add vendored code

This commit is contained in:
Megan Marsh 2019-10-28 14:38:53 -07:00
parent 1d489d1899
commit 124ae7d225
228 changed files with 63128 additions and 0 deletions

2
vendor/github.com/agext/levenshtein/.gitignore generated vendored Normal file
View File

@ -0,0 +1,2 @@
README.html
coverage.out

70
vendor/github.com/agext/levenshtein/.travis.yml generated vendored Normal file
View File

@ -0,0 +1,70 @@
language: go
sudo: false
go:
- 1.8
- 1.7.5
- 1.7.4
- 1.7.3
- 1.7.2
- 1.7.1
- 1.7
- tip
- 1.6.4
- 1.6.3
- 1.6.2
- 1.6.1
- 1.6
- 1.5.4
- 1.5.3
- 1.5.2
- 1.5.1
- 1.5
- 1.4.3
- 1.4.2
- 1.4.1
- 1.4
- 1.3.3
- 1.3.2
- 1.3.1
- 1.3
- 1.2.2
- 1.2.1
- 1.2
- 1.1.2
- 1.1.1
- 1.1
before_install:
- go get github.com/mattn/goveralls
script:
- $HOME/gopath/bin/goveralls -service=travis-ci
notifications:
email:
on_success: never
matrix:
fast_finish: true
allow_failures:
- go: tip
- go: 1.6.4
- go: 1.6.3
- go: 1.6.2
- go: 1.6.1
- go: 1.6
- go: 1.5.4
- go: 1.5.3
- go: 1.5.2
- go: 1.5.1
- go: 1.5
- go: 1.4.3
- go: 1.4.2
- go: 1.4.1
- go: 1.4
- go: 1.3.3
- go: 1.3.2
- go: 1.3.1
- go: 1.3
- go: 1.2.2
- go: 1.2.1
- go: 1.2
- go: 1.1.2
- go: 1.1.1
- go: 1.1

36
vendor/github.com/agext/levenshtein/DCO generated vendored Normal file
View File

@ -0,0 +1,36 @@
Developer Certificate of Origin
Version 1.1
Copyright (C) 2004, 2006 The Linux Foundation and its contributors.
660 York Street, Suite 102,
San Francisco, CA 94110 USA
Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.
Developer's Certificate of Origin 1.1
By making a contribution to this project, I certify that:
(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or
(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or
(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.
(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

201
vendor/github.com/agext/levenshtein/LICENSE generated vendored Normal file
View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

1
vendor/github.com/agext/levenshtein/MAINTAINERS generated vendored Normal file
View File

@ -0,0 +1 @@
Alex Bucataru <alex@alrux.com> (@AlexBucataru)

5
vendor/github.com/agext/levenshtein/NOTICE generated vendored Normal file
View File

@ -0,0 +1,5 @@
Alrux Go EXTensions (AGExt) - package levenshtein
Copyright 2016 ALRUX Inc.
This product includes software developed at ALRUX Inc.
(http://www.alrux.com/).

38
vendor/github.com/agext/levenshtein/README.md generated vendored Normal file
View File

@ -0,0 +1,38 @@
# A Go package for calculating the Levenshtein distance between two strings
[![Release](https://img.shields.io/github/release/agext/levenshtein.svg?style=flat)](https://github.com/agext/levenshtein/releases/latest)
[![GoDoc](https://img.shields.io/badge/godoc-reference-blue.svg?style=flat)](https://godoc.org/github.com/agext/levenshtein) 
[![Build Status](https://travis-ci.org/agext/levenshtein.svg?branch=master&style=flat)](https://travis-ci.org/agext/levenshtein)
[![Coverage Status](https://coveralls.io/repos/github/agext/levenshtein/badge.svg?style=flat)](https://coveralls.io/github/agext/levenshtein)
[![Go Report Card](https://goreportcard.com/badge/github.com/agext/levenshtein?style=flat)](https://goreportcard.com/report/github.com/agext/levenshtein)
This package implements distance and similarity metrics for strings, based on the Levenshtein measure, in [Go](http://golang.org).
## Project Status
v1.2.1 Stable: Guaranteed no breaking changes to the API in future v1.x releases. Probably safe to use in production, though provided on "AS IS" basis.
This package is being actively maintained. If you encounter any problems or have any suggestions for improvement, please [open an issue](https://github.com/agext/levenshtein/issues). Pull requests are welcome.
## Overview
The Levenshtein `Distance` between two strings is the minimum total cost of edits that would convert the first string into the second. The allowed edit operations are insertions, deletions, and substitutions, all at character (one UTF-8 code point) level. Each operation has a default cost of 1, but each can be assigned its own cost equal to or greater than 0.
A `Distance` of 0 means the two strings are identical, and the higher the value the more different the strings. Since in practice we are interested in finding if the two strings are "close enough", it often does not make sense to continue the calculation once the result is mathematically guaranteed to exceed a desired threshold. Providing this value to the `Distance` function allows it to take a shortcut and return a lower bound instead of an exact cost when the threshold is exceeded.
The `Similarity` function calculates the distance, then converts it into a normalized metric within the range 0..1, with 1 meaning the strings are identical, and 0 that they have nothing in common. A minimum similarity threshold can be provided to speed up the calculation of the metric for strings that are far too dissimilar for the purpose at hand. All values under this threshold are rounded down to 0.
The `Match` function provides a similarity metric, with the same range and meaning as `Similarity`, but with a bonus for string pairs that share a common prefix and have a similarity above a "bonus threshold". It uses the same method as proposed by Winkler for the Jaro distance, and the reasoning behind it is that these string pairs are very likely spelling variations or errors, and they are more closely linked than the edit distance alone would suggest.
The underlying `Calculate` function is also exported, to allow the building of other derivative metrics, if needed.
## Installation
```
go get github.com/agext/levenshtein
```
## License
Package levenshtein is released under the Apache 2.0 license. See the [LICENSE](LICENSE) file for details.

290
vendor/github.com/agext/levenshtein/levenshtein.go generated vendored Normal file
View File

@ -0,0 +1,290 @@
// Copyright 2016 ALRUX Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
Package levenshtein implements distance and similarity metrics for strings, based on the Levenshtein measure.
The Levenshtein `Distance` between two strings is the minimum total cost of edits that would convert the first string into the second. The allowed edit operations are insertions, deletions, and substitutions, all at character (one UTF-8 code point) level. Each operation has a default cost of 1, but each can be assigned its own cost equal to or greater than 0.
A `Distance` of 0 means the two strings are identical, and the higher the value the more different the strings. Since in practice we are interested in finding if the two strings are "close enough", it often does not make sense to continue the calculation once the result is mathematically guaranteed to exceed a desired threshold. Providing this value to the `Distance` function allows it to take a shortcut and return a lower bound instead of an exact cost when the threshold is exceeded.
The `Similarity` function calculates the distance, then converts it into a normalized metric within the range 0..1, with 1 meaning the strings are identical, and 0 that they have nothing in common. A minimum similarity threshold can be provided to speed up the calculation of the metric for strings that are far too dissimilar for the purpose at hand. All values under this threshold are rounded down to 0.
The `Match` function provides a similarity metric, with the same range and meaning as `Similarity`, but with a bonus for string pairs that share a common prefix and have a similarity above a "bonus threshold". It uses the same method as proposed by Winkler for the Jaro distance, and the reasoning behind it is that these string pairs are very likely spelling variations or errors, and they are more closely linked than the edit distance alone would suggest.
The underlying `Calculate` function is also exported, to allow the building of other derivative metrics, if needed.
*/
package levenshtein
// Calculate determines the Levenshtein distance between two strings, using
// the given costs for each edit operation. It returns the distance along with
// the lengths of the longest common prefix and suffix.
//
// If maxCost is non-zero, the calculation stops as soon as the distance is determined
// to be greater than maxCost. Therefore, any return value higher than maxCost is a
// lower bound for the actual distance.
func Calculate(str1, str2 []rune, maxCost, insCost, subCost, delCost int) (dist, prefixLen, suffixLen int) {
l1, l2 := len(str1), len(str2)
// trim common prefix, if any, as it doesn't affect the distance
for ; prefixLen < l1 && prefixLen < l2; prefixLen++ {
if str1[prefixLen] != str2[prefixLen] {
break
}
}
str1, str2 = str1[prefixLen:], str2[prefixLen:]
l1 -= prefixLen
l2 -= prefixLen
// trim common suffix, if any, as it doesn't affect the distance
for 0 < l1 && 0 < l2 {
if str1[l1-1] != str2[l2-1] {
str1, str2 = str1[:l1], str2[:l2]
break
}
l1--
l2--
suffixLen++
}
// if the first string is empty, the distance is the length of the second string times the cost of insertion
if l1 == 0 {
dist = l2 * insCost
return
}
// if the second string is empty, the distance is the length of the first string times the cost of deletion
if l2 == 0 {
dist = l1 * delCost
return
}
// variables used in inner "for" loops
var y, dy, c, l int
// if maxCost is greater than or equal to the maximum possible distance, it's equivalent to 'unlimited'
if maxCost > 0 {
if subCost < delCost+insCost {
if maxCost >= l1*subCost+(l2-l1)*insCost {
maxCost = 0
}
} else {
if maxCost >= l1*delCost+l2*insCost {
maxCost = 0
}
}
}
if maxCost > 0 {
// prefer the longer string first, to minimize time;
// a swap also transposes the meanings of insertion and deletion.
if l1 < l2 {
str1, str2, l1, l2, insCost, delCost = str2, str1, l2, l1, delCost, insCost
}
// the length differential times cost of deletion is a lower bound for the cost;
// if it is higher than the maxCost, there is no point going into the main calculation.
if dist = (l1 - l2) * delCost; dist > maxCost {
return
}
d := make([]int, l1+1)
// offset and length of d in the current row
doff, dlen := 0, 1
for y, dy = 1, delCost; y <= l1 && dy <= maxCost; dlen++ {
d[y] = dy
y++
dy = y * delCost
}
// fmt.Printf("%q -> %q: init doff=%d dlen=%d d[%d:%d]=%v\n", str1, str2, doff, dlen, doff, doff+dlen, d[doff:doff+dlen])
for x := 0; x < l2; x++ {
dy, d[doff] = d[doff], d[doff]+insCost
for d[doff] > maxCost && dlen > 0 {
if str1[doff] != str2[x] {
dy += subCost
}
doff++
dlen--
if c = d[doff] + insCost; c < dy {
dy = c
}
dy, d[doff] = d[doff], dy
}
for y, l = doff, doff+dlen-1; y < l; dy, d[y] = d[y], dy {
if str1[y] != str2[x] {
dy += subCost
}
if c = d[y] + delCost; c < dy {
dy = c
}
y++
if c = d[y] + insCost; c < dy {
dy = c
}
}
if y < l1 {
if str1[y] != str2[x] {
dy += subCost
}
if c = d[y] + delCost; c < dy {
dy = c
}
for ; dy <= maxCost && y < l1; dy, d[y] = dy+delCost, dy {
y++
dlen++
}
}
// fmt.Printf("%q -> %q: x=%d doff=%d dlen=%d d[%d:%d]=%v\n", str1, str2, x, doff, dlen, doff, doff+dlen, d[doff:doff+dlen])
if dlen == 0 {
dist = maxCost + 1
return
}
}
if doff+dlen-1 < l1 {
dist = maxCost + 1
return
}
dist = d[l1]
} else {
// ToDo: This is O(l1*l2) time and O(min(l1,l2)) space; investigate if it is
// worth to implement diagonal approach - O(l1*(1+dist)) time, up to O(l1*l2) space
// http://www.csse.monash.edu.au/~lloyd/tildeStrings/Alignment/92.IPL.html
// prefer the shorter string first, to minimize space; time is O(l1*l2) anyway;
// a swap also transposes the meanings of insertion and deletion.
if l1 > l2 {
str1, str2, l1, l2, insCost, delCost = str2, str1, l2, l1, delCost, insCost
}
d := make([]int, l1+1)
for y = 1; y <= l1; y++ {
d[y] = y * delCost
}
for x := 0; x < l2; x++ {
dy, d[0] = d[0], d[0]+insCost
for y = 0; y < l1; dy, d[y] = d[y], dy {
if str1[y] != str2[x] {
dy += subCost
}
if c = d[y] + delCost; c < dy {
dy = c
}
y++
if c = d[y] + insCost; c < dy {
dy = c
}
}
}
dist = d[l1]
}
return
}
// Distance returns the Levenshtein distance between str1 and str2, using the
// default or provided cost values. Pass nil for the third argument to use the
// default cost of 1 for all three operations, with no maximum.
func Distance(str1, str2 string, p *Params) int {
if p == nil {
p = defaultParams
}
dist, _, _ := Calculate([]rune(str1), []rune(str2), p.maxCost, p.insCost, p.subCost, p.delCost)
return dist
}
// Similarity returns a score in the range of 0..1 for how similar the two strings are.
// A score of 1 means the strings are identical, and 0 means they have nothing in common.
//
// A nil third argument uses the default cost of 1 for all three operations.
//
// If a non-zero MinScore value is provided in the parameters, scores lower than it
// will be returned as 0.
func Similarity(str1, str2 string, p *Params) float64 {
return Match(str1, str2, p.Clone().BonusThreshold(1.1)) // guaranteed no bonus
}
// Match returns a similarity score adjusted by the same method as proposed by Winkler for
// the Jaro distance - giving a bonus to string pairs that share a common prefix, only if their
// similarity score is already over a threshold.
//
// The score is in the range of 0..1, with 1 meaning the strings are identical,
// and 0 meaning they have nothing in common.
//
// A nil third argument uses the default cost of 1 for all three operations, maximum length of
// common prefix to consider for bonus of 4, scaling factor of 0.1, and bonus threshold of 0.7.
//
// If a non-zero MinScore value is provided in the parameters, scores lower than it
// will be returned as 0.
func Match(str1, str2 string, p *Params) float64 {
s1, s2 := []rune(str1), []rune(str2)
l1, l2 := len(s1), len(s2)
// two empty strings are identical; shortcut also avoids divByZero issues later on.
if l1 == 0 && l2 == 0 {
return 1
}
if p == nil {
p = defaultParams
}
// a min over 1 can never be satisfied, so the score is 0.
if p.minScore > 1 {
return 0
}
insCost, delCost, maxDist, max := p.insCost, p.delCost, 0, 0
if l1 > l2 {
l1, l2, insCost, delCost = l2, l1, delCost, insCost
}
if p.subCost < delCost+insCost {
maxDist = l1*p.subCost + (l2-l1)*insCost
} else {
maxDist = l1*delCost + l2*insCost
}
// a zero min is always satisfied, so no need to set a max cost.
if p.minScore > 0 {
// if p.minScore is lower than p.bonusThreshold, we can use a simplified formula
// for the max cost, because a sim score below min cannot receive a bonus.
if p.minScore < p.bonusThreshold {
// round down the max - a cost equal to a rounded up max would already be under min.
max = int((1 - p.minScore) * float64(maxDist))
} else {
// p.minScore <= sim + p.bonusPrefix*p.bonusScale*(1-sim)
// p.minScore <= (1-dist/maxDist) + p.bonusPrefix*p.bonusScale*(1-(1-dist/maxDist))
// p.minScore <= 1 - dist/maxDist + p.bonusPrefix*p.bonusScale*dist/maxDist
// 1 - p.minScore >= dist/maxDist - p.bonusPrefix*p.bonusScale*dist/maxDist
// (1-p.minScore)*maxDist/(1-p.bonusPrefix*p.bonusScale) >= dist
max = int((1 - p.minScore) * float64(maxDist) / (1 - float64(p.bonusPrefix)*p.bonusScale))
}
}
dist, pl, _ := Calculate(s1, s2, max, p.insCost, p.subCost, p.delCost)
if max > 0 && dist > max {
return 0
}
sim := 1 - float64(dist)/float64(maxDist)
if sim >= p.bonusThreshold && sim < 1 && p.bonusPrefix > 0 && p.bonusScale > 0 {
if pl > p.bonusPrefix {
pl = p.bonusPrefix
}
sim += float64(pl) * p.bonusScale * (1 - sim)
}
if sim < p.minScore {
return 0
}
return sim
}

152
vendor/github.com/agext/levenshtein/params.go generated vendored Normal file
View File

@ -0,0 +1,152 @@
// Copyright 2016 ALRUX Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package levenshtein
// Params represents a set of parameter values for the various formulas involved
// in the calculation of the Levenshtein string metrics.
type Params struct {
insCost int
subCost int
delCost int
maxCost int
minScore float64
bonusPrefix int
bonusScale float64
bonusThreshold float64
}
var (
defaultParams = NewParams()
)
// NewParams creates a new set of parameters and initializes it with the default values.
func NewParams() *Params {
return &Params{
insCost: 1,
subCost: 1,
delCost: 1,
maxCost: 0,
minScore: 0,
bonusPrefix: 4,
bonusScale: .1,
bonusThreshold: .7,
}
}
// Clone returns a pointer to a copy of the receiver parameter set, or of a new
// default parameter set if the receiver is nil.
func (p *Params) Clone() *Params {
if p == nil {
return NewParams()
}
return &Params{
insCost: p.insCost,
subCost: p.subCost,
delCost: p.delCost,
maxCost: p.maxCost,
minScore: p.minScore,
bonusPrefix: p.bonusPrefix,
bonusScale: p.bonusScale,
bonusThreshold: p.bonusThreshold,
}
}
// InsCost overrides the default value of 1 for the cost of insertion.
// The new value must be zero or positive.
func (p *Params) InsCost(v int) *Params {
if v >= 0 {
p.insCost = v
}
return p
}
// SubCost overrides the default value of 1 for the cost of substitution.
// The new value must be zero or positive.
func (p *Params) SubCost(v int) *Params {
if v >= 0 {
p.subCost = v
}
return p
}
// DelCost overrides the default value of 1 for the cost of deletion.
// The new value must be zero or positive.
func (p *Params) DelCost(v int) *Params {
if v >= 0 {
p.delCost = v
}
return p
}
// MaxCost overrides the default value of 0 (meaning unlimited) for the maximum cost.
// The calculation of Distance() stops when the result is guaranteed to exceed
// this maximum, returning a lower-bound rather than exact value.
// The new value must be zero or positive.
func (p *Params) MaxCost(v int) *Params {
if v >= 0 {
p.maxCost = v
}
return p
}
// MinScore overrides the default value of 0 for the minimum similarity score.
// Scores below this threshold are returned as 0 by Similarity() and Match().
// The new value must be zero or positive. Note that a minimum greater than 1
// can never be satisfied, resulting in a score of 0 for any pair of strings.
func (p *Params) MinScore(v float64) *Params {
if v >= 0 {
p.minScore = v
}
return p
}
// BonusPrefix overrides the default value for the maximum length of
// common prefix to be considered for bonus by Match().
// The new value must be zero or positive.
func (p *Params) BonusPrefix(v int) *Params {
if v >= 0 {
p.bonusPrefix = v
}
return p
}
// BonusScale overrides the default value for the scaling factor used by Match()
// in calculating the bonus.
// The new value must be zero or positive. To guarantee that the similarity score
// remains in the interval 0..1, this scaling factor is not allowed to exceed
// 1 / BonusPrefix.
func (p *Params) BonusScale(v float64) *Params {
if v >= 0 {
p.bonusScale = v
}
// the bonus cannot exceed (1-sim), or the score may become greater than 1.
if float64(p.bonusPrefix)*p.bonusScale > 1 {
p.bonusScale = 1 / float64(p.bonusPrefix)
}
return p
}
// BonusThreshold overrides the default value for the minimum similarity score
// for which Match() can assign a bonus.
// The new value must be zero or positive. Note that a threshold greater than 1
// effectively makes Match() become the equivalent of Similarity().
func (p *Params) BonusThreshold(v float64) *Params {
if v >= 0 {
p.bonusThreshold = v
}
return p
}

95
vendor/github.com/apparentlymart/go-textseg/LICENSE generated vendored Normal file
View File

@ -0,0 +1,95 @@
Copyright (c) 2017 Martin Atkins
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
---------
Unicode table generation programs are under a separate copyright and license:
Copyright (c) 2014 Couchbase, Inc.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the License for the specific language governing permissions
and limitations under the License.
---------
Grapheme break data is provided as part of the Unicode character database,
copright 2016 Unicode, Inc, which is provided with the following license:
Unicode Data Files include all data files under the directories
http://www.unicode.org/Public/, http://www.unicode.org/reports/,
http://www.unicode.org/cldr/data/, http://source.icu-project.org/repos/icu/, and
http://www.unicode.org/utility/trac/browser/.
Unicode Data Files do not include PDF online code charts under the
directory http://www.unicode.org/Public/.
Software includes any source code published in the Unicode Standard
or under the directories
http://www.unicode.org/Public/, http://www.unicode.org/reports/,
http://www.unicode.org/cldr/data/, http://source.icu-project.org/repos/icu/, and
http://www.unicode.org/utility/trac/browser/.
NOTICE TO USER: Carefully read the following legal agreement.
BY DOWNLOADING, INSTALLING, COPYING OR OTHERWISE USING UNICODE INC.'S
DATA FILES ("DATA FILES"), AND/OR SOFTWARE ("SOFTWARE"),
YOU UNEQUIVOCALLY ACCEPT, AND AGREE TO BE BOUND BY, ALL OF THE
TERMS AND CONDITIONS OF THIS AGREEMENT.
IF YOU DO NOT AGREE, DO NOT DOWNLOAD, INSTALL, COPY, DISTRIBUTE OR USE
THE DATA FILES OR SOFTWARE.
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1991-2017 Unicode, Inc. All rights reserved.
Distributed under the Terms of Use in http://www.unicode.org/copyright.html.
Permission is hereby granted, free of charge, to any person obtaining
a copy of the Unicode data files and any associated documentation
(the "Data Files") or Unicode software and any associated documentation
(the "Software") to deal in the Data Files or Software
without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, and/or sell copies of
the Data Files or Software, and to permit persons to whom the Data Files
or Software are furnished to do so, provided that either
(a) this copyright and permission notice appear with all copies
of the Data Files or Software, or
(b) this copyright and permission notice appear in associated
Documentation.
THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS
NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THE DATA FILES OR SOFTWARE.
Except as contained in this notice, the name of a copyright holder
shall not be used in advertising or otherwise to promote the sale,
use or other dealings in these Data Files or Software without prior
written authorization of the copyright holder.

View File

@ -0,0 +1,30 @@
package textseg
import (
"bufio"
"bytes"
)
// AllTokens is a utility that uses a bufio.SplitFunc to produce a slice of
// all of the recognized tokens in the given buffer.
func AllTokens(buf []byte, splitFunc bufio.SplitFunc) ([][]byte, error) {
scanner := bufio.NewScanner(bytes.NewReader(buf))
scanner.Split(splitFunc)
var ret [][]byte
for scanner.Scan() {
ret = append(ret, scanner.Bytes())
}
return ret, scanner.Err()
}
// TokenCount is a utility that uses a bufio.SplitFunc to count the number of
// recognized tokens in the given buffer.
func TokenCount(buf []byte, splitFunc bufio.SplitFunc) (int, error) {
scanner := bufio.NewScanner(bytes.NewReader(buf))
scanner.Split(splitFunc)
var ret int
for scanner.Scan() {
ret++
}
return ret, scanner.Err()
}

View File

@ -0,0 +1,7 @@
package textseg
//go:generate go run make_tables.go -output tables.go
//go:generate go run make_test_tables.go -output tables_test.go
//go:generate ruby unicode2ragel.rb --url=http://www.unicode.org/Public/9.0.0/ucd/auxiliary/GraphemeBreakProperty.txt -m GraphemeCluster -p "Prepend,CR,LF,Control,Extend,Regional_Indicator,SpacingMark,L,V,T,LV,LVT,E_Base,E_Modifier,ZWJ,Glue_After_Zwj,E_Base_GAZ" -o grapheme_clusters_table.rl
//go:generate ragel -Z grapheme_clusters.rl
//go:generate gofmt -w grapheme_clusters.go

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,132 @@
package textseg
import (
"errors"
"unicode/utf8"
)
// Generated from grapheme_clusters.rl. DO NOT EDIT
%%{
# (except you are actually in grapheme_clusters.rl here, so edit away!)
machine graphclust;
write data;
}%%
var Error = errors.New("invalid UTF8 text")
// ScanGraphemeClusters is a split function for bufio.Scanner that splits
// on grapheme cluster boundaries.
func ScanGraphemeClusters(data []byte, atEOF bool) (int, []byte, error) {
if len(data) == 0 {
return 0, nil, nil
}
// Ragel state
cs := 0 // Current State
p := 0 // "Pointer" into data
pe := len(data) // End-of-data "pointer"
ts := 0
te := 0
act := 0
eof := pe
// Make Go compiler happy
_ = ts
_ = te
_ = act
_ = eof
startPos := 0
endPos := 0
%%{
include GraphemeCluster "grapheme_clusters_table.rl";
action start {
startPos = p
}
action end {
endPos = p
}
action emit {
return endPos+1, data[startPos:endPos+1], nil
}
ZWJGlue = ZWJ (Glue_After_Zwj | E_Base_GAZ Extend* E_Modifier?)?;
AnyExtender = Extend | ZWJGlue | SpacingMark;
Extension = AnyExtender*;
ReplacementChar = (0xEF 0xBF 0xBD);
CRLFSeq = CR LF;
ControlSeq = Control | ReplacementChar;
HangulSeq = (
L+ (((LV? V+ | LVT) T*)?|LV?) |
LV V* T* |
V+ T* |
LVT T* |
T+
) Extension;
EmojiSeq = (E_Base | E_Base_GAZ) Extend* E_Modifier? Extension;
ZWJSeq = ZWJGlue Extension;
EmojiFlagSeq = Regional_Indicator Regional_Indicator? Extension;
UTF8Cont = 0x80 .. 0xBF;
AnyUTF8 = (
0x00..0x7F |
0xC0..0xDF . UTF8Cont |
0xE0..0xEF . UTF8Cont . UTF8Cont |
0xF0..0xF7 . UTF8Cont . UTF8Cont . UTF8Cont
);
# OtherSeq is any character that isn't at the start of one of the extended sequences above, followed by extension
OtherSeq = (AnyUTF8 - (CR|LF|Control|ReplacementChar|L|LV|V|LVT|T|E_Base|E_Base_GAZ|ZWJ|Regional_Indicator|Prepend)) Extension;
# PrependSeq is prepend followed by any of the other patterns above, except control characters which explicitly break
PrependSeq = Prepend+ (HangulSeq|EmojiSeq|ZWJSeq|EmojiFlagSeq|OtherSeq)?;
CRLFTok = CRLFSeq >start @end;
ControlTok = ControlSeq >start @end;
HangulTok = HangulSeq >start @end;
EmojiTok = EmojiSeq >start @end;
ZWJTok = ZWJSeq >start @end;
EmojiFlagTok = EmojiFlagSeq >start @end;
OtherTok = OtherSeq >start @end;
PrependTok = PrependSeq >start @end;
main := |*
CRLFTok => emit;
ControlTok => emit;
HangulTok => emit;
EmojiTok => emit;
ZWJTok => emit;
EmojiFlagTok => emit;
PrependTok => emit;
OtherTok => emit;
# any single valid UTF-8 character would also be valid per spec,
# but we'll handle that separately after the loop so we can deal
# with requesting more bytes if we're not at EOF.
*|;
write init;
write exec;
}%%
// If we fall out here then we were unable to complete a sequence.
// If we weren't able to complete a sequence then either we've
// reached the end of a partial buffer (so there's more data to come)
// or we have an isolated symbol that would normally be part of a
// grapheme cluster but has appeared in isolation here.
if !atEOF {
// Request more
return 0, nil, nil
}
// Just take the first UTF-8 sequence and return that.
_, seqLen := utf8.DecodeRune(data)
return seqLen, data[:seqLen], nil
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,335 @@
#!/usr/bin/env ruby
#
# This scripted has been updated to accept more command-line arguments:
#
# -u, --url URL to process
# -m, --machine Machine name
# -p, --properties Properties to add to the machine
# -o, --output Write output to file
#
# Updated by: Marty Schoch <marty.schoch@gmail.com>
#
# This script uses the unicode spec to generate a Ragel state machine
# that recognizes unicode alphanumeric characters. It generates 5
# character classes: uupper, ulower, ualpha, udigit, and ualnum.
# Currently supported encodings are UTF-8 [default] and UCS-4.
#
# Usage: unicode2ragel.rb [options]
# -e, --encoding [ucs4 | utf8] Data encoding
# -h, --help Show this message
#
# This script was originally written as part of the Ferret search
# engine library.
#
# Author: Rakan El-Khalil <rakan@well.com>
require 'optparse'
require 'open-uri'
ENCODINGS = [ :utf8, :ucs4 ]
ALPHTYPES = { :utf8 => "byte", :ucs4 => "rune" }
DEFAULT_CHART_URL = "http://www.unicode.org/Public/5.1.0/ucd/DerivedCoreProperties.txt"
DEFAULT_MACHINE_NAME= "WChar"
###
# Display vars & default option
TOTAL_WIDTH = 80
RANGE_WIDTH = 23
@encoding = :utf8
@chart_url = DEFAULT_CHART_URL
machine_name = DEFAULT_MACHINE_NAME
properties = []
@output = $stdout
###
# Option parsing
cli_opts = OptionParser.new do |opts|
opts.on("-e", "--encoding [ucs4 | utf8]", "Data encoding") do |o|
@encoding = o.downcase.to_sym
end
opts.on("-h", "--help", "Show this message") do
puts opts
exit
end
opts.on("-u", "--url URL", "URL to process") do |o|
@chart_url = o
end
opts.on("-m", "--machine MACHINE_NAME", "Machine name") do |o|
machine_name = o
end
opts.on("-p", "--properties x,y,z", Array, "Properties to add to machine") do |o|
properties = o
end
opts.on("-o", "--output FILE", "output file") do |o|
@output = File.new(o, "w+")
end
end
cli_opts.parse(ARGV)
unless ENCODINGS.member? @encoding
puts "Invalid encoding: #{@encoding}"
puts cli_opts
exit
end
##
# Downloads the document at url and yields every alpha line's hex
# range and description.
def each_alpha( url, property )
open( url ) do |file|
file.each_line do |line|
next if line =~ /^#/;
next if line !~ /; #{property} #/;
range, description = line.split(/;/)
range.strip!
description.gsub!(/.*#/, '').strip!
if range =~ /\.\./
start, stop = range.split '..'
else start = stop = range
end
yield start.hex .. stop.hex, description
end
end
end
###
# Formats to hex at minimum width
def to_hex( n )
r = "%0X" % n
r = "0#{r}" unless (r.length % 2).zero?
r
end
###
# UCS4 is just a straight hex conversion of the unicode codepoint.
def to_ucs4( range )
rangestr = "0x" + to_hex(range.begin)
rangestr << "..0x" + to_hex(range.end) if range.begin != range.end
[ rangestr ]
end
##
# 0x00 - 0x7f -> 0zzzzzzz[7]
# 0x80 - 0x7ff -> 110yyyyy[5] 10zzzzzz[6]
# 0x800 - 0xffff -> 1110xxxx[4] 10yyyyyy[6] 10zzzzzz[6]
# 0x010000 - 0x10ffff -> 11110www[3] 10xxxxxx[6] 10yyyyyy[6] 10zzzzzz[6]
UTF8_BOUNDARIES = [0x7f, 0x7ff, 0xffff, 0x10ffff]
def to_utf8_enc( n )
r = 0
if n <= 0x7f
r = n
elsif n <= 0x7ff
y = 0xc0 | (n >> 6)
z = 0x80 | (n & 0x3f)
r = y << 8 | z
elsif n <= 0xffff
x = 0xe0 | (n >> 12)
y = 0x80 | (n >> 6) & 0x3f
z = 0x80 | n & 0x3f
r = x << 16 | y << 8 | z
elsif n <= 0x10ffff
w = 0xf0 | (n >> 18)
x = 0x80 | (n >> 12) & 0x3f
y = 0x80 | (n >> 6) & 0x3f
z = 0x80 | n & 0x3f
r = w << 24 | x << 16 | y << 8 | z
end
to_hex(r)
end
def from_utf8_enc( n )
n = n.hex
r = 0
if n <= 0x7f
r = n
elsif n <= 0xdfff
y = (n >> 8) & 0x1f
z = n & 0x3f
r = y << 6 | z
elsif n <= 0xefffff
x = (n >> 16) & 0x0f
y = (n >> 8) & 0x3f
z = n & 0x3f
r = x << 10 | y << 6 | z
elsif n <= 0xf7ffffff
w = (n >> 24) & 0x07
x = (n >> 16) & 0x3f
y = (n >> 8) & 0x3f
z = n & 0x3f
r = w << 18 | x << 12 | y << 6 | z
end
r
end
###
# Given a range, splits it up into ranges that can be continuously
# encoded into utf8. Eg: 0x00 .. 0xff => [0x00..0x7f, 0x80..0xff]
# This is not strictly needed since the current [5.1] unicode standard
# doesn't have ranges that straddle utf8 boundaries. This is included
# for completeness as there is no telling if that will ever change.
def utf8_ranges( range )
ranges = []
UTF8_BOUNDARIES.each do |max|
if range.begin <= max
if range.end <= max
ranges << range
return ranges
end
ranges << (range.begin .. max)
range = (max + 1) .. range.end
end
end
ranges
end
def build_range( start, stop )
size = start.size/2
left = size - 1
return [""] if size < 1
a = start[0..1]
b = stop[0..1]
###
# Shared prefix
if a == b
return build_range(start[2..-1], stop[2..-1]).map do |elt|
"0x#{a} " + elt
end
end
###
# Unshared prefix, end of run
return ["0x#{a}..0x#{b} "] if left.zero?
###
# Unshared prefix, not end of run
# Range can be 0x123456..0x56789A
# Which is equivalent to:
# 0x123456 .. 0x12FFFF
# 0x130000 .. 0x55FFFF
# 0x560000 .. 0x56789A
ret = []
ret << build_range(start, a + "FF" * left)
###
# Only generate middle range if need be.
if a.hex+1 != b.hex
max = to_hex(b.hex - 1)
max = "FF" if b == "FF"
ret << "0x#{to_hex(a.hex+1)}..0x#{max} " + "0x00..0xFF " * left
end
###
# Don't generate last range if it is covered by first range
ret << build_range(b + "00" * left, stop) unless b == "FF"
ret.flatten!
end
def to_utf8( range )
utf8_ranges( range ).map do |r|
begin_enc = to_utf8_enc(r.begin)
end_enc = to_utf8_enc(r.end)
build_range begin_enc, end_enc
end.flatten!
end
##
# Perform a 3-way comparison of the number of codepoints advertised by
# the unicode spec for the given range, the originally parsed range,
# and the resulting utf8 encoded range.
def count_codepoints( code )
code.split(' ').inject(1) do |acc, elt|
if elt =~ /0x(.+)\.\.0x(.+)/
if @encoding == :utf8
acc * (from_utf8_enc($2) - from_utf8_enc($1) + 1)
else
acc * ($2.hex - $1.hex + 1)
end
else
acc
end
end
end
def is_valid?( range, desc, codes )
spec_count = 1
spec_count = $1.to_i if desc =~ /\[(\d+)\]/
range_count = range.end - range.begin + 1
sum = codes.inject(0) { |acc, elt| acc + count_codepoints(elt) }
sum == spec_count and sum == range_count
end
##
# Generate the state maching to stdout
def generate_machine( name, property )
pipe = " "
@output.puts " #{name} = "
each_alpha( @chart_url, property ) do |range, desc|
codes = (@encoding == :ucs4) ? to_ucs4(range) : to_utf8(range)
#raise "Invalid encoding of range #{range}: #{codes.inspect}" unless
# is_valid? range, desc, codes
range_width = codes.map { |a| a.size }.max
range_width = RANGE_WIDTH if range_width < RANGE_WIDTH
desc_width = TOTAL_WIDTH - RANGE_WIDTH - 11
desc_width -= (range_width - RANGE_WIDTH) if range_width > RANGE_WIDTH
if desc.size > desc_width
desc = desc[0..desc_width - 4] + "..."
end
codes.each_with_index do |r, idx|
desc = "" unless idx.zero?
code = "%-#{range_width}s" % r
@output.puts " #{pipe} #{code} ##{desc}"
pipe = "|"
end
end
@output.puts " ;"
@output.puts ""
end
@output.puts <<EOF
# The following Ragel file was autogenerated with #{$0}
# from: #{@chart_url}
#
# It defines #{properties}.
#
# To use this, make sure that your alphtype is set to #{ALPHTYPES[@encoding]},
# and that your input is in #{@encoding}.
%%{
machine #{machine_name};
EOF
properties.each { |x| generate_machine( x, x ) }
@output.puts <<EOF
}%%
EOF

View File

@ -0,0 +1,19 @@
package textseg
import "unicode/utf8"
// ScanGraphemeClusters is a split function for bufio.Scanner that splits
// on UTF8 sequence boundaries.
//
// This is included largely for completeness, since this behavior is already
// built in to Go when ranging over a string.
func ScanUTF8Sequences(data []byte, atEOF bool) (int, []byte, error) {
if len(data) == 0 {
return 0, nil, nil
}
r, seqLen := utf8.DecodeRune(data)
if r == utf8.RuneError && !atEOF {
return 0, nil, nil
}
return seqLen, data[:seqLen], nil
}

89
vendor/github.com/google/go-cmp/cmp/cmpopts/equate.go generated vendored Normal file
View File

@ -0,0 +1,89 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
// Package cmpopts provides common options for the cmp package.
package cmpopts
import (
"math"
"reflect"
"github.com/google/go-cmp/cmp"
)
func equateAlways(_, _ interface{}) bool { return true }
// EquateEmpty returns a Comparer option that determines all maps and slices
// with a length of zero to be equal, regardless of whether they are nil.
//
// EquateEmpty can be used in conjunction with SortSlices and SortMaps.
func EquateEmpty() cmp.Option {
return cmp.FilterValues(isEmpty, cmp.Comparer(equateAlways))
}
func isEmpty(x, y interface{}) bool {
vx, vy := reflect.ValueOf(x), reflect.ValueOf(y)
return (x != nil && y != nil && vx.Type() == vy.Type()) &&
(vx.Kind() == reflect.Slice || vx.Kind() == reflect.Map) &&
(vx.Len() == 0 && vy.Len() == 0)
}
// EquateApprox returns a Comparer option that determines float32 or float64
// values to be equal if they are within a relative fraction or absolute margin.
// This option is not used when either x or y is NaN or infinite.
//
// The fraction determines that the difference of two values must be within the
// smaller fraction of the two values, while the margin determines that the two
// values must be within some absolute margin.
// To express only a fraction or only a margin, use 0 for the other parameter.
// The fraction and margin must be non-negative.
//
// The mathematical expression used is equivalent to:
// |x-y| ≤ max(fraction*min(|x|, |y|), margin)
//
// EquateApprox can be used in conjunction with EquateNaNs.
func EquateApprox(fraction, margin float64) cmp.Option {
if margin < 0 || fraction < 0 || math.IsNaN(margin) || math.IsNaN(fraction) {
panic("margin or fraction must be a non-negative number")
}
a := approximator{fraction, margin}
return cmp.Options{
cmp.FilterValues(areRealF64s, cmp.Comparer(a.compareF64)),
cmp.FilterValues(areRealF32s, cmp.Comparer(a.compareF32)),
}
}
type approximator struct{ frac, marg float64 }
func areRealF64s(x, y float64) bool {
return !math.IsNaN(x) && !math.IsNaN(y) && !math.IsInf(x, 0) && !math.IsInf(y, 0)
}
func areRealF32s(x, y float32) bool {
return areRealF64s(float64(x), float64(y))
}
func (a approximator) compareF64(x, y float64) bool {
relMarg := a.frac * math.Min(math.Abs(x), math.Abs(y))
return math.Abs(x-y) <= math.Max(a.marg, relMarg)
}
func (a approximator) compareF32(x, y float32) bool {
return a.compareF64(float64(x), float64(y))
}
// EquateNaNs returns a Comparer option that determines float32 and float64
// NaN values to be equal.
//
// EquateNaNs can be used in conjunction with EquateApprox.
func EquateNaNs() cmp.Option {
return cmp.Options{
cmp.FilterValues(areNaNsF64s, cmp.Comparer(equateAlways)),
cmp.FilterValues(areNaNsF32s, cmp.Comparer(equateAlways)),
}
}
func areNaNsF64s(x, y float64) bool {
return math.IsNaN(x) && math.IsNaN(y)
}
func areNaNsF32s(x, y float32) bool {
return areNaNsF64s(float64(x), float64(y))
}

207
vendor/github.com/google/go-cmp/cmp/cmpopts/ignore.go generated vendored Normal file
View File

@ -0,0 +1,207 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmpopts
import (
"fmt"
"reflect"
"unicode"
"unicode/utf8"
"github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/internal/function"
)
// IgnoreFields returns an Option that ignores exported fields of the
// given names on a single struct type.
// The struct type is specified by passing in a value of that type.
//
// The name may be a dot-delimited string (e.g., "Foo.Bar") to ignore a
// specific sub-field that is embedded or nested within the parent struct.
//
// This does not handle unexported fields; use IgnoreUnexported instead.
func IgnoreFields(typ interface{}, names ...string) cmp.Option {
sf := newStructFilter(typ, names...)
return cmp.FilterPath(sf.filter, cmp.Ignore())
}
// IgnoreTypes returns an Option that ignores all values assignable to
// certain types, which are specified by passing in a value of each type.
func IgnoreTypes(typs ...interface{}) cmp.Option {
tf := newTypeFilter(typs...)
return cmp.FilterPath(tf.filter, cmp.Ignore())
}
type typeFilter []reflect.Type
func newTypeFilter(typs ...interface{}) (tf typeFilter) {
for _, typ := range typs {
t := reflect.TypeOf(typ)
if t == nil {
// This occurs if someone tries to pass in sync.Locker(nil)
panic("cannot determine type; consider using IgnoreInterfaces")
}
tf = append(tf, t)
}
return tf
}
func (tf typeFilter) filter(p cmp.Path) bool {
if len(p) < 1 {
return false
}
t := p.Last().Type()
for _, ti := range tf {
if t.AssignableTo(ti) {
return true
}
}
return false
}
// IgnoreInterfaces returns an Option that ignores all values or references of
// values assignable to certain interface types. These interfaces are specified
// by passing in an anonymous struct with the interface types embedded in it.
// For example, to ignore sync.Locker, pass in struct{sync.Locker}{}.
func IgnoreInterfaces(ifaces interface{}) cmp.Option {
tf := newIfaceFilter(ifaces)
return cmp.FilterPath(tf.filter, cmp.Ignore())
}
type ifaceFilter []reflect.Type
func newIfaceFilter(ifaces interface{}) (tf ifaceFilter) {
t := reflect.TypeOf(ifaces)
if ifaces == nil || t.Name() != "" || t.Kind() != reflect.Struct {
panic("input must be an anonymous struct")
}
for i := 0; i < t.NumField(); i++ {
fi := t.Field(i)
switch {
case !fi.Anonymous:
panic("struct cannot have named fields")
case fi.Type.Kind() != reflect.Interface:
panic("embedded field must be an interface type")
case fi.Type.NumMethod() == 0:
// This matches everything; why would you ever want this?
panic("cannot ignore empty interface")
default:
tf = append(tf, fi.Type)
}
}
return tf
}
func (tf ifaceFilter) filter(p cmp.Path) bool {
if len(p) < 1 {
return false
}
t := p.Last().Type()
for _, ti := range tf {
if t.AssignableTo(ti) {
return true
}
if t.Kind() != reflect.Ptr && reflect.PtrTo(t).AssignableTo(ti) {
return true
}
}
return false
}
// IgnoreUnexported returns an Option that only ignores the immediate unexported
// fields of a struct, including anonymous fields of unexported types.
// In particular, unexported fields within the struct's exported fields
// of struct types, including anonymous fields, will not be ignored unless the
// type of the field itself is also passed to IgnoreUnexported.
//
// Avoid ignoring unexported fields of a type which you do not control (i.e. a
// type from another repository), as changes to the implementation of such types
// may change how the comparison behaves. Prefer a custom Comparer instead.
func IgnoreUnexported(typs ...interface{}) cmp.Option {
ux := newUnexportedFilter(typs...)
return cmp.FilterPath(ux.filter, cmp.Ignore())
}
type unexportedFilter struct{ m map[reflect.Type]bool }
func newUnexportedFilter(typs ...interface{}) unexportedFilter {
ux := unexportedFilter{m: make(map[reflect.Type]bool)}
for _, typ := range typs {
t := reflect.TypeOf(typ)
if t == nil || t.Kind() != reflect.Struct {
panic(fmt.Sprintf("invalid struct type: %T", typ))
}
ux.m[t] = true
}
return ux
}
func (xf unexportedFilter) filter(p cmp.Path) bool {
sf, ok := p.Index(-1).(cmp.StructField)
if !ok {
return false
}
return xf.m[p.Index(-2).Type()] && !isExported(sf.Name())
}
// isExported reports whether the identifier is exported.
func isExported(id string) bool {
r, _ := utf8.DecodeRuneInString(id)
return unicode.IsUpper(r)
}
// IgnoreSliceElements returns an Option that ignores elements of []V.
// The discard function must be of the form "func(T) bool" which is used to
// ignore slice elements of type V, where V is assignable to T.
// Elements are ignored if the function reports true.
func IgnoreSliceElements(discardFunc interface{}) cmp.Option {
vf := reflect.ValueOf(discardFunc)
if !function.IsType(vf.Type(), function.ValuePredicate) || vf.IsNil() {
panic(fmt.Sprintf("invalid discard function: %T", discardFunc))
}
return cmp.FilterPath(func(p cmp.Path) bool {
si, ok := p.Index(-1).(cmp.SliceIndex)
if !ok {
return false
}
if !si.Type().AssignableTo(vf.Type().In(0)) {
return false
}
vx, vy := si.Values()
if vx.IsValid() && vf.Call([]reflect.Value{vx})[0].Bool() {
return true
}
if vy.IsValid() && vf.Call([]reflect.Value{vy})[0].Bool() {
return true
}
return false
}, cmp.Ignore())
}
// IgnoreMapEntries returns an Option that ignores entries of map[K]V.
// The discard function must be of the form "func(T, R) bool" which is used to
// ignore map entries of type K and V, where K and V are assignable to T and R.
// Entries are ignored if the function reports true.
func IgnoreMapEntries(discardFunc interface{}) cmp.Option {
vf := reflect.ValueOf(discardFunc)
if !function.IsType(vf.Type(), function.KeyValuePredicate) || vf.IsNil() {
panic(fmt.Sprintf("invalid discard function: %T", discardFunc))
}
return cmp.FilterPath(func(p cmp.Path) bool {
mi, ok := p.Index(-1).(cmp.MapIndex)
if !ok {
return false
}
if !mi.Key().Type().AssignableTo(vf.Type().In(0)) || !mi.Type().AssignableTo(vf.Type().In(1)) {
return false
}
k := mi.Key()
vx, vy := mi.Values()
if vx.IsValid() && vf.Call([]reflect.Value{k, vx})[0].Bool() {
return true
}
if vy.IsValid() && vf.Call([]reflect.Value{k, vy})[0].Bool() {
return true
}
return false
}, cmp.Ignore())
}

