--- layout: default title: API has_children: false nav_order: 99 --- # ML Commons API --- #### Table of contents - TOC {:toc} --- The Machine Learning (ML) commons API lets you train ML algorithms synchronously and asynchronously, make predictions with that trained model, and train and predict with the same data set. In order to train tasks through the API, three inputs are required. - Algorithm name: Must be one of a [FunctionaName](https://github.com/opensearch-project/ml-commons/blob/1.3/common/src/main/java/org/opensearch/ml/common/parameter/FunctionName.java). This determines what algorithm the ML Engine runs. To add a new function, see [How To Add a New Function](https://github.com/opensearch-project/ml-commons/blob/main/docs/how-to-add-new-function.md). - Model hyper parameters: Adjust these parameters to make the model train better. - Input data: The data input that trains the ML model, or applies the ML models to predictions. You can input data in two ways, query against your index or use data frame. ## Train model Training can occur both synchronously and asynchronously. ### Request The following examples use the kmeans algorithm to train index data. **Train with kmeans synchronously** ```json POST /_plugins/_ml/_train/kmeans { "parameters": { "centroids": 3, "iterations": 10, "distance_type": "COSINE" }, "input_query": { "_source": ["petal_length_in_cm", "petal_width_in_cm"], "size": 10000 }, "input_index": [ "iris_data" ] } ``` **Train with kmeans asynchronously** ```json POST /_plugins/_ml/_train/kmeans?async=true { "parameters": { "centroids": 3, "iterations": 10, "distance_type": "COSINE" }, "input_query": { "_source": ["petal_length_in_cm", "petal_width_in_cm"], "size": 10000 }, "input_index": [ "iris_data" ] } ``` ### Response **Synchronously** For synchronous responses, the API returns the model_id, which can be used to get or delete a model. ```json { "model_id" : "lblVmX8BO5w8y8RaYYvN", "status" : "COMPLETED" } ``` **Asynchronously** For asynchronous responses, the API returns the task_id, which can be used to get or delete a task. ```json { "task_id" : "lrlamX8BO5w8y8Ra2otd", "status" : "CREATED" } ``` ## Get model information You can retrieve information on your model using the model_id. ```json GET /_plugins/_ml/models/ ``` The API returns information on the model, the algorithm used, and the content found within the model. ```json { "name" : "KMEANS", "algorithm" : "KMEANS", "version" : 1, "content" : "" } ``` ## Search model Use this command to search models you're already created. ```json POST /_plugins/_ml/models/_search {query} ``` ### Example: Query all models ```json POST /_plugins/_ml/models/_search { "query": { "match_all": {} }, "size": 1000 } ``` ### Example: Query models with algorithm "FIT_RCF" ```json POST /_plugins/_ml/models/_search { "query": { "term": { "algorithm": { "value": "FIT_RCF" } } } } ``` ### Response ```json { "took" : 8, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 2, "relation" : "eq" }, "max_score" : 2.4159138, "hits" : [ { "_index" : ".plugins-ml-model", "_id" : "-QkKJX8BvytMh9aUeuLD", "_version" : 1, "_seq_no" : 12, "_primary_term" : 15, "_score" : 2.4159138, "_source" : { "name" : "FIT_RCF", "version" : 1, "content" : "xxx", "algorithm" : "FIT_RCF" } }, { "_index" : ".plugins-ml-model", "_id" : "OxkvHn8BNJ65KnIpck8x", "_version" : 1, "_seq_no" : 2, "_primary_term" : 8, "_score" : 2.4159138, "_source" : { "name" : "FIT_RCF", "version" : 1, "content" : "xxx", "algorithm" : "FIT_RCF" } } ] } } ``` ## Delete model Deletes a model based on the model_id ```json DELETE /_plugins/_ml/models/ ``` The API returns the following: ```json { "_index" : ".plugins-ml-model", "_id" : "MzcIJX8BA7mbufL6DOwl", "_version" : 2, "result" : "deleted", "_shards" : { "total" : 2, "successful" : 2, "failed" : 0 }, "_seq_no" : 27, "_primary_term" : 18 } ``` ## Predict ML commons can predict new data with your trained model either from indexed data or a data frame. The model_id is required to use the Predict API. ```json POST /_plugins/_ml/_predict// ``` ### Request ```json POST /_plugins/_ml/_predict/kmeans/ { "input_query": { "_source": ["petal_length_in_cm", "petal_width_in_cm"], "size": 10000 }, "input_index": [ "iris_data" ] } ``` ### Response ```json { "status" : "COMPLETED", "prediction_result" : { "column_metas" : [ { "name" : "ClusterID", "column_type" : "INTEGER" } ], "rows" : [ { "values" : [ { "column_type" : "INTEGER", "value" : 1 } ] }, { "values" : [ { "column_type" : "INTEGER", "value" : 1 } ] }, { "values" : [ { "column_type" : "INTEGER", "value" : 0 } ] }, { "values" : [ { "column_type" : "INTEGER", "value" : 0 } ] }, { "values" : [ { "column_type" : "INTEGER", "value" : 0 } ] }, { "values" : [ { "column_type" : "INTEGER", "value" : 0 } ] } ] } ``` ## Train and predict Use to train and then immediately predict against the same training data set. Can only be used with unsupervised learning models and