step, you MUST install or upgrade to latest Neuron driver
|
||||
################################################################################################################
|
||||
# Install OS headers
|
||||
sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r) -y
|
||||
# Install Neuron Driver
|
||||
####################################################################################
|
||||
# Warning: If Linux kernel is updated as a result of OS package update
|
||||
# Neuron driver (aws-neuron-dkms) should be re-installed after reboot
|
||||
####################################################################################
|
||||
sudo yum install aws-neuronx-dkms -y
|
||||
# Install Neuron Tools
|
||||
sudo yum install aws-neuronx-tools -y
|
||||
|
||||
# Install Python venv and activate Python virtual environment to install
|
||||
# Neuron pip packages.
|
||||
cd ~
|
||||
sudo yum install -y python3.7-venv gcc-c++
|
||||
python3.7 -m venv pytorch_venv
|
||||
source pytorch_venv/bin/activate
|
||||
pip install -U pip
|
||||
|
||||
# Set Pip repository to point to the Neuron repository
|
||||
pip config set global.extra-index-url https://pip.repos.neuron.amazonaws.com
|
||||
|
||||
# Install Neuron PyTorch
|
||||
pip install torch-neuron torchvision
|
||||
# If you need to trace the neuron model, install torch neuron with this command
|
||||
# pip install torch-neuron neuron-cc[tensorflow] "protobuf<4" torchvision
|
||||
|
||||
# If you need to run the trace neuron model, install transformers for tracing Huggingface model.
|
||||
# pip install transformers
|
||||
|
||||
# Copy torch neuron lib to OpenSearch
|
||||
PYTORCH_NEURON_LIB_PATH=~/pytorch_venv/lib/python3.7/site-packages/torch_neuron/lib/
|
||||
mkdir -p $OPENSEARCH_HOME/lib/torch_neuron; cp -r $PYTORCH_NEURON_LIB_PATH/ $OPENSEARCH_HOME/lib/torch_neuron
|
||||
export PYTORCH_EXTRA_LIBRARY_PATH=$OPENSEARCH_HOME/lib/torch_neuron/lib/libtorchneuron.so
|
||||
echo "export PYTORCH_EXTRA_LIBRARY_PATH=$OPENSEARCH_HOME/lib/torch_neuron/lib/libtorchneuron.so" | tee -a ~/.bash_profile
|
||||
# Increase JVm stack size to >=2MB
|
||||
echo "-Xss2m" | tee -a $OPENSEARCH_HOME/config/jvm.options
|
||||
# Increase max file descriptors to 65535
|
||||
echo "$(whoami) - nofile 65535" | sudo tee -a /etc/security/limits.conf
|
||||
# max virtual memory areas vm.max_map_count to 262144
|
||||
sudo sysctl -w vm.max_map_count=262144
|
||||
```
|
||||
|
||||
When the script completes running, open a new terminal for the settings to take effect. Then, start OpenSearch.
|
||||
|
||||
OpenSearch should now be running inside your GPU-accelerated cluster. However, if any errors occur during provisioning, you can install the GPU accelerator drivers manually.
|
||||
|
||||
#### Prepare ML node manually
|
||||
|
||||
If the previous two scripts do not provision your GPU-accelerated node properly, you can install the drivers for AWS Inferentia manually:
|
||||
|
||||
1. Deploy an AWS accelerator instance based on your chosen Linux operating system. For instructions, see [Deploy on AWS accelerator instance](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/torch-neuron/setup/pytorch-install.html#deploy-on-aws-ml-accelerator-instance).
|
||||
|
||||
2. Copy the Neuron library into OpenSearch. The following command uses a directory named `opensearch-2.5.0`:
|
||||
|
||||
```
|
||||
OPENSEARCH_HOME=~/opensearch-2.5.0
|
||||
```
|
||||
|
||||
3. Set the `PYTORCH_EXTRA_LIBRARY_PATH` path. In this example, we create a `pytorch` virtual environment in the OPENSEARCH_HOME folder:
|
||||
|
||||
```
|
||||
PYTORCH_NEURON_LIB_PATH=~/pytorch_venv/lib/python3.7/site-packages/torch_neuron/lib/
|
||||
|
||||
|
||||
mkdir -p $OPENSEARCH_HOME/lib/torch_neuron; cp -r $PYTORCH_NEURON_LIB_PATH/ $OPENSEARCH_HOME/lib/torch_neuron
|
||||
export PYTORCH_EXTRA_LIBRARY_PATH=$OPENSEARCH_HOME/lib/torch_neuron/lib/libtorchneuron.so
|
||||
```
|
||||
|
||||
4. (Optional) To monitor the GPU usage of your accelerator instance, install [Neuron tools](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/tools/index.html), which allows models to be used inside your instance:
|
||||
|
||||
```
|
||||
# Install Neuron Tools
|
||||
sudo apt-get install aws-neuronx-tools -y
|
||||
```
|
||||
|
||||
```
|
||||
# Add Neuron tools your PATH
|
||||
export PATH=/opt/aws/neuron/bin:$PATH
|
||||
```
|
||||
|
||||
```
|
||||
# Test Neuron tools
|
||||
neuron-top
|
||||
```
|
||||
|
||||
|
||||
5. To make sure you have enough memory to upload a model, increase the JVM stack size to `>+2MB`:
|
||||
|
||||
```
|
||||
echo "-Xss2m" | sudo tee -a $OPENSEARCH_HOME/config/jvm.options
|
||||
```
|
||||
|
||||
6. Start OpenSearch.
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
Due to the amount of data required to work with ML models, you might encounter the following `max file descriptors` or `vm.max_map_count` errors when trying to run OpenSearch in a your cluster:
|
||||
|
||||
```
|
||||
[1]: max file descriptors [8192] for opensearch process is too low, increase to at least [65535]
|
||||
[2]: max virtual memory areas vm.max_map_count [65530] is too low, increase to at least [262144]
|
||||
```
|
||||
|
||||
To troubleshoot the max file descriptors error, run the following command:
|
||||
|
||||
```
|
||||
echo "$(whoami) - nofile 65535" | sudo tee -a /etc/security/limits.conf
|
||||
```
|
||||
|
||||
To fix the `vm.max_map_count` error, run this command to increase the count to `262114`:
|
||||
|
||||
```
|
||||
sudo sysctl -w vm.max_map_count=262144
|
||||
```
|
||||
|
||||
## Next steps
|
||||
|
||||
If you want to try a GPU-accelerated cluster using AWS Inferentia with a pretrained HuggingFace model, see [Compiling and Deploying HuggingFace Pretrained BERT](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/bert_tutorial/tutorial_pretrained_bert.html).
|
||||
|
|
@ -1,13 +1,13 @@
|
|||
---
|
||||
layout: default
|
||||
title: Model-serving framework
|
||||
has_children: false
|
||||
has_children: true
|
||||
nav_order: 110
|
||||
---
|
||||
|
||||
# Model-serving framework
|
||||
|
||||
The Model-serving framework is an experimental feature. For updates on the progress of the Neural Search plugin, or if you want to leave feedback that could help improve the feature, join the discussion in the [Model-serving framework forum](https://forum.opensearch.org/t/feedback-machine-learning-model-serving-framework-experimental-release/11439).
|
||||
The model-serving framework is an experimental feature. For updates on the progress of the model-serving framework, or if you want to leave feedback that could help improve the feature, join the discussion in the [Model-serving framework forum](https://forum.opensearch.org/t/feedback-machine-learning-model-serving-framework-experimental-release/11439).
|
||||
{: .warning}
|
||||
|
||||
ML Commons allows you to serve custom models and use those models to make inferences. For those who want to run their PyTorch deep learning model inside an OpenSearch cluster, you can upload and run that model with the ML Commons REST API.
|
||||
|
@ -31,7 +31,11 @@ Furthermore, files must be saved as zip files before upload. Therefore, to ensur
|
|||
|
||||
### Model size
|
||||
|
||||
Most deep learning models are over 100 MBs, making it difficult to fit the model into a single document. OpenSearch splits the model file into smaller chunks to be stored in a model index. When allocating machine learning (ML) or data nodes for your OpenSearch cluster, be aware of the size of your model to prevent any downtime when making inferences.
|
||||
Most deep learning models are more than 100 MB, making it difficult to fit them into a single document. OpenSearch splits the model file into smaller chunks to be stored in a model index. When allocating machine learning (ML) or data nodes for your OpenSearch cluster, make sure you correctly size your ML nodes so that you have enough memory when making ML inferences.
|
||||
|
||||
## GPU acceleration
|
||||
|
||||
To achieve better performance within the model-serving framework, you can take advantage of GPU acceleration on your ML node. For more information, see [GPU acceleration]({{site.url}}{{site.baseurl}}/ml-commons-plugin/gpu-acceleration/).
|
||||
|
||||
|
||||
## Upload model to OpenSearch
|
||||
|
|
|
@ -34,7 +34,7 @@ Use `pipeline_name` to create a name for your Neural Search pipeline.
|
|||
Field | Data type | Description
|
||||
:--- | :--- | :---
|
||||
description | string | A description of the processor.
|
||||
model_id | string | The ID of the model that will be used in the embedding interface. The model must be indexed in OpenSearch before it can be used in Neural Search. For more information, see [Model Serving Framework]
|
||||
model_id | string | The ID of the model that will be used in the embedding interface. The model must be indexed in OpenSearch before it can be used in Neural Search. For more information, see [Model Serving Framework]({{site.url}}{{site.baseurl}}/ml-commons-plugin/model-serving-framework/)
|
||||
input_field_name | string | The field name used to cache text for text embeddings.
|
||||
output_field_name | string | The name of the field in which output text is stored.
|
||||
|
||||
|
|
Loading…
Reference in New Issue