147
vendor/github.com/google/go-cmp/cmp/cmpopts/sort.go generated vendored Normal file
View File

@ -0,0 +1,147 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmpopts
import (
"fmt"
"reflect"
"sort"
"github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/internal/function"
)
// SortSlices returns a Transformer option that sorts all []V.
// The less function must be of the form "func(T, T) bool" which is used to
// sort any slice with element type V that is assignable to T.
//
// The less function must be:
// • Deterministic: less(x, y) == less(x, y)
// • Irreflexive: !less(x, x)
// • Transitive: if !less(x, y) and !less(y, z), then !less(x, z)
//
// The less function does not have to be "total". That is, if !less(x, y) and
// !less(y, x) for two elements x and y, their relative order is maintained.
//
// SortSlices can be used in conjunction with EquateEmpty.
func SortSlices(lessFunc interface{}) cmp.Option {
vf := reflect.ValueOf(lessFunc)
if !function.IsType(vf.Type(), function.Less) || vf.IsNil() {
panic(fmt.Sprintf("invalid less function: %T", lessFunc))
}
ss := sliceSorter{vf.Type().In(0), vf}
return cmp.FilterValues(ss.filter, cmp.Transformer("cmpopts.SortSlices", ss.sort))
}
type sliceSorter struct {
in reflect.Type // T
fnc reflect.Value // func(T, T) bool
}
func (ss sliceSorter) filter(x, y interface{}) bool {
vx, vy := reflect.ValueOf(x), reflect.ValueOf(y)
if !(x != nil && y != nil && vx.Type() == vy.Type()) ||
!(vx.Kind() == reflect.Slice && vx.Type().Elem().AssignableTo(ss.in)) ||
(vx.Len() <= 1 && vy.Len() <= 1) {
return false
}
// Check whether the slices are already sorted to avoid an infinite
// recursion cycle applying the same transform to itself.
ok1 := sort.SliceIsSorted(x, func(i, j int) bool { return ss.less(vx, i, j) })
ok2 := sort.SliceIsSorted(y, func(i, j int) bool { return ss.less(vy, i, j) })
return !ok1 || !ok2
}
func (ss sliceSorter) sort(x interface{}) interface{} {
src := reflect.ValueOf(x)
dst := reflect.MakeSlice(src.Type(), src.Len(), src.Len())
for i := 0; i < src.Len(); i++ {
dst.Index(i).Set(src.Index(i))
}
sort.SliceStable(dst.Interface(), func(i, j int) bool { return ss.less(dst, i, j) })
ss.checkSort(dst)
return dst.Interface()
}
func (ss sliceSorter) checkSort(v reflect.Value) {
start := -1 // Start of a sequence of equal elements.
for i := 1; i < v.Len(); i++ {
if ss.less(v, i-1, i) {
// Check that first and last elements in v[start:i] are equal.
if start >= 0 && (ss.less(v, start, i-1) || ss.less(v, i-1, start)) {
panic(fmt.Sprintf("incomparable values detected: want equal elements: %v", v.Slice(start, i)))
}
start = -1
} else if start == -1 {
start = i
}
}
}
func (ss sliceSorter) less(v reflect.Value, i, j int) bool {
vx, vy := v.Index(i), v.Index(j)
return ss.fnc.Call([]reflect.Value{vx, vy})[0].Bool()
}
// SortMaps returns a Transformer option that flattens map[K]V types to be a
// sorted []struct{K, V}. The less function must be of the form
// "func(T, T) bool" which is used to sort any map with key K that is
// assignable to T.
//
// Flattening the map into a slice has the property that cmp.Equal is able to
// use Comparers on K or the K.Equal method if it exists.
//
// The less function must be:
// • Deterministic: less(x, y) == less(x, y)
// • Irreflexive: !less(x, x)
// • Transitive: if !less(x, y) and !less(y, z), then !less(x, z)
// • Total: if x != y, then either less(x, y) or less(y, x)
//
// SortMaps can be used in conjunction with EquateEmpty.
func SortMaps(lessFunc interface{}) cmp.Option {
vf := reflect.ValueOf(lessFunc)
if !function.IsType(vf.Type(), function.Less) || vf.IsNil() {
panic(fmt.Sprintf("invalid less function: %T", lessFunc))
}
ms := mapSorter{vf.Type().In(0), vf}
return cmp.FilterValues(ms.filter, cmp.Transformer("cmpopts.SortMaps", ms.sort))
}
type mapSorter struct {
in reflect.Type // T
fnc reflect.Value // func(T, T) bool
}
func (ms mapSorter) filter(x, y interface{}) bool {
vx, vy := reflect.ValueOf(x), reflect.ValueOf(y)
return (x != nil && y != nil && vx.Type() == vy.Type()) &&
(vx.Kind() == reflect.Map && vx.Type().Key().AssignableTo(ms.in)) &&
(vx.Len() != 0 || vy.Len() != 0)
}
func (ms mapSorter) sort(x interface{}) interface{} {
src := reflect.ValueOf(x)
outType := reflect.StructOf([]reflect.StructField{
{Name: "K", Type: src.Type().Key()},
{Name: "V", Type: src.Type().Elem()},
})
dst := reflect.MakeSlice(reflect.SliceOf(outType), src.Len(), src.Len())
for i, k := range src.MapKeys() {
v := reflect.New(outType).Elem()
v.Field(0).Set(k)
v.Field(1).Set(src.MapIndex(k))
dst.Index(i).Set(v)
}
sort.Slice(dst.Interface(), func(i, j int) bool { return ms.less(dst, i, j) })
ms.checkSort(dst)
return dst.Interface()
}
func (ms mapSorter) checkSort(v reflect.Value) {
for i := 1; i < v.Len(); i++ {
if !ms.less(v, i-1, i) {
panic(fmt.Sprintf("partial order detected: want %v < %v", v.Index(i-1), v.Index(i)))
}
}
}
func (ms mapSorter) less(v reflect.Value, i, j int) bool {
vx, vy := v.Index(i).Field(0), v.Index(j).Field(0)
return ms.fnc.Call([]reflect.Value{vx, vy})[0].Bool()
}

View File

@ -0,0 +1,182 @@
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmpopts
import (
"fmt"
"reflect"
"strings"
"github.com/google/go-cmp/cmp"
)
// filterField returns a new Option where opt is only evaluated on paths that
// include a specific exported field on a single struct type.
// The struct type is specified by passing in a value of that type.
//
// The name may be a dot-delimited string (e.g., "Foo.Bar") to select a
// specific sub-field that is embedded or nested within the parent struct.
func filterField(typ interface{}, name string, opt cmp.Option) cmp.Option {
// TODO: This is currently unexported over concerns of how helper filters
// can be composed together easily.
// TODO: Add tests for FilterField.
sf := newStructFilter(typ, name)
return cmp.FilterPath(sf.filter, opt)
}
type structFilter struct {
t reflect.Type // The root struct type to match on
ft fieldTree // Tree of fields to match on
}
func newStructFilter(typ interface{}, names ...string) structFilter {
// TODO: Perhaps allow * as a special identifier to allow ignoring any
// number of path steps until the next field match?
// This could be useful when a concrete struct gets transformed into
// an anonymous struct where it is not possible to specify that by type,
// but the transformer happens to provide guarantees about the names of
// the transformed fields.
t := reflect.TypeOf(typ)
if t == nil || t.Kind() != reflect.Struct {
panic(fmt.Sprintf("%T must be a struct", typ))
}
var ft fieldTree
for _, name := range names {
cname, err := canonicalName(t, name)
if err != nil {
panic(fmt.Sprintf("%s: %v", strings.Join(cname, "."), err))
}
ft.insert(cname)
}
return structFilter{t, ft}
}
func (sf structFilter) filter(p cmp.Path) bool {
for i, ps := range p {
if ps.Type().AssignableTo(sf.t) && sf.ft.matchPrefix(p[i+1:]) {
return true
}
}
return false
}
// fieldTree represents a set of dot-separated identifiers.
//
// For example, inserting the following selectors:
// Foo
// Foo.Bar.Baz
// Foo.Buzz
// Nuka.Cola.Quantum
//
// Results in a tree of the form:
// {sub: {
// "Foo": {ok: true, sub: {
// "Bar": {sub: {
// "Baz": {ok: true},
// }},
// "Buzz": {ok: true},
// }},
// "Nuka": {sub: {
// "Cola": {sub: {
// "Quantum": {ok: true},
// }},
// }},
// }}
type fieldTree struct {
ok bool // Whether this is a specified node
sub map[string]fieldTree // The sub-tree of fields under this node
}
// insert inserts a sequence of field accesses into the tree.
func (ft *fieldTree) insert(cname []string) {
if ft.sub == nil {
ft.sub = make(map[string]fieldTree)
}
if len(cname) == 0 {
ft.ok = true
return
}
sub := ft.sub[cname[0]]
sub.insert(cname[1:])
ft.sub[cname[0]] = sub
}
// matchPrefix reports whether any selector in the fieldTree matches
// the start of path p.
func (ft fieldTree) matchPrefix(p cmp.Path) bool {
for _, ps := range p {
switch ps := ps.(type) {
case cmp.StructField:
ft = ft.sub[ps.Name()]
if ft.ok {
return true
}
if len(ft.sub) == 0 {
return false
}
case cmp.Indirect:
default:
return false
}
}
return false
}
// canonicalName returns a list of identifiers where any struct field access
// through an embedded field is expanded to include the names of the embedded
// types themselves.
//
// For example, suppose field "Foo" is not directly in the parent struct,
// but actually from an embedded struct of type "Bar". Then, the canonical name
// of "Foo" is actually "Bar.Foo".
//
// Suppose field "Foo" is not directly in the parent struct, but actually
// a field in two different embedded structs of types "Bar" and "Baz".
// Then the selector "Foo" causes a panic since it is ambiguous which one it
// refers to. The user must specify either "Bar.Foo" or "Baz.Foo".
func canonicalName(t reflect.Type, sel string) ([]string, error) {
var name string
sel = strings.TrimPrefix(sel, ".")
if sel == "" {
return nil, fmt.Errorf("name must not be empty")
}
if i := strings.IndexByte(sel, '.'); i < 0 {
name, sel = sel, ""
} else {
name, sel = sel[:i], sel[i:]
}
// Type must be a struct or pointer to struct.
if t.Kind() == reflect.Ptr {
t = t.Elem()
}
if t.Kind() != reflect.Struct {
return nil, fmt.Errorf("%v must be a struct", t)
}
// Find the canonical name for this current field name.
// If the field exists in an embedded struct, then it will be expanded.
if !isExported(name) {
// Disallow unexported fields:
// * To discourage people from actually touching unexported fields
// * FieldByName is buggy (https://golang.org/issue/4876)
return []string{name}, fmt.Errorf("name must be exported")
}
sf, ok := t.FieldByName(name)
if !ok {
return []string{name}, fmt.Errorf("does not exist")
}
var ss []string
for i := range sf.Index {
ss = append(ss, t.FieldByIndex(sf.Index[:i+1]).Name)
}
if sel == "" {
return ss, nil
}
ssPost, err := canonicalName(sf.Type, sel)
return append(ss, ssPost...), err
}

35
vendor/github.com/google/go-cmp/cmp/cmpopts/xform.go generated vendored Normal file
View File

@ -0,0 +1,35 @@
// Copyright 2018, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE.md file.
package cmpopts
import (
"github.com/google/go-cmp/cmp"
)
type xformFilter struct{ xform cmp.Option }
func (xf xformFilter) filter(p cmp.Path) bool {
for _, ps := range p {
if t, ok := ps.(cmp.Transform); ok && t.Option() == xf.xform {
return false
}
}
return true
}
// AcyclicTransformer returns a Transformer with a filter applied that ensures
// that the transformer cannot be recursively applied upon its own output.
//
// An example use case is a transformer that splits a string by lines:
// AcyclicTransformer("SplitLines", func(s string) []string{
// return strings.Split(s, "\n")
// })
//
// Had this been an unfiltered Transformer instead, this would result in an
// infinite cycle converting a string to []string to [][]string and so on.
func AcyclicTransformer(name string, xformFunc interface{}) cmp.Option {
xf := xformFilter{cmp.Transformer(name, xformFunc)}
return cmp.FilterPath(xf.filter, xf.xform)
}

23
vendor/github.com/hashicorp/hcl/v2/CHANGELOG.md generated vendored Normal file
View File

@ -0,0 +1,23 @@
# HCL Changelog
## v2.0.0 (Oct 2, 2019)
Initial release of HCL 2, which is a new implementating combining the HCL 1
language with the HIL expression language to produce a single language
supporting both nested configuration structures and arbitrary expressions.
HCL 2 has an entirely new Go library API and so is _not_ a drop-in upgrade
relative to HCL 1. It's possible to import both versions of HCL into a single
program using Go's _semantic import versioning_ mechanism:
```
import (
hcl1 "github.com/hashicorp/hcl"
hcl2 "github.com/hashicorp/hcl/v2"
)
```
---
Prior to v2.0.0 there was not a curated changelog. Consult the git history
from the latest v1.x.x tag for information on the changes to HCL 1.

353
vendor/github.com/hashicorp/hcl/v2/LICENSE generated vendored Normal file
View File

@ -0,0 +1,353 @@
Mozilla Public License, version 2.0
1. Definitions
1.1. “Contributor”
means each individual or legal entity that creates, contributes to the
creation of, or owns Covered Software.
1.2. “Contributor Version”
means the combination of the Contributions of others (if any) used by a
Contributor and that particular Contributors Contribution.
1.3. “Contribution”
means Covered Software of a particular Contributor.
1.4. “Covered Software”
means Source Code Form to which the initial Contributor has attached the
notice in Exhibit A, the Executable Form of such Source Code Form, and
Modifications of such Source Code Form, in each case including portions
thereof.
1.5. “Incompatible With Secondary Licenses”
means
a. that the initial Contributor has attached the notice described in
Exhibit B to the Covered Software; or
b. that the Covered Software was made available under the terms of version
1.1 or earlier of the License, but not also under the terms of a
Secondary License.
1.6. “Executable Form”
means any form of the work other than Source Code Form.
1.7. “Larger Work”
means a work that combines Covered Software with other material, in a separate
file or files, that is not Covered Software.
1.8. “License”
means this document.
1.9. “Licensable”
means having the right to grant, to the maximum extent possible, whether at the
time of the initial grant or subsequently, any and all of the rights conveyed by
this License.
1.10. “Modifications”
means any of the following:
a. any file in Source Code Form that results from an addition to, deletion
from, or modification of the contents of Covered Software; or
b. any new file in Source Code Form that contains any Covered Software.
1.11. “Patent Claims” of a Contributor
means any patent claim(s), including without limitation, method, process,
and apparatus claims, in any patent Licensable by such Contributor that
would be infringed, but for the grant of the License, by the making,
using, selling, offering for sale, having made, import, or transfer of
either its Contributions or its Contributor Version.
1.12. “Secondary License”
means either the GNU General Public License, Version 2.0, the GNU Lesser
General Public License, Version 2.1, the GNU Affero General Public
License, Version 3.0, or any later versions of those licenses.
1.13. “Source Code Form”
means the form of the work preferred for making modifications.
1.14. “You” (or “Your”)
means an individual or a legal entity exercising rights under this
License. For legal entities, “You” includes any entity that controls, is
controlled by, or is under common control with You. For purposes of this
definition, “control” means (a) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or
otherwise, or (b) ownership of more than fifty percent (50%) of the
outstanding shares or beneficial ownership of such entity.
2. License Grants and Conditions
2.1. Grants
Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
a. under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or as
part of a Larger Work; and
b. under Patent Claims of such Contributor to make, use, sell, offer for
sale, have made, import, and otherwise transfer either its Contributions
or its Contributor Version.
2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution become
effective for each Contribution on the date the Contributor first distributes
such Contribution.
2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under this
License. No additional rights or licenses will be implied from the distribution
or licensing of Covered Software under this License. Notwithstanding Section
2.1(b) above, no patent license is granted by a Contributor:
a. for any code that a Contributor has removed from Covered Software; or
b. for infringements caused by: (i) Your and any other third partys
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or
c. under Patent Claims infringed by Covered Software in the absence of its
Contributions.
This License does not grant any rights in the trademarks, service marks, or
logos of any Contributor (except as may be necessary to comply with the
notice requirements in Section 3.4).
2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this License
(see Section 10.2) or under the terms of a Secondary License (if permitted
under the terms of Section 3.3).
2.5. Representation
Each Contributor represents that the Contributor believes its Contributions
are its original creation(s) or it has sufficient rights to grant the
rights to its Contributions conveyed by this License.
2.6. Fair Use
This License is not intended to limit any rights You have under applicable
copyright doctrines of fair use, fair dealing, or other equivalents.
2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in
Section 2.1.
3. Responsibilities
3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under the
terms of this License. You must inform recipients that the Source Code Form
of the Covered Software is governed by the terms of this License, and how
they can obtain a copy of this License. You may not attempt to alter or
restrict the recipients rights in the Source Code Form.
3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:
a. such Covered Software must also be made available in Source Code Form,
as described in Section 3.1, and You must inform recipients of the
Executable Form how they can obtain a copy of such Source Code Form by
reasonable means in a timely manner, at a charge no more than the cost
of distribution to the recipient; and
b. You may distribute such Executable Form under the terms of this License,
or sublicense it under different terms, provided that the license for
the Executable Form does not attempt to limit or alter the recipients
rights in the Source Code Form under this License.
3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for the
Covered Software. If the Larger Work is a combination of Covered Software
with a work governed by one or more Secondary Licenses, and the Covered
Software is not Incompatible With Secondary Licenses, this License permits
You to additionally distribute such Covered Software under the terms of
such Secondary License(s), so that the recipient of the Larger Work may, at
their option, further distribute the Covered Software under the terms of
either this License or such Secondary License(s).
3.4. Notices
You may not remove or alter the substance of any license notices (including
copyright notices, patent notices, disclaimers of warranty, or limitations
of liability) contained within the Source Code Form of the Covered
Software, except that You may alter any license notices to the extent
required to remedy known factual inaccuracies.
3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on behalf
of any Contributor. You must make it absolutely clear that any such
warranty, support, indemnity, or liability obligation is offered by You
alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.
4. Inability to Comply Due to Statute or Regulation
If it is impossible for You to comply with any of the terms of this License
with respect to some or all of the Covered Software due to statute, judicial
order, or regulation then You must: (a) comply with the terms of this License
to the maximum extent possible; and (b) describe the limitations and the code
they affect. Such description must be placed in a text file included with all
distributions of the Covered Software under this License. Except to the
extent prohibited by statute or regulation, such description must be
sufficiently detailed for a recipient of ordinary skill to be able to
understand it.
5. Termination
5.1. The rights granted under this License will terminate automatically if You
fail to comply with any of its terms. However, if You become compliant,
then the rights granted under this License from a particular Contributor
are reinstated (a) provisionally, unless and until such Contributor
explicitly and finally terminates Your grants, and (b) on an ongoing basis,
if such Contributor fails to notify You of the non-compliance by some
reasonable means prior to 60 days after You have come back into compliance.
Moreover, Your grants from a particular Contributor are reinstated on an
ongoing basis if such Contributor notifies You of the non-compliance by
some reasonable means, this is the first time You have received notice of
non-compliance with this License from such Contributor, and You become
compliant prior to 30 days after Your receipt of the notice.
5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions, counter-claims,
and cross-claims) alleging that a Contributor Version directly or
indirectly infringes any patent, then the rights granted to You by any and
all Contributors for the Covered Software under Section 2.1 of this License
shall terminate.
5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user
license agreements (excluding distributors and resellers) which have been
validly granted by You or Your distributors under this License prior to
termination shall survive termination.
6. Disclaimer of Warranty
Covered Software is provided under this License on an “as is” basis, without
warranty of any kind, either expressed, implied, or statutory, including,
without limitation, warranties that the Covered Software is free of defects,
merchantable, fit for a particular purpose or non-infringing. The entire
risk as to the quality and performance of the Covered Software is with You.
Should any Covered Software prove defective in any respect, You (not any
Contributor) assume the cost of any necessary servicing, repair, or
correction. This disclaimer of warranty constitutes an essential part of this
License. No use of any Covered Software is authorized under this License
except under this disclaimer.
7. Limitation of Liability
Under no circumstances and under no legal theory, whether tort (including
negligence), contract, or otherwise, shall any Contributor, or anyone who
distributes Covered Software as permitted above, be liable to You for any
direct, indirect, special, incidental, or consequential damages of any
character including, without limitation, damages for lost profits, loss of
goodwill, work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses, even if such party shall have been
informed of the possibility of such damages. This limitation of liability
shall not apply to liability for death or personal injury resulting from such
partys negligence to the extent applicable law prohibits such limitation.
Some jurisdictions do not allow the exclusion or limitation of incidental or
consequential damages, so this exclusion and limitation may not apply to You.
8. Litigation
Any litigation relating to this License may be brought only in the courts of
a jurisdiction where the defendant maintains its principal place of business
and such litigation shall be governed by laws of that jurisdiction, without
reference to its conflict-of-law provisions. Nothing in this Section shall
prevent a partys ability to bring cross-claims or counter-claims.
9. Miscellaneous
This License represents the complete agreement concerning the subject matter
hereof. If any provision of this License is held to be unenforceable, such
provision shall be reformed only to the extent necessary to make it
enforceable. Any law or regulation which provides that the language of a
contract shall be construed against the drafter shall not be used to construe
this License against a Contributor.
10. Versions of the License
10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version of
the License under which You originally received the Covered Software, or
under the terms of any subsequent version published by the license
steward.
10.3. Modified Versions
If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a modified
version of this License if you rename the license and remove any
references to the name of the license steward (except to note that such
modified license differs from this License).
10.4. Distributing Source Code Form that is Incompatible With Secondary Licenses
If You choose to distribute Source Code Form that is Incompatible With
Secondary Licenses under the terms of this version of the License, the
notice described in Exhibit B of this License must be attached.
Exhibit A - Source Code Form License Notice
This Source Code Form is subject to the
terms of the Mozilla Public License, v.
2.0. If a copy of the MPL was not
distributed with this file, You can
obtain one at
http://mozilla.org/MPL/2.0/.
If it is not possible or desirable to put the notice in a particular file, then
You may include the notice in a location (such as a LICENSE file in a relevant
directory) where a recipient would be likely to look for such a notice.
You may add additional accurate notices of copyright ownership.
Exhibit B - “Incompatible With Secondary Licenses” Notice
This Source Code Form is “Incompatible
With Secondary Licenses”, as defined by
the Mozilla Public License, v. 2.0.

204
vendor/github.com/hashicorp/hcl/v2/README.md generated vendored Normal file
View File

@ -0,0 +1,204 @@
# HCL
HCL is a toolkit for creating structured configuration languages that are
both human- and machine-friendly, for use with command-line tools.
Although intended to be generally useful, it is primarily targeted
towards devops tools, servers, etc.
> **NOTE:** This is major version 2 of HCL, whose Go API is incompatible with
> major version 1. Both versions are available for selection in Go Modules
> projects. HCL 2 _cannot_ be imported from Go projects that are not using Go Modules. For more information, see
> [our version selection guide](https://github.com/golang/go/wiki/Version-Selection).
HCL has both a _native syntax_, intended to be pleasant to read and write for
humans, and a JSON-based variant that is easier for machines to generate
and parse.
The HCL native syntax is inspired by [libucl](https://github.com/vstakhov/libucl),
[nginx configuration](http://nginx.org/en/docs/beginners_guide.html#conf_structure),
and others.
It includes an expression syntax that allows basic inline computation and,
with support from the calling application, use of variables and functions
for more dynamic configuration languages.
HCL provides a set of constructs that can be used by a calling application to
construct a configuration language. The application defines which attribute
names and nested block types are expected, and HCL parses the configuration
file, verifies that it conforms to the expected structure, and returns
high-level objects that the application can use for further processing.
```go
package main
import (
"log"
"github.com/hashicorp/hcl/v2/hclsimple"
)
type Config struct {
LogLevel string `hcl:"log_level"`
}
func main() {
var config Config
err := hclsimple.DecodeFile("config.hcl", nil, &config)
if err != nil {
log.Fatalf("Failed to load configuration: %s", err)
}
log.Printf("Configuration is %#v", config)
}
```
A lower-level API is available for applications that need more control over
the parsing, decoding, and evaluation of configuration.
## Why?
Newcomers to HCL often ask: why not JSON, YAML, etc?
Whereas JSON and YAML are formats for serializing data structures, HCL is
a syntax and API specifically designed for building structured configuration
formats.
HCL attempts to strike a compromise between generic serialization formats
such as JSON and configuration formats built around full programming languages
such as Ruby. HCL syntax is designed to be easily read and written by humans,
and allows _declarative_ logic to permit its use in more complex applications.
HCL is intended as a base syntax for configuration formats built
around key-value pairs and hierarchical blocks whose structure is well-defined
by the calling application, and this definition of the configuration structure
allows for better error messages and more convenient definition within the
calling application.
It can't be denied that JSON is very convenient as a _lingua franca_
for interoperability between different pieces of software. Because of this,
HCL defines a common configuration model that can be parsed from either its
native syntax or from a well-defined equivalent JSON structure. This allows
configuration to be provided as a mixture of human-authored configuration
files in the native syntax and machine-generated files in JSON.
## Information Model and Syntax
HCL is built around two primary concepts: _attributes_ and _blocks_. In
native syntax, a configuration file for a hypothetical application might look
something like this:
```hcl
io_mode = "async"
service "http" "web_proxy" {
listen_addr = "127.0.0.1:8080"
process "main" {
command = ["/usr/local/bin/awesome-app", "server"]
}
process "mgmt" {
command = ["/usr/local/bin/awesome-app", "mgmt"]
}
}
```
The JSON equivalent of this configuration is the following:
```json
{
"io_mode": "async",
"service": {
"http": {
"web_proxy": {
"listen_addr": "127.0.0.1:8080",
"process": {
"main": {
"command": ["/usr/local/bin/awesome-app", "server"]
},
"mgmt": {
"command": ["/usr/local/bin/awesome-app", "mgmt"]
},
}
}
}
}
}
```
Regardless of which syntax is used, the API within the calling application
is the same. It can either work directly with the low-level attributes and
blocks, for more advanced use-cases, or it can use one of the _decoder_
packages to declaratively extract into either Go structs or dynamic value
structures.
Attribute values can be expressions as well as just literal values:
```hcl
# Arithmetic with literals and application-provided variables
sum = 1 + addend
# String interpolation and templates
message = "Hello, ${name}!"
# Application-provided functions
shouty_message = upper(message)
```
Although JSON syntax doesn't permit direct use of expressions, the interpolation
syntax allows use of arbitrary expressions within JSON strings:
```json
{
"sum": "${1 + addend}",
"message": "Hello, ${name}!",
"shouty_message": "${upper(message)}"
}
```
For more information, see the detailed specifications:
* [Syntax-agnostic Information Model](hcl/spec.md)
* [HCL Native Syntax](hcl/hclsyntax/spec.md)
* [JSON Representation](hcl/json/spec.md)
## Changes in 2.0
Version 2.0 of HCL combines the features of HCL 1.0 with those of the
interpolation language HIL to produce a single configuration language that
supports arbitrary expressions.
This new version has a completely new parser and Go API, with no direct
migration path. Although the syntax is similar, the implementation takes some
very different approaches to improve on some "rough edges" that existed with
the original implementation and to allow for more robust error handling.
It's possible to import both HCL 1 and HCL 2 into the same program using Go's
_semantic import versioning_ mechanism:
```go
import (
hcl1 "github.com/hashicorp/hcl"
hcl2 "github.com/hashicorp/hcl/v2"
)
```
## Acknowledgements
HCL was heavily inspired by [libucl](https://github.com/vstakhov/libucl),
by [Vsevolod Stakhov](https://github.com/vstakhov).
HCL and HIL originate in [HashiCorp Terraform](https://terraform.io/),
with the original parsers for each written by
[Mitchell Hashimoto](https://github.com/mitchellh).
The original HCL parser was ported to pure Go (from yacc) by
[Fatih Arslan](https://github.com/fatih). The structure-related portions of
the new native syntax parser build on that work.
The original HIL parser was ported to pure Go (from yacc) by
[Martin Atkins](https://github.com/apparentlymart). The expression-related
portions of the new native syntax parser build on that work.
HCL 2, which merged the original HCL and HIL languages into this single new
language, builds on design and prototyping work by
[Martin Atkins](https://github.com/apparentlymart) in
[zcl](https://github.com/zclconf/go-zcl).

143
vendor/github.com/hashicorp/hcl/v2/diagnostic.go generated vendored Normal file
View File

@ -0,0 +1,143 @@
package hcl
import (
"fmt"
)
// DiagnosticSeverity represents the severity of a diagnostic.
type DiagnosticSeverity int
const (
// DiagInvalid is the invalid zero value of DiagnosticSeverity
DiagInvalid DiagnosticSeverity = iota
// DiagError indicates that the problem reported by a diagnostic prevents
// further progress in parsing and/or evaluating the subject.
DiagError
// DiagWarning indicates that the problem reported by a diagnostic warrants
// user attention but does not prevent further progress. It is most
// commonly used for showing deprecation notices.
DiagWarning
)
// Diagnostic represents information to be presented to a user about an
// error or anomoly in parsing or evaluating configuration.
type Diagnostic struct {
Severity DiagnosticSeverity
// Summary and Detail contain the English-language description of the
// problem. Summary is a terse description of the general problem and
// detail is a more elaborate, often-multi-sentence description of
// the probem and what might be done to solve it.
Summary string
Detail string
// Subject and Context are both source ranges relating to the diagnostic.
//
// Subject is a tight range referring to exactly the construct that
// is problematic, while Context is an optional broader range (which should
// fully contain Subject) that ought to be shown around Subject when
// generating isolated source-code snippets in diagnostic messages.
// If Context is nil, the Subject is also the Context.
//
// Some diagnostics have no source ranges at all. If Context is set then
// Subject should always also be set.
Subject *Range
Context *Range
// For diagnostics that occur when evaluating an expression, Expression
// may refer to that expression and EvalContext may point to the
// EvalContext that was active when evaluating it. This may allow for the
// inclusion of additional useful information when rendering a diagnostic
// message to the user.
//
// It is not always possible to select a single EvalContext for a
// diagnostic, and so in some cases this field may be nil even when an
// expression causes a problem.
//
// EvalContexts form a tree, so the given EvalContext may refer to a parent
// which in turn refers to another parent, etc. For a full picture of all
// of the active variables and functions the caller must walk up this
// chain, preferring definitions that are "closer" to the expression in
// case of colliding names.
Expression Expression
EvalContext *EvalContext
}
// Diagnostics is a list of Diagnostic instances.
type Diagnostics []*Diagnostic
// error implementation, so that diagnostics can be returned via APIs
// that normally deal in vanilla Go errors.
//
// This presents only minimal context about the error, for compatibility
// with usual expectations about how errors will present as strings.
func (d *Diagnostic) Error() string {
return fmt.Sprintf("%s: %s; %s", d.Subject, d.Summary, d.Detail)
}
// error implementation, so that sets of diagnostics can be returned via
// APIs that normally deal in vanilla Go errors.
func (d Diagnostics) Error() string {
count := len(d)
switch {
case count == 0:
return "no diagnostics"
case count == 1:
return d[0].Error()
default:
return fmt.Sprintf("%s, and %d other diagnostic(s)", d[0].Error(), count-1)
}
}
// Append appends a new error to a Diagnostics and return the whole Diagnostics.
//
// This is provided as a convenience for returning from a function that
// collects and then returns a set of diagnostics:
//
// return nil, diags.Append(&hcl.Diagnostic{ ... })
//
// Note that this modifies the array underlying the diagnostics slice, so
// must be used carefully within a single codepath. It is incorrect (and rude)
// to extend a diagnostics created by a different subsystem.
func (d Diagnostics) Append(diag *Diagnostic) Diagnostics {
return append(d, diag)
}
// Extend concatenates the given Diagnostics with the receiver and returns
// the whole new Diagnostics.
//
// This is similar to Append but accepts multiple diagnostics to add. It has
// all the same caveats and constraints.
func (d Diagnostics) Extend(diags Diagnostics) Diagnostics {
return append(d, diags...)
}
// HasErrors returns true if the receiver contains any diagnostics of
// severity DiagError.
func (d Diagnostics) HasErrors() bool {
for _, diag := range d {
if diag.Severity == DiagError {
return true
}
}
return false
}
func (d Diagnostics) Errs() []error {
var errs []error
for _, diag := range d {
if diag.Severity == DiagError {
errs = append(errs, diag)
}
}
return errs
}
// A DiagnosticWriter emits diagnostics somehow.
type DiagnosticWriter interface {
WriteDiagnostic(*Diagnostic) error
WriteDiagnostics(Diagnostics) error
}

311
vendor/github.com/hashicorp/hcl/v2/diagnostic_text.go generated vendored Normal file
View File

@ -0,0 +1,311 @@
package hcl
import (
"bufio"
"bytes"
"errors"
"fmt"
"io"
"sort"
wordwrap "github.com/mitchellh/go-wordwrap"
"github.com/zclconf/go-cty/cty"
)
type diagnosticTextWriter struct {
files map[string]*File
wr io.Writer
width uint
color bool
}
// NewDiagnosticTextWriter creates a DiagnosticWriter that writes diagnostics
// to the given writer as formatted text.
//
// It is designed to produce text appropriate to print in a monospaced font
// in a terminal of a particular width, or optionally with no width limit.
//
// The given width may be zero to disable word-wrapping of the detail text
// and truncation of source code snippets.
//
// If color is set to true, the output will include VT100 escape sequences to
// color-code the severity indicators. It is suggested to turn this off if
// the target writer is not a terminal.
func NewDiagnosticTextWriter(wr io.Writer, files map[string]*File, width uint, color bool) DiagnosticWriter {
return &diagnosticTextWriter{
files: files,
wr: wr,
width: width,
color: color,
}
}
func (w *diagnosticTextWriter) WriteDiagnostic(diag *Diagnostic) error {
if diag == nil {
return errors.New("nil diagnostic")
}
var colorCode, highlightCode, resetCode string
if w.color {
switch diag.Severity {
case DiagError:
colorCode = "\x1b[31m"
case DiagWarning:
colorCode = "\x1b[33m"
}
resetCode = "\x1b[0m"
highlightCode = "\x1b[1;4m"
}
var severityStr string
switch diag.Severity {
case DiagError:
severityStr = "Error"
case DiagWarning:
severityStr = "Warning"
default:
// should never happen
severityStr = "???????"
}
fmt.Fprintf(w.wr, "%s%s%s: %s\n\n", colorCode, severityStr, resetCode, diag.Summary)
if diag.Subject != nil {
snipRange := *diag.Subject
highlightRange := snipRange
if diag.Context != nil {
// Show enough of the source code to include both the subject
// and context ranges, which overlap in all reasonable
// situations.
snipRange = RangeOver(snipRange, *diag.Context)
}
// We can't illustrate an empty range, so we'll turn such ranges into
// single-character ranges, which might not be totally valid (may point
// off the end of a line, or off the end of the file) but are good
// enough for the bounds checks we do below.
if snipRange.Empty() {
snipRange.End.Byte++
snipRange.End.Column++
}
if highlightRange.Empty() {
highlightRange.End.Byte++
highlightRange.End.Column++
}
file := w.files[diag.Subject.Filename]
if file == nil || file.Bytes == nil {
fmt.Fprintf(w.wr, " on %s line %d:\n (source code not available)\n\n", diag.Subject.Filename, diag.Subject.Start.Line)
} else {
var contextLine string
if diag.Subject != nil {
contextLine = contextString(file, diag.Subject.Start.Byte)
if contextLine != "" {
contextLine = ", in " + contextLine
}
}
fmt.Fprintf(w.wr, " on %s line %d%s:\n", diag.Subject.Filename, diag.Subject.Start.Line, contextLine)
src := file.Bytes
sc := NewRangeScanner(src, diag.Subject.Filename, bufio.ScanLines)
for sc.Scan() {
lineRange := sc.Range()
if !lineRange.Overlaps(snipRange) {
continue
}
beforeRange, highlightedRange, afterRange := lineRange.PartitionAround(highlightRange)
if highlightedRange.Empty() {
fmt.Fprintf(w.wr, "%4d: %s\n", lineRange.Start.Line, sc.Bytes())
} else {
before := beforeRange.SliceBytes(src)
highlighted := highlightedRange.SliceBytes(src)
after := afterRange.SliceBytes(src)
fmt.Fprintf(
w.wr, "%4d: %s%s%s%s%s\n",
lineRange.Start.Line,
before,
highlightCode, highlighted, resetCode,
after,
)
}
}
w.wr.Write([]byte{'\n'})
}
if diag.Expression != nil && diag.EvalContext != nil {
// We will attempt to render the values for any variables
// referenced in the given expression as additional context, for
// situations where the same expression is evaluated multiple
// times in different scopes.
expr := diag.Expression
ctx := diag.EvalContext
vars := expr.Variables()
stmts := make([]string, 0, len(vars))
seen := make(map[string]struct{}, len(vars))
for _, traversal := range vars {
val, diags := traversal.TraverseAbs(ctx)
if diags.HasErrors() {
// Skip anything that generates errors, since we probably
// already have the same error in our diagnostics set
// already.
continue
}
traversalStr := w.traversalStr(traversal)
if _, exists := seen[traversalStr]; exists {
continue // don't show duplicates when the same variable is referenced multiple times
}
switch {
case !val.IsKnown():
// Can't say anything about this yet, then.
continue
case val.IsNull():
stmts = append(stmts, fmt.Sprintf("%s set to null", traversalStr))
default:
stmts = append(stmts, fmt.Sprintf("%s as %s", traversalStr, w.valueStr(val)))
}
seen[traversalStr] = struct{}{}
}
sort.Strings(stmts) // FIXME: Should maybe use a traversal-aware sort that can sort numeric indexes properly?
last := len(stmts) - 1
for i, stmt := range stmts {
switch i {
case 0:
w.wr.Write([]byte{'w', 'i', 't', 'h', ' '})
default:
w.wr.Write([]byte{' ', ' ', ' ', ' ', ' '})
}
w.wr.Write([]byte(stmt))
switch i {
case last:
w.wr.Write([]byte{'.', '\n', '\n'})
default:
w.wr.Write([]byte{',', '\n'})
}
}
}
}
if diag.Detail != "" {
detail := diag.Detail
if w.width != 0 {
detail = wordwrap.WrapString(detail, w.width)
}
fmt.Fprintf(w.wr, "%s\n\n", detail)
}
return nil
}
func (w *diagnosticTextWriter) WriteDiagnostics(diags Diagnostics) error {
for _, diag := range diags {
err := w.WriteDiagnostic(diag)
if err != nil {
return err
}
}
return nil
}
func (w *diagnosticTextWriter) traversalStr(traversal Traversal) string {
// This is a specialized subset of traversal rendering tailored to
// producing helpful contextual messages in diagnostics. It is not
// comprehensive nor intended to be used for other purposes.
var buf bytes.Buffer
for _, step := range traversal {
switch tStep := step.(type) {
case TraverseRoot:
buf.WriteString(tStep.Name)
case TraverseAttr:
buf.WriteByte('.')
buf.WriteString(tStep.Name)
case TraverseIndex:
buf.WriteByte('[')
if keyTy := tStep.Key.Type(); keyTy.IsPrimitiveType() {
buf.WriteString(w.valueStr(tStep.Key))
} else {
// We'll just use a placeholder for more complex values,
// since otherwise our result could grow ridiculously long.
buf.WriteString("...")
}
buf.WriteByte(']')
}
}
return buf.String()
}
func (w *diagnosticTextWriter) valueStr(val cty.Value) string {
// This is a specialized subset of value rendering tailored to producing
// helpful but concise messages in diagnostics. It is not comprehensive
// nor intended to be used for other purposes.
ty := val.Type()
switch {
case val.IsNull():
return "null"
case !val.IsKnown():
// Should never happen here because we should filter before we get
// in here, but we'll do something reasonable rather than panic.
return "(not yet known)"
case ty == cty.Bool:
if val.True() {
return "true"
}
return "false"
case ty == cty.Number:
bf := val.AsBigFloat()
return bf.Text('g', 10)
case ty == cty.String:
// Go string syntax is not exactly the same as HCL native string syntax,
// but we'll accept the minor edge-cases where this is different here
// for now, just to get something reasonable here.
return fmt.Sprintf("%q", val.AsString())
case ty.IsCollectionType() || ty.IsTupleType():
l := val.LengthInt()
switch l {
case 0:
return "empty " + ty.FriendlyName()
case 1:
return ty.FriendlyName() + " with 1 element"
default:
return fmt.Sprintf("%s with %d elements", ty.FriendlyName(), l)
}
case ty.IsObjectType():
atys := ty.AttributeTypes()
l := len(atys)
switch l {
case 0:
return "object with no attributes"
case 1:
var name string
for k := range atys {
name = k
}
return fmt.Sprintf("object with 1 attribute %q", name)
default:
return fmt.Sprintf("object with %d attributes", l)
}
default:
return ty.FriendlyName()
}
}
func contextString(file *File, offset int) string {
type contextStringer interface {
ContextString(offset int) string
}
if cser, ok := file.Nav.(contextStringer); ok {
return cser.ContextString(offset)
}
return ""
}

24
vendor/github.com/hashicorp/hcl/v2/didyoumean.go generated vendored Normal file
View File

@ -0,0 +1,24 @@
package hcl
import (
"github.com/agext/levenshtein"
)
// nameSuggestion tries to find a name from the given slice of suggested names
// that is close to the given name and returns it if found. If no suggestion
// is close enough, returns the empty string.
//
// The suggestions are tried in order, so earlier suggestions take precedence
// if the given string is similar to two or more suggestions.
//
// This function is intended to be used with a relatively-small number of
// suggestions. It's not optimized for hundreds or thousands of them.
func nameSuggestion(given string, suggestions []string) string {
for _, suggestion := range suggestions {
dist := levenshtein.Distance(given, suggestion, nil)
if dist < 3 { // threshold determined experimentally
return suggestion
}
}
return ""
}

34
vendor/github.com/hashicorp/hcl/v2/doc.go generated vendored Normal file
View File

@ -0,0 +1,34 @@
// Package hcl contains the main modelling types and general utility functions
// for HCL.
//
// For a simple entry point into HCL, see the package in the subdirectory
// "hclsimple", which has an opinionated function Decode that can decode HCL
// configurations in either native HCL syntax or JSON syntax into a Go struct
// type:
//
// package main
//
// import (
// "log"
// "github.com/hashicorp/hcl/v2/hclsimple"
// )
//
// type Config struct {
// LogLevel string `hcl:"log_level"`
// }
//
// func main() {
// var config Config
// err := hclsimple.DecodeFile("config.hcl", nil, &config)
// if err != nil {
// log.Fatalf("Failed to load configuration: %s", err)
// }
// log.Printf("Configuration is %#v", config)
// }
//
// If your application needs more control over the evaluation of the
// configuration, you can use the functions in the subdirectories hclparse,
// gohcl, hcldec, etc. Splitting the handling of configuration into multiple
// phases allows for advanced patterns such as allowing expressions in one
// part of the configuration to refer to data defined in another part.
package hcl

25
vendor/github.com/hashicorp/hcl/v2/eval_context.go generated vendored Normal file
View File

@ -0,0 +1,25 @@
package hcl
import (
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
)
// An EvalContext provides the variables and functions that should be used
// to evaluate an expression.
type EvalContext struct {
Variables map[string]cty.Value
Functions map[string]function.Function
parent *EvalContext
}
// NewChild returns a new EvalContext that is a child of the receiver.
func (ctx *EvalContext) NewChild() *EvalContext {
return &EvalContext{parent: ctx}
}
// Parent returns the parent of the receiver, or nil if the receiver has
// no parent.
func (ctx *EvalContext) Parent() *EvalContext {
return ctx.parent
}