the following algorithms: - BATCH_RCF - FIT_RCF - kmeans ### Example: Train and predict with indexed data ```json POST /_plugins/_ml/_train_predict/kmeans { "parameters": { "centroids": 2, "iterations": 10, "distance_type": "COSINE" }, "input_query": { "query": { "bool": { "filter": [ { "range": { "k1": { "gte": 0 } } } ] } }, "size": 10 }, "input_index": [ "test_data" ] } ``` ### Example: Train and predict with data directly ```json POST /_plugins/_ml/_train_predict/kmeans { "parameters": { "centroids": 2, "iterations": 1, "distance_type": "EUCLIDEAN" }, "input_data": { "column_metas": [ { "name": "k1", "column_type": "DOUBLE" }, { "name": "k2", "column_type": "DOUBLE" } ], "rows": [ { "values": [ { "column_type": "DOUBLE", "value": 1.00 }, { "column_type": "DOUBLE", "value": 2.00 } ] }, { "values": [ { "column_type": "DOUBLE", "value": 1.00 }, { "column_type": "DOUBLE", "value": 4.00 } ] }, { "values": [ { "column_type": "DOUBLE", "value": 1.00 }, { "column_type": "DOUBLE", "value": 0.00 } ] }, { "values": [ { "column_type": "DOUBLE", "value": 10.00 }, { "column_type": "DOUBLE", "value": 2.00 } ] }, { "values": [ { "column_type": "DOUBLE", "value": 10.00 }, { "column_type": "DOUBLE", "value": 4.00 } ] }, { "values": [ { "column_type": "DOUBLE", "value": 10.00 }, { "column_type": "DOUBLE", "value": 0.00 } ] } ] } } ``` ### Response ```json { "status" : "COMPLETED", "prediction_result" : { "column_metas" : [ { "name" : "ClusterID", "column_type" : "INTEGER" } ], "rows" : [ { "values" : [ { "column_type" : "INTEGER", "value" : 1 } ] }, { "values" : [ { "column_type" : "INTEGER", "value" : 1 } ] }, { "values" : [ { "column_type" : "INTEGER", "value" : 1 } ] }, { "values" : [ { "column_type" : "INTEGER", "value" : 0 } ] }, { "values" : [ { "column_type" : "INTEGER", "value" : 0 } ] }, { "values" : [ { "column_type" : "INTEGER", "value" : 0 } ] } ] } } ``` ## Get task information You can retrieve information about a task using the task_id. ```json GET /_plugins/_ml/tasks/ ``` The response includes information about the task. ```json { "model_id" : "l7lamX8BO5w8y8Ra2oty", "task_type" : "TRAINING", "function_name" : "KMEANS", "state" : "COMPLETED", "input_type" : "SEARCH_QUERY", "worker_node" : "54xOe0w8Qjyze00UuLDfdA", "create_time" : 1647545342556, "last_update_time" : 1647545342587, "is_async" : true } ``` ## Search task Search tasks based on parameters indicated in the request body. ```json GET /_plugins/_ml/tasks/_search {query body} ``` ### Example: Search task which "function_name" is "KMEANS" ```json GET /_plugins/_ml/tasks/_search { "query": { "bool": { "filter": [ { "term": { "function_name": "KMEANS" } } ] } } } ``` ### Response ```json { "took" : 12, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 2, "relation" : "eq" }, "max_score" : 0.0, "hits" : [ { "_index" : ".plugins-ml-task", "_id" : "_wnLJ38BvytMh9aUi-Ia", "_version" : 4, "_seq_no" : 29, "_primary_term" : 4, "_score" : 0.0, "_source" : { "last_update_time" : 1645640125267, "create_time" : 1645640125209, "is_async" : true, "function_name" : "KMEANS", "input_type" : "SEARCH_QUERY", "worker_node" : "jjqFrlW7QWmni1tRnb_7Dg", "state" : "COMPLETED", "model_id" : "AAnLJ38BvytMh9aUi-M2", "task_type" : "TRAINING" } }, { "_index" : ".plugins-ml-task", "_id" : "wwRRLX8BydmmU1x6I-AI", "_version" : 3, "_seq_no" : 38, "_primary_term" : 7, "_score" : 0.0, "_source" : { "last_update_time" : 1645732766656, "create_time" : 1645732766472, "is_async" : true, "function_name" : "KMEANS", "input_type" : "SEARCH_QUERY", "worker_node" : "A_IiqoloTDK01uZvCjREaA", "state" : "COMPLETED", "model_id" : "xARRLX8BydmmU1x6I-CG", "task_type" : "TRAINING" } } ] } } ``` ## Delete task Delete a task based on the task_id. ```json DELETE /_plugins/_ml/tasks/{task_id} ``` The API returns the following: ```json { "_index" : ".plugins-ml-task", "_id" : "xQRYLX8BydmmU1x6nuD3", "_version" : 4, "result" : "deleted", "_shards" : { "total" : 2, "successful" : 2, "failed" : 0 }, "_seq_no" : 42, "_primary_term" : 7 } ``` ## Stats Get statistics related to the number of tasks. To receive all stats, use: ```json GET /_plugins/_ml/stats ``` To receive stats for a specific node, use: ```json GET /_plugins/_ml//stats/ ``` To receive stats for a specific node and return a specified stat, use: ```json GET /_plugins/_ml//stats/ ``` To receive information on a specific stat from all nodes, use: ```json GET /_plugins/_ml/stats/ ``` ### Example: Get all stats ```json GET /_plugins/_ml/stats ``` ### Response ```json { "zbduvgCCSOeu6cfbQhTpnQ" : { "ml_executing_task_count" : 0 }, "54xOe0w8Qjyze00UuLDfdA" : { "ml_executing_task_count" : 0 }, "UJiykI7bTKiCpR-rqLYHyw" : { "ml_executing_task_count" : 0 }, "zj2_NgIbTP-StNlGZJlxdg" : { "ml_executing_task_count" : 0 }, "jjqFrlW7QWmni1tRnb_7Dg" : { "ml_executing_task_count" : 0 }, "3pSSjl5PSVqzv5-hBdFqyA" : { "ml_executing_task_count" : 0 }, "A_IiqoloTDK01uZvCjREaA" : { "ml_executing_task_count" : 0 } } ```