--- layout: default title: Keyword search has_children: false nav_order: 10 redirect_from: - /search-plugins/search-methods/keyword-search/ --- # Keyword search By default, OpenSearch calculates document scores using the [Okapi BM25](https://en.wikipedia.org/wiki/Okapi_BM25) algorithm. BM25 is a keyword-based algorithm that performs lexical search for words that appear in the query. When determining a document's relevance, BM25 considers [term frequency/inverse document frequency (TF/IDF)](https://en.wikipedia.org/wiki/Tf%E2%80%93idf): - _Term frequency_ stipulates that documents in which the search term appears more frequently are more relevant. - _Inverse document frequency_ gives less weight to the words that commonly appear in all documents in the corpus (for example, articles like "the"). ## Example The following example query searches for the words `long live king` in the `shakespeare` index: ```json GET shakespeare/_search { "query": { "match": { "text_entry": "long live king" } } } ``` {% include copy-curl.html %} The response contains the matching documents, each with a relevance score in the `_score` field: ```json { "took": 113, "timed_out": false, "_shards": { "total": 1, "successful": 1, "skipped": 0, "failed": 0 }, "hits": { "total": { "value": 2352, "relation": "eq" }, "max_score": 18.781435, "hits": [ { "_index": "shakespeare", "_id": "32437", "_score": 18.781435, "_source": { "type": "line", "line_id": 32438, "play_name": "Hamlet", "speech_number": 3, "line_number": "1.1.3", "speaker": "BERNARDO", "text_entry": "Long live the king!" } }, { "_index": "shakespeare", "_id": "83798", "_score": 16.523308, "_source": { "type": "line", "line_id": 83799, "play_name": "Richard III", "speech_number": 42, "line_number": "3.7.242", "speaker": "BUCKINGHAM", "text_entry": "Long live Richard, Englands royal king!" } }, { "_index": "shakespeare", "_id": "82994", "_score": 15.588365, "_source": { "type": "line", "line_id": 82995, "play_name": "Richard III", "speech_number": 24, "line_number": "3.1.80", "speaker": "GLOUCESTER", "text_entry": "live long." } }, { "_index": "shakespeare", "_id": "7199", "_score": 15.586321, "_source": { "type": "line", "line_id": 7200, "play_name": "Henry VI Part 2", "speech_number": 12, "line_number": "2.2.64", "speaker": "BOTH", "text_entry": "Long live our sovereign Richard, Englands king!" } } ... ] } } ``` ## Similarity algorithms The following table lists the supported similarity algorithms. Algorithm | Description `BM25` | The default OpenSearch [Okapi BM25](https://en.wikipedia.org/wiki/Okapi_BM25) similarity algorithm. `boolean` | Assigns terms a score equal to their boost value. Use `boolean` similarity when you want the document scores to be based on the binary value of whether the terms match. ## Specifying similarity You can specify the similarity algorithm in the `similarity` parameter when configuring mappings at the field level. For example, the following query specifies the `boolean` similarity for the `boolean_field`. The `bm25_field` is assigned the default `BM25` similarity: ```json PUT /testindex { "mappings": { "properties": { "bm25_field": { "type": "text" }, "boolean_field": { "type": "text", "similarity": "boolean" } } } } ``` {% include copy-curl.html %} ## Configuring BM25 similarity You can configure BM25 similarity parameters at the index level as follows: ```json PUT /testindex { "settings": { "index": { "similarity": { "custom_similarity": { "type": "BM25", "k1": 1.2, "b": 0.75, "discount_overlaps": "true" } } } } } ``` `BM25` similarity supports the following parameters. Parameter | Data type | Description `k1` | Float | Determines non-linear term frequency normalization (saturation) properties. The default value is `1.2`. `b` | Float | Determines the degree to which document length normalizes TF values. The default value is `0.75`. `discount_overlaps` | Boolean | Determines whether overlap tokens (tokens with zero position increment) are ignored when computing the norm. Default is `true` (overlap tokens do not count when computing the norm). --- ## Next steps - Learn about [query and filter context]({{site.url}}{{site.baseurl}}/query-dsl/query-filter-context/). - Learn about the [query types]({{site.url}}{{site.baseurl}}/query-dsl/index/) OpenSearch supports.