46
vendor/github.com/hashicorp/hcl/v2/expr_call.go generated vendored Normal file
View File

@ -0,0 +1,46 @@
package hcl
// ExprCall tests if the given expression is a function call and,
// if so, extracts the function name and the expressions that represent
// the arguments. If the given expression is not statically a function call,
// error diagnostics are returned.
//
// A particular Expression implementation can support this function by
// offering a method called ExprCall that takes no arguments and returns
// *StaticCall. This method should return nil if a static call cannot
// be extracted. Alternatively, an implementation can support
// UnwrapExpression to delegate handling of this function to a wrapped
// Expression object.
func ExprCall(expr Expression) (*StaticCall, Diagnostics) {
type exprCall interface {
ExprCall() *StaticCall
}
physExpr := UnwrapExpressionUntil(expr, func(expr Expression) bool {
_, supported := expr.(exprCall)
return supported
})
if exC, supported := physExpr.(exprCall); supported {
if call := exC.ExprCall(); call != nil {
return call, nil
}
}
return nil, Diagnostics{
&Diagnostic{
Severity: DiagError,
Summary: "Invalid expression",
Detail: "A static function call is required.",
Subject: expr.StartRange().Ptr(),
},
}
}
// StaticCall represents a function call that was extracted statically from
// an expression using ExprCall.
type StaticCall struct {
Name string
NameRange Range
Arguments []Expression
ArgsRange Range
}

37
vendor/github.com/hashicorp/hcl/v2/expr_list.go generated vendored Normal file
View File

@ -0,0 +1,37 @@
package hcl
// ExprList tests if the given expression is a static list construct and,
// if so, extracts the expressions that represent the list elements.
// If the given expression is not a static list, error diagnostics are
// returned.
//
// A particular Expression implementation can support this function by
// offering a method called ExprList that takes no arguments and returns
// []Expression. This method should return nil if a static list cannot
// be extracted. Alternatively, an implementation can support
// UnwrapExpression to delegate handling of this function to a wrapped
// Expression object.
func ExprList(expr Expression) ([]Expression, Diagnostics) {
type exprList interface {
ExprList() []Expression
}
physExpr := UnwrapExpressionUntil(expr, func(expr Expression) bool {
_, supported := expr.(exprList)
return supported
})
if exL, supported := physExpr.(exprList); supported {
if list := exL.ExprList(); list != nil {
return list, nil
}
}
return nil, Diagnostics{
&Diagnostic{
Severity: DiagError,
Summary: "Invalid expression",
Detail: "A static list expression is required.",
Subject: expr.StartRange().Ptr(),
},
}
}

44
vendor/github.com/hashicorp/hcl/v2/expr_map.go generated vendored Normal file
View File

@ -0,0 +1,44 @@
package hcl
// ExprMap tests if the given expression is a static map construct and,
// if so, extracts the expressions that represent the map elements.
// If the given expression is not a static map, error diagnostics are
// returned.
//
// A particular Expression implementation can support this function by
// offering a method called ExprMap that takes no arguments and returns
// []KeyValuePair. This method should return nil if a static map cannot
// be extracted. Alternatively, an implementation can support
// UnwrapExpression to delegate handling of this function to a wrapped
// Expression object.
func ExprMap(expr Expression) ([]KeyValuePair, Diagnostics) {
type exprMap interface {
ExprMap() []KeyValuePair
}
physExpr := UnwrapExpressionUntil(expr, func(expr Expression) bool {
_, supported := expr.(exprMap)
return supported
})
if exM, supported := physExpr.(exprMap); supported {
if pairs := exM.ExprMap(); pairs != nil {
return pairs, nil
}
}
return nil, Diagnostics{
&Diagnostic{
Severity: DiagError,
Summary: "Invalid expression",
Detail: "A static map expression is required.",
Subject: expr.StartRange().Ptr(),
},
}
}
// KeyValuePair represents a pair of expressions that serve as a single item
// within a map or object definition construct.
type KeyValuePair struct {
Key Expression
Value Expression
}

68
vendor/github.com/hashicorp/hcl/v2/expr_unwrap.go generated vendored Normal file
View File

@ -0,0 +1,68 @@
package hcl
type unwrapExpression interface {
UnwrapExpression() Expression
}
// UnwrapExpression removes any "wrapper" expressions from the given expression,
// to recover the representation of the physical expression given in source
// code.
//
// Sometimes wrapping expressions are used to modify expression behavior, e.g.
// in extensions that need to make some local variables available to certain
// sub-trees of the configuration. This can make it difficult to reliably
// type-assert on the physical AST types used by the underlying syntax.
//
// Unwrapping an expression may modify its behavior by stripping away any
// additional constraints or capabilities being applied to the Value and
// Variables methods, so this function should generally only be used prior
// to operations that concern themselves with the static syntax of the input
// configuration, and not with the effective value of the expression.
//
// Wrapper expression types must support unwrapping by implementing a method
// called UnwrapExpression that takes no arguments and returns the embedded
// Expression. Implementations of this method should peel away only one level
// of wrapping, if multiple are present. This method may return nil to
// indicate _dynamically_ that no wrapped expression is available, for
// expression types that might only behave as wrappers in certain cases.
func UnwrapExpression(expr Expression) Expression {
for {
unwrap, wrapped := expr.(unwrapExpression)
if !wrapped {
return expr
}
innerExpr := unwrap.UnwrapExpression()
if innerExpr == nil {
return expr
}
expr = innerExpr
}
}
// UnwrapExpressionUntil is similar to UnwrapExpression except it gives the
// caller an opportunity to test each level of unwrapping to see each a
// particular expression is accepted.
//
// This could be used, for example, to unwrap until a particular other
// interface is satisfied, regardless of wrap wrapping level it is satisfied
// at.
//
// The given callback function must return false to continue wrapping, or
// true to accept and return the proposed expression given. If the callback
// function rejects even the final, physical expression then the result of
// this function is nil.
func UnwrapExpressionUntil(expr Expression, until func(Expression) bool) Expression {
for {
if until(expr) {
return expr
}
unwrap, wrapped := expr.(unwrapExpression)
if !wrapped {
return nil
}
expr = unwrap.UnwrapExpression()
if expr == nil {
return nil
}
}
}

21
vendor/github.com/hashicorp/hcl/v2/go.mod generated vendored Normal file
View File

@ -0,0 +1,21 @@
module github.com/hashicorp/hcl/v2
require (
github.com/agext/levenshtein v1.2.1
github.com/apparentlymart/go-dump v0.0.0-20180507223929-23540a00eaa3
github.com/apparentlymart/go-textseg v1.0.0
github.com/davecgh/go-spew v1.1.1
github.com/go-test/deep v1.0.3
github.com/google/go-cmp v0.2.0
github.com/kr/pretty v0.1.0
github.com/kylelemons/godebug v0.0.0-20170820004349-d65d576e9348
github.com/mitchellh/go-wordwrap v0.0.0-20150314170334-ad45545899c7
github.com/pmezard/go-difflib v1.0.0 // indirect
github.com/sergi/go-diff v1.0.0
github.com/spf13/pflag v1.0.2
github.com/stretchr/testify v1.2.2 // indirect
github.com/zclconf/go-cty v1.1.0
golang.org/x/crypto v0.0.0-20190426145343-a29dc8fdc734
golang.org/x/sys v0.0.0-20190502175342-a43fa875dd82 // indirect
golang.org/x/text v0.3.2 // indirect
)

51
vendor/github.com/hashicorp/hcl/v2/go.sum generated vendored Normal file
View File

@ -0,0 +1,51 @@
github.com/agext/levenshtein v1.2.1 h1:QmvMAjj2aEICytGiWzmxoE0x2KZvE0fvmqMOfy2tjT8=
github.com/agext/levenshtein v1.2.1/go.mod h1:JEDfjyjHDjOF/1e4FlBE/PkbqA9OfWu2ki2W0IB5558=
github.com/apparentlymart/go-dump v0.0.0-20180507223929-23540a00eaa3 h1:ZSTrOEhiM5J5RFxEaFvMZVEAM1KvT1YzbEOwB2EAGjA=
github.com/apparentlymart/go-dump v0.0.0-20180507223929-23540a00eaa3/go.mod h1:oL81AME2rN47vu18xqj1S1jPIPuN7afo62yKTNn3XMM=
github.com/apparentlymart/go-textseg v1.0.0 h1:rRmlIsPEEhUTIKQb7T++Nz/A5Q6C9IuX2wFoYVvnCs0=
github.com/apparentlymart/go-textseg v1.0.0/go.mod h1:z96Txxhf3xSFMPmb5X/1W05FF/Nj9VFpLOpjS5yuumk=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/go-test/deep v1.0.3 h1:ZrJSEWsXzPOxaZnFteGEfooLba+ju3FYIbOrS+rQd68=
github.com/go-test/deep v1.0.3/go.mod h1:wGDj63lr65AM2AQyKZd/NYHGb0R+1RLqB8NKt3aSFNA=
github.com/golang/protobuf v1.1.0/go.mod h1:6lQm79b+lXiMfvg/cZm0SGofjICqVBUtrP5yJMmIC1U=
github.com/google/go-cmp v0.2.0 h1:+dTQ8DZQJz0Mb/HjFlkptS1FeQ4cWSnN941F8aEG4SQ=
github.com/google/go-cmp v0.2.0/go.mod h1:oXzfMopK8JAjlY9xF4vHSVASa0yLyX7SntLO5aqRK0M=
github.com/kr/pretty v0.1.0 h1:L/CwN0zerZDmRFUapSPitk6f+Q3+0za1rQkzVuMiMFI=
github.com/kr/pretty v0.1.0/go.mod h1:dAy3ld7l9f0ibDNOQOHHMYYIIbhfbHSm3C4ZsoJORNo=
github.com/kr/pty v1.1.1/go.mod h1:pFQYn66WHrOpPYNljwOMqo10TkYh1fy3cYio2l3bCsQ=
github.com/kr/text v0.1.0 h1:45sCR5RtlFHMR4UwH9sdQ5TC8v0qDQCHnXt+kaKSTVE=
github.com/kr/text v0.1.0/go.mod h1:4Jbv+DJW3UT/LiOwJeYQe1efqtUx/iVham/4vfdArNI=
github.com/kylelemons/godebug v0.0.0-20170820004349-d65d576e9348 h1:MtvEpTB6LX3vkb4ax0b5D2DHbNAUsen0Gx5wZoq3lV4=
github.com/kylelemons/godebug v0.0.0-20170820004349-d65d576e9348/go.mod h1:B69LEHPfb2qLo0BaaOLcbitczOKLWTsrBG9LczfCD4k=
github.com/mitchellh/go-wordwrap v0.0.0-20150314170334-ad45545899c7 h1:DpOJ2HYzCv8LZP15IdmG+YdwD2luVPHITV96TkirNBM=
github.com/mitchellh/go-wordwrap v0.0.0-20150314170334-ad45545899c7/go.mod h1:ZXFpozHsX6DPmq2I0TCekCxypsnAUbP2oI0UX1GXzOo=
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
github.com/sergi/go-diff v1.0.0 h1:Kpca3qRNrduNnOQeazBd0ysaKrUJiIuISHxogkT9RPQ=
github.com/sergi/go-diff v1.0.0/go.mod h1:0CfEIISq7TuYL3j771MWULgwwjU+GofnZX9QAmXWZgo=
github.com/spf13/pflag v1.0.2 h1:Fy0orTDgHdbnzHcsOgfCN4LtHf0ec3wwtiwJqwvf3Gc=
github.com/spf13/pflag v1.0.2/go.mod h1:DYY7MBk1bdzusC3SYhjObp+wFpr4gzcvqqNjLnInEg4=
github.com/stretchr/testify v1.2.2 h1:bSDNvY7ZPG5RlJ8otE/7V6gMiyenm9RtJ7IUVIAoJ1w=
github.com/stretchr/testify v1.2.2/go.mod h1:a8OnRcib4nhh0OaRAV+Yts87kKdq0PP7pXfy6kDkUVs=
github.com/vmihailenco/msgpack v3.3.3+incompatible/go.mod h1:fy3FlTQTDXWkZ7Bh6AcGMlsjHatGryHQYUTf1ShIgkk=
github.com/zclconf/go-cty v1.1.0 h1:uJwc9HiBOCpoKIObTQaLR+tsEXx1HBHnOsOOpcdhZgw=
github.com/zclconf/go-cty v1.1.0/go.mod h1:xnAOWiHeOqg2nWS62VtQ7pbOu17FtxJNW8RLEih+O3s=
golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACkg1iLfiJU5Ep61QUkGW8qpdssI0+w=
golang.org/x/crypto v0.0.0-20190426145343-a29dc8fdc734 h1:p/H982KKEjUnLJkM3tt/LemDnOc1GiZL5FCVlORJ5zo=
golang.org/x/crypto v0.0.0-20190426145343-a29dc8fdc734/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/net v0.0.0-20180811021610-c39426892332/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20190404232315-eb5bcb51f2a3/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg=
golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190412213103-97732733099d/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20190502175342-a43fa875dd82 h1:vsphBvatvfbhlb4PO1BYSr9dzugGxJ/SQHoNufZJq1w=
golang.org/x/sys v0.0.0-20190502175342-a43fa875dd82/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/text v0.3.0 h1:g61tztE5qeGQ89tm6NTjjM9VPIm088od1l6aSorWRWg=
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.2 h1:tW2bmiBqwgJj/UpqtC8EpXEZVYOwU0yG4iWbprSVAcs=
golang.org/x/text v0.3.2/go.mod h1:bEr9sfX3Q8Zfm5fL9x+3itogRgK3+ptLWKqgva+5dAk=
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
google.golang.org/appengine v1.1.0/go.mod h1:EbEs0AVv82hx2wNQdGPgUI5lhzA/G0D9YwlJXL52JkM=
gopkg.in/check.v1 v1.0.0-20180628173108-788fd7840127 h1:qIbj1fsPNlZgppZ+VLlY7N33q108Sa+fhmuc+sWQYwY=
gopkg.in/check.v1 v1.0.0-20180628173108-788fd7840127/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=

304
vendor/github.com/hashicorp/hcl/v2/gohcl/decode.go generated vendored Normal file
View File

@ -0,0 +1,304 @@
package gohcl
import (
"fmt"
"reflect"
"github.com/zclconf/go-cty/cty"
"github.com/hashicorp/hcl/v2"
"github.com/zclconf/go-cty/cty/convert"
"github.com/zclconf/go-cty/cty/gocty"
)
// DecodeBody extracts the configuration within the given body into the given
// value. This value must be a non-nil pointer to either a struct or
// a map, where in the former case the configuration will be decoded using
// struct tags and in the latter case only attributes are allowed and their
// values are decoded into the map.
//
// The given EvalContext is used to resolve any variables or functions in
// expressions encountered while decoding. This may be nil to require only
// constant values, for simple applications that do not support variables or
// functions.
//
// The returned diagnostics should be inspected with its HasErrors method to
// determine if the populated value is valid and complete. If error diagnostics
// are returned then the given value may have been partially-populated but
// may still be accessed by a careful caller for static analysis and editor
// integration use-cases.
func DecodeBody(body hcl.Body, ctx *hcl.EvalContext, val interface{}) hcl.Diagnostics {
rv := reflect.ValueOf(val)
if rv.Kind() != reflect.Ptr {
panic(fmt.Sprintf("target value must be a pointer, not %s", rv.Type().String()))
}
return decodeBodyToValue(body, ctx, rv.Elem())
}
func decodeBodyToValue(body hcl.Body, ctx *hcl.EvalContext, val reflect.Value) hcl.Diagnostics {
et := val.Type()
switch et.Kind() {
case reflect.Struct:
return decodeBodyToStruct(body, ctx, val)
case reflect.Map:
return decodeBodyToMap(body, ctx, val)
default:
panic(fmt.Sprintf("target value must be pointer to struct or map, not %s", et.String()))
}
}
func decodeBodyToStruct(body hcl.Body, ctx *hcl.EvalContext, val reflect.Value) hcl.Diagnostics {
schema, partial := ImpliedBodySchema(val.Interface())
var content *hcl.BodyContent
var leftovers hcl.Body
var diags hcl.Diagnostics
if partial {
content, leftovers, diags = body.PartialContent(schema)
} else {
content, diags = body.Content(schema)
}
if content == nil {
return diags
}
tags := getFieldTags(val.Type())
if tags.Remain != nil {
fieldIdx := *tags.Remain
field := val.Type().Field(fieldIdx)
fieldV := val.Field(fieldIdx)
switch {
case bodyType.AssignableTo(field.Type):
fieldV.Set(reflect.ValueOf(leftovers))
case attrsType.AssignableTo(field.Type):
attrs, attrsDiags := leftovers.JustAttributes()
if len(attrsDiags) > 0 {
diags = append(diags, attrsDiags...)
}
fieldV.Set(reflect.ValueOf(attrs))
default:
diags = append(diags, decodeBodyToValue(leftovers, ctx, fieldV)...)
}
}
for name, fieldIdx := range tags.Attributes {
attr := content.Attributes[name]
field := val.Type().Field(fieldIdx)
fieldV := val.Field(fieldIdx)
if attr == nil {
if !exprType.AssignableTo(field.Type) {
continue
}
// As a special case, if the target is of type hcl.Expression then
// we'll assign an actual expression that evalues to a cty null,
// so the caller can deal with it within the cty realm rather
// than within the Go realm.
synthExpr := hcl.StaticExpr(cty.NullVal(cty.DynamicPseudoType), body.MissingItemRange())
fieldV.Set(reflect.ValueOf(synthExpr))
continue
}
switch {
case attrType.AssignableTo(field.Type):
fieldV.Set(reflect.ValueOf(attr))
case exprType.AssignableTo(field.Type):
fieldV.Set(reflect.ValueOf(attr.Expr))
default:
diags = append(diags, DecodeExpression(
attr.Expr, ctx, fieldV.Addr().Interface(),
)...)
}
}
blocksByType := content.Blocks.ByType()
for typeName, fieldIdx := range tags.Blocks {
blocks := blocksByType[typeName]
field := val.Type().Field(fieldIdx)
ty := field.Type
isSlice := false
isPtr := false
if ty.Kind() == reflect.Slice {
isSlice = true
ty = ty.Elem()
}
if ty.Kind() == reflect.Ptr {
isPtr = true
ty = ty.Elem()
}
if len(blocks) > 1 && !isSlice {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("Duplicate %s block", typeName),
Detail: fmt.Sprintf(
"Only one %s block is allowed. Another was defined at %s.",
typeName, blocks[0].DefRange.String(),
),
Subject: &blocks[1].DefRange,
})
continue
}
if len(blocks) == 0 {
if isSlice || isPtr {
val.Field(fieldIdx).Set(reflect.Zero(field.Type))
} else {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("Missing %s block", typeName),
Detail: fmt.Sprintf("A %s block is required.", typeName),
Subject: body.MissingItemRange().Ptr(),
})
}
continue
}
switch {
case isSlice:
elemType := ty
if isPtr {
elemType = reflect.PtrTo(ty)
}
sli := reflect.MakeSlice(reflect.SliceOf(elemType), len(blocks), len(blocks))
for i, block := range blocks {
if isPtr {
v := reflect.New(ty)
diags = append(diags, decodeBlockToValue(block, ctx, v.Elem())...)
sli.Index(i).Set(v)
} else {
diags = append(diags, decodeBlockToValue(block, ctx, sli.Index(i))...)
}
}
val.Field(fieldIdx).Set(sli)
default:
block := blocks[0]
if isPtr {
v := reflect.New(ty)
diags = append(diags, decodeBlockToValue(block, ctx, v.Elem())...)
val.Field(fieldIdx).Set(v)
} else {
diags = append(diags, decodeBlockToValue(block, ctx, val.Field(fieldIdx))...)
}
}
}
return diags
}
func decodeBodyToMap(body hcl.Body, ctx *hcl.EvalContext, v reflect.Value) hcl.Diagnostics {
attrs, diags := body.JustAttributes()
if attrs == nil {
return diags
}
mv := reflect.MakeMap(v.Type())
for k, attr := range attrs {
switch {
case attrType.AssignableTo(v.Type().Elem()):
mv.SetMapIndex(reflect.ValueOf(k), reflect.ValueOf(attr))
case exprType.AssignableTo(v.Type().Elem()):
mv.SetMapIndex(reflect.ValueOf(k), reflect.ValueOf(attr.Expr))
default:
ev := reflect.New(v.Type().Elem())
diags = append(diags, DecodeExpression(attr.Expr, ctx, ev.Interface())...)
mv.SetMapIndex(reflect.ValueOf(k), ev.Elem())
}
}
v.Set(mv)
return diags
}
func decodeBlockToValue(block *hcl.Block, ctx *hcl.EvalContext, v reflect.Value) hcl.Diagnostics {
var diags hcl.Diagnostics
ty := v.Type()
switch {
case blockType.AssignableTo(ty):
v.Elem().Set(reflect.ValueOf(block))
case bodyType.AssignableTo(ty):
v.Elem().Set(reflect.ValueOf(block.Body))
case attrsType.AssignableTo(ty):
attrs, attrsDiags := block.Body.JustAttributes()
if len(attrsDiags) > 0 {
diags = append(diags, attrsDiags...)
}
v.Elem().Set(reflect.ValueOf(attrs))
default:
diags = append(diags, decodeBodyToValue(block.Body, ctx, v)...)
if len(block.Labels) > 0 {
blockTags := getFieldTags(ty)
for li, lv := range block.Labels {
lfieldIdx := blockTags.Labels[li].FieldIndex
v.Field(lfieldIdx).Set(reflect.ValueOf(lv))
}
}
}
return diags
}
// DecodeExpression extracts the value of the given expression into the given
// value. This value must be something that gocty is able to decode into,
// since the final decoding is delegated to that package.
//
// The given EvalContext is used to resolve any variables or functions in
// expressions encountered while decoding. This may be nil to require only
// constant values, for simple applications that do not support variables or
// functions.
//
// The returned diagnostics should be inspected with its HasErrors method to
// determine if the populated value is valid and complete. If error diagnostics
// are returned then the given value may have been partially-populated but
// may still be accessed by a careful caller for static analysis and editor
// integration use-cases.
func DecodeExpression(expr hcl.Expression, ctx *hcl.EvalContext, val interface{}) hcl.Diagnostics {
srcVal, diags := expr.Value(ctx)
convTy, err := gocty.ImpliedType(val)
if err != nil {
panic(fmt.Sprintf("unsuitable DecodeExpression target: %s", err))
}
srcVal, err = convert.Convert(srcVal, convTy)
if err != nil {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Unsuitable value type",
Detail: fmt.Sprintf("Unsuitable value: %s", err.Error()),
Subject: expr.StartRange().Ptr(),
Context: expr.Range().Ptr(),
})
return diags
}
err = gocty.FromCtyValue(srcVal, val)
if err != nil {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Unsuitable value type",
Detail: fmt.Sprintf("Unsuitable value: %s", err.Error()),
Subject: expr.StartRange().Ptr(),
Context: expr.Range().Ptr(),
})
}
return diags
}

53
vendor/github.com/hashicorp/hcl/v2/gohcl/doc.go generated vendored Normal file
View File

@ -0,0 +1,53 @@
// Package gohcl allows decoding HCL configurations into Go data structures.
//
// It provides a convenient and concise way of describing the schema for
// configuration and then accessing the resulting data via native Go
// types.
//
// A struct field tag scheme is used, similar to other decoding and
// unmarshalling libraries. The tags are formatted as in the following example:
//
// ThingType string `hcl:"thing_type,attr"`
//
// Within each tag there are two comma-separated tokens. The first is the
// name of the corresponding construct in configuration, while the second
// is a keyword giving the kind of construct expected. The following
// kind keywords are supported:
//
// attr (the default) indicates that the value is to be populated from an attribute
// block indicates that the value is to populated from a block
// label indicates that the value is to populated from a block label
// remain indicates that the value is to be populated from the remaining body after populating other fields
//
// "attr" fields may either be of type *hcl.Expression, in which case the raw
// expression is assigned, or of any type accepted by gocty, in which case
// gocty will be used to assign the value to a native Go type.
//
// "block" fields may be of type *hcl.Block or hcl.Body, in which case the
// corresponding raw value is assigned, or may be a struct that recursively
// uses the same tags. Block fields may also be slices of any of these types,
// in which case multiple blocks of the corresponding type are decoded into
// the slice.
//
// "label" fields are considered only in a struct used as the type of a field
// marked as "block", and are used sequentially to capture the labels of
// the blocks being decoded. In this case, the name token is used only as
// an identifier for the label in diagnostic messages.
//
// "remain" can be placed on a single field that may be either of type
// hcl.Body or hcl.Attributes, in which case any remaining body content is
// placed into this field for delayed processing. If no "remain" field is
// present then any attributes or blocks not matched by another valid tag
// will cause an error diagnostic.
//
// Only a subset of this tagging/typing vocabulary is supported for the
// "Encode" family of functions. See the EncodeIntoBody docs for full details
// on the constraints there.
//
// Broadly-speaking this package deals with two types of error. The first is
// errors in the configuration itself, which are returned as diagnostics
// written with the configuration author as the target audience. The second
// is bugs in the calling program, such as invalid struct tags, which are
// surfaced via panics since there can be no useful runtime handling of such
// errors and they should certainly not be returned to the user as diagnostics.
package gohcl

191
vendor/github.com/hashicorp/hcl/v2/gohcl/encode.go generated vendored Normal file
View File

@ -0,0 +1,191 @@
package gohcl
import (
"fmt"
"reflect"
"sort"
"github.com/hashicorp/hcl/v2/hclwrite"
"github.com/zclconf/go-cty/cty/gocty"
)
// EncodeIntoBody replaces the contents of the given hclwrite Body with
// attributes and blocks derived from the given value, which must be a
// struct value or a pointer to a struct value with the struct tags defined
// in this package.
//
// This function can work only with fully-decoded data. It will ignore any
// fields tagged as "remain", any fields that decode attributes into either
// hcl.Attribute or hcl.Expression values, and any fields that decode blocks
// into hcl.Attributes values. This function does not have enough information
// to complete the decoding of these types.
//
// Any fields tagged as "label" are ignored by this function. Use EncodeAsBlock
// to produce a whole hclwrite.Block including block labels.
//
// As long as a suitable value is given to encode and the destination body
// is non-nil, this function will always complete. It will panic in case of
// any errors in the calling program, such as passing an inappropriate type
// or a nil body.
//
// The layout of the resulting HCL source is derived from the ordering of
// the struct fields, with blank lines around nested blocks of different types.
// Fields representing attributes should usually precede those representing
// blocks so that the attributes can group togather in the result. For more
// control, use the hclwrite API directly.
func EncodeIntoBody(val interface{}, dst *hclwrite.Body) {
rv := reflect.ValueOf(val)
ty := rv.Type()
if ty.Kind() == reflect.Ptr {
rv = rv.Elem()
ty = rv.Type()
}
if ty.Kind() != reflect.Struct {
panic(fmt.Sprintf("value is %s, not struct", ty.Kind()))
}
tags := getFieldTags(ty)
populateBody(rv, ty, tags, dst)
}
// EncodeAsBlock creates a new hclwrite.Block populated with the data from
// the given value, which must be a struct or pointer to struct with the
// struct tags defined in this package.
//
// If the given struct type has fields tagged with "label" tags then they
// will be used in order to annotate the created block with labels.
//
// This function has the same constraints as EncodeIntoBody and will panic
// if they are violated.
func EncodeAsBlock(val interface{}, blockType string) *hclwrite.Block {
rv := reflect.ValueOf(val)
ty := rv.Type()
if ty.Kind() == reflect.Ptr {
rv = rv.Elem()
ty = rv.Type()
}
if ty.Kind() != reflect.Struct {
panic(fmt.Sprintf("value is %s, not struct", ty.Kind()))
}
tags := getFieldTags(ty)
labels := make([]string, len(tags.Labels))
for i, lf := range tags.Labels {
lv := rv.Field(lf.FieldIndex)
// We just stringify whatever we find. It should always be a string
// but if not then we'll still do something reasonable.
labels[i] = fmt.Sprintf("%s", lv.Interface())
}
block := hclwrite.NewBlock(blockType, labels)
populateBody(rv, ty, tags, block.Body())
return block
}
func populateBody(rv reflect.Value, ty reflect.Type, tags *fieldTags, dst *hclwrite.Body) {
nameIdxs := make(map[string]int, len(tags.Attributes)+len(tags.Blocks))
namesOrder := make([]string, 0, len(tags.Attributes)+len(tags.Blocks))
for n, i := range tags.Attributes {
nameIdxs[n] = i
namesOrder = append(namesOrder, n)
}
for n, i := range tags.Blocks {
nameIdxs[n] = i
namesOrder = append(namesOrder, n)
}
sort.SliceStable(namesOrder, func(i, j int) bool {
ni, nj := namesOrder[i], namesOrder[j]
return nameIdxs[ni] < nameIdxs[nj]
})
dst.Clear()
prevWasBlock := false
for _, name := range namesOrder {
fieldIdx := nameIdxs[name]
field := ty.Field(fieldIdx)
fieldTy := field.Type
fieldVal := rv.Field(fieldIdx)
if fieldTy.Kind() == reflect.Ptr {
fieldTy = fieldTy.Elem()
fieldVal = fieldVal.Elem()
}
if _, isAttr := tags.Attributes[name]; isAttr {
if exprType.AssignableTo(fieldTy) || attrType.AssignableTo(fieldTy) {
continue // ignore undecoded fields
}
if !fieldVal.IsValid() {
continue // ignore (field value is nil pointer)
}
if fieldTy.Kind() == reflect.Ptr && fieldVal.IsNil() {
continue // ignore
}
if prevWasBlock {
dst.AppendNewline()
prevWasBlock = false
}
valTy, err := gocty.ImpliedType(fieldVal.Interface())
if err != nil {
panic(fmt.Sprintf("cannot encode %T as HCL expression: %s", fieldVal.Interface(), err))
}
val, err := gocty.ToCtyValue(fieldVal.Interface(), valTy)
if err != nil {
// This should never happen, since we should always be able
// to decode into the implied type.
panic(fmt.Sprintf("failed to encode %T as %#v: %s", fieldVal.Interface(), valTy, err))
}
dst.SetAttributeValue(name, val)
} else { // must be a block, then
elemTy := fieldTy
isSeq := false
if elemTy.Kind() == reflect.Slice || elemTy.Kind() == reflect.Array {
isSeq = true
elemTy = elemTy.Elem()
}
if bodyType.AssignableTo(elemTy) || attrsType.AssignableTo(elemTy) {
continue // ignore undecoded fields
}
prevWasBlock = false
if isSeq {
l := fieldVal.Len()
for i := 0; i < l; i++ {
elemVal := fieldVal.Index(i)
if !elemVal.IsValid() {
continue // ignore (elem value is nil pointer)
}
if elemTy.Kind() == reflect.Ptr && elemVal.IsNil() {
continue // ignore
}
block := EncodeAsBlock(elemVal.Interface(), name)
if !prevWasBlock {
dst.AppendNewline()
prevWasBlock = true
}
dst.AppendBlock(block)
}
} else {
if !fieldVal.IsValid() {
continue // ignore (field value is nil pointer)
}
if elemTy.Kind() == reflect.Ptr && fieldVal.IsNil() {
continue // ignore
}
block := EncodeAsBlock(fieldVal.Interface(), name)
if !prevWasBlock {
dst.AppendNewline()
prevWasBlock = true
}
dst.AppendBlock(block)
}
}
}
}

174
vendor/github.com/hashicorp/hcl/v2/gohcl/schema.go generated vendored Normal file
View File

@ -0,0 +1,174 @@
package gohcl
import (
"fmt"
"reflect"
"sort"
"strings"
"github.com/hashicorp/hcl/v2"
)
// ImpliedBodySchema produces a hcl.BodySchema derived from the type of the
// given value, which must be a struct value or a pointer to one. If an
// inappropriate value is passed, this function will panic.
//
// The second return argument indicates whether the given struct includes
// a "remain" field, and thus the returned schema is non-exhaustive.
//
// This uses the tags on the fields of the struct to discover how each
// field's value should be expressed within configuration. If an invalid
// mapping is attempted, this function will panic.
func ImpliedBodySchema(val interface{}) (schema *hcl.BodySchema, partial bool) {
ty := reflect.TypeOf(val)
if ty.Kind() == reflect.Ptr {
ty = ty.Elem()
}
if ty.Kind() != reflect.Struct {
panic(fmt.Sprintf("given value must be struct, not %T", val))
}
var attrSchemas []hcl.AttributeSchema
var blockSchemas []hcl.BlockHeaderSchema
tags := getFieldTags(ty)
attrNames := make([]string, 0, len(tags.Attributes))
for n := range tags.Attributes {
attrNames = append(attrNames, n)
}
sort.Strings(attrNames)
for _, n := range attrNames {
idx := tags.Attributes[n]
optional := tags.Optional[n]
field := ty.Field(idx)
var required bool
switch {
case field.Type.AssignableTo(exprType):
// If we're decoding to hcl.Expression then absense can be
// indicated via a null value, so we don't specify that
// the field is required during decoding.
required = false
case field.Type.Kind() != reflect.Ptr && !optional:
required = true
default:
required = false
}
attrSchemas = append(attrSchemas, hcl.AttributeSchema{
Name: n,
Required: required,
})
}
blockNames := make([]string, 0, len(tags.Blocks))
for n := range tags.Blocks {
blockNames = append(blockNames, n)
}
sort.Strings(blockNames)
for _, n := range blockNames {
idx := tags.Blocks[n]
field := ty.Field(idx)
fty := field.Type
if fty.Kind() == reflect.Slice {
fty = fty.Elem()
}
if fty.Kind() == reflect.Ptr {
fty = fty.Elem()
}
if fty.Kind() != reflect.Struct {
panic(fmt.Sprintf(
"hcl 'block' tag kind cannot be applied to %s field %s: struct required", field.Type.String(), field.Name,
))
}
ftags := getFieldTags(fty)
var labelNames []string
if len(ftags.Labels) > 0 {
labelNames = make([]string, len(ftags.Labels))
for i, l := range ftags.Labels {
labelNames[i] = l.Name
}
}
blockSchemas = append(blockSchemas, hcl.BlockHeaderSchema{
Type: n,
LabelNames: labelNames,
})
}
partial = tags.Remain != nil
schema = &hcl.BodySchema{
Attributes: attrSchemas,
Blocks: blockSchemas,
}
return schema, partial
}
type fieldTags struct {
Attributes map[string]int
Blocks map[string]int
Labels []labelField
Remain *int
Optional map[string]bool
}
type labelField struct {
FieldIndex int
Name string
}
func getFieldTags(ty reflect.Type) *fieldTags {
ret := &fieldTags{
Attributes: map[string]int{},
Blocks: map[string]int{},
Optional: map[string]bool{},
}
ct := ty.NumField()
for i := 0; i < ct; i++ {
field := ty.Field(i)
tag := field.Tag.Get("hcl")
if tag == "" {
continue
}
comma := strings.Index(tag, ",")
var name, kind string
if comma != -1 {
name = tag[:comma]
kind = tag[comma+1:]
} else {
name = tag
kind = "attr"
}
switch kind {
case "attr":
ret.Attributes[name] = i
case "block":
ret.Blocks[name] = i
case "label":
ret.Labels = append(ret.Labels, labelField{
FieldIndex: i,
Name: name,
})
case "remain":
if ret.Remain != nil {
panic("only one 'remain' tag is permitted")
}
idx := i // copy, because this loop will continue assigning to i
ret.Remain = &idx
case "optional":
ret.Attributes[name] = i
ret.Optional[name] = true
default:
panic(fmt.Sprintf("invalid hcl field tag kind %q on %s %q", kind, field.Type.String(), field.Name))
}
}
return ret
}

16
vendor/github.com/hashicorp/hcl/v2/gohcl/types.go generated vendored Normal file
View File

@ -0,0 +1,16 @@
package gohcl
import (
"reflect"
"github.com/hashicorp/hcl/v2"
)
var victimExpr hcl.Expression
var victimBody hcl.Body
var exprType = reflect.TypeOf(&victimExpr).Elem()
var bodyType = reflect.TypeOf(&victimBody).Elem()
var blockType = reflect.TypeOf((*hcl.Block)(nil))
var attrType = reflect.TypeOf((*hcl.Attribute)(nil))
var attrsType = reflect.TypeOf(hcl.Attributes(nil))

View File

@ -0,0 +1,21 @@
package hcldec
import (
"github.com/hashicorp/hcl/v2"
)
type blockLabel struct {
Value string
Range hcl.Range
}
func labelsForBlock(block *hcl.Block) []blockLabel {
ret := make([]blockLabel, len(block.Labels))
for i := range block.Labels {
ret[i] = blockLabel{
Value: block.Labels[i],
Range: block.LabelRanges[i],
}
}
return ret
}

36
vendor/github.com/hashicorp/hcl/v2/hcldec/decode.go generated vendored Normal file
View File

@ -0,0 +1,36 @@
package hcldec
import (
"github.com/hashicorp/hcl/v2"
"github.com/zclconf/go-cty/cty"
)
func decode(body hcl.Body, blockLabels []blockLabel, ctx *hcl.EvalContext, spec Spec, partial bool) (cty.Value, hcl.Body, hcl.Diagnostics) {
schema := ImpliedSchema(spec)
var content *hcl.BodyContent
var diags hcl.Diagnostics
var leftovers hcl.Body
if partial {
content, leftovers, diags = body.PartialContent(schema)
} else {
content, diags = body.Content(schema)
}
val, valDiags := spec.decode(content, blockLabels, ctx)
diags = append(diags, valDiags...)
return val, leftovers, diags
}
func impliedType(spec Spec) cty.Type {
return spec.impliedType()
}
func sourceRange(body hcl.Body, blockLabels []blockLabel, spec Spec) hcl.Range {
schema := ImpliedSchema(spec)
content, _, _ := body.PartialContent(schema)
return spec.sourceRange(content, blockLabels)
}

12
vendor/github.com/hashicorp/hcl/v2/hcldec/doc.go generated vendored Normal file
View File

@ -0,0 +1,12 @@
// Package hcldec provides a higher-level API for unpacking the content of
// HCL bodies, implemented in terms of the low-level "Content" API exposed
// by the bodies themselves.
//
// It allows decoding an entire nested configuration in a single operation
// by providing a description of the intended structure.
//
// For some applications it may be more convenient to use the "gohcl"
// package, which has a similar purpose but decodes directly into native
// Go data types. hcldec instead targets the cty type system, and thus allows
// a cty-driven application to remain within that type system.
package hcldec

23
vendor/github.com/hashicorp/hcl/v2/hcldec/gob.go generated vendored Normal file
View File

@ -0,0 +1,23 @@
package hcldec
import (
"encoding/gob"
)
func init() {
// Every Spec implementation should be registered with gob, so that
// specs can be sent over gob channels, such as using
// github.com/hashicorp/go-plugin with plugins that need to describe
// what shape of configuration they are expecting.
gob.Register(ObjectSpec(nil))
gob.Register(TupleSpec(nil))
gob.Register((*AttrSpec)(nil))
gob.Register((*LiteralSpec)(nil))
gob.Register((*ExprSpec)(nil))
gob.Register((*BlockSpec)(nil))
gob.Register((*BlockListSpec)(nil))
gob.Register((*BlockSetSpec)(nil))
gob.Register((*BlockMapSpec)(nil))
gob.Register((*BlockLabelSpec)(nil))
gob.Register((*DefaultSpec)(nil))
}

81
vendor/github.com/hashicorp/hcl/v2/hcldec/public.go generated vendored Normal file
View File

@ -0,0 +1,81 @@
package hcldec
import (
"github.com/hashicorp/hcl/v2"
"github.com/zclconf/go-cty/cty"
)
// Decode interprets the given body using the given specification and returns
// the resulting value. If the given body is not valid per the spec, error
// diagnostics are returned and the returned value is likely to be incomplete.
//
// The ctx argument may be nil, in which case any references to variables or
// functions will produce error diagnostics.
func Decode(body hcl.Body, spec Spec, ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
val, _, diags := decode(body, nil, ctx, spec, false)
return val, diags
}
// PartialDecode is like Decode except that it permits "leftover" items in
// the top-level body, which are returned as a new body to allow for
// further processing.
//
// Any descendent block bodies are _not_ decoded partially and thus must
// be fully described by the given specification.
func PartialDecode(body hcl.Body, spec Spec, ctx *hcl.EvalContext) (cty.Value, hcl.Body, hcl.Diagnostics) {
return decode(body, nil, ctx, spec, true)
}
// ImpliedType returns the value type that should result from decoding the
// given spec.
func ImpliedType(spec Spec) cty.Type {
return impliedType(spec)
}
// SourceRange interprets the given body using the given specification and
// then returns the source range of the value that would be used to
// fulfill the spec.
//
// This can be used if application-level validation detects value errors, to
// obtain a reasonable SourceRange to use for generated diagnostics. It works
// best when applied to specific body items (e.g. using AttrSpec, BlockSpec, ...)
// as opposed to entire bodies using ObjectSpec, TupleSpec. The result will
// be less useful the broader the specification, so e.g. a spec that returns
// the entirety of all of the blocks of a given type is likely to be
// _particularly_ arbitrary and useless.
//
// If the given body is not valid per the given spec, the result is best-effort
// and may not actually be something ideal. It's expected that an application
// will already have used Decode or PartialDecode earlier and thus had an
// opportunity to detect and report spec violations.
func SourceRange(body hcl.Body, spec Spec) hcl.Range {
return sourceRange(body, nil, spec)
}
// ChildBlockTypes returns a map of all of the child block types declared
// by the given spec, with block type names as keys and the associated
// nested body specs as values.
func ChildBlockTypes(spec Spec) map[string]Spec {
ret := map[string]Spec{}
// visitSameBodyChildren walks through the spec structure, calling
// the given callback for each descendent spec encountered. We are
// interested in the specs that reference attributes and blocks.
var visit visitFunc
visit = func(s Spec) {
if bs, ok := s.(blockSpec); ok {
for _, blockS := range bs.blockHeaderSchemata() {
nested := bs.nestedSpec()
if nested != nil { // nil can be returned to dynamically opt out of this interface
ret[blockS.Type] = nested
}
}
}
s.visitSameBodyChildren(visit)
}
visit(spec)
return ret
}

36
vendor/github.com/hashicorp/hcl/v2/hcldec/schema.go generated vendored Normal file
View File

@ -0,0 +1,36 @@
package hcldec
import (
"github.com/hashicorp/hcl/v2"
)
// ImpliedSchema returns the *hcl.BodySchema implied by the given specification.
// This is the schema that the Decode function will use internally to
// access the content of a given body.
func ImpliedSchema(spec Spec) *hcl.BodySchema {
var attrs []hcl.AttributeSchema
var blocks []hcl.BlockHeaderSchema
// visitSameBodyChildren walks through the spec structure, calling
// the given callback for each descendent spec encountered. We are
// interested in the specs that reference attributes and blocks.
var visit visitFunc
visit = func(s Spec) {
if as, ok := s.(attrSpec); ok {
attrs = append(attrs, as.attrSchemata()...)
}
if bs, ok := s.(blockSpec); ok {
blocks = append(blocks, bs.blockHeaderSchemata()...)
}
s.visitSameBodyChildren(visit)
}
visit(spec)
return &hcl.BodySchema{
Attributes: attrs,
Blocks: blocks,
}
}

1567
vendor/github.com/hashicorp/hcl/v2/hcldec/spec.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

36
vendor/github.com/hashicorp/hcl/v2/hcldec/variables.go generated vendored Normal file
View File

@ -0,0 +1,36 @@
package hcldec
import (
"github.com/hashicorp/hcl/v2"
)
// Variables processes the given body with the given spec and returns a
// list of the variable traversals that would be required to decode
// the same pairing of body and spec.
//
// This can be used to conditionally populate the variables in the EvalContext
// passed to Decode, for applications where a static scope is insufficient.
//
// If the given body is not compliant with the given schema, the result may
// be incomplete, but that's assumed to be okay because the eventual call
// to Decode will produce error diagnostics anyway.
func Variables(body hcl.Body, spec Spec) []hcl.Traversal {
var vars []hcl.Traversal
schema := ImpliedSchema(spec)
content, _, _ := body.PartialContent(schema)
if vs, ok := spec.(specNeedingVariables); ok {
vars = append(vars, vs.variablesNeeded(content)...)
}
var visitFn visitFunc
visitFn = func(s Spec) {
if vs, ok := s.(specNeedingVariables); ok {
vars = append(vars, vs.variablesNeeded(content)...)
}
s.visitSameBodyChildren(visitFn)
}
spec.visitSameBodyChildren(visitFn)
return vars
}

135
vendor/github.com/hashicorp/hcl/v2/hclparse/parser.go generated vendored Normal file
View File

