diff --git a/_ml-commons-plugin/algorithms.md b/_ml-commons-plugin/algorithms.md index 8f7f1145..ebed62ff 100644 --- a/_ml-commons-plugin/algorithms.md +++ b/_ml-commons-plugin/algorithms.md @@ -57,9 +57,9 @@ POST /_plugins/_ml/_train/kmeans The training process supports multi-threads, but the number of threads should be less than half of the number of CPUs. -## Linear Regression +## Linear regression -Linear Regression maps the linear relationship between inputs and outputs. In ML Commons, the linear regression algorithm is adopted from the public machine learning library [Tribuo](https://tribuo.org/), which offers multidimensional linear regression models. The model supports the linear optimizer in training, including popular approaches like Linear Decay, SQRT_DECAY, [ADA](http://chrome-extension//gphandlahdpffmccakmbngmbjnjiiahp/https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf), [ADAM](https://tribuo.org/learn/4.1/javadoc/org/tribuo/math/optimisers/Adam.html), and [RMS_DROP](https://tribuo.org/learn/4.1/javadoc/org/tribuo/math/optimisers/RMSProp.html). +Linear regression maps the linear relationship between inputs and outputs. In ML Commons, the linear regression algorithm is adopted from the public machine learning library [Tribuo](https://tribuo.org/), which offers multidimensional linear regression models. The model supports the linear optimizer in training, including popular approaches like Linear Decay, SQRT_DECAY, [ADA](http://chrome-extension//gphandlahdpffmccakmbngmbjnjiiahp/https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf), [ADAM](https://tribuo.org/learn/4.1/javadoc/org/tribuo/math/optimisers/Adam.html), and [RMS_DROP](https://tribuo.org/learn/4.1/javadoc/org/tribuo/math/optimisers/RMSProp.html). ### Parameters @@ -172,6 +172,8 @@ anomaly_score_threshold | double | The threshold of the anomaly score | 1.0 #### Fit RCF +All parameters are optional except `time_field`. + Parameter | Type | Description | Default Value :--- |:--- | :--- | :--- number_of_trees | integer | The number of trees in the forest | 30 @@ -202,6 +204,8 @@ The Anomaly Localization algorithm finds subset level-information for aggregate ### Parameters +All parameters are required except `filter_query` and `anomaly_start`. + Parameter | Type | Description | Default Value :--- | :--- | :--- | :--- index_name | String | The data collection to analyze | N/A @@ -217,7 +221,7 @@ anomaly_star | QueryBuilder | (Optional) The time after which the data will be a ### Example -The following example executes Anomaly Localization against an RCA index. The API responds with 10 aggregations and gives the sum of the contribution and base values per aggregation, every +The following example executes Anomaly Localization against an RCA index. **Request** diff --git a/_ml-commons-plugin/api.md b/_ml-commons-plugin/api.md index 759e8b92..5ae25d4d 100644 --- a/_ml-commons-plugin/api.md +++ b/_ml-commons-plugin/api.md @@ -232,7 +232,7 @@ The API returns the following: ## Predict -ML Commons can predict new data with your trained model either from indexed data or a data frame. To use the Predict API, the model_id is required. +ML Commons can predict new data with your trained model either from indexed data or a data frame. To use the Predict API, the `model_id` is required. ```json POST /_plugins/_ml/_predict//