@ -0,0 +1,135 @@
// Package hclparse has the main API entry point for parsing both HCL native
// syntax and HCL JSON.
//
// The main HCL package also includes SimpleParse and SimpleParseFile which
// can be a simpler interface for the common case where an application just
// needs to parse a single file. The gohcl package simplifies that further
// in its SimpleDecode function, which combines hcl.SimpleParse with decoding
// into Go struct values
//
// Package hclparse, then, is useful for applications that require more fine
// control over parsing or which need to load many separate files and keep
// track of them for possible error reporting or other analysis.
package hclparse
import (
"fmt"
"io/ioutil"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/hclsyntax"
"github.com/hashicorp/hcl/v2/json"
)
// NOTE: This is the public interface for parsing. The actual parsers are
// in other packages alongside this one, with this package just wrapping them
// to provide a unified interface for the caller across all supported formats.
// Parser is the main interface for parsing configuration files. As well as
// parsing files, a parser also retains a registry of all of the files it
// has parsed so that multiple attempts to parse the same file will return
// the same object and so the collected files can be used when printing
// diagnostics.
//
// Any diagnostics for parsing a file are only returned once on the first
// call to parse that file. Callers are expected to collect up diagnostics
// and present them together, so returning diagnostics for the same file
// multiple times would create a confusing result.
type Parser struct {
files map[string]*hcl.File
}
// NewParser creates a new parser, ready to parse configuration files.
func NewParser() *Parser {
return &Parser{
files: map[string]*hcl.File{},
}
}
// ParseHCL parses the given buffer (which is assumed to have been loaded from
// the given filename) as a native-syntax configuration file and returns the
// hcl.File object representing it.
func (p *Parser) ParseHCL(src []byte, filename string) (*hcl.File, hcl.Diagnostics) {
if existing := p.files[filename]; existing != nil {
return existing, nil
}
file, diags := hclsyntax.ParseConfig(src, filename, hcl.Pos{Byte: 0, Line: 1, Column: 1})
p.files[filename] = file
return file, diags
}
// ParseHCLFile reads the given filename and parses it as a native-syntax HCL
// configuration file. An error diagnostic is returned if the given file
// cannot be read.
func (p *Parser) ParseHCLFile(filename string) (*hcl.File, hcl.Diagnostics) {
if existing := p.files[filename]; existing != nil {
return existing, nil
}
src, err := ioutil.ReadFile(filename)
if err != nil {
return nil, hcl.Diagnostics{
{
Severity: hcl.DiagError,
Summary: "Failed to read file",
Detail: fmt.Sprintf("The configuration file %q could not be read.", filename),
},
}
}
return p.ParseHCL(src, filename)
}
// ParseJSON parses the given JSON buffer (which is assumed to have been loaded
// from the given filename) and returns the hcl.File object representing it.
func (p *Parser) ParseJSON(src []byte, filename string) (*hcl.File, hcl.Diagnostics) {
if existing := p.files[filename]; existing != nil {
return existing, nil
}
file, diags := json.Parse(src, filename)
p.files[filename] = file
return file, diags
}
// ParseJSONFile reads the given filename and parses it as JSON, similarly to
// ParseJSON. An error diagnostic is returned if the given file cannot be read.
func (p *Parser) ParseJSONFile(filename string) (*hcl.File, hcl.Diagnostics) {
if existing := p.files[filename]; existing != nil {
return existing, nil
}
file, diags := json.ParseFile(filename)
p.files[filename] = file
return file, diags
}
// AddFile allows a caller to record in a parser a file that was parsed some
// other way, thus allowing it to be included in the registry of sources.
func (p *Parser) AddFile(filename string, file *hcl.File) {
p.files[filename] = file
}
// Sources returns a map from filenames to the raw source code that was
// read from them. This is intended to be used, for example, to print
// diagnostics with contextual information.
//
// The arrays underlying the returned slices should not be modified.
func (p *Parser) Sources() map[string][]byte {
ret := make(map[string][]byte)
for fn, f := range p.files {
ret[fn] = f.Bytes
}
return ret
}
// Files returns a map from filenames to the File objects produced from them.
// This is intended to be used, for example, to print diagnostics with
// contextual information.
//
// The returned map and all of the objects it refers to directly or indirectly
// must not be modified.
func (p *Parser) Files() map[string]*hcl.File {
return p.files
}

View File

@ -0,0 +1,23 @@
package hclsyntax
import (
"github.com/hashicorp/hcl/v2"
)
// setDiagEvalContext is an internal helper that will impose a particular
// EvalContext on a set of diagnostics in-place, for any diagnostic that
// does not already have an EvalContext set.
//
// We generally expect diagnostics to be immutable, but this is safe to use
// on any Diagnostics where none of the contained Diagnostic objects have yet
// been seen by a caller. Its purpose is to apply additional context to a
// set of diagnostics produced by a "deeper" component as the stack unwinds
// during expression evaluation.
func setDiagEvalContext(diags hcl.Diagnostics, expr hcl.Expression, ctx *hcl.EvalContext) {
for _, diag := range diags {
if diag.Expression == nil {
diag.Expression = expr
diag.EvalContext = ctx
}
}
}

View File

@ -0,0 +1,24 @@
package hclsyntax
import (
"github.com/agext/levenshtein"
)
// nameSuggestion tries to find a name from the given slice of suggested names
// that is close to the given name and returns it if found. If no suggestion
// is close enough, returns the empty string.
//
// The suggestions are tried in order, so earlier suggestions take precedence
// if the given string is similar to two or more suggestions.
//
// This function is intended to be used with a relatively-small number of
// suggestions. It's not optimized for hundreds or thousands of them.
func nameSuggestion(given string, suggestions []string) string {
for _, suggestion := range suggestions {
dist := levenshtein.Distance(given, suggestion, nil)
if dist < 3 { // threshold determined experimentally
return suggestion
}
}
return ""
}

7
vendor/github.com/hashicorp/hcl/v2/hclsyntax/doc.go generated vendored Normal file
View File

@ -0,0 +1,7 @@
// Package hclsyntax contains the parser, AST, etc for HCL's native language,
// as opposed to the JSON variant.
//
// In normal use applications should rarely depend on this package directly,
// instead preferring the higher-level interface of the main hcl package and
// its companion package hclparse.
package hclsyntax

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,268 @@
package hclsyntax
import (
"fmt"
"github.com/hashicorp/hcl/v2"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/convert"
"github.com/zclconf/go-cty/cty/function"
"github.com/zclconf/go-cty/cty/function/stdlib"
)
type Operation struct {
Impl function.Function
Type cty.Type
}
var (
OpLogicalOr = &Operation{
Impl: stdlib.OrFunc,
Type: cty.Bool,
}
OpLogicalAnd = &Operation{
Impl: stdlib.AndFunc,
Type: cty.Bool,
}
OpLogicalNot = &Operation{
Impl: stdlib.NotFunc,
Type: cty.Bool,
}
OpEqual = &Operation{
Impl: stdlib.EqualFunc,
Type: cty.Bool,
}
OpNotEqual = &Operation{
Impl: stdlib.NotEqualFunc,
Type: cty.Bool,
}
OpGreaterThan = &Operation{
Impl: stdlib.GreaterThanFunc,
Type: cty.Bool,
}
OpGreaterThanOrEqual = &Operation{
Impl: stdlib.GreaterThanOrEqualToFunc,
Type: cty.Bool,
}
OpLessThan = &Operation{
Impl: stdlib.LessThanFunc,
Type: cty.Bool,
}
OpLessThanOrEqual = &Operation{
Impl: stdlib.LessThanOrEqualToFunc,
Type: cty.Bool,
}
OpAdd = &Operation{
Impl: stdlib.AddFunc,
Type: cty.Number,
}
OpSubtract = &Operation{
Impl: stdlib.SubtractFunc,
Type: cty.Number,
}
OpMultiply = &Operation{
Impl: stdlib.MultiplyFunc,
Type: cty.Number,
}
OpDivide = &Operation{
Impl: stdlib.DivideFunc,
Type: cty.Number,
}
OpModulo = &Operation{
Impl: stdlib.ModuloFunc,
Type: cty.Number,
}
OpNegate = &Operation{
Impl: stdlib.NegateFunc,
Type: cty.Number,
}
)
var binaryOps []map[TokenType]*Operation
func init() {
// This operation table maps from the operator's token type
// to the AST operation type. All expressions produced from
// binary operators are BinaryOp nodes.
//
// Binary operator groups are listed in order of precedence, with
// the *lowest* precedence first. Operators within the same group
// have left-to-right associativity.
binaryOps = []map[TokenType]*Operation{
{
TokenOr: OpLogicalOr,
},
{
TokenAnd: OpLogicalAnd,
},
{
TokenEqualOp: OpEqual,
TokenNotEqual: OpNotEqual,
},
{
TokenGreaterThan: OpGreaterThan,
TokenGreaterThanEq: OpGreaterThanOrEqual,
TokenLessThan: OpLessThan,
TokenLessThanEq: OpLessThanOrEqual,
},
{
TokenPlus: OpAdd,
TokenMinus: OpSubtract,
},
{
TokenStar: OpMultiply,
TokenSlash: OpDivide,
TokenPercent: OpModulo,
},
}
}
type BinaryOpExpr struct {
LHS Expression
Op *Operation
RHS Expression
SrcRange hcl.Range
}
func (e *BinaryOpExpr) walkChildNodes(w internalWalkFunc) {
w(e.LHS)
w(e.RHS)
}
func (e *BinaryOpExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
impl := e.Op.Impl // assumed to be a function taking exactly two arguments
params := impl.Params()
lhsParam := params[0]
rhsParam := params[1]
var diags hcl.Diagnostics
givenLHSVal, lhsDiags := e.LHS.Value(ctx)
givenRHSVal, rhsDiags := e.RHS.Value(ctx)
diags = append(diags, lhsDiags...)
diags = append(diags, rhsDiags...)
lhsVal, err := convert.Convert(givenLHSVal, lhsParam.Type)
if err != nil {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid operand",
Detail: fmt.Sprintf("Unsuitable value for left operand: %s.", err),
Subject: e.LHS.Range().Ptr(),
Context: &e.SrcRange,
Expression: e.LHS,
EvalContext: ctx,
})
}
rhsVal, err := convert.Convert(givenRHSVal, rhsParam.Type)
if err != nil {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid operand",
Detail: fmt.Sprintf("Unsuitable value for right operand: %s.", err),
Subject: e.RHS.Range().Ptr(),
Context: &e.SrcRange,
Expression: e.RHS,
EvalContext: ctx,
})
}
if diags.HasErrors() {
// Don't actually try the call if we have errors already, since the
// this will probably just produce a confusing duplicative diagnostic.
return cty.UnknownVal(e.Op.Type), diags
}
args := []cty.Value{lhsVal, rhsVal}
result, err := impl.Call(args)
if err != nil {
diags = append(diags, &hcl.Diagnostic{
// FIXME: This diagnostic is useless.
Severity: hcl.DiagError,
Summary: "Operation failed",
Detail: fmt.Sprintf("Error during operation: %s.", err),
Subject: &e.SrcRange,
Expression: e,
EvalContext: ctx,
})
return cty.UnknownVal(e.Op.Type), diags
}
return result, diags
}
func (e *BinaryOpExpr) Range() hcl.Range {
return e.SrcRange
}
func (e *BinaryOpExpr) StartRange() hcl.Range {
return e.LHS.StartRange()
}
type UnaryOpExpr struct {
Op *Operation
Val Expression
SrcRange hcl.Range
SymbolRange hcl.Range
}
func (e *UnaryOpExpr) walkChildNodes(w internalWalkFunc) {
w(e.Val)
}
func (e *UnaryOpExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
impl := e.Op.Impl // assumed to be a function taking exactly one argument
params := impl.Params()
param := params[0]
givenVal, diags := e.Val.Value(ctx)
val, err := convert.Convert(givenVal, param.Type)
if err != nil {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid operand",
Detail: fmt.Sprintf("Unsuitable value for unary operand: %s.", err),
Subject: e.Val.Range().Ptr(),
Context: &e.SrcRange,
Expression: e.Val,
EvalContext: ctx,
})
}
if diags.HasErrors() {
// Don't actually try the call if we have errors already, since the
// this will probably just produce a confusing duplicative diagnostic.
return cty.UnknownVal(e.Op.Type), diags
}
args := []cty.Value{val}
result, err := impl.Call(args)
if err != nil {
diags = append(diags, &hcl.Diagnostic{
// FIXME: This diagnostic is useless.
Severity: hcl.DiagError,
Summary: "Operation failed",
Detail: fmt.Sprintf("Error during operation: %s.", err),
Subject: &e.SrcRange,
Expression: e,
EvalContext: ctx,
})
return cty.UnknownVal(e.Op.Type), diags
}
return result, diags
}
func (e *UnaryOpExpr) Range() hcl.Range {
return e.SrcRange
}
func (e *UnaryOpExpr) StartRange() hcl.Range {
return e.SymbolRange
}

View File

@ -0,0 +1,220 @@
package hclsyntax
import (
"bytes"
"fmt"
"github.com/hashicorp/hcl/v2"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/convert"
)
type TemplateExpr struct {
Parts []Expression
SrcRange hcl.Range
}
func (e *TemplateExpr) walkChildNodes(w internalWalkFunc) {
for _, part := range e.Parts {
w(part)
}
}
func (e *TemplateExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
buf := &bytes.Buffer{}
var diags hcl.Diagnostics
isKnown := true
for _, part := range e.Parts {
partVal, partDiags := part.Value(ctx)
diags = append(diags, partDiags...)
if partVal.IsNull() {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid template interpolation value",
Detail: fmt.Sprintf(
"The expression result is null. Cannot include a null value in a string template.",
),
Subject: part.Range().Ptr(),
Context: &e.SrcRange,
Expression: part,
EvalContext: ctx,
})
continue
}
if !partVal.IsKnown() {
// If any part is unknown then the result as a whole must be
// unknown too. We'll keep on processing the rest of the parts
// anyway, because we want to still emit any diagnostics resulting
// from evaluating those.
isKnown = false
continue
}
strVal, err := convert.Convert(partVal, cty.String)
if err != nil {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid template interpolation value",
Detail: fmt.Sprintf(
"Cannot include the given value in a string template: %s.",
err.Error(),
),
Subject: part.Range().Ptr(),
Context: &e.SrcRange,
Expression: part,
EvalContext: ctx,
})
continue
}
buf.WriteString(strVal.AsString())
}
if !isKnown {
return cty.UnknownVal(cty.String), diags
}
return cty.StringVal(buf.String()), diags
}
func (e *TemplateExpr) Range() hcl.Range {
return e.SrcRange
}
func (e *TemplateExpr) StartRange() hcl.Range {
return e.Parts[0].StartRange()
}
// IsStringLiteral returns true if and only if the template consists only of
// single string literal, as would be created for a simple quoted string like
// "foo".
//
// If this function returns true, then calling Value on the same expression
// with a nil EvalContext will return the literal value.
//
// Note that "${"foo"}", "${1}", etc aren't considered literal values for the
// purposes of this method, because the intent of this method is to identify
// situations where the user seems to be explicitly intending literal string
// interpretation, not situations that result in literals as a technicality
// of the template expression unwrapping behavior.
func (e *TemplateExpr) IsStringLiteral() bool {
if len(e.Parts) != 1 {
return false
}
_, ok := e.Parts[0].(*LiteralValueExpr)
return ok
}
// TemplateJoinExpr is used to convert tuples of strings produced by template
// constructs (i.e. for loops) into flat strings, by converting the values
// tos strings and joining them. This AST node is not used directly; it's
// produced as part of the AST of a "for" loop in a template.
type TemplateJoinExpr struct {
Tuple Expression
}
func (e *TemplateJoinExpr) walkChildNodes(w internalWalkFunc) {
w(e.Tuple)
}
func (e *TemplateJoinExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
tuple, diags := e.Tuple.Value(ctx)
if tuple.IsNull() {
// This indicates a bug in the code that constructed the AST.
panic("TemplateJoinExpr got null tuple")
}
if tuple.Type() == cty.DynamicPseudoType {
return cty.UnknownVal(cty.String), diags
}
if !tuple.Type().IsTupleType() {
// This indicates a bug in the code that constructed the AST.
panic("TemplateJoinExpr got non-tuple tuple")
}
if !tuple.IsKnown() {
return cty.UnknownVal(cty.String), diags
}
buf := &bytes.Buffer{}
it := tuple.ElementIterator()
for it.Next() {
_, val := it.Element()
if val.IsNull() {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid template interpolation value",
Detail: fmt.Sprintf(
"An iteration result is null. Cannot include a null value in a string template.",
),
Subject: e.Range().Ptr(),
Expression: e,
EvalContext: ctx,
})
continue
}
if val.Type() == cty.DynamicPseudoType {
return cty.UnknownVal(cty.String), diags
}
strVal, err := convert.Convert(val, cty.String)
if err != nil {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid template interpolation value",
Detail: fmt.Sprintf(
"Cannot include one of the interpolation results into the string template: %s.",
err.Error(),
),
Subject: e.Range().Ptr(),
Expression: e,
EvalContext: ctx,
})
continue
}
if !val.IsKnown() {
return cty.UnknownVal(cty.String), diags
}
buf.WriteString(strVal.AsString())
}
return cty.StringVal(buf.String()), diags
}
func (e *TemplateJoinExpr) Range() hcl.Range {
return e.Tuple.Range()
}
func (e *TemplateJoinExpr) StartRange() hcl.Range {
return e.Tuple.StartRange()
}
// TemplateWrapExpr is used instead of a TemplateExpr when a template
// consists _only_ of a single interpolation sequence. In that case, the
// template's result is the single interpolation's result, verbatim with
// no type conversions.
type TemplateWrapExpr struct {
Wrapped Expression
SrcRange hcl.Range
}
func (e *TemplateWrapExpr) walkChildNodes(w internalWalkFunc) {
w(e.Wrapped)
}
func (e *TemplateWrapExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
return e.Wrapped.Value(ctx)
}
func (e *TemplateWrapExpr) Range() hcl.Range {
return e.SrcRange
}
func (e *TemplateWrapExpr) StartRange() hcl.Range {
return e.SrcRange
}

View File

@ -0,0 +1,76 @@
package hclsyntax
// Generated by expression_vars_get.go. DO NOT EDIT.
// Run 'go generate' on this package to update the set of functions here.
import (
"github.com/hashicorp/hcl/v2"
)
func (e *AnonSymbolExpr) Variables() []hcl.Traversal {
return Variables(e)
}
func (e *BinaryOpExpr) Variables() []hcl.Traversal {
return Variables(e)
}
func (e *ConditionalExpr) Variables() []hcl.Traversal {
return Variables(e)
}
func (e *ForExpr) Variables() []hcl.Traversal {
return Variables(e)
}
func (e *FunctionCallExpr) Variables() []hcl.Traversal {
return Variables(e)
}
func (e *IndexExpr) Variables() []hcl.Traversal {
return Variables(e)
}
func (e *LiteralValueExpr) Variables() []hcl.Traversal {
return Variables(e)
}
func (e *ObjectConsExpr) Variables() []hcl.Traversal {
return Variables(e)
}
func (e *ObjectConsKeyExpr) Variables() []hcl.Traversal {
return Variables(e)
}
func (e *RelativeTraversalExpr) Variables() []hcl.Traversal {
return Variables(e)
}
func (e *ScopeTraversalExpr) Variables() []hcl.Traversal {
return Variables(e)
}
func (e *SplatExpr) Variables() []hcl.Traversal {
return Variables(e)
}
func (e *TemplateExpr) Variables() []hcl.Traversal {
return Variables(e)
}
func (e *TemplateJoinExpr) Variables() []hcl.Traversal {
return Variables(e)
}
func (e *TemplateWrapExpr) Variables() []hcl.Traversal {
return Variables(e)
}
func (e *TupleConsExpr) Variables() []hcl.Traversal {
return Variables(e)
}
func (e *UnaryOpExpr) Variables() []hcl.Traversal {
return Variables(e)
}

20
vendor/github.com/hashicorp/hcl/v2/hclsyntax/file.go generated vendored Normal file
View File

@ -0,0 +1,20 @@
package hclsyntax
import (
"github.com/hashicorp/hcl/v2"
)
// File is the top-level object resulting from parsing a configuration file.
type File struct {
Body *Body
Bytes []byte
}
func (f *File) AsHCLFile() *hcl.File {
return &hcl.File{
Body: f.Body,
Bytes: f.Bytes,
// TODO: The Nav object, once we have an implementation of it
}
}

View File

@ -0,0 +1,9 @@
package hclsyntax
//go:generate go run expression_vars_gen.go
//go:generate ruby unicode2ragel.rb --url=http://www.unicode.org/Public/9.0.0/ucd/DerivedCoreProperties.txt -m UnicodeDerived -p ID_Start,ID_Continue -o unicode_derived.rl
//go:generate ragel -Z scan_tokens.rl
//go:generate gofmt -w scan_tokens.go
//go:generate ragel -Z scan_string_lit.rl
//go:generate gofmt -w scan_string_lit.go
//go:generate stringer -type TokenType -output token_type_string.go

View File

@ -0,0 +1,21 @@
package hclsyntax
import (
"bytes"
)
type Keyword []byte
var forKeyword = Keyword([]byte{'f', 'o', 'r'})
var inKeyword = Keyword([]byte{'i', 'n'})
var ifKeyword = Keyword([]byte{'i', 'f'})
var elseKeyword = Keyword([]byte{'e', 'l', 's', 'e'})
var endifKeyword = Keyword([]byte{'e', 'n', 'd', 'i', 'f'})
var endforKeyword = Keyword([]byte{'e', 'n', 'd', 'f', 'o', 'r'})
func (kw Keyword) TokenMatches(token Token) bool {
if token.Type != TokenIdent {
return false
}
return bytes.Equal([]byte(kw), token.Bytes)
}

View File

@ -0,0 +1,59 @@
package hclsyntax
import (
"bytes"
"fmt"
"github.com/hashicorp/hcl/v2"
)
type navigation struct {
root *Body
}
// Implementation of hcled.ContextString
func (n navigation) ContextString(offset int) string {
// We will walk our top-level blocks until we find one that contains
// the given offset, and then construct a representation of the header
// of the block.
var block *Block
for _, candidate := range n.root.Blocks {
if candidate.Range().ContainsOffset(offset) {
block = candidate
break
}
}
if block == nil {
return ""
}
if len(block.Labels) == 0 {
// Easy case!
return block.Type
}
buf := &bytes.Buffer{}
buf.WriteString(block.Type)
for _, label := range block.Labels {
fmt.Fprintf(buf, " %q", label)
}
return buf.String()
}
func (n navigation) ContextDefRange(offset int) hcl.Range {
var block *Block
for _, candidate := range n.root.Blocks {
if candidate.Range().ContainsOffset(offset) {
block = candidate
break
}
}
if block == nil {
return hcl.Range{}
}
return block.DefRange()
}

22
vendor/github.com/hashicorp/hcl/v2/hclsyntax/node.go generated vendored Normal file
View File

@ -0,0 +1,22 @@
package hclsyntax
import (
"github.com/hashicorp/hcl/v2"
)
// Node is the abstract type that every AST node implements.
//
// This is a closed interface, so it cannot be implemented from outside of
// this package.
type Node interface {
// This is the mechanism by which the public-facing walk functions
// are implemented. Implementations should call the given function
// for each child node and then replace that node with its return value.
// The return value might just be the same node, for non-transforming
// walks.
walkChildNodes(w internalWalkFunc)
Range() hcl.Range
}
type internalWalkFunc func(Node)

2054
vendor/github.com/hashicorp/hcl/v2/hclsyntax/parser.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,799 @@
package hclsyntax
import (
"fmt"
"strings"
"unicode"
"github.com/apparentlymart/go-textseg/textseg"
"github.com/hashicorp/hcl/v2"
"github.com/zclconf/go-cty/cty"
)
func (p *parser) ParseTemplate() (Expression, hcl.Diagnostics) {
return p.parseTemplate(TokenEOF, false)
}
func (p *parser) parseTemplate(end TokenType, flushHeredoc bool) (Expression, hcl.Diagnostics) {
exprs, passthru, rng, diags := p.parseTemplateInner(end, flushHeredoc)
if passthru {
if len(exprs) != 1 {
panic("passthru set with len(exprs) != 1")
}
return &TemplateWrapExpr{
Wrapped: exprs[0],
SrcRange: rng,
}, diags
}
return &TemplateExpr{
Parts: exprs,
SrcRange: rng,
}, diags
}
func (p *parser) parseTemplateInner(end TokenType, flushHeredoc bool) ([]Expression, bool, hcl.Range, hcl.Diagnostics) {
parts, diags := p.parseTemplateParts(end)
if flushHeredoc {
flushHeredocTemplateParts(parts) // Trim off leading spaces on lines per the flush heredoc spec
}
tp := templateParser{
Tokens: parts.Tokens,
SrcRange: parts.SrcRange,
}
exprs, exprsDiags := tp.parseRoot()
diags = append(diags, exprsDiags...)
passthru := false
if len(parts.Tokens) == 2 { // one real token and one synthetic "end" token
if _, isInterp := parts.Tokens[0].(*templateInterpToken); isInterp {
passthru = true
}
}
return exprs, passthru, parts.SrcRange, diags
}
type templateParser struct {
Tokens []templateToken
SrcRange hcl.Range
pos int
}
func (p *templateParser) parseRoot() ([]Expression, hcl.Diagnostics) {
var exprs []Expression
var diags hcl.Diagnostics
for {
next := p.Peek()
if _, isEnd := next.(*templateEndToken); isEnd {
break
}
expr, exprDiags := p.parseExpr()
diags = append(diags, exprDiags...)
exprs = append(exprs, expr)
}
return exprs, diags
}
func (p *templateParser) parseExpr() (Expression, hcl.Diagnostics) {
next := p.Peek()
switch tok := next.(type) {
case *templateLiteralToken:
p.Read() // eat literal
return &LiteralValueExpr{
Val: cty.StringVal(tok.Val),
SrcRange: tok.SrcRange,
}, nil
case *templateInterpToken:
p.Read() // eat interp
return tok.Expr, nil
case *templateIfToken:
return p.parseIf()
case *templateForToken:
return p.parseFor()
case *templateEndToken:
p.Read() // eat erroneous token
return errPlaceholderExpr(tok.SrcRange), hcl.Diagnostics{
{
// This is a particularly unhelpful diagnostic, so callers
// should attempt to pre-empt it and produce a more helpful
// diagnostic that is context-aware.
Severity: hcl.DiagError,
Summary: "Unexpected end of template",
Detail: "The control directives within this template are unbalanced.",
Subject: &tok.SrcRange,
},
}
case *templateEndCtrlToken:
p.Read() // eat erroneous token
return errPlaceholderExpr(tok.SrcRange), hcl.Diagnostics{
{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("Unexpected %s directive", tok.Name()),
Detail: "The control directives within this template are unbalanced.",
Subject: &tok.SrcRange,
},
}
default:
// should never happen, because above should be exhaustive
panic(fmt.Sprintf("unhandled template token type %T", next))
}
}
func (p *templateParser) parseIf() (Expression, hcl.Diagnostics) {
open := p.Read()
openIf, isIf := open.(*templateIfToken)
if !isIf {
// should never happen if caller is behaving
panic("parseIf called with peeker not pointing at if token")
}
var ifExprs, elseExprs []Expression
var diags hcl.Diagnostics
var endifRange hcl.Range
currentExprs := &ifExprs
Token:
for {
next := p.Peek()
if end, isEnd := next.(*templateEndToken); isEnd {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Unexpected end of template",
Detail: fmt.Sprintf(
"The if directive at %s is missing its corresponding endif directive.",
openIf.SrcRange,
),
Subject: &end.SrcRange,
})
return errPlaceholderExpr(end.SrcRange), diags
}
if end, isCtrlEnd := next.(*templateEndCtrlToken); isCtrlEnd {
p.Read() // eat end directive
switch end.Type {
case templateElse:
if currentExprs == &ifExprs {
currentExprs = &elseExprs
continue Token
}
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Unexpected else directive",
Detail: fmt.Sprintf(
"Already in the else clause for the if started at %s.",
openIf.SrcRange,
),
Subject: &end.SrcRange,
})
case templateEndIf:
endifRange = end.SrcRange
break Token
default:
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("Unexpected %s directive", end.Name()),
Detail: fmt.Sprintf(
"Expecting an endif directive for the if started at %s.",
openIf.SrcRange,
),
Subject: &end.SrcRange,
})
}
return errPlaceholderExpr(end.SrcRange), diags
}
expr, exprDiags := p.parseExpr()
diags = append(diags, exprDiags...)
*currentExprs = append(*currentExprs, expr)
}
if len(ifExprs) == 0 {
ifExprs = append(ifExprs, &LiteralValueExpr{
Val: cty.StringVal(""),
SrcRange: hcl.Range{
Filename: openIf.SrcRange.Filename,
Start: openIf.SrcRange.End,
End: openIf.SrcRange.End,
},
})
}
if len(elseExprs) == 0 {
elseExprs = append(elseExprs, &LiteralValueExpr{
Val: cty.StringVal(""),
SrcRange: hcl.Range{
Filename: endifRange.Filename,
Start: endifRange.Start,
End: endifRange.Start,
},
})
}
trueExpr := &TemplateExpr{
Parts: ifExprs,
SrcRange: hcl.RangeBetween(ifExprs[0].Range(), ifExprs[len(ifExprs)-1].Range()),
}
falseExpr := &TemplateExpr{
Parts: elseExprs,
SrcRange: hcl.RangeBetween(elseExprs[0].Range(), elseExprs[len(elseExprs)-1].Range()),
}
return &ConditionalExpr{
Condition: openIf.CondExpr,
TrueResult: trueExpr,
FalseResult: falseExpr,
SrcRange: hcl.RangeBetween(openIf.SrcRange, endifRange),
}, diags
}
func (p *templateParser) parseFor() (Expression, hcl.Diagnostics) {
open := p.Read()
openFor, isFor := open.(*templateForToken)
if !isFor {
// should never happen if caller is behaving
panic("parseFor called with peeker not pointing at for token")
}
var contentExprs []Expression
var diags hcl.Diagnostics
var endforRange hcl.Range
Token:
for {
next := p.Peek()
if end, isEnd := next.(*templateEndToken); isEnd {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Unexpected end of template",
Detail: fmt.Sprintf(
"The for directive at %s is missing its corresponding endfor directive.",
openFor.SrcRange,
),
Subject: &end.SrcRange,
})
return errPlaceholderExpr(end.SrcRange), diags
}
if end, isCtrlEnd := next.(*templateEndCtrlToken); isCtrlEnd {
p.Read() // eat end directive
switch end.Type {
case templateElse:
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Unexpected else directive",
Detail: "An else clause is not expected for a for directive.",
Subject: &end.SrcRange,
})
case templateEndFor:
endforRange = end.SrcRange
break Token
default:
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("Unexpected %s directive", end.Name()),
Detail: fmt.Sprintf(
"Expecting an endfor directive corresponding to the for directive at %s.",
openFor.SrcRange,
),
Subject: &end.SrcRange,
})
}
return errPlaceholderExpr(end.SrcRange), diags
}
expr, exprDiags := p.parseExpr()
diags = append(diags, exprDiags...)
contentExprs = append(contentExprs, expr)
}
if len(contentExprs) == 0 {
contentExprs = append(contentExprs, &LiteralValueExpr{
Val: cty.StringVal(""),
SrcRange: hcl.Range{
Filename: openFor.SrcRange.Filename,
Start: openFor.SrcRange.End,
End: openFor.SrcRange.End,
},
})
}
contentExpr := &TemplateExpr{
Parts: contentExprs,
SrcRange: hcl.RangeBetween(contentExprs[0].Range(), contentExprs[len(contentExprs)-1].Range()),
}
forExpr := &ForExpr{
KeyVar: openFor.KeyVar,
ValVar: openFor.ValVar,
CollExpr: openFor.CollExpr,
ValExpr: contentExpr,
SrcRange: hcl.RangeBetween(openFor.SrcRange, endforRange),
OpenRange: openFor.SrcRange,
CloseRange: endforRange,
}
return &TemplateJoinExpr{
Tuple: forExpr,
}, diags
}
func (p *templateParser) Peek() templateToken {
return p.Tokens[p.pos]
}
func (p *templateParser) Read() templateToken {
ret := p.Peek()
if _, end := ret.(*templateEndToken); !end {
p.pos++
}
return ret
}
// parseTemplateParts produces a flat sequence of "template tokens", which are
// either literal values (with any "trimming" already applied), interpolation
// sequences, or control flow markers.
//
// A further pass is required on the result to turn it into an AST.
func (p *parser) parseTemplateParts(end TokenType) (*templateParts, hcl.Diagnostics) {
var parts []templateToken
var diags hcl.Diagnostics
startRange := p.NextRange()
ltrimNext := false
nextCanTrimPrev := false
var endRange hcl.Range
Token:
for {
next := p.Read()
if next.Type == end {
// all done!
endRange = next.Range
break
}
ltrim := ltrimNext
ltrimNext = false
canTrimPrev := nextCanTrimPrev
nextCanTrimPrev = false
switch next.Type {
case TokenStringLit, TokenQuotedLit:
str, strDiags := ParseStringLiteralToken(next)
diags = append(diags, strDiags...)
if ltrim {
str = strings.TrimLeftFunc(str, unicode.IsSpace)
}
parts = append(parts, &templateLiteralToken{
Val: str,
SrcRange: next.Range,
})
nextCanTrimPrev = true
case TokenTemplateInterp:
// if the opener is ${~ then we want to eat any trailing whitespace
// in the preceding literal token, assuming it is indeed a literal
// token.
if canTrimPrev && len(next.Bytes) == 3 && next.Bytes[2] == '~' && len(parts) > 0 {
prevExpr := parts[len(parts)-1]
if lexpr, ok := prevExpr.(*templateLiteralToken); ok {
lexpr.Val = strings.TrimRightFunc(lexpr.Val, unicode.IsSpace)
}
}
p.PushIncludeNewlines(false)
expr, exprDiags := p.ParseExpression()
diags = append(diags, exprDiags...)
close := p.Peek()
if close.Type != TokenTemplateSeqEnd {
if !p.recovery {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Extra characters after interpolation expression",
Detail: "Expected a closing brace to end the interpolation expression, but found extra characters.",
Subject: &close.Range,
Context: hcl.RangeBetween(startRange, close.Range).Ptr(),
})
}
p.recover(TokenTemplateSeqEnd)
} else {
p.Read() // eat closing brace
// If the closer is ~} then we want to eat any leading
// whitespace on the next token, if it turns out to be a
// literal token.
if len(close.Bytes) == 2 && close.Bytes[0] == '~' {
ltrimNext = true
}
}
p.PopIncludeNewlines()
parts = append(parts, &templateInterpToken{
Expr: expr,
SrcRange: hcl.RangeBetween(next.Range, close.Range),
})
case TokenTemplateControl:
// if the opener is %{~ then we want to eat any trailing whitespace
// in the preceding literal token, assuming it is indeed a literal
// token.
if canTrimPrev && len(next.Bytes) == 3 && next.Bytes[2] == '~' && len(parts) > 0 {
prevExpr := parts[len(parts)-1]
if lexpr, ok := prevExpr.(*templateLiteralToken); ok {
lexpr.Val = strings.TrimRightFunc(lexpr.Val, unicode.IsSpace)
}
}
p.PushIncludeNewlines(false)
kw := p.Peek()
if kw.Type != TokenIdent {
if !p.recovery {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid template directive",
Detail: "A template directive keyword (\"if\", \"for\", etc) is expected at the beginning of a %{ sequence.",
Subject: &kw.Range,
Context: hcl.RangeBetween(next.Range, kw.Range).Ptr(),
})
}
p.recover(TokenTemplateSeqEnd)
p.PopIncludeNewlines()
continue Token
}
p.Read() // eat keyword token
switch {
case ifKeyword.TokenMatches(kw):
condExpr, exprDiags := p.ParseExpression()
diags = append(diags, exprDiags...)
parts = append(parts, &templateIfToken{
CondExpr: condExpr,
SrcRange: hcl.RangeBetween(next.Range, p.NextRange()),
})
case elseKeyword.TokenMatches(kw):
parts = append(parts, &templateEndCtrlToken{
Type: templateElse,
SrcRange: hcl.RangeBetween(next.Range, p.NextRange()),
})
case endifKeyword.TokenMatches(kw):
parts = append(parts, &templateEndCtrlToken{
Type: templateEndIf,
SrcRange: hcl.RangeBetween(next.Range, p.NextRange()),
})
case forKeyword.TokenMatches(kw):
var keyName, valName string
if p.Peek().Type != TokenIdent {
if !p.recovery {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid 'for' directive",
Detail: "For directive requires variable name after 'for'.",
Subject: p.Peek().Range.Ptr(),
})
}
p.recover(TokenTemplateSeqEnd)
p.PopIncludeNewlines()
continue Token
}
valName = string(p.Read().Bytes)
if p.Peek().Type == TokenComma {
// What we just read was actually the key, then.
keyName = valName
p.Read() // eat comma
if p.Peek().Type != TokenIdent {
if !p.recovery {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid 'for' directive",
Detail: "For directive requires value variable name after comma.",
Subject: p.Peek().Range.Ptr(),
})
}
p.recover(TokenTemplateSeqEnd)
p.PopIncludeNewlines()
continue Token
}
valName = string(p.Read().Bytes)
}
if !inKeyword.TokenMatches(p.Peek()) {
if !p.recovery {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid 'for' directive",
Detail: "For directive requires 'in' keyword after names.",
Subject: p.Peek().Range.Ptr(),
})
}
p.recover(TokenTemplateSeqEnd)
p.PopIncludeNewlines()
continue Token
}
p.Read() // eat 'in' keyword
collExpr, collDiags := p.ParseExpression()
diags = append(diags, collDiags...)
parts = append(parts, &templateForToken{
KeyVar: keyName,
ValVar: valName,
CollExpr: collExpr,
SrcRange: hcl.RangeBetween(next.Range, p.NextRange()),
})
case endforKeyword.TokenMatches(kw):
parts = append(parts, &templateEndCtrlToken{
Type: templateEndFor,
SrcRange: hcl.RangeBetween(next.Range, p.NextRange()),
})
default:
if !p.recovery {
suggestions := []string{"if", "for", "else", "endif", "endfor"}
given := string(kw.Bytes)
suggestion := nameSuggestion(given, suggestions)
if suggestion != "" {
suggestion = fmt.Sprintf(" Did you mean %q?", suggestion)
}
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid template control keyword",
Detail: fmt.Sprintf("%q is not a valid template control keyword.%s", given, suggestion),
Subject: &kw.Range,
Context: hcl.RangeBetween(next.Range, kw.Range).Ptr(),
})
}
p.recover(TokenTemplateSeqEnd)
p.PopIncludeNewlines()
continue Token
}
close := p.Peek()
if close.Type != TokenTemplateSeqEnd {
if !p.recovery {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("Extra characters in %s marker", kw.Bytes),
Detail: "Expected a closing brace to end the sequence, but found extra characters.",
Subject: &close.Range,
Context: hcl.RangeBetween(startRange, close.Range).Ptr(),
})
}
p.recover(TokenTemplateSeqEnd)
} else {
p.Read() // eat closing brace
// If the closer is ~} then we want to eat any leading
// whitespace on the next token, if it turns out to be a
// literal token.
if len(close.Bytes) == 2 && close.Bytes[0] == '~' {
ltrimNext = true
}
}
p.PopIncludeNewlines()
default:
if !p.recovery {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Unterminated template string",
Detail: "No closing marker was found for the string.",
Subject: &next.Range,
Context: hcl.RangeBetween(startRange, next.Range).Ptr(),
})
}
final := p.recover(end)
endRange = final.Range
break Token
}
}
if len(parts) == 0 {
// If a sequence has no content, we'll treat it as if it had an
// empty string in it because that's what the user probably means
// if they write "" in configuration.
parts = append(parts, &templateLiteralToken{
Val: "",
SrcRange: hcl.Range{
// Range is the zero-character span immediately after the
// opening quote.
Filename: startRange.Filename,
Start: startRange.End,
End: startRange.End,
},
})
}
// Always end with an end token, so the parser can produce diagnostics
// about unclosed items with proper position information.
parts = append(parts, &templateEndToken{
SrcRange: endRange,
})
ret := &templateParts{
Tokens: parts,
SrcRange: hcl.RangeBetween(startRange, endRange),
}
return ret, diags
}
// flushHeredocTemplateParts modifies in-place the line-leading literal strings
// to apply the flush heredoc processing rule: find the line with the smallest
// number of whitespace characters as prefix and then trim that number of
// characters from all of the lines.
//
// This rule is applied to static tokens rather than to the rendered result,
// so interpolating a string with leading whitespace cannot affect the chosen
// prefix length.
func flushHeredocTemplateParts(parts *templateParts) {
if len(parts.Tokens) == 0 {
// Nothing to do
return
}
const maxInt = int((^uint(0)) >> 1)
minSpaces := maxInt
newline := true
var adjust []*templateLiteralToken
for _, ttok := range parts.Tokens {
if newline {
newline = false
var spaces int
if lit, ok := ttok.(*templateLiteralToken); ok {
orig := lit.Val
trimmed := strings.TrimLeftFunc(orig, unicode.IsSpace)
// If a token is entirely spaces and ends with a newline
// then it's a "blank line" and thus not considered for
// space-prefix-counting purposes.
if len(trimmed) == 0 && strings.HasSuffix(orig, "\n") {
spaces = maxInt
} else {
spaceBytes := len(lit.Val) - len(trimmed)
spaces, _ = textseg.TokenCount([]byte(orig[:spaceBytes]), textseg.ScanGraphemeClusters)
adjust = append(adjust, lit)
}
} else if _, ok := ttok.(*templateEndToken); ok {
break // don't process the end token since it never has spaces before it
}
if spaces < minSpaces {
minSpaces = spaces
}
}
if lit, ok := ttok.(*templateLiteralToken); ok {
if strings.HasSuffix(lit.Val, "\n") {
newline = true // The following token, if any, begins a new line
}
}
}
for _, lit := range adjust {
// Since we want to count space _characters_ rather than space _bytes_,
// we can't just do a straightforward slice operation here and instead
// need to hunt for the split point with a scanner.
valBytes := []byte(lit.Val)
spaceByteCount := 0
for i := 0; i < minSpaces; i++ {
adv, _, _ := textseg.ScanGraphemeClusters(valBytes, true)
spaceByteCount += adv
valBytes = valBytes[adv:]
}
lit.Val = lit.Val[spaceByteCount:]
lit.SrcRange.Start.Column += minSpaces
lit.SrcRange.Start.Byte += spaceByteCount
}
}
type templateParts struct {
Tokens []templateToken
SrcRange hcl.Range
}
// templateToken is a higher-level token that represents a single atom within
// the template language. Our template parsing first raises the raw token
// stream to a sequence of templateToken, and then transforms the result into
// an expression tree.
type templateToken interface {
templateToken() templateToken
}
type templateLiteralToken struct {
Val string
SrcRange hcl.Range
isTemplateToken
}
type templateInterpToken struct {
Expr Expression
SrcRange hcl.Range
isTemplateToken
}
type templateIfToken struct {
CondExpr Expression
SrcRange hcl.Range
isTemplateToken
}
type templateForToken struct {
KeyVar string // empty if ignoring key
ValVar string
CollExpr Expression
SrcRange hcl.Range
isTemplateToken
}
type templateEndCtrlType int
const (
templateEndIf templateEndCtrlType = iota
templateElse
templateEndFor
)
type templateEndCtrlToken struct {
Type templateEndCtrlType
SrcRange hcl.Range
isTemplateToken
}
func (t *templateEndCtrlToken) Name() string {
switch t.Type {
case templateEndIf:
return "endif"
case templateElse:
return "else"
case templateEndFor:
return "endfor"
default:
// should never happen
panic("invalid templateEndCtrlType")
}
}
type templateEndToken struct {
SrcRange hcl.Range
isTemplateToken
}
type isTemplateToken [0]int
func (t isTemplateToken) templateToken() templateToken {
return t
}

View File

@ -0,0 +1,159 @@
package hclsyntax
import (
"github.com/hashicorp/hcl/v2"
"github.com/zclconf/go-cty/cty"
)
// ParseTraversalAbs parses an absolute traversal that is assumed to consume
// all of the remaining tokens in the peeker. The usual parser recovery
// behavior is not supported here because traversals are not expected to
// be parsed as part of a larger program.
func (p *parser) ParseTraversalAbs() (hcl.Traversal, hcl.Diagnostics) {
var ret hcl.Traversal
var diags hcl.Diagnostics
// Absolute traversal must always begin with a variable name
varTok := p.Read()
if varTok.Type != TokenIdent {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Variable name required",
Detail: "Must begin with a variable name.",
Subject: &varTok.Range,
})
return ret, diags
}
varName := string(varTok.Bytes)
ret = append(ret, hcl.TraverseRoot{
Name: varName,
SrcRange: varTok.Range,
})
for {
next := p.Peek()
if next.Type == TokenEOF {
return ret, diags
}
switch next.Type {
case TokenDot:
// Attribute access
dot := p.Read() // eat dot
nameTok := p.Read()
if nameTok.Type != TokenIdent {
if nameTok.Type == TokenStar {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Attribute name required",
Detail: "Splat expressions (.*) may not be used here.",
Subject: &nameTok.Range,
Context: hcl.RangeBetween(varTok.Range, nameTok.Range).Ptr(),
})
} else {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Attribute name required",
Detail: "Dot must be followed by attribute name.",
Subject: &nameTok.Range,
Context: hcl.RangeBetween(varTok.Range, nameTok.Range).Ptr(),
})
}
return ret, diags
}
attrName := string(nameTok.Bytes)
ret = append(ret, hcl.TraverseAttr{
Name: attrName,
SrcRange: hcl.RangeBetween(dot.Range, nameTok.Range),
})
case TokenOBrack:
// Index
open := p.Read() // eat open bracket
next := p.Peek()
switch next.Type {
case TokenNumberLit:
tok := p.Read() // eat number
numVal, numDiags := p.numberLitValue(tok)
diags = append(diags, numDiags...)
close := p.Read()
if close.Type != TokenCBrack {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Unclosed index brackets",
Detail: "Index key must be followed by a closing bracket.",
Subject: &close.Range,
Context: hcl.RangeBetween(open.Range, close.Range).Ptr(),
})
}
ret = append(ret, hcl.TraverseIndex{
Key: numVal,
SrcRange: hcl.RangeBetween(open.Range, close.Range),
})
if diags.HasErrors() {
return ret, diags
}
case TokenOQuote:
str, _, strDiags := p.parseQuotedStringLiteral()
diags = append(diags, strDiags...)
close := p.Read()
if close.Type != TokenCBrack {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Unclosed index brackets",
Detail: "Index key must be followed by a closing bracket.",
Subject: &close.Range,
Context: hcl.RangeBetween(open.Range, close.Range).Ptr(),
})
}
ret = append(ret, hcl.TraverseIndex{
Key: cty.StringVal(str),
SrcRange: hcl.RangeBetween(open.Range, close.Range),
})
if diags.HasErrors() {
return ret, diags
}
default:
if next.Type == TokenStar {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Attribute name required",
Detail: "Splat expressions ([*]) may not be used here.",
Subject: &next.Range,
Context: hcl.RangeBetween(varTok.Range, next.Range).Ptr(),
})
} else {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Index value required",
Detail: "Index brackets must contain either a literal number or a literal string.",
Subject: &next.Range,
Context: hcl.RangeBetween(varTok.Range, next.Range).Ptr(),
})
}
return ret, diags
}
default:
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid character",
Detail: "Expected an attribute access or an index operator.",
Subject: &next.Range,
Context: hcl.RangeBetween(varTok.Range, next.Range).Ptr(),
})
return ret, diags
}
}
}

212
vendor/github.com/hashicorp/hcl/v2/hclsyntax/peeker.go generated vendored Normal file
View File

@ -0,0 +1,212 @@
package hclsyntax
import (
"bytes"
"fmt"
"path/filepath"
"runtime"
"strings"
"github.com/hashicorp/hcl/v2"
)
// This is set to true at init() time in tests, to enable more useful output
// if a stack discipline error is detected. It should not be enabled in
// normal mode since there is a performance penalty from accessing the
// runtime stack to produce the traces, but could be temporarily set to
// true for debugging if desired.
var tracePeekerNewlinesStack = false
type peeker struct {
Tokens Tokens
NextIndex int
IncludeComments bool
IncludeNewlinesStack []bool
// used only when tracePeekerNewlinesStack is set
newlineStackChanges []peekerNewlineStackChange
}
// for use in debugging the stack usage only
type peekerNewlineStackChange struct {
Pushing bool // if false, then popping
Frame runtime.Frame
Include bool
}
func newPeeker(tokens Tokens, includeComments bool) *peeker {
return &peeker{
Tokens: tokens,
IncludeComments: includeComments,
IncludeNewlinesStack: []bool{true},
}
}
func (p *peeker) Peek() Token {
ret, _ := p.nextToken()
return ret
}
func (p *peeker) Read() Token {
ret, nextIdx := p.nextToken()
p.NextIndex = nextIdx
return ret
}
func (p *peeker) NextRange() hcl.Range {
return p.Peek().Range
}
func (p *peeker) PrevRange() hcl.Range {
if p.NextIndex == 0 {
return p.NextRange()
}
return p.Tokens[p.NextIndex-1].Range
}
func (p *peeker) nextToken() (Token, int) {
for i := p.NextIndex; i < len(p.Tokens); i++ {
tok := p.Tokens[i]
switch tok.Type {
case TokenComment:
if !p.IncludeComments {
// Single-line comment tokens, starting with # or //, absorb
// the trailing newline that terminates them as part of their
// bytes. When we're filtering out comments, we must as a
// special case transform these to newline tokens in order
// to properly parse newline-terminated block items.
if p.includingNewlines() {
if len(tok.Bytes) > 0 && tok.Bytes[len(tok.Bytes)-1] == '\n' {
fakeNewline := Token{
Type: TokenNewline,
Bytes: tok.Bytes[len(tok.Bytes)-1 : len(tok.Bytes)],
// We use the whole token range as the newline
// range, even though that's a little... weird,
// because otherwise we'd need to go count
// characters again in order to figure out the
// column of the newline, and that complexity
// isn't justified when ranges of newlines are
// so rarely printed anyway.
Range: tok.Range,
}
return fakeNewline, i + 1
}
}
continue
}
case TokenNewline:
if !p.includingNewlines() {
continue
}
}
return tok, i + 1
}
// if we fall out here then we'll return the EOF token, and leave
// our index pointed off the end of the array so we'll keep
// returning EOF in future too.
return p.Tokens[len(p.Tokens)-1], len(p.Tokens)
}
func (p *peeker) includingNewlines() bool {
return p.IncludeNewlinesStack[len(p.IncludeNewlinesStack)-1]
}
func (p *peeker) PushIncludeNewlines(include bool) {
if tracePeekerNewlinesStack {
// Record who called us so that we can more easily track down any
// mismanagement of the stack in the parser.
callers := []uintptr{0}
runtime.Callers(2, callers)
frames := runtime.CallersFrames(callers)
frame, _ := frames.Next()
p.newlineStackChanges = append(p.newlineStackChanges, peekerNewlineStackChange{
true, frame, include,
})
}
p.IncludeNewlinesStack = append(p.IncludeNewlinesStack, include)
}
func (p *peeker) PopIncludeNewlines() bool {
stack := p.IncludeNewlinesStack
remain, ret := stack[:len(stack)-1], stack[len(stack)-1]
p.IncludeNewlinesStack = remain
if tracePeekerNewlinesStack {
// Record who called us so that we can more easily track down any
// mismanagement of the stack in the parser.
callers := []uintptr{0}
runtime.Callers(2, callers)
frames := runtime.CallersFrames(callers)
frame, _ := frames.Next()
p.newlineStackChanges = append(p.newlineStackChanges, peekerNewlineStackChange{
false, frame, ret,
})
}
return ret
}
// AssertEmptyNewlinesStack checks if the IncludeNewlinesStack is empty, doing
// panicking if it is not. This can be used to catch stack mismanagement that
// might otherwise just cause confusing downstream errors.
//
// This function is a no-op if the stack is empty when called.
//
// If newlines stack tracing is enabled by setting the global variable
// tracePeekerNewlinesStack at init time, a full log of all of the push/pop
// calls will be produced to help identify which caller in the parser is
// misbehaving.
func (p *peeker) AssertEmptyIncludeNewlinesStack() {
if len(p.IncludeNewlinesStack) != 1 {
// Should never happen; indicates mismanagement of the stack inside
// the parser.
if p.newlineStackChanges != nil { // only if traceNewlinesStack is enabled above
panic(fmt.Errorf(
"non-empty IncludeNewlinesStack after parse with %d calls unaccounted for:\n%s",
len(p.IncludeNewlinesStack)-1,
formatPeekerNewlineStackChanges(p.newlineStackChanges),
))
} else {
panic(fmt.Errorf("non-empty IncludeNewlinesStack after parse: %#v", p.IncludeNewlinesStack))
}
}
}
func formatPeekerNewlineStackChanges(changes []peekerNewlineStackChange) string {
indent := 0
var buf bytes.Buffer
for _, change := range changes {
funcName := change.Frame.Function
if idx := strings.LastIndexByte(funcName, '.'); idx != -1 {
funcName = funcName[idx+1:]
}
filename := change.Frame.File
if idx := strings.LastIndexByte(filename, filepath.Separator); idx != -1 {
filename = filename[idx+1:]
}
switch change.Pushing {
case true:
buf.WriteString(strings.Repeat(" ", indent))
fmt.Fprintf(&buf, "PUSH %#v (%s at %s:%d)\n", change.Include, funcName, filename, change.Frame.Line)
indent++
case false:
indent--
buf.WriteString(strings.Repeat(" ", indent))
fmt.Fprintf(&buf, "POP %#v (%s at %s:%d)\n", change.Include, funcName, filename, change.Frame.Line)
}
}
return buf.String()
}

171
vendor/github.com/hashicorp/hcl/v2/hclsyntax/public.go generated vendored Normal file
View File

@ -0,0 +1,171 @@
package hclsyntax
import (
"github.com/hashicorp/hcl/v2"
)
// ParseConfig parses the given buffer as a whole HCL config file, returning
// a *hcl.File representing its contents. If HasErrors called on the returned
// diagnostics returns true, the returned body is likely to be incomplete
// and should therefore be used with care.
//
// The body in the returned file has dynamic type *hclsyntax.Body, so callers
// may freely type-assert this to get access to the full hclsyntax API in
// situations where detailed access is required. However, most common use-cases
// should be served using the hcl.Body interface to ensure compatibility with
// other configurationg syntaxes, such as JSON.
func ParseConfig(src []byte, filename string, start hcl.Pos) (*hcl.File, hcl.Diagnostics) {
tokens, diags := LexConfig(src, filename, start)
peeker := newPeeker(tokens, false)
parser := &parser{peeker: peeker}
body, parseDiags := parser.ParseBody(TokenEOF)
diags = append(diags, parseDiags...)
// Panic if the parser uses incorrect stack discipline with the peeker's
// newlines stack, since otherwise it will produce confusing downstream
// errors.
peeker.AssertEmptyIncludeNewlinesStack()
return &hcl.File{
Body: body,
Bytes: src,
Nav: navigation{
root: body,
},
}, diags
}
// ParseExpression parses the given buffer as a standalone HCL expression,
// returning it as an instance of Expression.
func ParseExpression(src []byte, filename string, start hcl.Pos) (Expression, hcl.Diagnostics) {
tokens, diags := LexExpression(src, filename, start)
peeker := newPeeker(tokens, false)
parser := &parser{peeker: peeker}
// Bare expressions are always parsed in "ignore newlines" mode, as if
// they were wrapped in parentheses.
parser.PushIncludeNewlines(false)
expr, parseDiags := parser.ParseExpression()
diags = append(diags, parseDiags...)
next := parser.Peek()
if next.Type != TokenEOF && !parser.recovery {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Extra characters after expression",
Detail: "An expression was successfully parsed, but extra characters were found after it.",
Subject: &next.Range,
})
}
parser.PopIncludeNewlines()
// Panic if the parser uses incorrect stack discipline with the peeker's
// newlines stack, since otherwise it will produce confusing downstream
// errors.
peeker.AssertEmptyIncludeNewlinesStack()
return expr, diags
}
// ParseTemplate parses the given buffer as a standalone HCL template,
// returning it as an instance of Expression.
func ParseTemplate(src []byte, filename string, start hcl.Pos) (Expression, hcl.Diagnostics) {
tokens, diags := LexTemplate(src, filename, start)
peeker := newPeeker(tokens, false)
parser := &parser{peeker: peeker}
expr, parseDiags := parser.ParseTemplate()
diags = append(diags, parseDiags...)
// Panic if the parser uses incorrect stack discipline with the peeker's
// newlines stack, since otherwise it will produce confusing downstream
// errors.
peeker.AssertEmptyIncludeNewlinesStack()
return expr, diags
}
// ParseTraversalAbs parses the given buffer as a standalone absolute traversal.
//
// Parsing as a traversal is more limited than parsing as an expession since
// it allows only attribute and indexing operations on variables. Traverals
// are useful as a syntax for referring to objects without necessarily
// evaluating them.
func ParseTraversalAbs(src []byte, filename string, start hcl.Pos) (hcl.Traversal, hcl.Diagnostics) {
tokens, diags := LexExpression(src, filename, start)
peeker := newPeeker(tokens, false)
parser := &parser{peeker: peeker}
// Bare traverals are always parsed in "ignore newlines" mode, as if
// they were wrapped in parentheses.
parser.PushIncludeNewlines(false)
expr, parseDiags := parser.ParseTraversalAbs()
diags = append(diags, parseDiags...)
parser.PopIncludeNewlines()
// Panic if the parser uses incorrect stack discipline with the peeker's
// newlines stack, since otherwise it will produce confusing downstream
// errors.
peeker.AssertEmptyIncludeNewlinesStack()
return expr, diags
}
// LexConfig performs lexical analysis on the given buffer, treating it as a
// whole HCL config file, and returns the resulting tokens.
//
// Only minimal validation is done during lexical analysis, so the returned
// diagnostics may include errors about lexical issues such as bad character
// encodings or unrecognized characters, but full parsing is required to
// detect _all_ syntax errors.
func LexConfig(src []byte, filename string, start hcl.Pos) (Tokens, hcl.Diagnostics) {
tokens := scanTokens(src, filename, start, scanNormal)
diags := checkInvalidTokens(tokens)
return tokens, diags
}
// LexExpression performs lexical analysis on the given buffer, treating it as
// a standalone HCL expression, and returns the resulting tokens.
//
// Only minimal validation is done during lexical analysis, so the returned
// diagnostics may include errors about lexical issues such as bad character
// encodings or unrecognized characters, but full parsing is required to
// detect _all_ syntax errors.
func LexExpression(src []byte, filename string, start hcl.Pos) (Tokens, hcl.Diagnostics) {
// This is actually just the same thing as LexConfig, since configs
// and expressions lex in the same way.
tokens := scanTokens(src, filename, start, scanNormal)
diags := checkInvalidTokens(tokens)
return tokens, diags
}
// LexTemplate performs lexical analysis on the given buffer, treating it as a
// standalone HCL template, and returns the resulting tokens.
//
// Only minimal validation is done during lexical analysis, so the returned
// diagnostics may include errors about lexical issues such as bad character
// encodings or unrecognized characters, but full parsing is required to
// detect _all_ syntax errors.
func LexTemplate(src []byte, filename string, start hcl.Pos) (Tokens, hcl.Diagnostics) {
tokens := scanTokens(src, filename, start, scanTemplate)
diags := checkInvalidTokens(tokens)
return tokens, diags
}
// ValidIdentifier tests if the given string could be a valid identifier in
// a native syntax expression.
//
// This is useful when accepting names from the user that will be used as
// variable or attribute names in the scope, to ensure that any name chosen
// will be traversable using the variable or attribute traversal syntax.
func ValidIdentifier(s string) bool {
// This is a kinda-expensive way to do something pretty simple, but it
// is easiest to do with our existing scanner-related infrastructure here
// and nobody should be validating identifiers in a tight loop.
tokens := scanTokens([]byte(s), "", hcl.Pos{}, scanIdentOnly)
return len(tokens) == 2 && tokens[0].Type == TokenIdent && tokens[1].Type == TokenEOF
}

View File

@ -0,0 +1,301 @@
//line scan_string_lit.rl:1
package hclsyntax
// This file is generated from scan_string_lit.rl. DO NOT EDIT.
//line scan_string_lit.go:9
var _hclstrtok_actions []byte = []byte{
0, 1, 0, 1, 1, 2, 1, 0,
}
var _hclstrtok_key_offsets []byte = []byte{
0, 0, 2, 4, 6, 10, 14, 18,
22, 27, 31, 36, 41, 46, 51, 57,
62, 74, 85, 96, 107, 118, 129, 140,
151,
}
var _hclstrtok_trans_keys []byte = []byte{
128, 191, 128, 191, 128, 191, 10, 13,
36, 37, 10, 13, 36, 37, 10, 13,
36, 37, 10, 13, 36, 37, 10, 13,
36, 37, 123, 10, 13, 36, 37, 10,
13, 36, 37, 92, 10, 13, 36, 37,
92, 10, 13, 36, 37, 92, 10, 13,
36, 37, 92, 10, 13, 36, 37, 92,
123, 10, 13, 36, 37, 92, 85, 117,
128, 191, 192, 223, 224, 239, 240, 247,
248, 255, 10, 13, 36, 37, 92, 48,
57, 65, 70, 97, 102, 10, 13, 36,
37, 92, 48, 57, 65, 70, 97, 102,
10, 13, 36, 37, 92, 48, 57, 65,
70, 97, 102, 10, 13, 36, 37, 92,
48, 57, 65, 70, 97, 102, 10, 13,
36, 37, 92, 48, 57, 65, 70, 97,
102, 10, 13, 36, 37, 92, 48, 57,
65, 70, 97, 102, 10, 13, 36, 37,
92, 48, 57, 65, 70, 97, 102, 10,
13, 36, 37, 92, 48, 57, 65, 70,
97, 102,
}
var _hclstrtok_single_lengths []byte = []byte{
0, 0, 0, 0, 4, 4, 4, 4,
5, 4, 5, 5, 5, 5, 6, 5,
2, 5, 5, 5, 5, 5, 5, 5,
5,
}
var _hclstrtok_range_lengths []byte = []byte{
0, 1, 1, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
5, 3, 3, 3, 3, 3, 3, 3,
3,
}
var _hclstrtok_index_offsets []byte = []byte{
0, 0, 2, 4, 6, 11, 16, 21,
26, 32, 37, 43, 49, 55, 61, 68,
74, 82, 91, 100, 109, 118, 127, 136,
145,
}
var _hclstrtok_indicies []byte = []byte{
0, 1, 2, 1, 3, 1, 5, 6,
7, 8, 4, 10, 11, 12, 13, 9,
14, 11, 12, 13, 9, 10, 11, 15,
13, 9, 10, 11, 12, 13, 14, 9,
10, 11, 12, 15, 9, 17, 18, 19,
20, 21, 16, 23, 24, 25, 26, 27,
22, 0, 24, 25, 26, 27, 22, 23,
24, 28, 26, 27, 22, 23, 24, 25,
26, 27, 0, 22, 23, 24, 25, 28,
27, 22, 29, 30, 22, 2, 3, 31,
22, 0, 23, 24, 25, 26, 27, 32,
32, 32, 22, 23, 24, 25, 26, 27,
33, 33, 33, 22, 23, 24, 25, 26,
27, 34, 34, 34, 22, 23, 24, 25,
26, 27, 30, 30, 30, 22, 23, 24,
25, 26, 27, 35, 35, 35, 22, 23,
24, 25, 26, 27, 36, 36, 36, 22,
23, 24, 25, 26, 27, 37, 37, 37,
22, 23, 24, 25, 26, 27, 0, 0,
0, 22,
}
var _hclstrtok_trans_targs []byte = []byte{
11, 0, 1, 2, 4, 5, 6, 7,
9, 4, 5, 6, 7, 9, 5, 8,
10, 11, 12, 13, 15, 16, 10, 11,
12, 13, 15, 16, 14, 17, 21, 3,
18, 19, 20, 22, 23, 24,
}
var _hclstrtok_trans_actions []byte = []byte{
0, 0, 0, 0, 0, 1, 1, 1,
1, 3, 5, 5, 5, 5, 0, 0,
0, 1, 1, 1, 1, 1, 3, 5,
5, 5, 5, 5, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0,
}
var _hclstrtok_eof_actions []byte = []byte{
0, 0, 0, 0, 0, 3, 3, 3,
3, 3, 0, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3,
3,
}
const hclstrtok_start int = 4
const hclstrtok_first_final int = 4
const hclstrtok_error int = 0
const hclstrtok_en_quoted int = 10
const hclstrtok_en_unquoted int = 4
//line scan_string_lit.rl:10
func scanStringLit(data []byte, quoted bool) [][]byte {
var ret [][]byte
//line scan_string_lit.rl:61
// Ragel state
p := 0 // "Pointer" into data
pe := len(data) // End-of-data "pointer"
ts := 0
te := 0
eof := pe
var cs int // current state
switch {
case quoted:
cs = hclstrtok_en_quoted
default:
cs = hclstrtok_en_unquoted
}
// Make Go compiler happy
_ = ts
_ = eof
/*token := func () {
ret = append(ret, data[ts:te])
}*/
//line scan_string_lit.go:154
{
}
//line scan_string_lit.go:158
{
var _klen int
var _trans int
var _acts int
var _nacts uint
var _keys int
if p == pe {
goto _test_eof
}
if cs == 0 {
goto _out
}
_resume:
_keys = int(_hclstrtok_key_offsets[cs])
_trans = int(_hclstrtok_index_offsets[cs])
_klen = int(_hclstrtok_single_lengths[cs])
if _klen > 0 {
_lower := int(_keys)
var _mid int
_upper := int(_keys + _klen - 1)
for {
if _upper < _lower {
break
}
_mid = _lower + ((_upper - _lower) >> 1)
switch {
case data[p] < _hclstrtok_trans_keys[_mid]:
_upper = _mid - 1
case data[p] > _hclstrtok_trans_keys[_mid]:
_lower = _mid + 1
default:
_trans += int(_mid - int(_keys))
goto _match
}
}
_keys += _klen
_trans += _klen
}
_klen = int(_hclstrtok_range_lengths[cs])
if _klen > 0 {
_lower := int(_keys)
var _mid int
_upper := int(_keys + (_klen << 1) - 2)
for {
if _upper < _lower {
break
}
_mid = _lower + (((_upper - _lower) >> 1) & ^1)
switch {
case data[p] < _hclstrtok_trans_keys[_mid]:
_upper = _mid - 2
case data[p] > _hclstrtok_trans_keys[_mid+1]:
_lower = _mid + 2
default:
_trans += int((_mid - int(_keys)) >> 1)
goto _match
}
}
_trans += _klen
}
_match:
_trans = int(_hclstrtok_indicies[_trans])
cs = int(_hclstrtok_trans_targs[_trans])
if _hclstrtok_trans_actions[_trans] == 0 {
goto _again
}
_acts = int(_hclstrtok_trans_actions[_trans])
_nacts = uint(_hclstrtok_actions[_acts])
_acts++
for ; _nacts > 0; _nacts-- {
_acts++
switch _hclstrtok_actions[_acts-1] {
case 0:
//line scan_string_lit.rl:40
// If te is behind p then we've skipped over some literal
// characters which we must now return.
if te < p {
ret = append(ret, data[te:p])
}
ts = p
case 1:
//line scan_string_lit.rl:48
te = p
ret = append(ret, data[ts:te])
//line scan_string_lit.go:253
}
}
_again:
if cs == 0 {
goto _out
}
p++
if p != pe {
goto _resume
}
_test_eof:
{
}
if p == eof {
__acts := _hclstrtok_eof_actions[cs]
__nacts := uint(_hclstrtok_actions[__acts])
__acts++
for ; __nacts > 0; __nacts-- {
__acts++
switch _hclstrtok_actions[__acts-1] {
case 1:
//line scan_string_lit.rl:48
te = p
ret = append(ret, data[ts:te])
//line scan_string_lit.go:278
}
}
}
_out:
{
}
}
//line scan_string_lit.rl:89
if te < p {
// Collect any leftover literal characters at the end of the input
ret = append(ret, data[te:p])
}
// If we fall out here without being in a final state then we've
// encountered something that the scanner can't match, which should
// be impossible (the scanner matches all bytes _somehow_) but we'll
// tolerate it and let the caller deal with it.
if cs < hclstrtok_first_final {
ret = append(ret, data[p:len(data)])
}
return ret
}

View File

@ -0,0 +1,105 @@
package hclsyntax
// This file is generated from scan_string_lit.rl. DO NOT EDIT.
%%{
# (except you are actually in scan_string_lit.rl here, so edit away!)
machine hclstrtok;
write data;
}%%
func scanStringLit(data []byte, quoted bool) [][]byte {
var ret [][]byte
%%{
include UnicodeDerived "unicode_derived.rl";
UTF8Cont = 0x80 .. 0xBF;
AnyUTF8 = (
0x00..0x7F |
0xC0..0xDF . UTF8Cont |
0xE0..0xEF . UTF8Cont . UTF8Cont |
0xF0..0xF7 . UTF8Cont . UTF8Cont . UTF8Cont
);
BadUTF8 = any - AnyUTF8;
Hex = ('0'..'9' | 'a'..'f' | 'A'..'F');
# Our goal with this patterns is to capture user intent as best as
# possible, even if the input is invalid. The caller will then verify
# whether each token is valid and generate suitable error messages
# if not.
UnicodeEscapeShort = "\\u" . Hex{0,4};
UnicodeEscapeLong = "\\U" . Hex{0,8};
UnicodeEscape = (UnicodeEscapeShort | UnicodeEscapeLong);
SimpleEscape = "\\" . (AnyUTF8 - ('U'|'u'))?;
TemplateEscape = ("$" . ("$" . ("{"?))?) | ("%" . ("%" . ("{"?))?);
Newline = ("\r\n" | "\r" | "\n");
action Begin {
// If te is behind p then we've skipped over some literal
// characters which we must now return.
if te < p {
ret = append(ret, data[te:p])
}
ts = p;
}
action End {
te = p;
ret = append(ret, data[ts:te]);
}
QuotedToken = (UnicodeEscape | SimpleEscape | TemplateEscape | Newline) >Begin %End;
UnquotedToken = (TemplateEscape | Newline) >Begin %End;
QuotedLiteral = (any - ("\\" | "$" | "%" | "\r" | "\n"));
UnquotedLiteral = (any - ("$" | "%" | "\r" | "\n"));
quoted := (QuotedToken | QuotedLiteral)**;
unquoted := (UnquotedToken | UnquotedLiteral)**;
}%%
// Ragel state
p := 0 // "Pointer" into data
pe := len(data) // End-of-data "pointer"
ts := 0
te := 0
eof := pe
var cs int // current state
switch {
case quoted:
cs = hclstrtok_en_quoted
default:
cs = hclstrtok_en_unquoted
}
// Make Go compiler happy
_ = ts
_ = eof
/*token := func () {
ret = append(ret, data[ts:te])
}*/
%%{
write init nocs;
write exec;
}%%
if te < p {
// Collect any leftover literal characters at the end of the input
ret = append(ret, data[te:p])
}
// If we fall out here without being in a final state then we've
// encountered something that the scanner can't match, which should
// be impossible (the scanner matches all bytes _somehow_) but we'll
// tolerate it and let the caller deal with it.
if cs < hclstrtok_first_final {
ret = append(ret, data[p:len(data)])
}
return ret
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,395 @@
package hclsyntax
import (
"bytes"
"github.com/hashicorp/hcl/v2"
)
// This file is generated from scan_tokens.rl. DO NOT EDIT.
%%{
# (except when you are actually in scan_tokens.rl here, so edit away!)
machine hcltok;
write data;
}%%
func scanTokens(data []byte, filename string, start hcl.Pos, mode scanMode) []Token {
stripData := stripUTF8BOM(data)
start.Byte += len(data) - len(stripData)
data = stripData
f := &tokenAccum{
Filename: filename,
Bytes: data,
Pos: start,
StartByte: start.Byte,
}
%%{
include UnicodeDerived "unicode_derived.rl";
UTF8Cont = 0x80 .. 0xBF;
AnyUTF8 = (
0x00..0x7F |
0xC0..0xDF . UTF8Cont |
0xE0..0xEF . UTF8Cont . UTF8Cont |
0xF0..0xF7 . UTF8Cont . UTF8Cont . UTF8Cont
);
BrokenUTF8 = any - AnyUTF8;
NumberLitContinue = (digit|'.'|('e'|'E') ('+'|'-')? digit);
NumberLit = digit ("" | (NumberLitContinue - '.') | (NumberLitContinue* (NumberLitContinue - '.')));
Ident = (ID_Start | '_') (ID_Continue | '-')*;
# Symbols that just represent themselves are handled as a single rule.
SelfToken = "[" | "]" | "(" | ")" | "." | "," | "*" | "/" | "%" | "+" | "-" | "=" | "<" | ">" | "!" | "?" | ":" | "\n" | "&" | "|" | "~" | "^" | ";" | "`" | "'";
EqualOp = "==";
NotEqual = "!=";
GreaterThanEqual = ">=";
LessThanEqual = "<=";
LogicalAnd = "&&";
LogicalOr = "||";
Ellipsis = "...";
FatArrow = "=>";
Newline = '\r' ? '\n';
EndOfLine = Newline;
BeginStringTmpl = '"';
BeginHeredocTmpl = '<<' ('-')? Ident Newline;
Comment = (
# The :>> operator in these is a "finish-guarded concatenation",
# which terminates the sequence on its left when it completes
# the sequence on its right.
# In the single-line comment cases this is allowing us to make
# the trailing EndOfLine optional while still having the overall
# pattern terminate. In the multi-line case it ensures that
# the first comment in the file ends at the first */, rather than
# gobbling up all of the "any*" until the _final_ */ in the file.
("#" (any - EndOfLine)* :>> EndOfLine?) |
("//" (any - EndOfLine)* :>> EndOfLine?) |
("/*" any* :>> "*/")
);
# Note: hclwrite assumes that only ASCII spaces appear between tokens,
# and uses this assumption to recreate the spaces between tokens by
# looking at byte offset differences. This means it will produce
# incorrect results in the presence of tabs, but that's acceptable
# because the canonical style (which hclwrite itself can impose
# automatically is to never use tabs).
Spaces = (' ' | 0x09)+;
action beginStringTemplate {
token(TokenOQuote);
fcall stringTemplate;
}
action endStringTemplate {
token(TokenCQuote);
fret;
}
action beginHeredocTemplate {
token(TokenOHeredoc);
// the token is currently the whole heredoc introducer, like
// <<EOT or <<-EOT, followed by a newline. We want to extract
// just the "EOT" portion that we'll use as the closing marker.
marker := data[ts+2:te-1]
if marker[0] == '-' {
marker = marker[1:]
}
if marker[len(marker)-1] == '\r' {
marker = marker[:len(marker)-1]
}
heredocs = append(heredocs, heredocInProgress{
Marker: marker,
StartOfLine: true,
})
fcall heredocTemplate;
}
action heredocLiteralEOL {
// This action is called specificially when a heredoc literal
// ends with a newline character.
// This might actually be our end marker.
topdoc := &heredocs[len(heredocs)-1]
if topdoc.StartOfLine {
maybeMarker := bytes.TrimSpace(data[ts:te])
if bytes.Equal(maybeMarker, topdoc.Marker) {
// We actually emit two tokens here: the end-of-heredoc
// marker first, and then separately the newline that
// follows it. This then avoids issues with the closing
// marker consuming a newline that would normally be used
// to mark the end of an attribute definition.
// We might have either a \n sequence or an \r\n sequence
// here, so we must handle both.
nls := te-1
nle := te
te--
if data[te-1] == '\r' {
// back up one more byte
nls--
te--
}
token(TokenCHeredoc);
ts = nls
te = nle
token(TokenNewline);
heredocs = heredocs[:len(heredocs)-1]
fret;
}
}
topdoc.StartOfLine = true;
token(TokenStringLit);
}
action heredocLiteralMidline {
// This action is called when a heredoc literal _doesn't_ end
// with a newline character, e.g. because we're about to enter
// an interpolation sequence.
heredocs[len(heredocs)-1].StartOfLine = false;
token(TokenStringLit);
}
action bareTemplateLiteral {
token(TokenStringLit);
}
action beginTemplateInterp {
token(TokenTemplateInterp);
braces++;
retBraces = append(retBraces, braces);
if len(heredocs) > 0 {
heredocs[len(heredocs)-1].StartOfLine = false;
}
fcall main;
}
action beginTemplateControl {
token(TokenTemplateControl);
braces++;
retBraces = append(retBraces, braces);
if len(heredocs) > 0 {
heredocs[len(heredocs)-1].StartOfLine = false;
}
fcall main;
}
action openBrace {
token(TokenOBrace);
braces++;
}
action closeBrace {
if len(retBraces) > 0 && retBraces[len(retBraces)-1] == braces {
token(TokenTemplateSeqEnd);
braces--;
retBraces = retBraces[0:len(retBraces)-1]
fret;
} else {
token(TokenCBrace);
braces--;
}
}
action closeTemplateSeqEatWhitespace {
// Only consume from the retBraces stack and return if we are at
// a suitable brace nesting level, otherwise things will get
// confused. (Not entering this branch indicates a syntax error,
// which we will catch in the parser.)
if len(retBraces) > 0 && retBraces[len(retBraces)-1] == braces {
token(TokenTemplateSeqEnd);
braces--;
retBraces = retBraces[0:len(retBraces)-1]
fret;
} else {
// We intentionally generate a TokenTemplateSeqEnd here,
// even though the user apparently wanted a brace, because
// we want to allow the parser to catch the incorrect use
// of a ~} to balance a generic opening brace, rather than
// a template sequence.
token(TokenTemplateSeqEnd);
braces--;
}
}
TemplateInterp = "${" ("~")?;
TemplateControl = "%{" ("~")?;
EndStringTmpl = '"';
NewlineChars = ("\r"|"\n");
NewlineCharsSeq = NewlineChars+;
StringLiteralChars = (AnyUTF8 - NewlineChars);
TemplateIgnoredNonBrace = (^'{' %{ fhold; });
TemplateNotInterp = '$' (TemplateIgnoredNonBrace | TemplateInterp);
TemplateNotControl = '%' (TemplateIgnoredNonBrace | TemplateControl);
QuotedStringLiteralWithEsc = ('\\' StringLiteralChars) | (StringLiteralChars - ("$" | '%' | '"' | "\\"));
TemplateStringLiteral = (
(TemplateNotInterp) |
(TemplateNotControl) |
(QuotedStringLiteralWithEsc)+
);
HeredocStringLiteral = (
(TemplateNotInterp) |
(TemplateNotControl) |
(StringLiteralChars - ("$" | '%'))*
);
BareStringLiteral = (
(TemplateNotInterp) |
(TemplateNotControl) |
(StringLiteralChars - ("$" | '%'))*
) Newline?;
stringTemplate := |*
TemplateInterp => beginTemplateInterp;
TemplateControl => beginTemplateControl;
EndStringTmpl => endStringTemplate;
TemplateStringLiteral => { token(TokenQuotedLit); };
NewlineCharsSeq => { token(TokenQuotedNewline); };
AnyUTF8 => { token(TokenInvalid); };
BrokenUTF8 => { token(TokenBadUTF8); };
*|;
heredocTemplate := |*
TemplateInterp => beginTemplateInterp;
TemplateControl => beginTemplateControl;
HeredocStringLiteral EndOfLine => heredocLiteralEOL;
HeredocStringLiteral => heredocLiteralMidline;
BrokenUTF8 => { token(TokenBadUTF8); };
*|;
bareTemplate := |*
TemplateInterp => beginTemplateInterp;
TemplateControl => beginTemplateControl;
BareStringLiteral => bareTemplateLiteral;
BrokenUTF8 => { token(TokenBadUTF8); };
*|;
identOnly := |*
Ident => { token(TokenIdent) };
BrokenUTF8 => { token(TokenBadUTF8) };
AnyUTF8 => { token(TokenInvalid) };
*|;
main := |*
Spaces => {};
NumberLit => { token(TokenNumberLit) };
Ident => { token(TokenIdent) };
Comment => { token(TokenComment) };
Newline => { token(TokenNewline) };
EqualOp => { token(TokenEqualOp); };
NotEqual => { token(TokenNotEqual); };
GreaterThanEqual => { token(TokenGreaterThanEq); };
LessThanEqual => { token(TokenLessThanEq); };
LogicalAnd => { token(TokenAnd); };
LogicalOr => { token(TokenOr); };
Ellipsis => { token(TokenEllipsis); };
FatArrow => { token(TokenFatArrow); };
SelfToken => { selfToken() };
"{" => openBrace;
"}" => closeBrace;
"~}" => closeTemplateSeqEatWhitespace;
BeginStringTmpl => beginStringTemplate;
BeginHeredocTmpl => beginHeredocTemplate;
BrokenUTF8 => { token(TokenBadUTF8) };
AnyUTF8 => { token(TokenInvalid) };
*|;
}%%
// Ragel state
p := 0 // "Pointer" into data
pe := len(data) // End-of-data "pointer"
ts := 0
te := 0
act := 0
eof := pe
var stack []int
var top int
var cs int // current state
switch mode {
case scanNormal:
cs = hcltok_en_main
case scanTemplate:
cs = hcltok_en_bareTemplate
case scanIdentOnly:
cs = hcltok_en_identOnly
default:
panic("invalid scanMode")
}
braces := 0
var retBraces []int // stack of brace levels that cause us to use fret
var heredocs []heredocInProgress // stack of heredocs we're currently processing
%%{
prepush {
stack = append(stack, 0);
}
postpop {
stack = stack[:len(stack)-1];
}
}%%
// Make Go compiler happy
_ = ts
_ = te
_ = act
_ = eof
token := func (ty TokenType) {
f.emitToken(ty, ts, te)
}
selfToken := func () {
b := data[ts:te]
if len(b) != 1 {
// should never happen
panic("selfToken only works for single-character tokens")
}
f.emitToken(TokenType(b[0]), ts, te)
}
%%{
write init nocs;
write exec;
}%%
// If we fall out here without being in a final state then we've
// encountered something that the scanner can't match, which we'll
// deal with as an invalid.
if cs < hcltok_first_final {
if mode == scanTemplate && len(stack) == 0 {
// If we're scanning a bare template then any straggling
// top-level stuff is actually literal string, rather than
// invalid. This handles the case where the template ends
// with a single "$" or "%", which trips us up because we
// want to see another character to decide if it's a sequence
// or an escape.
f.emitToken(TokenStringLit, ts, len(data))
} else {
f.emitToken(TokenInvalid, ts, len(data))
}
}
// We always emit a synthetic EOF token at the end, since it gives the
// parser position information for an "unexpected EOF" diagnostic.
f.emitToken(TokenEOF, len(data), len(data))
return f.Tokens
}

941
vendor/github.com/hashicorp/hcl/v2/hclsyntax/spec.md generated vendored Normal file
View File

@ -0,0 +1,941 @@
# HCL Native Syntax Specification
This is the specification of the syntax and semantics of the native syntax
for HCL. HCL is a system for defining configuration languages for applications.
The HCL information model is designed to support multiple concrete syntaxes
for configuration, but this native syntax is considered the primary format
and is optimized for human authoring and maintenance, as opposed to machine
generation of configuration.
The language consists of three integrated sub-languages:
- The _structural_ language defines the overall hierarchical configuration
structure, and is a serialization of HCL bodies, blocks and attributes.
- The _expression_ language is used to express attribute values, either as
literals or as derivations of other values.
- The _template_ language is used to compose values together into strings,
as one of several types of expression in the expression language.
In normal use these three sub-languages are used together within configuration
files to describe an overall configuration, with the structural language
being used at the top level. The expression and template languages can also
be used in isolation, to implement features such as REPLs, debuggers, and
integration into more limited HCL syntaxes such as the JSON profile.
## Syntax Notation
Within this specification a semi-formal notation is used to illustrate the
details of syntax. This notation is intended for human consumption rather
than machine consumption, with the following conventions:
- A naked name starting with an uppercase letter is a global production,
common to all of the syntax specifications in this document.
- A naked name starting with a lowercase letter is a local production,
meaningful only within the specification where it is defined.
- Double and single quotes (`"` and `'`) are used to mark literal character
sequences, which may be either punctuation markers or keywords.
- The default operator for combining items, which has no punctuation,
is concatenation.
- The symbol `|` indicates that any one of its left and right operands may
be present.
- The `*` symbol indicates zero or more repetitions of the item to its left.
- The `?` symbol indicates zero or one of the item to its left.
- Parentheses (`(` and `)`) are used to group items together to apply
the `|`, `*` and `?` operators to them collectively.
The grammar notation does not fully describe the language. The prose may
augment or conflict with the illustrated grammar. In case of conflict, prose
has priority.
## Source Code Representation
Source code is unicode text expressed in the UTF-8 encoding. The language
itself does not perform unicode normalization, so syntax features such as
identifiers are sequences of unicode code points and so e.g. a precombined
accented character is distinct from a letter associated with a combining
accent. (String literals have some special handling with regard to Unicode
normalization which will be covered later in the relevant section.)
UTF-8 encoded Unicode byte order marks are not permitted. Invalid or
non-normalized UTF-8 encoding is always a parse error.
## Lexical Elements
### Comments and Whitespace
Comments and Whitespace are recognized as lexical elements but are ignored
except as described below.
Whitespace is defined as a sequence of zero or more space characters
(U+0020). Newline sequences (either U+000A or U+000D followed by U+000A)
are _not_ considered whitespace but are ignored as such in certain contexts.
Horizontal tab characters (U+0009) are also treated as whitespace, but are
counted only as one "column" for the purpose of reporting source positions.
Comments serve as program documentation and come in two forms:
- _Line comments_ start with either the `//` or `#` sequences and end with
the next newline sequence. A line comment is considered equivalent to a
newline sequence.
- _Inline comments_ start with the `/*` sequence and end with the `*/`
sequence, and may have any characters within except the ending sequence.
An inline comments is considered equivalent to a whitespace sequence.
Comments and whitespace cannot begin within within other comments, or within
template literals except inside an interpolation sequence or template directive.
### Identifiers
Identifiers name entities such as blocks, attributes and expression variables.
Identifiers are interpreted as per [UAX #31][uax31] Section 2. Specifically,
their syntax is defined in terms of the `ID_Start` and `ID_Continue`
character properties as follows:
```ebnf
Identifier = ID_Start (ID_Continue | '-')*;
```
The Unicode specification provides the normative requirements for identifier
parsing. Non-normatively, the spirit of this specification is that `ID_Start`
consists of Unicode letter and certain unambiguous punctuation tokens, while
`ID_Continue` augments that set with Unicode digits, combining marks, etc.
The dash character `-` is additionally allowed in identifiers, even though
that is not part of the unicode `ID_Continue` definition. This is to allow
attribute names and block type names to contain dashes, although underscores
as word separators are considered the idiomatic usage.
[uax31]: http://unicode.org/reports/tr31/ "Unicode Identifier and Pattern Syntax"
### Keywords
There are no globally-reserved words, but in some contexts certain identifiers
are reserved to function as keywords. These are discussed further in the
relevant documentation sections that follow. In such situations, the
identifier's role as a keyword supersedes any other valid interpretation that
may be possible. Outside of these specific situations, the keywords have no
special meaning and are interpreted as regular identifiers.
### Operators and Delimiters
The following character sequences represent operators, delimiters, and other
special tokens:
```
+ && == < : { [ ( ${
- || != > ? } ] ) %{
* ! <= = .
/ >= => ,
% ...
```
### Numeric Literals
A numeric literal is a decimal representation of a
real number. It has an integer part, a fractional part,
and an exponent part.
```ebnf
NumericLit = decimal+ ("." decimal+)? (expmark decimal+)?;
decimal = '0' .. '9';
expmark = ('e' | 'E') ("+" | "-")?;
```
## Structural Elements
The structural language consists of syntax representing the following
constructs:
- _Attributes_, which assign a value to a specified name.
- _Blocks_, which create a child body annotated by a type and optional labels.
- _Body Content_, which consists of a collection of attributes and blocks.
These constructs correspond to the similarly-named concepts in the
language-agnostic HCL information model.
```ebnf
ConfigFile = Body;
Body = (Attribute | Block | OneLineBlock)*;
Attribute = Identifier "=" Expression Newline;
Block = Identifier (StringLit|Identifier)* "{" Newline Body "}" Newline;
OneLineBlock = Identifier (StringLit|Identifier)* "{" (Identifier "=" Expression)? "}" Newline;
```
### Configuration Files
A _configuration file_ is a sequence of characters whose top-level is
interpreted as a Body.
### Bodies
A _body_ is a collection of associated attributes and blocks. The meaning of
this association is defined by the calling application.
### Attribute Definitions
An _attribute definition_ assigns a value to a particular attribute name within
a body. Each distinct attribute name may be defined no more than once within a
single body.
The attribute value is given as an expression, which is retained literally
for later evaluation by the calling application.
### Blocks
A _block_ creates a child body that is annotated with a block _type_ and
zero or more block _labels_. Blocks create a structural hierarchy which can be
interpreted by the calling application.
Block labels can either be quoted literal strings or naked identifiers.
## Expressions
The expression sub-language is used within attribute definitions to specify
values.
```ebnf
Expression = (
ExprTerm |
Operation |
Conditional
);
```
### Types
The value types used within the expression language are those defined by the
syntax-agnostic HCL information model. An expression may return any valid
type, but only a subset of the available types have first-class syntax.
A calling application may make other types available via _variables_ and
_functions_.
### Expression Terms
Expression _terms_ are the operands for unary and binary expressions, as well
as acting as expressions in their own right.
```ebnf
ExprTerm = (
LiteralValue |
CollectionValue |
TemplateExpr |
VariableExpr |
FunctionCall |
ForExpr |
ExprTerm Index |
ExprTerm GetAttr |
ExprTerm Splat |
"(" Expression ")"
);
```
The productions for these different term types are given in their corresponding
sections.
Between the `(` and `)` characters denoting a sub-expression, newline
characters are ignored as whitespace.
### Literal Values
A _literal value_ immediately represents a particular value of a primitive
type.
```ebnf
LiteralValue = (
NumericLit |
"true" |
"false" |
"null"
);
```
- Numeric literals represent values of type _number_.
- The `true` and `false` keywords represent values of type _bool_.
- The `null` keyword represents a null value of the dynamic pseudo-type.
String literals are not directly available in the expression sub-language, but
are available via the template sub-language, which can in turn be incorporated
via _template expressions_.
### Collection Values
A _collection value_ combines zero or more other expressions to produce a
collection value.
```ebnf
CollectionValue = tuple | object;
tuple = "[" (
(Expression ("," Expression)* ","?)?
) "]";
object = "{" (
(objectelem ("," objectelem)* ","?)?
) "}";
objectelem = (Identifier | Expression) "=" Expression;
```
Only tuple and object values can be directly constructed via native syntax.
Tuple and object values can in turn be converted to list, set and map values
with other operations, which behaves as defined by the syntax-agnostic HCL
information model.
When specifying an object element, an identifier is interpreted as a literal
attribute name as opposed to a variable reference. To populate an item key
from a variable, use parentheses to disambiguate:
- `{foo = "baz"}` is interpreted as an attribute literally named `foo`.
- `{(foo) = "baz"}` is interpreted as an attribute whose name is taken
from the variable named `foo`.
Between the open and closing delimiters of these sequences, newline sequences
are ignored as whitespace.
There is a syntax ambiguity between _for expressions_ and collection values
whose first element is a reference to a variable named `for`. The
_for expression_ interpretation has priority, so to produce a tuple whose
first element is the value of a variable named `for`, or an object with a
key named `for`, use parentheses to disambiguate:
- `[for, foo, baz]` is a syntax error.
- `[(for), foo, baz]` is a tuple whose first element is the value of variable
`for`.
- `{for: 1, baz: 2}` is a syntax error.
- `{(for): 1, baz: 2}` is an object with an attribute literally named `for`.
- `{baz: 2, for: 1}` is equivalent to the previous example, and resolves the
ambiguity by reordering.
### Template Expressions
A _template expression_ embeds a program written in the template sub-language
as an expression. Template expressions come in two forms:
- A _quoted_ template expression is delimited by quote characters (`"`) and
defines a template as a single-line expression with escape characters.
- A _heredoc_ template expression is introduced by a `<<` sequence and
defines a template via a multi-line sequence terminated by a user-chosen
delimiter.
In both cases the template interpolation and directive syntax is available for
use within the delimiters, and any text outside of these special sequences is
interpreted as a literal string.
In _quoted_ template expressions any literal string sequences within the
template behave in a special way: literal newline sequences are not permitted
and instead _escape sequences_ can be included, starting with the
backslash `\`:
```
\n Unicode newline control character
\r Unicode carriage return control character
\t Unicode tab control character
\" Literal quote mark, used to prevent interpretation as end of string
\\ Literal backslash, used to prevent interpretation as escape sequence
\uNNNN Unicode character from Basic Multilingual Plane (NNNN is four hexadecimal digits)
\UNNNNNNNN Unicode character from supplementary planes (NNNNNNNN is eight hexadecimal digits)
```
The _heredoc_ template expression type is introduced by either `<<` or `<<-`,
followed by an identifier. The template expression ends when the given
identifier subsequently appears again on a line of its own.
If a heredoc template is introduced with the `<<-` symbol, any literal string
at the start of each line is analyzed to find the minimum number of leading
spaces, and then that number of prefix spaces is removed from all line-leading
literal strings. The final closing marker may also have an arbitrary number
of spaces preceding it on its line.
```ebnf
TemplateExpr = quotedTemplate | heredocTemplate;
quotedTemplate = (as defined in prose above);
heredocTemplate = (
("<<" | "<<-") Identifier Newline
(content as defined in prose above)
Identifier Newline
);
```
A quoted template expression containing only a single literal string serves
as a syntax for defining literal string _expressions_. In certain contexts
the template syntax is restricted in this manner:
```ebnf
StringLit = '"' (quoted literals as defined in prose above) '"';
```
The `StringLit` production permits the escape sequences discussed for quoted
template expressions as above, but does _not_ permit template interpolation
or directive sequences.
### Variables and Variable Expressions
A _variable_ is a value that has been assigned a symbolic name. Variables are
made available for use in expressions by the calling application, by populating
the _global scope_ used for expression evaluation.
Variables can also be created by expressions themselves, which always creates
a _child scope_ that incorporates the variables from its parent scope but
(re-)defines zero or more names with new values.
The value of a variable is accessed using a _variable expression_, which is
a standalone `Identifier` whose name corresponds to a defined variable:
```ebnf
VariableExpr = Identifier;
```
Variables in a particular scope are immutable, but child scopes may _hide_
a variable from an ancestor scope by defining a new variable of the same name.
When looking up variables, the most locally-defined variable of the given name
is used, and ancestor-scoped variables of the same name cannot be accessed.
No direct syntax is provided for declaring or assigning variables, but other
expression constructs implicitly create child scopes and define variables as
part of their evaluation.
### Functions and Function Calls
A _function_ is an operation that has been assigned a symbolic name. Functions
are made available for use in expressions by the calling application, by
populating the _function table_ used for expression evaluation.
The namespace of functions is distinct from the namespace of variables. A
function and a variable may share the same name with no implication that they
are in any way related.
A function can be executed via a _function call_ expression:
```ebnf
FunctionCall = Identifier "(" arguments ")";
Arguments = (
() ||
(Expression ("," Expression)* ("," | "...")?)
);
```
The definition of functions and the semantics of calling them are defined by
the language-agnostic HCL information model. The given arguments are mapped
onto the function's _parameters_ and the result of a function call expression
is the return value of the named function when given those arguments.
If the final argument expression is followed by the ellipsis symbol (`...`),
the final argument expression must evaluate to either a list or tuple value.
The elements of the value are each mapped to a single parameter of the
named function, beginning at the first parameter remaining after all other
argument expressions have been mapped.
Within the parentheses that delimit the function arguments, newline sequences
are ignored as whitespace.
### For Expressions
A _for expression_ is a construct for constructing a collection by projecting
the items from another collection.
```ebnf
ForExpr = forTupleExpr | forObjectExpr;
forTupleExpr = "[" forIntro Expression forCond? "]";
forObjectExpr = "{" forIntro Expression "=>" Expression "..."? forCond? "}";
forIntro = "for" Identifier ("," Identifier)? "in" Expression ":";
forCond = "if" Expression;
```
The punctuation used to delimit a for expression decide whether it will produce
a tuple value (`[` and `]`) or an object value (`{` and `}`).
The "introduction" is equivalent in both cases: the keyword `for` followed by
either one or two identifiers separated by a comma which define the temporary
variable names used for iteration, followed by the keyword `in` and then
an expression that must evaluate to a value that can be iterated. The
introduction is then terminated by the colon (`:`) symbol.
If only one identifier is provided, it is the name of a variable that will
be temporarily assigned the value of each element during iteration. If both
are provided, the first is the key and the second is the value.
Tuple, object, list, map, and set types are iterable. The type of collection
used defines how the key and value variables are populated:
- For tuple and list types, the _key_ is the zero-based index into the
sequence for each element, and the _value_ is the element value. The
elements are visited in index order.
- For object and map types, the _key_ is the string attribute name or element
key, and the _value_ is the attribute or element value. The elements are
visited in the order defined by a lexicographic sort of the attribute names
or keys.
- For set types, the _key_ and _value_ are both the element value. The elements
are visited in an undefined but consistent order.
The expression after the colon and (in the case of object `for`) the expression
after the `=>` are both evaluated once for each element of the source
collection, in a local scope that defines the key and value variable names
specified.
The results of evaluating these expressions for each input element are used
to populate an element in the new collection. In the case of tuple `for`, the
single expression becomes an element, appending values to the tuple in visit
order. In the case of object `for`, the pair of expressions is used as an
attribute name and value respectively, creating an element in the resulting
object.
In the case of object `for`, it is an error if two input elements produce
the same result from the attribute name expression, since duplicate
attributes are not possible. If the ellipsis symbol (`...`) appears
immediately after the value expression, this activates the grouping mode in
which each value in the resulting object is a _tuple_ of all of the values
that were produced against each distinct key.
- `[for v in ["a", "b"]: v]` returns `["a", "b"]`.
- `[for i, v in ["a", "b"]: i]` returns `[0, 1]`.
- `{for i, v in ["a", "b"]: v => i}` returns `{a = 0, b = 1}`.
- `{for i, v in ["a", "a", "b"]: k => v}` produces an error, because attribute
`a` is defined twice.
- `{for i, v in ["a", "a", "b"]: v => i...}` returns `{a = [0, 1], b = [2]}`.
If the `if` keyword is used after the element expression(s), it applies an
additional predicate that can be used to conditionally filter elements from
the source collection from consideration. The expression following `if` is
evaluated once for each source element, in the same scope used for the
element expression(s). It must evaluate to a boolean value; if `true`, the
element will be evaluated as normal, while if `false` the element will be
skipped.
- `[for i, v in ["a", "b", "c"]: v if i < 2]` returns `["a", "b"]`.
If the collection value, element expression(s) or condition expression return
unknown values that are otherwise type-valid, the result is a value of the
dynamic pseudo-type.
### Index Operator
The _index_ operator returns the value of a single element of a collection
value. It is a postfix operator and can be applied to any value that has
a tuple, object, map, or list type.
```ebnf
Index = "[" Expression "]";
```
The expression delimited by the brackets is the _key_ by which an element
will be looked up.
If the index operator is applied to a value of tuple or list type, the
key expression must be an non-negative integer number representing the
zero-based element index to access. If applied to a value of object or map
type, the key expression must be a string representing the attribute name
or element key. If the given key value is not of the appropriate type, a
conversion is attempted using the conversion rules from the HCL
syntax-agnostic information model.
An error is produced if the given key expression does not correspond to
an element in the collection, either because it is of an unconvertable type,
because it is outside the range of elements for a tuple or list, or because
the given attribute or key does not exist.
If either the collection or the key are an unknown value of an
otherwise-suitable type, the return value is an unknown value whose type
matches what type would be returned given known values, or a value of the
dynamic pseudo-type if type information alone cannot determine a suitable
return type.
Within the brackets that delimit the index key, newline sequences are ignored
as whitespace.
The HCL native syntax also includes a _legacy_ index operator that exists
only for compatibility with the precursor language HIL:
```ebnf
LegacyIndex = '.' digit+
```
This legacy index operator must be supported by parser for compatibility but
should not be used in new configurations. This allows an attribute-access-like
syntax for indexing, must still be interpreted as an index operation rather
than attribute access.
The legacy syntax does not support chaining of index operations, like
`foo.0.0.bar`, because the interpretation of `0.0` as a number literal token
takes priority and thus renders the resulting sequence invalid.
### Attribute Access Operator
The _attribute access_ operator returns the value of a single attribute in
an object value. It is a postfix operator and can be applied to any value
that has an object type.
```ebnf
GetAttr = "." Identifier;
```
The given identifier is interpreted as the name of the attribute to access.
An error is produced if the object to which the operator is applied does not
have an attribute with the given name.
If the object is an unknown value of a type that has the attribute named, the
result is an unknown value of the attribute's type.
### Splat Operators
The _splat operators_ allow convenient access to attributes or elements of
elements in a tuple, list, or set value.
There are two kinds of "splat" operator:
- The _attribute-only_ splat operator supports only attribute lookups into
the elements from a list, but supports an arbitrary number of them.
- The _full_ splat operator additionally supports indexing into the elements
from a list, and allows any combination of attribute access and index
operations.
```ebnf
Splat = attrSplat | fullSplat;
attrSplat = "." "*" GetAttr*;
fullSplat = "[" "*" "]" (GetAttr | Index)*;
```
The splat operators can be thought of as shorthands for common operations that
could otherwise be performed using _for expressions_:
- `tuple.*.foo.bar[0]` is approximately equivalent to
`[for v in tuple: v.foo.bar][0]`.
- `tuple[*].foo.bar[0]` is approximately equivalent to
`[for v in tuple: v.foo.bar[0]]`
Note the difference in how the trailing index operator is interpreted in
each case. This different interpretation is the key difference between the
_attribute-only_ and _full_ splat operators.
Splat operators have one additional behavior compared to the equivalent
_for expressions_ shown above: if a splat operator is applied to a value that
is _not_ of tuple, list, or set type, the value is coerced automatically into
a single-value list of the value type:
- `any_object.*.id` is equivalent to `[any_object.id]`, assuming that `any_object`
is a single object.
- `any_number.*` is equivalent to `[any_number]`, assuming that `any_number`
is a single number.
If applied to a null value that is not tuple, list, or set, the result is always
an empty tuple, which allows conveniently converting a possibly-null scalar
value into a tuple of zero or one elements. It is illegal to apply a splat
operator to a null value of tuple, list, or set type.
### Operations
Operations apply a particular operator to either one or two expression terms.
```ebnf
Operation = unaryOp | binaryOp;
unaryOp = ("-" | "!") ExprTerm;
binaryOp = ExprTerm binaryOperator ExprTerm;
binaryOperator = compareOperator | arithmeticOperator | logicOperator;
compareOperator = "==" | "!=" | "<" | ">" | "<=" | ">=";
arithmeticOperator = "+" | "-" | "*" | "/" | "%";
logicOperator = "&&" | "||" | "!";
```
The unary operators have the highest precedence.
The binary operators are grouped into the following precedence levels:
```
Level Operators
6 * / %
5 + -
4 > >= < <=
3 == !=
2 &&
1 ||
```
Higher values of "level" bind tighter. Operators within the same precedence
level have left-to-right associativity. For example, `x / y * z` is equivalent
to `(x / y) * z`.
### Comparison Operators
Comparison operators always produce boolean values, as a result of testing
the relationship between two values.
The two equality operators apply to values of any type:
```
a == b equal
a != b not equal
```
Two values are equal if the are of identical types and their values are
equal as defined in the HCL syntax-agnostic information model. The equality
operators are commutative and opposite, such that `(a == b) == !(a != b)`
and `(a == b) == (b == a)` for all values `a` and `b`.
The four numeric comparison operators apply only to numbers:
```
a < b less than
a <= b less than or equal to
a > b greater than
a >= b greater than or equal to
```
If either operand of a comparison operator is a correctly-typed unknown value
or a value of the dynamic pseudo-type, the result is an unknown boolean.
### Arithmetic Operators
Arithmetic operators apply only to number values and always produce number
values as results.
```
a + b sum (addition)
a - b difference (subtraction)
a * b product (multiplication)
a / b quotient (division)
a % b remainder (modulo)
-a negation
```
Arithmetic operations are considered to be performed in an arbitrary-precision
number space.
If either operand of an arithmetic operator is an unknown number or a value
of the dynamic pseudo-type, the result is an unknown number.
### Logic Operators
Logic operators apply only to boolean values and always produce boolean values
as results.
```
a && b logical AND
a || b logical OR
!a logical NOT
```
If either operand of a logic operator is an unknown bool value or a value
of the dynamic pseudo-type, the result is an unknown bool value.
### Conditional Operator
The conditional operator allows selecting from one of two expressions based on
the outcome of a boolean expression.
```ebnf
Conditional = Expression "?" Expression ":" Expression;
```
The first expression is the _predicate_, which is evaluated and must produce
a boolean result. If the predicate value is `true`, the result of the second
expression is the result of the conditional. If the predicate value is
`false`, the result of the third expression is the result of the conditional.
The second and third expressions must be of the same type or must be able to
unify into a common type using the type unification rules defined in the
HCL syntax-agnostic information model. This unified type is the result type
of the conditional, with both expressions converted as necessary to the
unified type.
If the predicate is an unknown boolean value or a value of the dynamic
pseudo-type then the result is an unknown value of the unified type of the
other two expressions.
If either the second or third expressions produce errors when evaluated,
these errors are passed through only if the erroneous expression is selected.
This allows for expressions such as
`length(some_list) > 0 ? some_list[0] : default` (given some suitable `length`
function) without producing an error when the predicate is `false`.
## Templates
The template sub-language is used within template expressions to concisely
combine strings and other values to produce other strings. It can also be
used in isolation as a standalone template language.
```ebnf
Template = (
TemplateLiteral |
TemplateInterpolation |
TemplateDirective
)*
TemplateDirective = TemplateIf | TemplateFor;
```
A template behaves like an expression that always returns a string value.
The different elements of the template are evaluated and combined into a
single string to return. If any of the elements produce an unknown string
or a value of the dynamic pseudo-type, the result is an unknown string.
An important use-case for standalone templates is to enable the use of
expressions in alternative HCL syntaxes where a native expression grammar is
not available. For example, the HCL JSON profile treats the values of JSON
strings as standalone templates when attributes are evaluated in expression
mode.
### Template Literals
A template literal is a literal sequence of characters to include in the
resulting string. When the template sub-language is used standalone, a
template literal can contain any unicode character, with the exception
of the sequences that introduce interpolations and directives, and for the
sequences that escape those introductions.
The interpolation and directive introductions are escaped by doubling their
leading characters. The `${` sequence is escaped as `$${` and the `%{`
sequence is escaped as `%%{`.
When the template sub-language is embedded in the expression language via
_template expressions_, additional constraints and transforms are applied to
template literals as described in the definition of template expressions.
The value of a template literal can be modified by _strip markers_ in any
interpolations or directives that are adjacent to it. A strip marker is
a tilde (`~`) placed immediately after the opening `{` or before the closing
`}` of a template sequence:
- `hello ${~ "world" }` produces `"helloworld"`.
- `%{ if true ~} hello %{~ endif }` produces `"hello"`.
When a strip marker is present, any spaces adjacent to it in the corresponding
string literal (if any) are removed before producing the final value. Space
characters are interpreted as per Unicode's definition.
Stripping is done at syntax level rather than value level. Values returned
by interpolations or directives are not subject to stripping:
- `${"hello" ~}${" world"}` produces `"hello world"`, and not `"helloworld"`,
because the space is not in a template literal directly adjacent to the
strip marker.
### Template Interpolations
An _interpolation sequence_ evaluates an expression (written in the
expression sub-language), converts the result to a string value, and
replaces itself with the resulting string.
```ebnf
TemplateInterpolation = ("${" | "${~") Expression ("}" | "~}";
```
If the expression result cannot be converted to a string, an error is
produced.
### Template If Directive
The template `if` directive is the template equivalent of the
_conditional expression_, allowing selection of one of two sub-templates based
on the value of a predicate expression.
```ebnf
TemplateIf = (
("%{" | "%{~") "if" Expression ("}" | "~}")
Template
(
("%{" | "%{~") "else" ("}" | "~}")
Template
)?
("%{" | "%{~") "endif" ("}" | "~}")
);
```
The evaluation of the `if` directive is equivalent to the conditional
expression, with the following exceptions:
- The two sub-templates always produce strings, and thus the result value is
also always a string.
- The `else` clause may be omitted, in which case the conditional's third
expression result is implied to be the empty string.
### Template For Directive
The template `for` directive is the template equivalent of the _for expression_,
producing zero or more copies of its sub-template based on the elements of
a collection.
```ebnf
TemplateFor = (
("%{" | "%{~") "for" Identifier ("," Identifier) "in" Expression ("}" | "~}")
Template
("%{" | "%{~") "endfor" ("}" | "~}")
);
```
The evaluation of the `for` directive is equivalent to the _for expression_
when producing a tuple, with the following exceptions:
- The sub-template always produces a string.
- There is no equivalent of the "if" clause on the for expression.
- The elements of the resulting tuple are all converted to strings and
concatenated to produce a flat string result.
### Template Interpolation Unwrapping
As a special case, a template that consists only of a single interpolation,
with no surrounding literals, directives or other interpolations, is
"unwrapped". In this case, the result of the interpolation expression is
returned verbatim, without conversion to string.
This special case exists primarily to enable the native template language
to be used inside strings in alternative HCL syntaxes that lack a first-class
template or expression syntax. Unwrapping allows arbitrary expressions to be
used to populate attributes when strings in such languages are interpreted
as templates.
- `${true}` produces the boolean value `true`
- `${"${true}"}` produces the boolean value `true`, because both the inner
and outer interpolations are subject to unwrapping.
- `hello ${true}` produces the string `"hello true"`
- `${""}${true}` produces the string `"true"` because there are two
interpolation sequences, even though one produces an empty result.
- `%{ for v in [true] }${v}%{ endif }` produces the string `true` because
the presence of the `for` directive circumvents the unwrapping even though
the final result is a single value.
In some contexts this unwrapping behavior may be circumvented by the calling
application, by converting the final template result to string. This is
necessary, for example, if a standalone template is being used to produce
the direct contents of a file, since the result in that case must always be a
string.
## Static Analysis
The HCL static analysis operations are implemented for some expression types
in the native syntax, as described in the following sections.
A goal for static analysis of the native syntax is for the interpretation to
be as consistent as possible with the dynamic evaluation interpretation of
the given expression, though some deviations are intentionally made in order
to maximize the potential for analysis.
### Static List
The tuple construction syntax can be interpreted as a static list. All of
the expression elements given are returned as the static list elements,
with no further interpretation.
### Static Map
The object construction syntax can be interpreted as a static map. All of the
key/value pairs given are returned as the static pairs, with no further
interpretation.
The usual requirement that an attribute name be interpretable as a string
does not apply to this static analysis, allowing callers to provide map-like
constructs with different key types by building on the map syntax.
### Static Call
The function call syntax can be interpreted as a static call. The called
function name is returned verbatim and the given argument expressions are
returned as the static arguments, with no further interpretation.
### Static Traversal
A variable expression and any attached attribute access operations and
constant index operations can be interpreted as a static traversal.
The keywords `true`, `false` and `null` can also be interpreted as
static traversals, behaving as if they were references to variables of those
names, to allow callers to redefine the meaning of those keywords in certain
contexts.

View File

@ -0,0 +1,394 @@
package hclsyntax
import (
"fmt"
"strings"
"github.com/hashicorp/hcl/v2"
)
// AsHCLBlock returns the block data expressed as a *hcl.Block.
func (b *Block) AsHCLBlock() *hcl.Block {
if b == nil {
return nil
}
lastHeaderRange := b.TypeRange
if len(b.LabelRanges) > 0 {
lastHeaderRange = b.LabelRanges[len(b.LabelRanges)-1]
}
return &hcl.Block{
Type: b.Type,
Labels: b.Labels,
Body: b.Body,
DefRange: hcl.RangeBetween(b.TypeRange, lastHeaderRange),
TypeRange: b.TypeRange,
LabelRanges: b.LabelRanges,
}
}
// Body is the implementation of hcl.Body for the HCL native syntax.
type Body struct {
Attributes Attributes
Blocks Blocks
// These are used with PartialContent to produce a "remaining items"
// body to return. They are nil on all bodies fresh out of the parser.
hiddenAttrs map[string]struct{}
hiddenBlocks map[string]struct{}
SrcRange hcl.Range
EndRange hcl.Range // Final token of the body, for reporting missing items
}
// Assert that *Body implements hcl.Body
var assertBodyImplBody hcl.Body = &Body{}
func (b *Body) walkChildNodes(w internalWalkFunc) {
w(b.Attributes)
w(b.Blocks)
}
func (b *Body) Range() hcl.Range {
return b.SrcRange
}
func (b *Body) Content(schema *hcl.BodySchema) (*hcl.BodyContent, hcl.Diagnostics) {
content, remainHCL, diags := b.PartialContent(schema)
// No we'll see if anything actually remains, to produce errors about
// extraneous items.
remain := remainHCL.(*Body)
for name, attr := range b.Attributes {
if _, hidden := remain.hiddenAttrs[name]; !hidden {
var suggestions []string
for _, attrS := range schema.Attributes {
if _, defined := content.Attributes[attrS.Name]; defined {
continue
}
suggestions = append(suggestions, attrS.Name)
}
suggestion := nameSuggestion(name, suggestions)
if suggestion != "" {
suggestion = fmt.Sprintf(" Did you mean %q?", suggestion)
} else {
// Is there a block of the same name?
for _, blockS := range schema.Blocks {
if blockS.Type == name {
suggestion = fmt.Sprintf(" Did you mean to define a block of type %q?", name)
break
}
}
}
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Unsupported argument",
Detail: fmt.Sprintf("An argument named %q is not expected here.%s", name, suggestion),
Subject: &attr.NameRange,
})
}
}
for _, block := range b.Blocks {
blockTy := block.Type
if _, hidden := remain.hiddenBlocks[blockTy]; !hidden {
var suggestions []string
for _, blockS := range schema.Blocks {
suggestions = append(suggestions, blockS.Type)
}
suggestion := nameSuggestion(blockTy, suggestions)
if suggestion != "" {
suggestion = fmt.Sprintf(" Did you mean %q?", suggestion)
} else {
// Is there an attribute of the same name?
for _, attrS := range schema.Attributes {
if attrS.Name == blockTy {
suggestion = fmt.Sprintf(" Did you mean to define argument %q? If so, use the equals sign to assign it a value.", blockTy)
break
}
}
}
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Unsupported block type",
Detail: fmt.Sprintf("Blocks of type %q are not expected here.%s", blockTy, suggestion),
Subject: &block.TypeRange,
})
}
}
return content, diags
}
func (b *Body) PartialContent(schema *hcl.BodySchema) (*hcl.BodyContent, hcl.Body, hcl.Diagnostics) {
attrs := make(hcl.Attributes)
var blocks hcl.Blocks
var diags hcl.Diagnostics
hiddenAttrs := make(map[string]struct{})
hiddenBlocks := make(map[string]struct{})
if b.hiddenAttrs != nil {
for k, v := range b.hiddenAttrs {
hiddenAttrs[k] = v
}
}
if b.hiddenBlocks != nil {
for k, v := range b.hiddenBlocks {
hiddenBlocks[k] = v
}
}
for _, attrS := range schema.Attributes {
name := attrS.Name
attr, exists := b.Attributes[name]
_, hidden := hiddenAttrs[name]
if hidden || !exists {
if attrS.Required {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Missing required argument",
Detail: fmt.Sprintf("The argument %q is required, but no definition was found.", attrS.Name),
Subject: b.MissingItemRange().Ptr(),
})
}
continue
}
hiddenAttrs[name] = struct{}{}
attrs[name] = attr.AsHCLAttribute()
}
blocksWanted := make(map[string]hcl.BlockHeaderSchema)
for _, blockS := range schema.Blocks {
blocksWanted[blockS.Type] = blockS
}
for _, block := range b.Blocks {
if _, hidden := hiddenBlocks[block.Type]; hidden {
continue
}
blockS, wanted := blocksWanted[block.Type]
if !wanted {
continue
}
if len(block.Labels) > len(blockS.LabelNames) {
name := block.Type
if len(blockS.LabelNames) == 0 {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("Extraneous label for %s", name),
Detail: fmt.Sprintf(
"No labels are expected for %s blocks.", name,
),
Subject: block.LabelRanges[0].Ptr(),
Context: hcl.RangeBetween(block.TypeRange, block.OpenBraceRange).Ptr(),
})
} else {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("Extraneous label for %s", name),
Detail: fmt.Sprintf(
"Only %d labels (%s) are expected for %s blocks.",
len(blockS.LabelNames), strings.Join(blockS.LabelNames, ", "), name,
),
Subject: block.LabelRanges[len(blockS.LabelNames)].Ptr(),
Context: hcl.RangeBetween(block.TypeRange, block.OpenBraceRange).Ptr(),
})
}
continue
}
if len(block.Labels) < len(blockS.LabelNames) {
name := block.Type
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("Missing %s for %s", blockS.LabelNames[len(block.Labels)], name),
Detail: fmt.Sprintf(
"All %s blocks must have %d labels (%s).",
name, len(blockS.LabelNames), strings.Join(blockS.LabelNames, ", "),
),
Subject: &block.OpenBraceRange,
Context: hcl.RangeBetween(block.TypeRange, block.OpenBraceRange).Ptr(),
})
continue
}
blocks = append(blocks, block.AsHCLBlock())
}
// We hide blocks only after we've processed all of them, since otherwise
// we can't process more than one of the same type.
for _, blockS := range schema.Blocks {
hiddenBlocks[blockS.Type] = struct{}{}
}
remain := &Body{
Attributes: b.Attributes,
Blocks: b.Blocks,
hiddenAttrs: hiddenAttrs,
hiddenBlocks: hiddenBlocks,
SrcRange: b.SrcRange,
EndRange: b.EndRange,
}
return &hcl.BodyContent{
Attributes: attrs,
Blocks: blocks,
MissingItemRange: b.MissingItemRange(),
}, remain, diags
}
func (b *Body) JustAttributes() (hcl.Attributes, hcl.Diagnostics) {
attrs := make(hcl.Attributes)
var diags hcl.Diagnostics
if len(b.Blocks) > 0 {
example := b.Blocks[0]
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("Unexpected %q block", example.Type),
Detail: "Blocks are not allowed here.",
Subject: &example.TypeRange,
})
// we will continue processing anyway, and return the attributes
// we are able to find so that certain analyses can still be done
// in the face of errors.
}
if b.Attributes == nil {
return attrs, diags
}
for name, attr := range b.Attributes {
if _, hidden := b.hiddenAttrs[name]; hidden {
continue
}
attrs[name] = attr.AsHCLAttribute()
}
return attrs, diags
}
func (b *Body) MissingItemRange() hcl.Range {
return hcl.Range{
Filename: b.SrcRange.Filename,
Start: b.SrcRange.Start,
End: b.SrcRange.Start,
}
}
// Attributes is the collection of attribute definitions within a body.
type Attributes map[string]*Attribute
func (a Attributes) walkChildNodes(w internalWalkFunc) {
for _, attr := range a {
w(attr)
}
}
// Range returns the range of some arbitrary point within the set of
// attributes, or an invalid range if there are no attributes.
//
// This is provided only to complete the Node interface, but has no practical
// use.
func (a Attributes) Range() hcl.Range {
// An attributes doesn't really have a useful range to report, since
// it's just a grouping construct. So we'll arbitrarily take the
// range of one of the attributes, or produce an invalid range if we have
// none. In practice, there's little reason to ask for the range of
// an Attributes.
for _, attr := range a {
return attr.Range()
}
return hcl.Range{
Filename: "<unknown>",
}
}
// Attribute represents a single attribute definition within a body.
type Attribute struct {
Name string
Expr Expression
SrcRange hcl.Range
NameRange hcl.Range
EqualsRange hcl.Range
}
func (a *Attribute) walkChildNodes(w internalWalkFunc) {
w(a.Expr)
}
func (a *Attribute) Range() hcl.Range {
return a.SrcRange
}
// AsHCLAttribute returns the block data expressed as a *hcl.Attribute.
func (a *Attribute) AsHCLAttribute() *hcl.Attribute {
if a == nil {
return nil
}
return &hcl.Attribute{
Name: a.Name,
Expr: a.Expr,
Range: a.SrcRange,
NameRange: a.NameRange,
}
}
// Blocks is the list of nested blocks within a body.
type Blocks []*Block
func (bs Blocks) walkChildNodes(w internalWalkFunc) {
for _, block := range bs {
w(block)
}
}
// Range returns the range of some arbitrary point within the list of
// blocks, or an invalid range if there are no blocks.
//
// This is provided only to complete the Node interface, but has no practical
// use.
func (bs Blocks) Range() hcl.Range {
if len(bs) > 0 {
return bs[0].Range()
}
return hcl.Range{
Filename: "<unknown>",
}
}
// Block represents a nested block structure
type Block struct {
Type string
Labels []string
Body *Body
TypeRange hcl.Range
LabelRanges []hcl.Range
OpenBraceRange hcl.Range
CloseBraceRange hcl.Range
}
func (b *Block) walkChildNodes(w internalWalkFunc) {
w(b.Body)
}
func (b *Block) Range() hcl.Range {
return hcl.RangeBetween(b.TypeRange, b.CloseBraceRange)
}
func (b *Block) DefRange() hcl.Range {
return hcl.RangeBetween(b.TypeRange, b.OpenBraceRange)
}

View File

@ -0,0 +1,118 @@
package hclsyntax
import (
"github.com/hashicorp/hcl/v2"
)
// -----------------------------------------------------------------------------
// The methods in this file are all optional extension methods that serve to
// implement the methods of the same name on *hcl.File when its root body
// is provided by this package.
// -----------------------------------------------------------------------------
// BlocksAtPos implements the method of the same name for an *hcl.File that
// is backed by a *Body.
func (b *Body) BlocksAtPos(pos hcl.Pos) []*hcl.Block {
list, _ := b.blocksAtPos(pos, true)
return list
}
// InnermostBlockAtPos implements the method of the same name for an *hcl.File
// that is backed by a *Body.
func (b *Body) InnermostBlockAtPos(pos hcl.Pos) *hcl.Block {
_, innermost := b.blocksAtPos(pos, false)
return innermost.AsHCLBlock()
}
// OutermostBlockAtPos implements the method of the same name for an *hcl.File
// that is backed by a *Body.
func (b *Body) OutermostBlockAtPos(pos hcl.Pos) *hcl.Block {
return b.outermostBlockAtPos(pos).AsHCLBlock()
}
// blocksAtPos is the internal engine of both BlocksAtPos and
// InnermostBlockAtPos, which both need to do the same logic but return a
// differently-shaped result.
//
// list is nil if makeList is false, avoiding an allocation. Innermost is
// always set, and if the returned list is non-nil it will always match the
// final element from that list.
func (b *Body) blocksAtPos(pos hcl.Pos, makeList bool) (list []*hcl.Block, innermost *Block) {
current := b
Blocks:
for current != nil {
for _, block := range current.Blocks {
wholeRange := hcl.RangeBetween(block.TypeRange, block.CloseBraceRange)
if wholeRange.ContainsPos(pos) {
innermost = block
if makeList {
list = append(list, innermost.AsHCLBlock())
}
current = block.Body
continue Blocks
}
}
// If we fall out here then none of the current body's nested blocks
// contain the position we are looking for, and so we're done.
break
}
return
}
// outermostBlockAtPos is the internal version of OutermostBlockAtPos that
// returns a hclsyntax.Block rather than an hcl.Block, allowing for further
// analysis if necessary.
func (b *Body) outermostBlockAtPos(pos hcl.Pos) *Block {
// This is similar to blocksAtPos, but simpler because we know it only
// ever needs to search the first level of nested blocks.
for _, block := range b.Blocks {
wholeRange := hcl.RangeBetween(block.TypeRange, block.CloseBraceRange)
if wholeRange.ContainsPos(pos) {
return block
}
}
return nil
}
// AttributeAtPos implements the method of the same name for an *hcl.File
// that is backed by a *Body.
func (b *Body) AttributeAtPos(pos hcl.Pos) *hcl.Attribute {
return b.attributeAtPos(pos).AsHCLAttribute()
}
// attributeAtPos is the internal version of AttributeAtPos that returns a
// hclsyntax.Block rather than an hcl.Block, allowing for further analysis if
// necessary.
func (b *Body) attributeAtPos(pos hcl.Pos) *Attribute {
searchBody := b
_, block := b.blocksAtPos(pos, false)
if block != nil {
searchBody = block.Body
}
for _, attr := range searchBody.Attributes {
if attr.SrcRange.ContainsPos(pos) {
return attr
}
}
return nil
}
// OutermostExprAtPos implements the method of the same name for an *hcl.File
// that is backed by a *Body.
func (b *Body) OutermostExprAtPos(pos hcl.Pos) hcl.Expression {
attr := b.attributeAtPos(pos)
if attr == nil {
return nil
}
if !attr.Expr.Range().ContainsPos(pos) {
return nil
}
return attr.Expr
}

320
vendor/github.com/hashicorp/hcl/v2/hclsyntax/token.go generated vendored Normal file
View File

@ -0,0 +1,320 @@
package hclsyntax
import (
"bytes"
"fmt"
"github.com/apparentlymart/go-textseg/textseg"
"github.com/hashicorp/hcl/v2"
)
// Token represents a sequence of bytes from some HCL code that has been
// tagged with a type and its range within the source file.
type Token struct {
Type TokenType
Bytes []byte
Range hcl.Range
}
// Tokens is a slice of Token.
type Tokens []Token
// TokenType is an enumeration used for the Type field on Token.
type TokenType rune
const (
// Single-character tokens are represented by their own character, for
// convenience in producing these within the scanner. However, the values
// are otherwise arbitrary and just intended to be mnemonic for humans
// who might see them in debug output.
TokenOBrace TokenType = '{'
TokenCBrace TokenType = '}'
TokenOBrack TokenType = '['
TokenCBrack TokenType = ']'
TokenOParen TokenType = '('
TokenCParen TokenType = ')'
TokenOQuote TokenType = '«'
TokenCQuote TokenType = '»'
TokenOHeredoc TokenType = 'H'
TokenCHeredoc TokenType = 'h'
TokenStar TokenType = '*'
TokenSlash TokenType = '/'
TokenPlus TokenType = '+'
TokenMinus TokenType = '-'
TokenPercent TokenType = '%'
TokenEqual TokenType = '='
TokenEqualOp TokenType = '≔'
TokenNotEqual TokenType = '≠'
TokenLessThan TokenType = '<'
TokenLessThanEq TokenType = '≤'
TokenGreaterThan TokenType = '>'
TokenGreaterThanEq TokenType = '≥'
TokenAnd TokenType = '∧'
TokenOr TokenType = ''
TokenBang TokenType = '!'
TokenDot TokenType = '.'
TokenComma TokenType = ','
TokenEllipsis TokenType = '…'
TokenFatArrow TokenType = '⇒'
TokenQuestion TokenType = '?'
TokenColon TokenType = ':'
TokenTemplateInterp TokenType = '∫'
TokenTemplateControl TokenType = 'λ'
TokenTemplateSeqEnd TokenType = '∎'
TokenQuotedLit TokenType = 'Q' // might contain backslash escapes
TokenStringLit TokenType = 'S' // cannot contain backslash escapes
TokenNumberLit TokenType = 'N'
TokenIdent TokenType = 'I'
TokenComment TokenType = 'C'
TokenNewline TokenType = '\n'
TokenEOF TokenType = '␄'
// The rest are not used in the language but recognized by the scanner so
// we can generate good diagnostics in the parser when users try to write
// things that might work in other languages they are familiar with, or
// simply make incorrect assumptions about the HCL language.
TokenBitwiseAnd TokenType = '&'
TokenBitwiseOr TokenType = '|'
TokenBitwiseNot TokenType = '~'
TokenBitwiseXor TokenType = '^'
TokenStarStar TokenType = '➚'
TokenApostrophe TokenType = '\''
TokenBacktick TokenType = '`'
TokenSemicolon TokenType = ';'
TokenTabs TokenType = '␉'
TokenInvalid TokenType = '<27>'
TokenBadUTF8 TokenType = '💩'
TokenQuotedNewline TokenType = '␤'
// TokenNil is a placeholder for when a token is required but none is
// available, e.g. when reporting errors. The scanner will never produce
// this as part of a token stream.
TokenNil TokenType = '\x00'
)
func (t TokenType) GoString() string {
return fmt.Sprintf("hclsyntax.%s", t.String())
}
type scanMode int
const (
scanNormal scanMode = iota
scanTemplate
scanIdentOnly
)
type tokenAccum struct {
Filename string
Bytes []byte
Pos hcl.Pos
Tokens []Token
StartByte int
}
func (f *tokenAccum) emitToken(ty TokenType, startOfs, endOfs int) {
// Walk through our buffer to figure out how much we need to adjust
// the start pos to get our end pos.
start := f.Pos
start.Column += startOfs + f.StartByte - f.Pos.Byte // Safe because only ASCII spaces can be in the offset
start.Byte = startOfs + f.StartByte
end := start
end.Byte = endOfs + f.StartByte
b := f.Bytes[startOfs:endOfs]
for len(b) > 0 {
advance, seq, _ := textseg.ScanGraphemeClusters(b, true)
if (len(seq) == 1 && seq[0] == '\n') || (len(seq) == 2 && seq[0] == '\r' && seq[1] == '\n') {
end.Line++
end.Column = 1
} else {
end.Column++
}
b = b[advance:]
}
f.Pos = end
f.Tokens = append(f.Tokens, Token{
Type: ty,
Bytes: f.Bytes[startOfs:endOfs],
Range: hcl.Range{
Filename: f.Filename,
Start: start,
End: end,
},
})
}
type heredocInProgress struct {
Marker []byte
StartOfLine bool
}
func tokenOpensFlushHeredoc(tok Token) bool {
if tok.Type != TokenOHeredoc {
return false
}
return bytes.HasPrefix(tok.Bytes, []byte{'<', '<', '-'})
}
// checkInvalidTokens does a simple pass across the given tokens and generates
// diagnostics for tokens that should _never_ appear in HCL source. This
// is intended to avoid the need for the parser to have special support
// for them all over.
//
// Returns a diagnostics with no errors if everything seems acceptable.
// Otherwise, returns zero or more error diagnostics, though tries to limit
// repetition of the same information.
func checkInvalidTokens(tokens Tokens) hcl.Diagnostics {
var diags hcl.Diagnostics
toldBitwise := 0
toldExponent := 0
toldBacktick := 0
toldApostrophe := 0
toldSemicolon := 0
toldTabs := 0
toldBadUTF8 := 0
for _, tok := range tokens {
// copy token so it's safe to point to it
tok := tok
switch tok.Type {
case TokenBitwiseAnd, TokenBitwiseOr, TokenBitwiseXor, TokenBitwiseNot:
if toldBitwise < 4 {
var suggestion string
switch tok.Type {
case TokenBitwiseAnd:
suggestion = " Did you mean boolean AND (\"&&\")?"
case TokenBitwiseOr:
suggestion = " Did you mean boolean OR (\"&&\")?"
case TokenBitwiseNot:
suggestion = " Did you mean boolean NOT (\"!\")?"
}
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Unsupported operator",
Detail: fmt.Sprintf("Bitwise operators are not supported.%s", suggestion),
Subject: &tok.Range,
})
toldBitwise++
}
case TokenStarStar:
if toldExponent < 1 {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Unsupported operator",
Detail: "\"**\" is not a supported operator. Exponentiation is not supported as an operator.",
Subject: &tok.Range,
})
toldExponent++
}
case TokenBacktick:
// Only report for alternating (even) backticks, so we won't report both start and ends of the same
// backtick-quoted string.
if (toldBacktick % 2) == 0 {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid character",
Detail: "The \"`\" character is not valid. To create a multi-line string, use the \"heredoc\" syntax, like \"<<EOT\".",
Subject: &tok.Range,
})
}
if toldBacktick <= 2 {
toldBacktick++
}
case TokenApostrophe:
if (toldApostrophe % 2) == 0 {
newDiag := &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid character",
Detail: "Single quotes are not valid. Use double quotes (\") to enclose strings.",
Subject: &tok.Range,
}
diags = append(diags, newDiag)
}
if toldApostrophe <= 2 {
toldApostrophe++
}
case TokenSemicolon:
if toldSemicolon < 1 {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid character",
Detail: "The \";\" character is not valid. Use newlines to separate arguments and blocks, and commas to separate items in collection values.",
Subject: &tok.Range,
})
toldSemicolon++
}
case TokenTabs:
if toldTabs < 1 {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid character",
Detail: "Tab characters may not be used. The recommended indentation style is two spaces per indent.",
Subject: &tok.Range,
})
toldTabs++
}
case TokenBadUTF8:
if toldBadUTF8 < 1 {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid character encoding",
Detail: "All input files must be UTF-8 encoded. Ensure that UTF-8 encoding is selected in your editor.",
Subject: &tok.Range,
})
toldBadUTF8++
}
case TokenQuotedNewline:
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid multi-line string",
Detail: "Quoted strings may not be split over multiple lines. To produce a multi-line string, either use the \\n escape to represent a newline character or use the \"heredoc\" multi-line template syntax.",
Subject: &tok.Range,
})
case TokenInvalid:
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid character",
Detail: "This character is not used within the language.",
Subject: &tok.Range,
})
}
}
return diags
}
var utf8BOM = []byte{0xef, 0xbb, 0xbf}
// stripUTF8BOM checks whether the given buffer begins with a UTF-8 byte order
// mark (0xEF 0xBB 0xBF) and, if so, returns a truncated slice with the same
// backing array but with the BOM skipped.
//
// If there is no BOM present, the given slice is returned verbatim.
func stripUTF8BOM(src []byte) []byte {
if bytes.HasPrefix(src, utf8BOM) {
return src[3:]
}
return src
}

View File

@ -0,0 +1,131 @@
// Code generated by "stringer -type TokenType -output token_type_string.go"; DO NOT EDIT.
package hclsyntax
import "strconv"
func _() {
// An "invalid array index" compiler error signifies that the constant values have changed.
// Re-run the stringer command to generate them again.
var x [1]struct{}
_ = x[TokenOBrace-123]
_ = x[TokenCBrace-125]
_ = x[TokenOBrack-91]
_ = x[TokenCBrack-93]
_ = x[TokenOParen-40]
_ = x[TokenCParen-41]
_ = x[TokenOQuote-171]
_ = x[TokenCQuote-187]
_ = x[TokenOHeredoc-72]
_ = x[TokenCHeredoc-104]
_ = x[TokenStar-42]
_ = x[TokenSlash-47]
_ = x[TokenPlus-43]
_ = x[TokenMinus-45]
_ = x[TokenPercent-37]
_ = x[TokenEqual-61]
_ = x[TokenEqualOp-8788]
_ = x[TokenNotEqual-8800]
_ = x[TokenLessThan-60]
_ = x[TokenLessThanEq-8804]
_ = x[TokenGreaterThan-62]
_ = x[TokenGreaterThanEq-8805]
_ = x[TokenAnd-8743]
_ = x[TokenOr-8744]
_ = x[TokenBang-33]
_ = x[TokenDot-46]
_ = x[TokenComma-44]
_ = x[TokenEllipsis-8230]
_ = x[TokenFatArrow-8658]
_ = x[TokenQuestion-63]
_ = x[TokenColon-58]
_ = x[TokenTemplateInterp-8747]
_ = x[TokenTemplateControl-955]
_ = x[TokenTemplateSeqEnd-8718]
_ = x[TokenQuotedLit-81]
_ = x[TokenStringLit-83]
_ = x[TokenNumberLit-78]
_ = x[TokenIdent-73]
_ = x[TokenComment-67]
_ = x[TokenNewline-10]
_ = x[TokenEOF-9220]
_ = x[TokenBitwiseAnd-38]
_ = x[TokenBitwiseOr-124]
_ = x[TokenBitwiseNot-126]
_ = x[TokenBitwiseXor-94]
_ = x[TokenStarStar-10138]
_ = x[TokenApostrophe-39]
_ = x[TokenBacktick-96]
_ = x[TokenSemicolon-59]
_ = x[TokenTabs-9225]
_ = x[TokenInvalid-65533]
_ = x[TokenBadUTF8-128169]
_ = x[TokenQuotedNewline-9252]
_ = x[TokenNil-0]
}
const _TokenType_name = "TokenNilTokenNewlineTokenBangTokenPercentTokenBitwiseAndTokenApostropheTokenOParenTokenCParenTokenStarTokenPlusTokenCommaTokenMinusTokenDotTokenSlashTokenColonTokenSemicolonTokenLessThanTokenEqualTokenGreaterThanTokenQuestionTokenCommentTokenOHeredocTokenIdentTokenNumberLitTokenQuotedLitTokenStringLitTokenOBrackTokenCBrackTokenBitwiseXorTokenBacktickTokenCHeredocTokenOBraceTokenBitwiseOrTokenCBraceTokenBitwiseNotTokenOQuoteTokenCQuoteTokenTemplateControlTokenEllipsisTokenFatArrowTokenTemplateSeqEndTokenAndTokenOrTokenTemplateInterpTokenEqualOpTokenNotEqualTokenLessThanEqTokenGreaterThanEqTokenEOFTokenTabsTokenQuotedNewlineTokenStarStarTokenInvalidTokenBadUTF8"
var _TokenType_map = map[TokenType]string{
0: _TokenType_name[0:8],
10: _TokenType_name[8:20],
33: _TokenType_name[20:29],
37: _TokenType_name[29:41],
38: _TokenType_name[41:56],
39: _TokenType_name[56:71],
40: _TokenType_name[71:82],
41: _TokenType_name[82:93],
42: _TokenType_name[93:102],
43: _TokenType_name[102:111],
44: _TokenType_name[111:121],
45: _TokenType_name[121:131],
46: _TokenType_name[131:139],
47: _TokenType_name[139:149],
58: _TokenType_name[149:159],
59: _TokenType_name[159:173],
60: _TokenType_name[173:186],
61: _TokenType_name[186:196],
62: _TokenType_name[196:212],
63: _TokenType_name[212:225],
67: _TokenType_name[225:237],
72: _TokenType_name[237:250],
73: _TokenType_name[250:260],
78: _TokenType_name[260:274],
81: _TokenType_name[274:288],
83: _TokenType_name[288:302],
91: _TokenType_name[302:313],
93: _TokenType_name[313:324],
94: _TokenType_name[324:339],
96: _TokenType_name[339:352],
104: _TokenType_name[352:365],
123: _TokenType_name[365:376],
124: _TokenType_name[376:390],
125: _TokenType_name[390:401],
126: _TokenType_name[401:416],
171: _TokenType_name[416:427],
187: _TokenType_name[427:438],
955: _TokenType_name[438:458],
8230: _TokenType_name[458:471],
8658: _TokenType_name[471:484],
8718: _TokenType_name[484:503],
8743: _TokenType_name[503:511],
8744: _TokenType_name[511:518],
8747: _TokenType_name[518:537],
8788: _TokenType_name[537:549],
8800: _TokenType_name[549:562],
8804: _TokenType_name[562:577],
8805: _TokenType_name[577:595],
9220: _TokenType_name[595:603],
9225: _TokenType_name[603:612],
9252: _TokenType_name[612:630],
10138: _TokenType_name[630:643],
65533: _TokenType_name[643:655],
128169: _TokenType_name[655:667],
}
func (i TokenType) String() string {
if str, ok := _TokenType_map[i]; ok {
return str
}
return "TokenType(" + strconv.FormatInt(int64(i), 10) + ")"
}

View File

@ -0,0 +1,335 @@
#!/usr/bin/env ruby
#
# This scripted has been updated to accept more command-line arguments:
#
# -u, --url URL to process
# -m, --machine Machine name
# -p, --properties Properties to add to the machine
# -o, --output Write output to file
#
# Updated by: Marty Schoch <marty.schoch@gmail.com>
#
# This script uses the unicode spec to generate a Ragel state machine
# that recognizes unicode alphanumeric characters. It generates 5
# character classes: uupper, ulower, ualpha, udigit, and ualnum.
# Currently supported encodings are UTF-8 [default] and UCS-4.
#
# Usage: unicode2ragel.rb [options]
# -e, --encoding [ucs4 | utf8] Data encoding
# -h, --help Show this message
#
# This script was originally written as part of the Ferret search
# engine library.
#
# Author: Rakan El-Khalil <rakan@well.com>
require 'optparse'
require 'open-uri'
ENCODINGS = [ :utf8, :ucs4 ]
ALPHTYPES = { :utf8 => "byte", :ucs4 => "rune" }
DEFAULT_CHART_URL = "http://www.unicode.org/Public/5.1.0/ucd/DerivedCoreProperties.txt"
DEFAULT_MACHINE_NAME= "WChar"
###
# Display vars & default option
TOTAL_WIDTH = 80
RANGE_WIDTH = 23
@encoding = :utf8
@chart_url = DEFAULT_CHART_URL
machine_name = DEFAULT_MACHINE_NAME
properties = []
@output = $stdout
###
# Option parsing
cli_opts = OptionParser.new do |opts|
opts.on("-e", "--encoding [ucs4 | utf8]", "Data encoding") do |o|
@encoding = o.downcase.to_sym
end
opts.on("-h", "--help", "Show this message") do
puts opts
exit
end
opts.on("-u", "--url URL", "URL to process") do |o|
@chart_url = o
end
opts.on("-m", "--machine MACHINE_NAME", "Machine name") do |o|
machine_name = o
end
opts.on("-p", "--properties x,y,z", Array, "Properties to add to machine") do |o|
properties = o
end
opts.on("-o", "--output FILE", "output file") do |o|
@output = File.new(o, "w+")
end
end
cli_opts.parse(ARGV)
unless ENCODINGS.member? @encoding
puts "Invalid encoding: #{@encoding}"
puts cli_opts
exit
end
##
# Downloads the document at url and yields every alpha line's hex
# range and description.
def each_alpha( url, property )
open( url ) do |file|
file.each_line do |line|
next if line =~ /^#/;
next if line !~ /; #{property} #/;
range, description = line.split(/;/)
range.strip!
description.gsub!(/.*#/, '').strip!
if range =~ /\.\./
start, stop = range.split '..'
else start = stop = range
end
yield start.hex .. stop.hex, description
end
end
end
###
# Formats to hex at minimum width
def to_hex( n )
r = "%0X" % n
r = "0#{r}" unless (r.length % 2).zero?
r
end
###
# UCS4 is just a straight hex conversion of the unicode codepoint.
def to_ucs4( range )
rangestr = "0x" + to_hex(range.begin)
rangestr << "..0x" + to_hex(range.end) if range.begin != range.end
[ rangestr ]
end
##
# 0x00 - 0x7f -> 0zzzzzzz[7]
# 0x80 - 0x7ff -> 110yyyyy[5] 10zzzzzz[6]
# 0x800 - 0xffff -> 1110xxxx[4] 10yyyyyy[6] 10zzzzzz[6]
# 0x010000 - 0x10ffff -> 11110www[3] 10xxxxxx[6] 10yyyyyy[6] 10zzzzzz[6]
UTF8_BOUNDARIES = [0x7f, 0x7ff, 0xffff, 0x10ffff]
def to_utf8_enc( n )
r = 0
if n <= 0x7f
r = n
elsif n <= 0x7ff
y = 0xc0 | (n >> 6)
z = 0x80 | (n & 0x3f)
r = y << 8 | z
elsif n <= 0xffff
x = 0xe0 | (n >> 12)
y = 0x80 | (n >> 6) & 0x3f
z = 0x80 | n & 0x3f
r = x << 16 | y << 8 | z
elsif n <= 0x10ffff
w = 0xf0 | (n >> 18)
x = 0x80 | (n >> 12) & 0x3f
y = 0x80 | (n >> 6) & 0x3f
z = 0x80 | n & 0x3f
r = w << 24 | x << 16 | y << 8 | z
end
to_hex(r)
end
def from_utf8_enc( n )
n = n.hex
r = 0
if n <= 0x7f
r = n
elsif n <= 0xdfff
y = (n >> 8) & 0x1f
z = n & 0x3f
r = y << 6 | z
elsif n <= 0xefffff
x = (n >> 16) & 0x0f
y = (n >> 8) & 0x3f
z = n & 0x3f
r = x << 10 | y << 6 | z
elsif n <= 0xf7ffffff
w = (n >> 24) & 0x07
x = (n >> 16) & 0x3f
y = (n >> 8) & 0x3f
z = n & 0x3f
r = w << 18 | x << 12 | y << 6 | z
end
r
end
###
# Given a range, splits it up into ranges that can be continuously
# encoded into utf8. Eg: 0x00 .. 0xff => [0x00..0x7f, 0x80..0xff]
# This is not strictly needed since the current [5.1] unicode standard
# doesn't have ranges that straddle utf8 boundaries. This is included
# for completeness as there is no telling if that will ever change.
def utf8_ranges( range )
ranges = []
UTF8_BOUNDARIES.each do |max|
if range.begin <= max
if range.end <= max
ranges << range
return ranges
end
ranges << (range.begin .. max)
range = (max + 1) .. range.end
end
end
ranges
end
def build_range( start, stop )
size = start.size/2
left = size - 1
return [""] if size < 1
a = start[0..1]
b = stop[0..1]
###
# Shared prefix
if a == b
return build_range(start[2..-1], stop[2..-1]).map do |elt|
"0x#{a} " + elt
end
end
###
# Unshared prefix, end of run
return ["0x#{a}..0x#{b} "] if left.zero?
###
# Unshared prefix, not end of run
# Range can be 0x123456..0x56789A
# Which is equivalent to:
# 0x123456 .. 0x12FFFF
# 0x130000 .. 0x55FFFF
# 0x560000 .. 0x56789A
ret = []
ret << build_range(start, a + "FF" * left)
###
# Only generate middle range if need be.
if a.hex+1 != b.hex
max = to_hex(b.hex - 1)
max = "FF" if b == "FF"
ret << "0x#{to_hex(a.hex+1)}..0x#{max} " + "0x00..0xFF " * left
end
###
# Don't generate last range if it is covered by first range
ret << build_range(b + "00" * left, stop) unless b == "FF"
ret.flatten!
end
def to_utf8( range )
utf8_ranges( range ).map do |r|
begin_enc = to_utf8_enc(r.begin)
end_enc = to_utf8_enc(r.end)
build_range begin_enc, end_enc
end.flatten!
end
##
# Perform a 3-way comparison of the number of codepoints advertised by
# the unicode spec for the given range, the originally parsed range,
# and the resulting utf8 encoded range.
def count_codepoints( code )
code.split(' ').inject(1) do |acc, elt|
if elt =~ /0x(.+)\.\.0x(.+)/
if @encoding == :utf8
acc * (from_utf8_enc($2) - from_utf8_enc($1) + 1)
else
acc * ($2.hex - $1.hex + 1)
end
else
acc
end
end
end
def is_valid?( range, desc, codes )
spec_count = 1
spec_count = $1.to_i if desc =~ /\[(\d+)\]/
range_count = range.end - range.begin + 1
sum = codes.inject(0) { |acc, elt| acc + count_codepoints(elt) }
sum == spec_count and sum == range_count
end
##
# Generate the state maching to stdout
def generate_machine( name, property )
pipe = " "
@output.puts " #{name} = "
each_alpha( @chart_url, property ) do |range, desc|
codes = (@encoding == :ucs4) ? to_ucs4(range) : to_utf8(range)
#raise "Invalid encoding of range #{range}: #{codes.inspect}" unless
# is_valid? range, desc, codes
range_width = codes.map { |a| a.size }.max
range_width = RANGE_WIDTH if range_width < RANGE_WIDTH
desc_width = TOTAL_WIDTH - RANGE_WIDTH - 11
desc_width -= (range_width - RANGE_WIDTH) if range_width > RANGE_WIDTH
if desc.size > desc_width
desc = desc[0..desc_width - 4] + "..."
end
codes.each_with_index do |r, idx|
desc = "" unless idx.zero?
code = "%-#{range_width}s" % r
@output.puts " #{pipe} #{code} ##{desc}"
pipe = "|"
end
end
@output.puts " ;"
@output.puts ""
end
@output.puts <<EOF
# The following Ragel file was autogenerated with #{$0}
# from: #{@chart_url}
#
# It defines #{properties}.
#
# To use this, make sure that your alphtype is set to #{ALPHTYPES[@encoding]},
# and that your input is in #{@encoding}.
%%{
machine #{machine_name};
EOF
properties.each { |x| generate_machine( x, x ) }
@output.puts <<EOF
}%%
EOF

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,86 @@
package hclsyntax
import (
"github.com/hashicorp/hcl/v2"
)
// Variables returns all of the variables referenced within a given experssion.
//
// This is the implementation of the "Variables" method on every native
// expression.
func Variables(expr Expression) []hcl.Traversal {
var vars []hcl.Traversal
walker := &variablesWalker{
Callback: func(t hcl.Traversal) {
vars = append(vars, t)
},
}
Walk(expr, walker)
return vars
}
// variablesWalker is a Walker implementation that calls its callback for any
// root scope traversal found while walking.
type variablesWalker struct {
Callback func(hcl.Traversal)
localScopes []map[string]struct{}
}
func (w *variablesWalker) Enter(n Node) hcl.Diagnostics {
switch tn := n.(type) {
case *ScopeTraversalExpr:
t := tn.Traversal
// Check if the given root name appears in any of the active
// local scopes. We don't want to return local variables here, since
// the goal of walking variables is to tell the calling application
// which names it needs to populate in the _root_ scope.
name := t.RootName()
for _, names := range w.localScopes {
if _, localized := names[name]; localized {
return nil
}
}
w.Callback(t)
case ChildScope:
w.localScopes = append(w.localScopes, tn.LocalNames)
}
return nil
}
func (w *variablesWalker) Exit(n Node) hcl.Diagnostics {
switch n.(type) {
case ChildScope:
// pop the latest local scope, assuming that the walker will
// behave symmetrically as promised.
w.localScopes = w.localScopes[:len(w.localScopes)-1]
}
return nil
}
// ChildScope is a synthetic AST node that is visited during a walk to
// indicate that its descendent will be evaluated in a child scope, which
// may mask certain variables from the parent scope as locals.
//
// ChildScope nodes don't really exist in the AST, but are rather synthesized
// on the fly during walk. Therefore it doesn't do any good to transform them;
// instead, transform either parent node that created a scope or the expression
// that the child scope struct wraps.
type ChildScope struct {
LocalNames map[string]struct{}
Expr Expression
}
func (e ChildScope) walkChildNodes(w internalWalkFunc) {
w(e.Expr)
}
// Range returns the range of the expression that the ChildScope is
// encapsulating. It isn't really very useful to call Range on a ChildScope.
func (e ChildScope) Range() hcl.Range {
return e.Expr.Range()
}

41
vendor/github.com/hashicorp/hcl/v2/hclsyntax/walk.go generated vendored Normal file
View File

@ -0,0 +1,41 @@
package hclsyntax
import (
"github.com/hashicorp/hcl/v2"
)
// VisitFunc is the callback signature for VisitAll.
type VisitFunc func(node Node) hcl.Diagnostics
// VisitAll is a basic way to traverse the AST beginning with a particular
// node. The given function will be called once for each AST node in
// depth-first order, but no context is provided about the shape of the tree.
//
// The VisitFunc may return diagnostics, in which case they will be accumulated
// and returned as a single set.
func VisitAll(node Node, f VisitFunc) hcl.Diagnostics {
diags := f(node)
node.walkChildNodes(func(node Node) {
diags = append(diags, VisitAll(node, f)...)
})
return diags
}
// Walker is an interface used with Walk.
type Walker interface {
Enter(node Node) hcl.Diagnostics
Exit(node Node) hcl.Diagnostics
}
// Walk is a more complex way to traverse the AST starting with a particular
// node, which provides information about the tree structure via separate
// Enter and Exit functions.
func Walk(node Node, w Walker) hcl.Diagnostics {
diags := w.Enter(node)
node.walkChildNodes(func(node Node) {
diags = append(diags, Walk(node, w)...)
})
moreDiags := w.Exit(node)
diags = append(diags, moreDiags...)
return diags
}

121
vendor/github.com/hashicorp/hcl/v2/hclwrite/ast.go generated vendored Normal file
View File

@ -0,0 +1,121 @@
package hclwrite
import (
"bytes"
"io"
)
type File struct {
inTree
srcBytes []byte
body *node
}
// NewEmptyFile constructs a new file with no content, ready to be mutated
// by other calls that append to its body.
func NewEmptyFile() *File {
f := &File{
inTree: newInTree(),
}
body := newBody()
f.body = f.children.Append(body)
return f
}
// Body returns the root body of the file, which contains the top-level
// attributes and blocks.
func (f *File) Body() *Body {
return f.body.content.(*Body)
}
// WriteTo writes the tokens underlying the receiving file to the given writer.
//
// The tokens first have a simple formatting pass applied that adjusts only
// the spaces between them.
func (f *File) WriteTo(wr io.Writer) (int64, error) {
tokens := f.inTree.children.BuildTokens(nil)
format(tokens)
return tokens.WriteTo(wr)
}
// Bytes returns a buffer containing the source code resulting from the
// tokens underlying the receiving file. If any updates have been made via
// the AST API, these will be reflected in the result.
func (f *File) Bytes() []byte {
buf := &bytes.Buffer{}
f.WriteTo(buf)
return buf.Bytes()
}
type comments struct {
leafNode
parent *node
tokens Tokens
}
func newComments(tokens Tokens) *comments {
return &comments{
tokens: tokens,
}
}
func (c *comments) BuildTokens(to Tokens) Tokens {
return c.tokens.BuildTokens(to)
}
type identifier struct {
leafNode
parent *node
token *Token
}
func newIdentifier(token *Token) *identifier {
return &identifier{
token: token,
}
}
func (i *identifier) BuildTokens(to Tokens) Tokens {
return append(to, i.token)
}
func (i *identifier) hasName(name string) bool {
return name == string(i.token.Bytes)
}
type number struct {
leafNode
parent *node
token *Token
}
func newNumber(token *Token) *number {
return &number{
token: token,
}
}
func (n *number) BuildTokens(to Tokens) Tokens {
return append(to, n.token)
}
type quoted struct {
leafNode
parent *node
tokens Tokens
}
func newQuoted(tokens Tokens) *quoted {
return &quoted{
tokens: tokens,
}
}
func (q *quoted) BuildTokens(to Tokens) Tokens {
return q.tokens.BuildTokens(to)
}

View File

@ -0,0 +1,48 @@
package hclwrite
import (
"github.com/hashicorp/hcl/v2/hclsyntax"
)
type Attribute struct {
inTree
leadComments *node
name *node
expr *node
lineComments *node
}
func newAttribute() *Attribute {
return &Attribute{
inTree: newInTree(),
}
}
func (a *Attribute) init(name string, expr *Expression) {
expr.assertUnattached()
nameTok := newIdentToken(name)
nameObj := newIdentifier(nameTok)
a.leadComments = a.children.Append(newComments(nil))
a.name = a.children.Append(nameObj)
a.children.AppendUnstructuredTokens(Tokens{
{
Type: hclsyntax.TokenEqual,
Bytes: []byte{'='},
},
})
a.expr = a.children.Append(expr)
a.expr.list = a.children
a.lineComments = a.children.Append(newComments(nil))
a.children.AppendUnstructuredTokens(Tokens{
{
Type: hclsyntax.TokenNewline,
Bytes: []byte{'\n'},
},
})
}
func (a *Attribute) Expr() *Expression {
return a.expr.content.(*Expression)
}

View File

@ -0,0 +1,118 @@
package hclwrite
import (
"github.com/hashicorp/hcl/v2/hclsyntax"
"github.com/zclconf/go-cty/cty"
)
type Block struct {
inTree
leadComments *node
typeName *node
labels nodeSet
open *node
body *node
close *node
}
func newBlock() *Block {
return &Block{
inTree: newInTree(),
labels: newNodeSet(),
}
}
// NewBlock constructs a new, empty block with the given type name and labels.
func NewBlock(typeName string, labels []string) *Block {
block := newBlock()
block.init(typeName, labels)
return block
}
func (b *Block) init(typeName string, labels []string) {
nameTok := newIdentToken(typeName)
nameObj := newIdentifier(nameTok)
b.leadComments = b.children.Append(newComments(nil))
b.typeName = b.children.Append(nameObj)
for _, label := range labels {
labelToks := TokensForValue(cty.StringVal(label))
labelObj := newQuoted(labelToks)
labelNode := b.children.Append(labelObj)
b.labels.Add(labelNode)
}
b.open = b.children.AppendUnstructuredTokens(Tokens{
{
Type: hclsyntax.TokenOBrace,
Bytes: []byte{'{'},
},
{
Type: hclsyntax.TokenNewline,
Bytes: []byte{'\n'},
},
})
body := newBody() // initially totally empty; caller can append to it subsequently
b.body = b.children.Append(body)
b.close = b.children.AppendUnstructuredTokens(Tokens{
{
Type: hclsyntax.TokenCBrace,
Bytes: []byte{'}'},
},
{
Type: hclsyntax.TokenNewline,
Bytes: []byte{'\n'},
},
})
}
// Body returns the body that represents the content of the receiving block.
//
// Appending to or otherwise modifying this body will make changes to the
// tokens that are generated between the blocks open and close braces.
func (b *Block) Body() *Body {
return b.body.content.(*Body)
}
// Type returns the type name of the block.
func (b *Block) Type() string {
typeNameObj := b.typeName.content.(*identifier)
return string(typeNameObj.token.Bytes)
}
// Labels returns the labels of the block.
func (b *Block) Labels() []string {
labelNames := make([]string, 0, len(b.labels))
list := b.labels.List()
for _, label := range list {
switch labelObj := label.content.(type) {
case *identifier:
if labelObj.token.Type == hclsyntax.TokenIdent {
labelString := string(labelObj.token.Bytes)
labelNames = append(labelNames, labelString)
}
case *quoted:
tokens := labelObj.tokens
if len(tokens) == 3 &&
tokens[0].Type == hclsyntax.TokenOQuote &&
tokens[1].Type == hclsyntax.TokenQuotedLit &&
tokens[2].Type == hclsyntax.TokenCQuote {
// Note that TokenQuotedLit may contain escape sequences.
labelString, diags := hclsyntax.ParseStringLiteralToken(tokens[1].asHCLSyntax())
// If parsing the string literal returns error diagnostics
// then we can just assume the label doesn't match, because it's invalid in some way.
if !diags.HasErrors() {
labelNames = append(labelNames, labelString)
}
}
default:
// If neither of the previous cases are true (should be impossible)
// then we can just ignore it, because it's invalid too.
}
}
return labelNames
}

219
vendor/github.com/hashicorp/hcl/v2/hclwrite/ast_body.go generated vendored Normal file
View File

@ -0,0 +1,219 @@
package hclwrite
import (
"reflect"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/hclsyntax"
"github.com/zclconf/go-cty/cty"
)
type Body struct {
inTree
items nodeSet
}
func newBody() *Body {
return &Body{
inTree: newInTree(),
items: newNodeSet(),
}
}
func (b *Body) appendItem(c nodeContent) *node {
nn := b.children.Append(c)
b.items.Add(nn)
return nn
}
func (b *Body) appendItemNode(nn *node) *node {
nn.assertUnattached()
b.children.AppendNode(nn)
b.items.Add(nn)
return nn
}
// Clear removes all of the items from the body, making it empty.
func (b *Body) Clear() {
b.children.Clear()
}
func (b *Body) AppendUnstructuredTokens(ts Tokens) {
b.inTree.children.Append(ts)
}
// Attributes returns a new map of all of the attributes in the body, with
// the attribute names as the keys.
func (b *Body) Attributes() map[string]*Attribute {
ret := make(map[string]*Attribute)
for n := range b.items {
if attr, isAttr := n.content.(*Attribute); isAttr {
nameObj := attr.name.content.(*identifier)
name := string(nameObj.token.Bytes)
ret[name] = attr
}
}
return ret
}
// Blocks returns a new slice of all the blocks in the body.
func (b *Body) Blocks() []*Block {
ret := make([]*Block, 0, len(b.items))
for n := range b.items {
if block, isBlock := n.content.(*Block); isBlock {
ret = append(ret, block)
}
}
return ret
}
// GetAttribute returns the attribute from the body that has the given name,
// or returns nil if there is currently no matching attribute.
func (b *Body) GetAttribute(name string) *Attribute {
for n := range b.items {
if attr, isAttr := n.content.(*Attribute); isAttr {
nameObj := attr.name.content.(*identifier)
if nameObj.hasName(name) {
// We've found it!
return attr
}
}
}
return nil
}
// getAttributeNode is like GetAttribute but it returns the node containing
// the selected attribute (if one is found) rather than the attribute itself.
func (b *Body) getAttributeNode(name string) *node {
for n := range b.items {
if attr, isAttr := n.content.(*Attribute); isAttr {
nameObj := attr.name.content.(*identifier)
if nameObj.hasName(name) {
// We've found it!
return n
}
}
}
return nil
}
// FirstMatchingBlock returns a first matching block from the body that has the
// given name and labels or returns nil if there is currently no matching
// block.
func (b *Body) FirstMatchingBlock(typeName string, labels []string) *Block {
for _, block := range b.Blocks() {
if typeName == block.Type() {
labelNames := block.Labels()
if len(labels) == 0 && len(labelNames) == 0 {
return block
}
if reflect.DeepEqual(labels, labelNames) {
return block
}
}
}
return nil
}
// RemoveBlock removes the given block from the body, if it's in that body.
// If it isn't present, this is a no-op.
//
// Returns true if it removed something, or false otherwise.
func (b *Body) RemoveBlock(block *Block) bool {
for n := range b.items {
if n.content == block {
n.Detach()
b.items.Remove(n)
return true
}
}
return false
}
// SetAttributeValue either replaces the expression of an existing attribute
// of the given name or adds a new attribute definition to the end of the block.
//
// The value is given as a cty.Value, and must therefore be a literal. To set
// a variable reference or other traversal, use SetAttributeTraversal.
//
// The return value is the attribute that was either modified in-place or
// created.
func (b *Body) SetAttributeValue(name string, val cty.Value) *Attribute {
attr := b.GetAttribute(name)
expr := NewExpressionLiteral(val)
if attr != nil {
attr.expr = attr.expr.ReplaceWith(expr)
} else {
attr := newAttribute()
attr.init(name, expr)
b.appendItem(attr)
}
return attr
}
// SetAttributeTraversal either replaces the expression of an existing attribute
// of the given name or adds a new attribute definition to the end of the body.
//
// The new expression is given as a hcl.Traversal, which must be an absolute
// traversal. To set a literal value, use SetAttributeValue.
//
// The return value is the attribute that was either modified in-place or
// created.
func (b *Body) SetAttributeTraversal(name string, traversal hcl.Traversal) *Attribute {
attr := b.GetAttribute(name)
expr := NewExpressionAbsTraversal(traversal)
if attr != nil {
attr.expr = attr.expr.ReplaceWith(expr)
} else {
attr := newAttribute()
attr.init(name, expr)
b.appendItem(attr)
}
return attr
}
// RemoveAttribute removes the attribute with the given name from the body.
//
// The return value is the attribute that was removed, or nil if there was
// no such attribute (in which case the call was a no-op).
func (b *Body) RemoveAttribute(name string) *Attribute {
node := b.getAttributeNode(name)
if node == nil {
return nil
}
node.Detach()
b.items.Remove(node)
return node.content.(*Attribute)
}
// AppendBlock appends an existing block (which must not be already attached
// to a body) to the end of the receiving body.
func (b *Body) AppendBlock(block *Block) *Block {
b.appendItem(block)
return block
}
// AppendNewBlock appends a new nested block to the end of the receiving body
// with the given type name and labels.
func (b *Body) AppendNewBlock(typeName string, labels []string) *Block {
block := newBlock()
block.init(typeName, labels)
b.appendItem(block)
return block
}
// AppendNewline appends a newline token to th end of the receiving body,
// which generally serves as a separator between different sets of body
// contents.
func (b *Body) AppendNewline() {
b.AppendUnstructuredTokens(Tokens{
{
Type: hclsyntax.TokenNewline,
Bytes: []byte{'\n'},
},
})
}

View File

@ -0,0 +1,201 @@
package hclwrite
import (
"fmt"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/hclsyntax"
"github.com/zclconf/go-cty/cty"
)
type Expression struct {
inTree
absTraversals nodeSet
}
func newExpression() *Expression {
return &Expression{
inTree: newInTree(),
absTraversals: newNodeSet(),
}
}
// NewExpressionLiteral constructs an an expression that represents the given
// literal value.
//
// Since an unknown value cannot be represented in source code, this function
// will panic if the given value is unknown or contains a nested unknown value.
// Use val.IsWhollyKnown before calling to be sure.
//
// HCL native syntax does not directly represent lists, maps, and sets, and
// instead relies on the automatic conversions to those collection types from
// either list or tuple constructor syntax. Therefore converting collection
// values to source code and re-reading them will lose type information, and
// the reader must provide a suitable type at decode time to recover the
// original value.
func NewExpressionLiteral(val cty.Value) *Expression {
toks := TokensForValue(val)
expr := newExpression()
expr.children.AppendUnstructuredTokens(toks)
return expr
}
// NewExpressionAbsTraversal constructs an expression that represents the
// given traversal, which must be absolute or this function will panic.
func NewExpressionAbsTraversal(traversal hcl.Traversal) *Expression {
if traversal.IsRelative() {
panic("can't construct expression from relative traversal")
}
physT := newTraversal()
rootName := traversal.RootName()
steps := traversal[1:]
{
tn := newTraverseName()
tn.name = tn.children.Append(newIdentifier(&Token{
Type: hclsyntax.TokenIdent,
Bytes: []byte(rootName),
}))
physT.steps.Add(physT.children.Append(tn))
}
for _, step := range steps {
switch ts := step.(type) {
case hcl.TraverseAttr:
tn := newTraverseName()
tn.children.AppendUnstructuredTokens(Tokens{
{
Type: hclsyntax.TokenDot,
Bytes: []byte{'.'},
},
})
tn.name = tn.children.Append(newIdentifier(&Token{
Type: hclsyntax.TokenIdent,
Bytes: []byte(ts.Name),
}))
physT.steps.Add(physT.children.Append(tn))
case hcl.TraverseIndex:
ti := newTraverseIndex()
ti.children.AppendUnstructuredTokens(Tokens{
{
Type: hclsyntax.TokenOBrack,
Bytes: []byte{'['},
},
})
indexExpr := NewExpressionLiteral(ts.Key)
ti.key = ti.children.Append(indexExpr)
ti.children.AppendUnstructuredTokens(Tokens{
{
Type: hclsyntax.TokenCBrack,
Bytes: []byte{']'},
},
})
physT.steps.Add(physT.children.Append(ti))
}
}
expr := newExpression()
expr.absTraversals.Add(expr.children.Append(physT))
return expr
}
// Variables returns the absolute traversals that exist within the receiving
// expression.
func (e *Expression) Variables() []*Traversal {
nodes := e.absTraversals.List()
ret := make([]*Traversal, len(nodes))
for i, node := range nodes {
ret[i] = node.content.(*Traversal)
}
return ret
}
// RenameVariablePrefix examines each of the absolute traversals in the
// receiving expression to see if they have the given sequence of names as
// a prefix prefix. If so, they are updated in place to have the given
// replacement names instead of that prefix.
//
// This can be used to implement symbol renaming. The calling application can
// visit all relevant expressions in its input and apply the same renaming
// to implement a global symbol rename.
//
// The search and replacement traversals must be the same length, or this
// method will panic. Only attribute access operations can be matched and
// replaced. Index steps never match the prefix.
func (e *Expression) RenameVariablePrefix(search, replacement []string) {
if len(search) != len(replacement) {
panic(fmt.Sprintf("search and replacement length mismatch (%d and %d)", len(search), len(replacement)))
}
Traversals:
for node := range e.absTraversals {
traversal := node.content.(*Traversal)
if len(traversal.steps) < len(search) {
// If it's shorter then it can't have our prefix
continue
}
stepNodes := traversal.steps.List()
for i, name := range search {
step, isName := stepNodes[i].content.(*TraverseName)
if !isName {
continue Traversals // only name nodes can match
}
foundNameBytes := step.name.content.(*identifier).token.Bytes
if len(foundNameBytes) != len(name) {
continue Traversals
}
if string(foundNameBytes) != name {
continue Traversals
}
}
// If we get here then the prefix matched, so now we'll swap in
// the replacement strings.
for i, name := range replacement {
step := stepNodes[i].content.(*TraverseName)
token := step.name.content.(*identifier).token
token.Bytes = []byte(name)
}
}
}
// Traversal represents a sequence of variable, attribute, and/or index
// operations.
type Traversal struct {
inTree
steps nodeSet
}
func newTraversal() *Traversal {
return &Traversal{
inTree: newInTree(),
steps: newNodeSet(),
}
}
type TraverseName struct {
inTree
name *node
}
func newTraverseName() *TraverseName {
return &TraverseName{
inTree: newInTree(),
}
}
type TraverseIndex struct {
inTree
key *node
}
func newTraverseIndex() *TraverseIndex {
return &TraverseIndex{
inTree: newInTree(),
}
}

11
vendor/github.com/hashicorp/hcl/v2/hclwrite/doc.go generated vendored Normal file
View File

@ -0,0 +1,11 @@
// Package hclwrite deals with the problem of generating HCL configuration
// and of making specific surgical changes to existing HCL configurations.
//
// It operates at a different level of abstraction than the main HCL parser
// and AST, since details such as the placement of comments and newlines
// are preserved when unchanged.
//
// The hclwrite API follows a similar principle to XML/HTML DOM, allowing nodes
// to be read out, created and inserted, etc. Nodes represent syntax constructs
// rather than semantic concepts.
package hclwrite

463
vendor/github.com/hashicorp/hcl/v2/hclwrite/format.go generated vendored Normal file
View File

@ -0,0 +1,463 @@
package hclwrite
import (
"github.com/hashicorp/hcl/v2/hclsyntax"
)
var inKeyword = hclsyntax.Keyword([]byte{'i', 'n'})
// placeholder token used when we don't have a token but we don't want
// to pass a real "nil" and complicate things with nil pointer checks
var nilToken = &Token{
Type: hclsyntax.TokenNil,
Bytes: []byte{},
SpacesBefore: 0,
}
// format rewrites tokens within the given sequence, in-place, to adjust the
// whitespace around their content to achieve canonical formatting.
func format(tokens Tokens) {
// Formatting is a multi-pass process. More details on the passes below,
// but this is the overview:
// - adjust the leading space on each line to create appropriate
// indentation
// - adjust spaces between tokens in a single cell using a set of rules
// - adjust the leading space in the "assign" and "comment" cells on each
// line to vertically align with neighboring lines.
// All of these steps operate in-place on the given tokens, so a caller
// may collect a flat sequence of all of the tokens underlying an AST
// and pass it here and we will then indirectly modify the AST itself.
// Formatting must change only whitespace. Specifically, that means
// changing the SpacesBefore attribute on a token while leaving the
// other token attributes unchanged.
lines := linesForFormat(tokens)
formatIndent(lines)
formatSpaces(lines)
formatCells(lines)
}
func formatIndent(lines []formatLine) {
// Our methodology for indents is to take the input one line at a time
// and count the bracketing delimiters on each line. If a line has a net
// increase in open brackets, we increase the indent level by one and
// remember how many new openers we had. If the line has a net _decrease_,
// we'll compare it to the most recent number of openers and decrease the
// dedent level by one each time we pass an indent level remembered
// earlier.
// The "indent stack" used here allows for us to recognize degenerate
// input where brackets are not symmetrical within lines and avoid
// pushing things too far left or right, creating confusion.
// We'll start our indent stack at a reasonable capacity to minimize the
// chance of us needing to grow it; 10 here means 10 levels of indent,
// which should be more than enough for reasonable HCL uses.
indents := make([]int, 0, 10)
for i := range lines {
line := &lines[i]
if len(line.lead) == 0 {
continue
}
if line.lead[0].Type == hclsyntax.TokenNewline {
// Never place spaces before a newline
line.lead[0].SpacesBefore = 0
continue
}
netBrackets := 0
for _, token := range line.lead {
netBrackets += tokenBracketChange(token)
if token.Type == hclsyntax.TokenOHeredoc {
break
}
}
for _, token := range line.assign {
netBrackets += tokenBracketChange(token)
}
switch {
case netBrackets > 0:
line.lead[0].SpacesBefore = 2 * len(indents)
indents = append(indents, netBrackets)
case netBrackets < 0:
closed := -netBrackets
for closed > 0 && len(indents) > 0 {
switch {
case closed > indents[len(indents)-1]:
closed -= indents[len(indents)-1]
indents = indents[:len(indents)-1]
case closed < indents[len(indents)-1]:
indents[len(indents)-1] -= closed
closed = 0
default:
indents = indents[:len(indents)-1]
closed = 0
}
}
line.lead[0].SpacesBefore = 2 * len(indents)
default:
line.lead[0].SpacesBefore = 2 * len(indents)
}
}
}
func formatSpaces(lines []formatLine) {
for _, line := range lines {
for i, token := range line.lead {
var before, after *Token
if i > 0 {
before = line.lead[i-1]
} else {
before = nilToken
}
if i < (len(line.lead) - 1) {
after = line.lead[i+1]
} else {
after = nilToken
}
if spaceAfterToken(token, before, after) {
after.SpacesBefore = 1
} else {
after.SpacesBefore = 0
}
}
for i, token := range line.assign {
if i == 0 {
// first token in "assign" always has one space before to
// separate the equals sign from what it's assigning.
token.SpacesBefore = 1
}
var before, after *Token
if i > 0 {
before = line.assign[i-1]
} else {
before = nilToken
}
if i < (len(line.assign) - 1) {
after = line.assign[i+1]
} else {
after = nilToken
}
if spaceAfterToken(token, before, after) {
after.SpacesBefore = 1
} else {
after.SpacesBefore = 0
}
}
}
}
func formatCells(lines []formatLine) {
chainStart := -1
maxColumns := 0
// We'll deal with the "assign" cell first, since moving that will
// also impact the "comment" cell.
closeAssignChain := func(i int) {
for _, chainLine := range lines[chainStart:i] {
columns := chainLine.lead.Columns()
spaces := (maxColumns - columns) + 1
chainLine.assign[0].SpacesBefore = spaces
}
chainStart = -1
maxColumns = 0
}
for i, line := range lines {
if line.assign == nil {
if chainStart != -1 {
closeAssignChain(i)
}
} else {
if chainStart == -1 {
chainStart = i
}
columns := line.lead.Columns()
if columns > maxColumns {
maxColumns = columns
}
}
}
if chainStart != -1 {
closeAssignChain(len(lines))
}
// Now we'll deal with the comments
closeCommentChain := func(i int) {
for _, chainLine := range lines[chainStart:i] {
columns := chainLine.lead.Columns() + chainLine.assign.Columns()
spaces := (maxColumns - columns) + 1
chainLine.comment[0].SpacesBefore = spaces
}
chainStart = -1
maxColumns = 0
}
for i, line := range lines {
if line.comment == nil {
if chainStart != -1 {
closeCommentChain(i)
}
} else {
if chainStart == -1 {
chainStart = i
}
columns := line.lead.Columns() + line.assign.Columns()
if columns > maxColumns {
maxColumns = columns
}
}
}
if chainStart != -1 {
closeCommentChain(len(lines))
}
}
// spaceAfterToken decides whether a particular subject token should have a
// space after it when surrounded by the given before and after tokens.
// "before" can be TokenNil, if the subject token is at the start of a sequence.
func spaceAfterToken(subject, before, after *Token) bool {
switch {
case after.Type == hclsyntax.TokenNewline || after.Type == hclsyntax.TokenNil:
// Never add spaces before a newline
return false
case subject.Type == hclsyntax.TokenIdent && after.Type == hclsyntax.TokenOParen:
// Don't split a function name from open paren in a call
return false
case subject.Type == hclsyntax.TokenDot || after.Type == hclsyntax.TokenDot:
// Don't use spaces around attribute access dots
return false
case after.Type == hclsyntax.TokenComma || after.Type == hclsyntax.TokenEllipsis:
// No space right before a comma or ... in an argument list
return false
case subject.Type == hclsyntax.TokenComma:
// Always a space after a comma
return true
case subject.Type == hclsyntax.TokenQuotedLit || subject.Type == hclsyntax.TokenStringLit || subject.Type == hclsyntax.TokenOQuote || subject.Type == hclsyntax.TokenOHeredoc || after.Type == hclsyntax.TokenQuotedLit || after.Type == hclsyntax.TokenStringLit || after.Type == hclsyntax.TokenCQuote || after.Type == hclsyntax.TokenCHeredoc:
// No extra spaces within templates
return false
case inKeyword.TokenMatches(subject.asHCLSyntax()) && before.Type == hclsyntax.TokenIdent:
// This is a special case for inside for expressions where a user
// might want to use a literal tuple constructor:
// [for x in [foo]: x]
// ... in that case, we would normally produce in[foo] thinking that
// in is a reference, but we'll recognize it as a keyword here instead
// to make the result less confusing.
return true
case after.Type == hclsyntax.TokenOBrack && (subject.Type == hclsyntax.TokenIdent || subject.Type == hclsyntax.TokenNumberLit || tokenBracketChange(subject) < 0):
return false
case subject.Type == hclsyntax.TokenMinus:
// Since a minus can either be subtraction or negation, and the latter
// should _not_ have a space after it, we need to use some heuristics
// to decide which case this is.
// We guess that we have a negation if the token before doesn't look
// like it could be the end of an expression.
switch before.Type {
case hclsyntax.TokenNil:
// Minus at the start of input must be a negation
return false
case hclsyntax.TokenOParen, hclsyntax.TokenOBrace, hclsyntax.TokenOBrack, hclsyntax.TokenEqual, hclsyntax.TokenColon, hclsyntax.TokenComma, hclsyntax.TokenQuestion:
// Minus immediately after an opening bracket or separator must be a negation.
return false
case hclsyntax.TokenPlus, hclsyntax.TokenStar, hclsyntax.TokenSlash, hclsyntax.TokenPercent, hclsyntax.TokenMinus:
// Minus immediately after another arithmetic operator must be negation.
return false
case hclsyntax.TokenEqualOp, hclsyntax.TokenNotEqual, hclsyntax.TokenGreaterThan, hclsyntax.TokenGreaterThanEq, hclsyntax.TokenLessThan, hclsyntax.TokenLessThanEq:
// Minus immediately after another comparison operator must be negation.
return false
case hclsyntax.TokenAnd, hclsyntax.TokenOr, hclsyntax.TokenBang:
// Minus immediately after logical operator doesn't make sense but probably intended as negation.
return false
default:
return true
}
case subject.Type == hclsyntax.TokenOBrace || after.Type == hclsyntax.TokenCBrace:
// Unlike other bracket types, braces have spaces on both sides of them,
// both in single-line nested blocks foo { bar = baz } and in object
// constructor expressions foo = { bar = baz }.
if subject.Type == hclsyntax.TokenOBrace && after.Type == hclsyntax.TokenCBrace {
// An open brace followed by a close brace is an exception, however.
// e.g. foo {} rather than foo { }
return false
}
return true
// In the unlikely event that an interpolation expression is just
// a single object constructor, we'll put a space between the ${ and
// the following { to make this more obvious, and then the same
// thing for the two braces at the end.
case (subject.Type == hclsyntax.TokenTemplateInterp || subject.Type == hclsyntax.TokenTemplateControl) && after.Type == hclsyntax.TokenOBrace:
return true
case subject.Type == hclsyntax.TokenCBrace && after.Type == hclsyntax.TokenTemplateSeqEnd:
return true
// Don't add spaces between interpolated items
case subject.Type == hclsyntax.TokenTemplateSeqEnd && (after.Type == hclsyntax.TokenTemplateInterp || after.Type == hclsyntax.TokenTemplateControl):
return false
case tokenBracketChange(subject) > 0:
// No spaces after open brackets
return false
case tokenBracketChange(after) < 0:
// No spaces before close brackets
return false
default:
// Most tokens are space-separated
return true
}
}
func linesForFormat(tokens Tokens) []formatLine {
if len(tokens) == 0 {
return make([]formatLine, 0)
}
// first we'll count our lines, so we can allocate the array for them in
// a single block. (We want to minimize memory pressure in this codepath,
// so it can be run somewhat-frequently by editor integrations.)
lineCount := 1 // if there are zero newlines then there is one line
for _, tok := range tokens {
if tokenIsNewline(tok) {
lineCount++
}
}
// To start, we'll just put everything in the "lead" cell on each line,
// and then do another pass over the lines afterwards to adjust.
lines := make([]formatLine, lineCount)
li := 0
lineStart := 0
for i, tok := range tokens {
if tok.Type == hclsyntax.TokenEOF {
// The EOF token doesn't belong to any line, and terminates the
// token sequence.
lines[li].lead = tokens[lineStart:i]
break
}
if tokenIsNewline(tok) {
lines[li].lead = tokens[lineStart : i+1]
lineStart = i + 1
li++
}
}
// If a set of tokens doesn't end in TokenEOF (e.g. because it's a
// fragment of tokens from the middle of a file) then we might fall
// out here with a line still pending.
if lineStart < len(tokens) {
lines[li].lead = tokens[lineStart:]
if lines[li].lead[len(lines[li].lead)-1].Type == hclsyntax.TokenEOF {
lines[li].lead = lines[li].lead[:len(lines[li].lead)-1]
}
}
// Now we'll pick off any trailing comments and attribute assignments
// to shuffle off into the "comment" and "assign" cells.
for i := range lines {
line := &lines[i]
if len(line.lead) == 0 {
// if the line is empty then there's nothing for us to do
// (this should happen only for the final line, because all other
// lines would have a newline token of some kind)
continue
}
if len(line.lead) > 1 && line.lead[len(line.lead)-1].Type == hclsyntax.TokenComment {
line.comment = line.lead[len(line.lead)-1:]
line.lead = line.lead[:len(line.lead)-1]
}
for i, tok := range line.lead {
if i > 0 && tok.Type == hclsyntax.TokenEqual {
// We only move the tokens into "assign" if the RHS seems to
// be a whole expression, which we determine by counting
// brackets. If there's a net positive number of brackets
// then that suggests we're introducing a multi-line expression.
netBrackets := 0
for _, token := range line.lead[i:] {
netBrackets += tokenBracketChange(token)
}
if netBrackets == 0 {
line.assign = line.lead[i:]
line.lead = line.lead[:i]
}
break
}
}
}
return lines
}
func tokenIsNewline(tok *Token) bool {
if tok.Type == hclsyntax.TokenNewline {
return true
} else if tok.Type == hclsyntax.TokenComment {
// Single line tokens (# and //) consume their terminating newline,
// so we need to treat them as newline tokens as well.
if len(tok.Bytes) > 0 && tok.Bytes[len(tok.Bytes)-1] == '\n' {
return true
}
}
return false
}
func tokenBracketChange(tok *Token) int {
switch tok.Type {
case hclsyntax.TokenOBrace, hclsyntax.TokenOBrack, hclsyntax.TokenOParen, hclsyntax.TokenTemplateControl, hclsyntax.TokenTemplateInterp:
return 1
case hclsyntax.TokenCBrace, hclsyntax.TokenCBrack, hclsyntax.TokenCParen, hclsyntax.TokenTemplateSeqEnd:
return -1
default:
return 0
}
}
// formatLine represents a single line of source code for formatting purposes,
// splitting its tokens into up to three "cells":
//
// lead: always present, representing everything up to one of the others
// assign: if line contains an attribute assignment, represents the tokens
// starting at (and including) the equals symbol
// comment: if line contains any non-comment tokens and ends with a
// single-line comment token, represents the comment.
//
// When formatting, the leading spaces of the first tokens in each of these
// cells is adjusted to align vertically their occurences on consecutive
// rows.
type formatLine struct {
lead Tokens
assign Tokens
comment Tokens
}

250
vendor/github.com/hashicorp/hcl/v2/hclwrite/generate.go generated vendored Normal file
View File

@ -0,0 +1,250 @@
package hclwrite
import (
"fmt"
"unicode"
"unicode/utf8"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/hclsyntax"
"github.com/zclconf/go-cty/cty"
)
// TokensForValue returns a sequence of tokens that represents the given
// constant value.
//
// This function only supports types that are used by HCL. In particular, it
// does not support capsule types and will panic if given one.
//
// It is not possible to express an unknown value in source code, so this
// function will panic if the given value is unknown or contains any unknown
// values. A caller can call the value's IsWhollyKnown method to verify that
// no unknown values are present before calling TokensForValue.
func TokensForValue(val cty.Value) Tokens {
toks := appendTokensForValue(val, nil)
format(toks) // fiddle with the SpacesBefore field to get canonical spacing
return toks
}
// TokensForTraversal returns a sequence of tokens that represents the given
// traversal.
//
// If the traversal is absolute then the result is a self-contained, valid
// reference expression. If the traversal is relative then the returned tokens
// could be appended to some other expression tokens to traverse into the
// represented expression.
func TokensForTraversal(traversal hcl.Traversal) Tokens {
toks := appendTokensForTraversal(traversal, nil)
format(toks) // fiddle with the SpacesBefore field to get canonical spacing
return toks
}
func appendTokensForValue(val cty.Value, toks Tokens) Tokens {
switch {
case !val.IsKnown():
panic("cannot produce tokens for unknown value")
case val.IsNull():
toks = append(toks, &Token{
Type: hclsyntax.TokenIdent,
Bytes: []byte(`null`),
})
case val.Type() == cty.Bool:
var src []byte
if val.True() {
src = []byte(`true`)
} else {
src = []byte(`false`)
}
toks = append(toks, &Token{
Type: hclsyntax.TokenIdent,
Bytes: src,
})
case val.Type() == cty.Number:
bf := val.AsBigFloat()
srcStr := bf.Text('f', -1)
toks = append(toks, &Token{
Type: hclsyntax.TokenNumberLit,
Bytes: []byte(srcStr),
})
case val.Type() == cty.String:
// TODO: If it's a multi-line string ending in a newline, format
// it as a HEREDOC instead.
src := escapeQuotedStringLit(val.AsString())
toks = append(toks, &Token{
Type: hclsyntax.TokenOQuote,
Bytes: []byte{'"'},
})
if len(src) > 0 {
toks = append(toks, &Token{
Type: hclsyntax.TokenQuotedLit,
Bytes: src,
})
}
toks = append(toks, &Token{
Type: hclsyntax.TokenCQuote,
Bytes: []byte{'"'},
})
case val.Type().IsListType() || val.Type().IsSetType() || val.Type().IsTupleType():
toks = append(toks, &Token{
Type: hclsyntax.TokenOBrack,
Bytes: []byte{'['},
})
i := 0
for it := val.ElementIterator(); it.Next(); {
if i > 0 {
toks = append(toks, &Token{
Type: hclsyntax.TokenComma,
Bytes: []byte{','},
})
}
_, eVal := it.Element()
toks = appendTokensForValue(eVal, toks)
i++
}
toks = append(toks, &Token{
Type: hclsyntax.TokenCBrack,
Bytes: []byte{']'},
})
case val.Type().IsMapType() || val.Type().IsObjectType():
toks = append(toks, &Token{
Type: hclsyntax.TokenOBrace,
Bytes: []byte{'{'},
})
i := 0
for it := val.ElementIterator(); it.Next(); {
if i > 0 {
toks = append(toks, &Token{
Type: hclsyntax.TokenComma,
Bytes: []byte{','},
})
}
eKey, eVal := it.Element()
if hclsyntax.ValidIdentifier(eKey.AsString()) {
toks = append(toks, &Token{
Type: hclsyntax.TokenIdent,
Bytes: []byte(eKey.AsString()),
})
} else {
toks = appendTokensForValue(eKey, toks)
}
toks = append(toks, &Token{
Type: hclsyntax.TokenEqual,
Bytes: []byte{'='},
})
toks = appendTokensForValue(eVal, toks)
i++
}
toks = append(toks, &Token{
Type: hclsyntax.TokenCBrace,
Bytes: []byte{'}'},
})
default:
panic(fmt.Sprintf("cannot produce tokens for %#v", val))
}
return toks
}
func appendTokensForTraversal(traversal hcl.Traversal, toks Tokens) Tokens {
for _, step := range traversal {
appendTokensForTraversalStep(step, toks)
}
return toks
}
func appendTokensForTraversalStep(step hcl.Traverser, toks Tokens) {
switch ts := step.(type) {
case hcl.TraverseRoot:
toks = append(toks, &Token{
Type: hclsyntax.TokenIdent,
Bytes: []byte(ts.Name),
})
case hcl.TraverseAttr:
toks = append(
toks,
&Token{
Type: hclsyntax.TokenDot,
Bytes: []byte{'.'},
},
&Token{
Type: hclsyntax.TokenIdent,
Bytes: []byte(ts.Name),
},
)
case hcl.TraverseIndex:
toks = append(toks, &Token{
Type: hclsyntax.TokenOBrack,
Bytes: []byte{'['},
})
appendTokensForValue(ts.Key, toks)
toks = append(toks, &Token{
Type: hclsyntax.TokenCBrack,
Bytes: []byte{']'},
})
default:
panic(fmt.Sprintf("unsupported traversal step type %T", step))
}
}
func escapeQuotedStringLit(s string) []byte {
if len(s) == 0 {
return nil
}
buf := make([]byte, 0, len(s))
for i, r := range s {
switch r {
case '\n':
buf = append(buf, '\\', 'n')
case '\r':
buf = append(buf, '\\', 'r')
case '\t':
buf = append(buf, '\\', 't')
case '"':
buf = append(buf, '\\', '"')
case '\\':
buf = append(buf, '\\', '\\')
case '$', '%':
buf = appendRune(buf, r)
remain := s[i+1:]
if len(remain) > 0 && remain[0] == '{' {
// Double up our template introducer symbol to escape it.
buf = appendRune(buf, r)
}
default:
if !unicode.IsPrint(r) {
var fmted string
if r < 65536 {
fmted = fmt.Sprintf("\\u%04x", r)
} else {
fmted = fmt.Sprintf("\\U%08x", r)
}
buf = append(buf, fmted...)
} else {
buf = appendRune(buf, r)
}
}
}
return buf
}
func appendRune(b []byte, r rune) []byte {
l := utf8.RuneLen(r)
for i := 0; i < l; i++ {
b = append(b, 0) // make room at the end of our buffer
}
ch := b[len(b)-l:]
utf8.EncodeRune(ch, r)
return b
}

View File

@ -0,0 +1,23 @@
package hclwrite
import (
"github.com/hashicorp/hcl/v2/hclsyntax"
)
type nativeNodeSorter struct {
Nodes []hclsyntax.Node
}
func (s nativeNodeSorter) Len() int {
return len(s.Nodes)
}
func (s nativeNodeSorter) Less(i, j int) bool {
rangeI := s.Nodes[i].Range()
rangeJ := s.Nodes[j].Range()
return rangeI.Start.Byte < rangeJ.Start.Byte
}
func (s nativeNodeSorter) Swap(i, j int) {
s.Nodes[i], s.Nodes[j] = s.Nodes[j], s.Nodes[i]
}

260
vendor/github.com/hashicorp/hcl/v2/hclwrite/node.go generated vendored Normal file
View File

@ -0,0 +1,260 @@
package hclwrite
import (
"fmt"
"github.com/google/go-cmp/cmp"
)
// node represents a node in the AST.
type node struct {
content nodeContent
list *nodes
before, after *node
}
func newNode(c nodeContent) *node {
return &node{
content: c,
}
}
func (n *node) Equal(other *node) bool {
return cmp.Equal(n.content, other.content)
}
func (n *node) BuildTokens(to Tokens) Tokens {
return n.content.BuildTokens(to)
}
// Detach removes the receiver from the list it currently belongs to. If the
// node is not currently in a list, this is a no-op.
func (n *node) Detach() {
if n.list == nil {
return
}
if n.before != nil {
n.before.after = n.after
}
if n.after != nil {
n.after.before = n.before
}
if n.list.first == n {
n.list.first = n.after
}
if n.list.last == n {
n.list.last = n.before
}
n.list = nil
n.before = nil
n.after = nil
}
// ReplaceWith removes the receiver from the list it currently belongs to and
// inserts a new node with the given content in its place. If the node is not
// currently in a list, this function will panic.
//
// The return value is the newly-constructed node, containing the given content.
// After this function returns, the reciever is no longer attached to a list.
func (n *node) ReplaceWith(c nodeContent) *node {
if n.list == nil {
panic("can't replace node that is not in a list")
}
before := n.before
after := n.after
list := n.list
n.before, n.after, n.list = nil, nil, nil
nn := newNode(c)
nn.before = before
nn.after = after
nn.list = list
if before != nil {
before.after = nn
}
if after != nil {
after.before = nn
}
return nn
}
func (n *node) assertUnattached() {
if n.list != nil {
panic(fmt.Sprintf("attempt to attach already-attached node %#v", n))
}
}
// nodeContent is the interface type implemented by all AST content types.
type nodeContent interface {
walkChildNodes(w internalWalkFunc)
BuildTokens(to Tokens) Tokens
}
// nodes is a list of nodes.
type nodes struct {
first, last *node
}
func (ns *nodes) BuildTokens(to Tokens) Tokens {
for n := ns.first; n != nil; n = n.after {
to = n.BuildTokens(to)
}
return to
}
func (ns *nodes) Clear() {
ns.first = nil
ns.last = nil
}
func (ns *nodes) Append(c nodeContent) *node {
n := &node{
content: c,
}
ns.AppendNode(n)
n.list = ns
return n
}
func (ns *nodes) AppendNode(n *node) {
if ns.last != nil {
n.before = ns.last
ns.last.after = n
}
n.list = ns
ns.last = n
if ns.first == nil {
ns.first = n
}
}
func (ns *nodes) AppendUnstructuredTokens(tokens Tokens) *node {
if len(tokens) == 0 {
return nil
}
n := newNode(tokens)
ns.AppendNode(n)
n.list = ns
return n
}
// FindNodeWithContent searches the nodes for a node whose content equals
// the given content. If it finds one then it returns it. Otherwise it returns
// nil.
func (ns *nodes) FindNodeWithContent(content nodeContent) *node {
for n := ns.first; n != nil; n = n.after {
if n.content == content {
return n
}
}
return nil
}
// nodeSet is an unordered set of nodes. It is used to describe a set of nodes
// that all belong to the same list that have some role or characteristic
// in common.
type nodeSet map[*node]struct{}
func newNodeSet() nodeSet {
return make(nodeSet)
}
func (ns nodeSet) Has(n *node) bool {
if ns == nil {
return false
}
_, exists := ns[n]
return exists
}
func (ns nodeSet) Add(n *node) {
ns[n] = struct{}{}
}
func (ns nodeSet) Remove(n *node) {
delete(ns, n)
}
func (ns nodeSet) List() []*node {
if len(ns) == 0 {
return nil
}
ret := make([]*node, 0, len(ns))
// Determine which list we are working with. We assume here that all of
// the nodes belong to the same list, since that is part of the contract
// for nodeSet.
var list *nodes
for n := range ns {
list = n.list
break
}
// We recover the order by iterating over the whole list. This is not
// the most efficient way to do it, but our node lists should always be
// small so not worth making things more complex.
for n := list.first; n != nil; n = n.after {
if ns.Has(n) {
ret = append(ret, n)
}
}
return ret
}
// FindNodeWithContent searches the nodes for a node whose content equals
// the given content. If it finds one then it returns it. Otherwise it returns
// nil.
func (ns nodeSet) FindNodeWithContent(content nodeContent) *node {
for n := range ns {
if n.content == content {
return n
}
}
return nil
}
type internalWalkFunc func(*node)
// inTree can be embedded into a content struct that has child nodes to get
// a standard implementation of the NodeContent interface and a record of
// a potential parent node.
type inTree struct {
parent *node
children *nodes
}
func newInTree() inTree {
return inTree{
children: &nodes{},
}
}
func (it *inTree) assertUnattached() {
if it.parent != nil {
panic(fmt.Sprintf("node is already attached to %T", it.parent.content))
}
}
func (it *inTree) walkChildNodes(w internalWalkFunc) {
for n := it.children.first; n != nil; n = n.after {
w(n)
}
}
func (it *inTree) BuildTokens(to Tokens) Tokens {
for n := it.children.first; n != nil; n = n.after {
to = n.BuildTokens(to)
}
return to
}
// leafNode can be embedded into a content struct to give it a do-nothing
// implementation of walkChildNodes
type leafNode struct {
}
func (n *leafNode) walkChildNodes(w internalWalkFunc) {
}

599
vendor/github.com/hashicorp/hcl/v2/hclwrite/parser.go generated vendored Normal file
View File

@ -0,0 +1,599 @@
package hclwrite
import (
"fmt"
"sort"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/hclsyntax"
"github.com/zclconf/go-cty/cty"
)
// Our "parser" here is actually not doing any parsing of its own. Instead,
// it leans on the native parser in hclsyntax, and then uses the source ranges
// from the AST to partition the raw token sequence to match the raw tokens
// up to AST nodes.
//
// This strategy feels somewhat counter-intuitive, since most of the work the
// parser does is thrown away here, but this strategy is chosen because the
// normal parsing work done by hclsyntax is considered to be the "main case",
// while modifying and re-printing source is more of an edge case, used only
// in ancillary tools, and so it's good to keep all the main parsing logic
// with the main case but keep all of the extra complexity of token wrangling
// out of the main parser, which is already rather complex just serving the
// use-cases it already serves.
//
// If the parsing step produces any errors, the returned File is nil because
// we can't reliably extract tokens from the partial AST produced by an
// erroneous parse.
func parse(src []byte, filename string, start hcl.Pos) (*File, hcl.Diagnostics) {
file, diags := hclsyntax.ParseConfig(src, filename, start)
if diags.HasErrors() {
return nil, diags
}
// To do our work here, we use the "native" tokens (those from hclsyntax)
// to match against source ranges in the AST, but ultimately produce
// slices from our sequence of "writer" tokens, which contain only
// *relative* position information that is more appropriate for
// transformation/writing use-cases.
nativeTokens, diags := hclsyntax.LexConfig(src, filename, start)
if diags.HasErrors() {
// should never happen, since we would've caught these diags in
// the first call above.
return nil, diags
}
writerTokens := writerTokens(nativeTokens)
from := inputTokens{
nativeTokens: nativeTokens,
writerTokens: writerTokens,
}
before, root, after := parseBody(file.Body.(*hclsyntax.Body), from)
ret := &File{
inTree: newInTree(),
srcBytes: src,
body: root,
}
nodes := ret.inTree.children
nodes.Append(before.Tokens())
nodes.AppendNode(root)
nodes.Append(after.Tokens())
return ret, diags
}
type inputTokens struct {
nativeTokens hclsyntax.Tokens
writerTokens Tokens
}
func (it inputTokens) Partition(rng hcl.Range) (before, within, after inputTokens) {
start, end := partitionTokens(it.nativeTokens, rng)
before = it.Slice(0, start)
within = it.Slice(start, end)
after = it.Slice(end, len(it.nativeTokens))
return
}
func (it inputTokens) PartitionType(ty hclsyntax.TokenType) (before, within, after inputTokens) {
for i, t := range it.writerTokens {
if t.Type == ty {
return it.Slice(0, i), it.Slice(i, i+1), it.Slice(i+1, len(it.nativeTokens))
}
}
panic(fmt.Sprintf("didn't find any token of type %s", ty))
}
func (it inputTokens) PartitionTypeSingle(ty hclsyntax.TokenType) (before inputTokens, found *Token, after inputTokens) {
before, within, after := it.PartitionType(ty)
if within.Len() != 1 {
panic("PartitionType found more than one token")
}
return before, within.Tokens()[0], after
}
// PartitionIncludeComments is like Partition except the returned "within"
// range includes any lead and line comments associated with the range.
func (it inputTokens) PartitionIncludingComments(rng hcl.Range) (before, within, after inputTokens) {
start, end := partitionTokens(it.nativeTokens, rng)
start = partitionLeadCommentTokens(it.nativeTokens[:start])
_, afterNewline := partitionLineEndTokens(it.nativeTokens[end:])
end += afterNewline
before = it.Slice(0, start)
within = it.Slice(start, end)
after = it.Slice(end, len(it.nativeTokens))
return
}
// PartitionBlockItem is similar to PartitionIncludeComments but it returns
// the comments as separate token sequences so that they can be captured into
// AST attributes. It makes assumptions that apply only to block items, so
// should not be used for other constructs.
func (it inputTokens) PartitionBlockItem(rng hcl.Range) (before, leadComments, within, lineComments, newline, after inputTokens) {
before, within, after = it.Partition(rng)
before, leadComments = before.PartitionLeadComments()
lineComments, newline, after = after.PartitionLineEndTokens()
return
}
func (it inputTokens) PartitionLeadComments() (before, within inputTokens) {
start := partitionLeadCommentTokens(it.nativeTokens)
before = it.Slice(0, start)
within = it.Slice(start, len(it.nativeTokens))
return
}
func (it inputTokens) PartitionLineEndTokens() (comments, newline, after inputTokens) {
afterComments, afterNewline := partitionLineEndTokens(it.nativeTokens)
comments = it.Slice(0, afterComments)
newline = it.Slice(afterComments, afterNewline)
after = it.Slice(afterNewline, len(it.nativeTokens))
return
}
func (it inputTokens) Slice(start, end int) inputTokens {
// When we slice, we create a new slice with no additional capacity because
// we expect that these slices will be mutated in order to insert
// new code into the AST, and we want to ensure that a new underlying
// array gets allocated in that case, rather than writing into some
// following slice and corrupting it.
return inputTokens{
nativeTokens: it.nativeTokens[start:end:end],
writerTokens: it.writerTokens[start:end:end],
}
}
func (it inputTokens) Len() int {
return len(it.nativeTokens)
}
func (it inputTokens) Tokens() Tokens {
return it.writerTokens
}
func (it inputTokens) Types() []hclsyntax.TokenType {
ret := make([]hclsyntax.TokenType, len(it.nativeTokens))
for i, tok := range it.nativeTokens {
ret[i] = tok.Type
}
return ret
}
// parseBody locates the given body within the given input tokens and returns
// the resulting *Body object as well as the tokens that appeared before and
// after it.
func parseBody(nativeBody *hclsyntax.Body, from inputTokens) (inputTokens, *node, inputTokens) {
before, within, after := from.PartitionIncludingComments(nativeBody.SrcRange)
// The main AST doesn't retain the original source ordering of the
// body items, so we need to reconstruct that ordering by inspecting
// their source ranges.
nativeItems := make([]hclsyntax.Node, 0, len(nativeBody.Attributes)+len(nativeBody.Blocks))
for _, nativeAttr := range nativeBody.Attributes {
nativeItems = append(nativeItems, nativeAttr)
}
for _, nativeBlock := range nativeBody.Blocks {
nativeItems = append(nativeItems, nativeBlock)
}
sort.Sort(nativeNodeSorter{nativeItems})
body := &Body{
inTree: newInTree(),
items: newNodeSet(),
}
remain := within
for _, nativeItem := range nativeItems {
beforeItem, item, afterItem := parseBodyItem(nativeItem, remain)
if beforeItem.Len() > 0 {
body.AppendUnstructuredTokens(beforeItem.Tokens())
}
body.appendItemNode(item)
remain = afterItem
}
if remain.Len() > 0 {
body.AppendUnstructuredTokens(remain.Tokens())
}
return before, newNode(body), after
}
func parseBodyItem(nativeItem hclsyntax.Node, from inputTokens) (inputTokens, *node, inputTokens) {
before, leadComments, within, lineComments, newline, after := from.PartitionBlockItem(nativeItem.Range())
var item *node
switch tItem := nativeItem.(type) {
case *hclsyntax.Attribute:
item = parseAttribute(tItem, within, leadComments, lineComments, newline)
case *hclsyntax.Block:
item = parseBlock(tItem, within, leadComments, lineComments, newline)
default:
// should never happen if caller is behaving
panic("unsupported native item type")
}
return before, item, after
}
func parseAttribute(nativeAttr *hclsyntax.Attribute, from, leadComments, lineComments, newline inputTokens) *node {
attr := &Attribute{
inTree: newInTree(),
}
children := attr.inTree.children
{
cn := newNode(newComments(leadComments.Tokens()))
attr.leadComments = cn
children.AppendNode(cn)
}
before, nameTokens, from := from.Partition(nativeAttr.NameRange)
{
children.AppendUnstructuredTokens(before.Tokens())
if nameTokens.Len() != 1 {
// Should never happen with valid input
panic("attribute name is not exactly one token")
}
token := nameTokens.Tokens()[0]
in := newNode(newIdentifier(token))
attr.name = in
children.AppendNode(in)
}
before, equalsTokens, from := from.Partition(nativeAttr.EqualsRange)
children.AppendUnstructuredTokens(before.Tokens())
children.AppendUnstructuredTokens(equalsTokens.Tokens())
before, exprTokens, from := from.Partition(nativeAttr.Expr.Range())
{
children.AppendUnstructuredTokens(before.Tokens())
exprNode := parseExpression(nativeAttr.Expr, exprTokens)
attr.expr = exprNode
children.AppendNode(exprNode)
}
{
cn := newNode(newComments(lineComments.Tokens()))
attr.lineComments = cn
children.AppendNode(cn)
}
children.AppendUnstructuredTokens(newline.Tokens())
// Collect any stragglers, though there shouldn't be any
children.AppendUnstructuredTokens(from.Tokens())
return newNode(attr)
}
func parseBlock(nativeBlock *hclsyntax.Block, from, leadComments, lineComments, newline inputTokens) *node {
block := &Block{
inTree: newInTree(),
labels: newNodeSet(),
}
children := block.inTree.children
{
cn := newNode(newComments(leadComments.Tokens()))
block.leadComments = cn
children.AppendNode(cn)
}
before, typeTokens, from := from.Partition(nativeBlock.TypeRange)
{
children.AppendUnstructuredTokens(before.Tokens())
if typeTokens.Len() != 1 {
// Should never happen with valid input
panic("block type name is not exactly one token")
}
token := typeTokens.Tokens()[0]
in := newNode(newIdentifier(token))
block.typeName = in
children.AppendNode(in)
}
for _, rng := range nativeBlock.LabelRanges {
var labelTokens inputTokens
before, labelTokens, from = from.Partition(rng)
children.AppendUnstructuredTokens(before.Tokens())
tokens := labelTokens.Tokens()
var ln *node
if len(tokens) == 1 && tokens[0].Type == hclsyntax.TokenIdent {
ln = newNode(newIdentifier(tokens[0]))
} else {
ln = newNode(newQuoted(tokens))
}
block.labels.Add(ln)
children.AppendNode(ln)
}
before, oBrace, from := from.Partition(nativeBlock.OpenBraceRange)
children.AppendUnstructuredTokens(before.Tokens())
children.AppendUnstructuredTokens(oBrace.Tokens())
// We go a bit out of order here: we go hunting for the closing brace
// so that we have a delimited body, but then we'll deal with the body
// before we actually append the closing brace and any straggling tokens
// that appear after it.
bodyTokens, cBrace, from := from.Partition(nativeBlock.CloseBraceRange)
before, body, after := parseBody(nativeBlock.Body, bodyTokens)
children.AppendUnstructuredTokens(before.Tokens())
block.body = body
children.AppendNode(body)
children.AppendUnstructuredTokens(after.Tokens())
children.AppendUnstructuredTokens(cBrace.Tokens())
// stragglers
children.AppendUnstructuredTokens(from.Tokens())
if lineComments.Len() > 0 {
// blocks don't actually have line comments, so we'll just treat
// them as extra stragglers
children.AppendUnstructuredTokens(lineComments.Tokens())
}
children.AppendUnstructuredTokens(newline.Tokens())
return newNode(block)
}
func parseExpression(nativeExpr hclsyntax.Expression, from inputTokens) *node {
expr := newExpression()
children := expr.inTree.children
nativeVars := nativeExpr.Variables()
for _, nativeTraversal := range nativeVars {
before, traversal, after := parseTraversal(nativeTraversal, from)
children.AppendUnstructuredTokens(before.Tokens())
children.AppendNode(traversal)
expr.absTraversals.Add(traversal)
from = after
}
// Attach any stragglers that don't belong to a traversal to the expression
// itself. In an expression with no traversals at all, this is just the
// entirety of "from".
children.AppendUnstructuredTokens(from.Tokens())
return newNode(expr)
}
func parseTraversal(nativeTraversal hcl.Traversal, from inputTokens) (before inputTokens, n *node, after inputTokens) {
traversal := newTraversal()
children := traversal.inTree.children
before, from, after = from.Partition(nativeTraversal.SourceRange())
stepAfter := from
for _, nativeStep := range nativeTraversal {
before, step, after := parseTraversalStep(nativeStep, stepAfter)
children.AppendUnstructuredTokens(before.Tokens())
children.AppendNode(step)
traversal.steps.Add(step)
stepAfter = after
}
return before, newNode(traversal), after
}
func parseTraversalStep(nativeStep hcl.Traverser, from inputTokens) (before inputTokens, n *node, after inputTokens) {
var children *nodes
switch tNativeStep := nativeStep.(type) {
case hcl.TraverseRoot, hcl.TraverseAttr:
step := newTraverseName()
children = step.inTree.children
before, from, after = from.Partition(nativeStep.SourceRange())
inBefore, token, inAfter := from.PartitionTypeSingle(hclsyntax.TokenIdent)
name := newIdentifier(token)
children.AppendUnstructuredTokens(inBefore.Tokens())
step.name = children.Append(name)
children.AppendUnstructuredTokens(inAfter.Tokens())
return before, newNode(step), after
case hcl.TraverseIndex:
step := newTraverseIndex()
children = step.inTree.children
before, from, after = from.Partition(nativeStep.SourceRange())
var inBefore, oBrack, keyTokens, cBrack inputTokens
inBefore, oBrack, from = from.PartitionType(hclsyntax.TokenOBrack)
children.AppendUnstructuredTokens(inBefore.Tokens())
children.AppendUnstructuredTokens(oBrack.Tokens())
keyTokens, cBrack, from = from.PartitionType(hclsyntax.TokenCBrack)
keyVal := tNativeStep.Key
switch keyVal.Type() {
case cty.String:
key := newQuoted(keyTokens.Tokens())
step.key = children.Append(key)
case cty.Number:
valBefore, valToken, valAfter := keyTokens.PartitionTypeSingle(hclsyntax.TokenNumberLit)
children.AppendUnstructuredTokens(valBefore.Tokens())
key := newNumber(valToken)
step.key = children.Append(key)
children.AppendUnstructuredTokens(valAfter.Tokens())
}
children.AppendUnstructuredTokens(cBrack.Tokens())
children.AppendUnstructuredTokens(from.Tokens())
return before, newNode(step), after
default:
panic(fmt.Sprintf("unsupported traversal step type %T", nativeStep))
}
}
// writerTokens takes a sequence of tokens as produced by the main hclsyntax
// package and transforms it into an equivalent sequence of tokens using
// this package's own token model.
//
// The resulting list contains the same number of tokens and uses the same
// indices as the input, allowing the two sets of tokens to be correlated
// by index.
func writerTokens(nativeTokens hclsyntax.Tokens) Tokens {
// Ultimately we want a slice of token _pointers_, but since we can
// predict how much memory we're going to devote to tokens we'll allocate
// it all as a single flat buffer and thus give the GC less work to do.
tokBuf := make([]Token, len(nativeTokens))
var lastByteOffset int
for i, mainToken := range nativeTokens {
// Create a copy of the bytes so that we can mutate without
// corrupting the original token stream.
bytes := make([]byte, len(mainToken.Bytes))
copy(bytes, mainToken.Bytes)
tokBuf[i] = Token{
Type: mainToken.Type,
Bytes: bytes,
// We assume here that spaces are always ASCII spaces, since
// that's what the scanner also assumes, and thus the number
// of bytes skipped is also the number of space characters.
SpacesBefore: mainToken.Range.Start.Byte - lastByteOffset,
}
lastByteOffset = mainToken.Range.End.Byte
}
// Now make a slice of pointers into the previous slice.
ret := make(Tokens, len(tokBuf))
for i := range ret {
ret[i] = &tokBuf[i]
}
return ret
}
// partitionTokens takes a sequence of tokens and a hcl.Range and returns
// two indices within the token sequence that correspond with the range
// boundaries, such that the slice operator could be used to produce
// three token sequences for before, within, and after respectively:
//
// start, end := partitionTokens(toks, rng)
// before := toks[:start]
// within := toks[start:end]
// after := toks[end:]
//
// This works best when the range is aligned with token boundaries (e.g.
// because it was produced in terms of the scanner's result) but if that isn't
// true then it will make a best effort that may produce strange results at
// the boundaries.
//
// Native hclsyntax tokens are used here, because they contain the necessary
// absolute position information. However, since writerTokens produces a
// correlatable sequence of writer tokens, the resulting indices can be
// used also to index into its result, allowing the partitioning of writer
// tokens to be driven by the partitioning of native tokens.
//
// The tokens are assumed to be in source order and non-overlapping, which
// will be true if the token sequence from the scanner is used directly.
func partitionTokens(toks hclsyntax.Tokens, rng hcl.Range) (start, end int) {
// We us a linear search here because we assume tha in most cases our
// target range is close to the beginning of the sequence, and the seqences
// are generally small for most reasonable files anyway.
for i := 0; ; i++ {
if i >= len(toks) {
// No tokens for the given range at all!
return len(toks), len(toks)
}
if toks[i].Range.Start.Byte >= rng.Start.Byte {
start = i
break
}
}
for i := start; ; i++ {
if i >= len(toks) {
// The range "hangs off" the end of the token sequence
return start, len(toks)
}
if toks[i].Range.Start.Byte >= rng.End.Byte {
end = i // end marker is exclusive
break
}
}
return start, end
}
// partitionLeadCommentTokens takes a sequence of tokens that is assumed
// to immediately precede a construct that can have lead comment tokens,
// and returns the index into that sequence where the lead comments begin.
//
// Lead comments are defined as whole lines containing only comment tokens
// with no blank lines between. If no such lines are found, the returned
// index will be len(toks).
func partitionLeadCommentTokens(toks hclsyntax.Tokens) int {
// single-line comments (which is what we're interested in here)
// consume their trailing newline, so we can just walk backwards
// until we stop seeing comment tokens.
for i := len(toks) - 1; i >= 0; i-- {
if toks[i].Type != hclsyntax.TokenComment {
return i + 1
}
}
return 0
}
// partitionLineEndTokens takes a sequence of tokens that is assumed
// to immediately follow a construct that can have a line comment, and
// returns first the index where any line comments end and then second
// the index immediately after the trailing newline.
//
// Line comments are defined as comments that appear immediately after
// a construct on the same line where its significant tokens ended.
//
// Since single-line comment tokens (# and //) include the newline that
// terminates them, in the presence of these the two returned indices
// will be the same since the comment itself serves as the line end.
func partitionLineEndTokens(toks hclsyntax.Tokens) (afterComment, afterNewline int) {
for i := 0; i < len(toks); i++ {
tok := toks[i]
if tok.Type != hclsyntax.TokenComment {
switch tok.Type {
case hclsyntax.TokenNewline:
return i, i + 1
case hclsyntax.TokenEOF:
// Although this is valid, we mustn't include the EOF
// itself as our "newline" or else strange things will
// happen when we try to append new items.
return i, i
default:
// If we have well-formed input here then nothing else should be
// possible. This path should never happen, because we only try
// to extract tokens from the sequence if the parser succeeded,
// and it should catch this problem itself.
panic("malformed line trailers: expected only comments and newlines")
}
}
if len(tok.Bytes) > 0 && tok.Bytes[len(tok.Bytes)-1] == '\n' {
// Newline at the end of a single-line comment serves both as
// the end of comments *and* the end of the line.
return i + 1, i + 1
}
}
return len(toks), len(toks)
}
// lexConfig uses the hclsyntax scanner to get a token stream and then
// rewrites it into this package's token model.
//
// Any errors produced during scanning are ignored, so the results of this
// function should be used with care.
func lexConfig(src []byte) Tokens {
mainTokens, _ := hclsyntax.LexConfig(src, "", hcl.Pos{Byte: 0, Line: 1, Column: 1})
return writerTokens(mainTokens)
}

44
vendor/github.com/hashicorp/hcl/v2/hclwrite/public.go generated vendored Normal file
View File

@ -0,0 +1,44 @@
package hclwrite
import (
"bytes"
"github.com/hashicorp/hcl/v2"
)
// NewFile creates a new file object that is empty and ready to have constructs
// added t it.
func NewFile() *File {
body := &Body{
inTree: newInTree(),
items: newNodeSet(),
}
file := &File{
inTree: newInTree(),
}
file.body = file.inTree.children.Append(body)
return file
}
// ParseConfig interprets the given source bytes into a *hclwrite.File. The
// resulting AST can be used to perform surgical edits on the source code
// before turning it back into bytes again.
func ParseConfig(src []byte, filename string, start hcl.Pos) (*File, hcl.Diagnostics) {
return parse(src, filename, start)
}
// Format takes source code and performs simple whitespace changes to transform
// it to a canonical layout style.
//
// Format skips constructing an AST and works directly with tokens, so it
// is less expensive than formatting via the AST for situations where no other
// changes will be made. It also ignores syntax errors and can thus be applied
// to partial source code, although the result in that case may not be
// desirable.
func Format(src []byte) []byte {
tokens := lexConfig(src)
format(tokens)
buf := &bytes.Buffer{}
tokens.WriteTo(buf)
return buf.Bytes()
}

122
vendor/github.com/hashicorp/hcl/v2/hclwrite/tokens.go generated vendored Normal file
View File

@ -0,0 +1,122 @@
package hclwrite
import (
"bytes"
"io"
"github.com/apparentlymart/go-textseg/textseg"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/hclsyntax"
)
// Token is a single sequence of bytes annotated with a type. It is similar
// in purpose to hclsyntax.Token, but discards the source position information
// since that is not useful in code generation.
type Token struct {
Type hclsyntax.TokenType
Bytes []byte
// We record the number of spaces before each token so that we can
// reproduce the exact layout of the original file when we're making
// surgical changes in-place. When _new_ code is created it will always
// be in the canonical style, but we preserve layout of existing code.
SpacesBefore int
}
// asHCLSyntax returns the receiver expressed as an incomplete hclsyntax.Token.
// A complete token is not possible since we don't have source location
// information here, and so this method is unexported so we can be sure it will
// only be used for internal purposes where we know the range isn't important.
//
// This is primarily intended to allow us to re-use certain functionality from
// hclsyntax rather than re-implementing it against our own token type here.
func (t *Token) asHCLSyntax() hclsyntax.Token {
return hclsyntax.Token{
Type: t.Type,
Bytes: t.Bytes,
Range: hcl.Range{
Filename: "<invalid>",
},
}
}
// Tokens is a flat list of tokens.
type Tokens []*Token
func (ts Tokens) Bytes() []byte {
buf := &bytes.Buffer{}
ts.WriteTo(buf)
return buf.Bytes()
}
func (ts Tokens) testValue() string {
return string(ts.Bytes())
}
// Columns returns the number of columns (grapheme clusters) the token sequence
// occupies. The result is not meaningful if there are newline or single-line
// comment tokens in the sequence.
func (ts Tokens) Columns() int {
ret := 0
for _, token := range ts {
ret += token.SpacesBefore // spaces are always worth one column each
ct, _ := textseg.TokenCount(token.Bytes, textseg.ScanGraphemeClusters)
ret += ct
}
return ret
}
// WriteTo takes an io.Writer and writes the bytes for each token to it,
// along with the spacing that separates each token. In other words, this
// allows serializing the tokens to a file or other such byte stream.
func (ts Tokens) WriteTo(wr io.Writer) (int64, error) {
// We know we're going to be writing a lot of small chunks of repeated
// space characters, so we'll prepare a buffer of these that we can
// easily pass to wr.Write without any further allocation.
spaces := make([]byte, 40)
for i := range spaces {
spaces[i] = ' '
}
var n int64
var err error
for _, token := range ts {
if err != nil {
return n, err
}
for spacesBefore := token.SpacesBefore; spacesBefore > 0; spacesBefore -= len(spaces) {
thisChunk := spacesBefore
if thisChunk > len(spaces) {
thisChunk = len(spaces)
}
var thisN int
thisN, err = wr.Write(spaces[:thisChunk])
n += int64(thisN)
if err != nil {
return n, err
}
}
var thisN int
thisN, err = wr.Write(token.Bytes)
n += int64(thisN)
}
return n, err
}
func (ts Tokens) walkChildNodes(w internalWalkFunc) {
// Unstructured tokens have no child nodes
}
func (ts Tokens) BuildTokens(to Tokens) Tokens {
return append(to, ts...)
}
func newIdentToken(name string) *Token {
return &Token{
Type: hclsyntax.TokenIdent,
Bytes: []byte(name),
}
}

121
vendor/github.com/hashicorp/hcl/v2/json/ast.go generated vendored Normal file
View File

@ -0,0 +1,121 @@
package json
import (
"math/big"
"github.com/hashicorp/hcl/v2"
)
type node interface {
Range() hcl.Range
StartRange() hcl.Range
}
type objectVal struct {
Attrs []*objectAttr
SrcRange hcl.Range // range of the entire object, brace-to-brace
OpenRange hcl.Range // range of the opening brace
CloseRange hcl.Range // range of the closing brace
}
func (n *objectVal) Range() hcl.Range {
return n.SrcRange
}
func (n *objectVal) StartRange() hcl.Range {
return n.OpenRange
}
type objectAttr struct {
Name string
Value node
NameRange hcl.Range // range of the name string
}
func (n *objectAttr) Range() hcl.Range {
return n.NameRange
}
func (n *objectAttr) StartRange() hcl.Range {
return n.NameRange
}
type arrayVal struct {
Values []node
SrcRange hcl.Range // range of the entire object, bracket-to-bracket
OpenRange hcl.Range // range of the opening bracket
}
func (n *arrayVal) Range() hcl.Range {
return n.SrcRange
}
func (n *arrayVal) StartRange() hcl.Range {
return n.OpenRange
}
type booleanVal struct {
Value bool
SrcRange hcl.Range
}
func (n *booleanVal) Range() hcl.Range {
return n.SrcRange
}
func (n *booleanVal) StartRange() hcl.Range {
return n.SrcRange
}
type numberVal struct {
Value *big.Float
SrcRange hcl.Range
}
func (n *numberVal) Range() hcl.Range {
return n.SrcRange
}
func (n *numberVal) StartRange() hcl.Range {
return n.SrcRange
}
type stringVal struct {
Value string
SrcRange hcl.Range
}
func (n *stringVal) Range() hcl.Range {
return n.SrcRange
}
func (n *stringVal) StartRange() hcl.Range {
return n.SrcRange
}
type nullVal struct {
SrcRange hcl.Range
}
func (n *nullVal) Range() hcl.Range {
return n.SrcRange
}
func (n *nullVal) StartRange() hcl.Range {
return n.SrcRange
}
// invalidVal is used as a placeholder where a value is needed for a valid
// parse tree but the input was invalid enough to prevent one from being
// created.
type invalidVal struct {
SrcRange hcl.Range
}
func (n invalidVal) Range() hcl.Range {
return n.SrcRange
}
func (n invalidVal) StartRange() hcl.Range {
return n.SrcRange
}

33
vendor/github.com/hashicorp/hcl/v2/json/didyoumean.go generated vendored Normal file
View File

@ -0,0 +1,33 @@
package json
import (
"github.com/agext/levenshtein"
)
var keywords = []string{"false", "true", "null"}
// keywordSuggestion tries to find a valid JSON keyword that is close to the
// given string and returns it if found. If no keyword is close enough, returns
// the empty string.
func keywordSuggestion(given string) string {
return nameSuggestion(given, keywords)
}
// nameSuggestion tries to find a name from the given slice of suggested names
// that is close to the given name and returns it if found. If no suggestion
// is close enough, returns the empty string.
//
// The suggestions are tried in order, so earlier suggestions take precedence
// if the given string is similar to two or more suggestions.
//
// This function is intended to be used with a relatively-small number of
// suggestions. It's not optimized for hundreds or thousands of them.
func nameSuggestion(given string, suggestions []string) string {
for _, suggestion := range suggestions {
dist := levenshtein.Distance(given, suggestion, nil)
if dist < 3 { // threshold determined experimentally
return suggestion
}
}
return ""
}

12
vendor/github.com/hashicorp/hcl/v2/json/doc.go generated vendored Normal file
View File

@ -0,0 +1,12 @@
// Package json is the JSON parser for HCL. It parses JSON files and returns
// implementations of the core HCL structural interfaces in terms of the
// JSON data inside.
//
// This is not a generic JSON parser. Instead, it deals with the mapping from
// the JSON information model to the HCL information model, using a number
// of hard-coded structural conventions.
//
// In most cases applications will not import this package directly, but will
// instead access its functionality indirectly through functions in the main
// "hcl" package and in the "hclparse" package.
package json

70
vendor/github.com/hashicorp/hcl/v2/json/navigation.go generated vendored Normal file
View File

@ -0,0 +1,70 @@
package json
import (
"fmt"
"strings"
)
type navigation struct {
root node
}
// Implementation of hcled.ContextString
func (n navigation) ContextString(offset int) string {
steps := navigationStepsRev(n.root, offset)
if steps == nil {
return ""
}
// We built our slice backwards, so we'll reverse it in-place now.
half := len(steps) / 2 // integer division
for i := 0; i < half; i++ {
steps[i], steps[len(steps)-1-i] = steps[len(steps)-1-i], steps[i]
}
ret := strings.Join(steps, "")
if len(ret) > 0 && ret[0] == '.' {
ret = ret[1:]
}
return ret
}
func navigationStepsRev(v node, offset int) []string {
switch tv := v.(type) {
case *objectVal:
// Do any of our properties have an object that contains the target
// offset?
for _, attr := range tv.Attrs {
k := attr.Name
av := attr.Value
switch av.(type) {
case *objectVal, *arrayVal:
// okay
default:
continue
}
if av.Range().ContainsOffset(offset) {
return append(navigationStepsRev(av, offset), "."+k)
}
}
case *arrayVal:
// Do any of our elements contain the target offset?
for i, elem := range tv.Values {
switch elem.(type) {
case *objectVal, *arrayVal:
// okay
default:
continue
}
if elem.Range().ContainsOffset(offset) {
return append(navigationStepsRev(elem, offset), fmt.Sprintf("[%d]", i))
}
}
}
return nil
}

496
vendor/github.com/hashicorp/hcl/v2/json/parser.go generated vendored Normal file
View File

@ -0,0 +1,496 @@
package json
import (
"encoding/json"
"fmt"
"github.com/hashicorp/hcl/v2"
"github.com/zclconf/go-cty/cty"
)
func parseFileContent(buf []byte, filename string) (node, hcl.Diagnostics) {
tokens := scan(buf, pos{
Filename: filename,
Pos: hcl.Pos{
Byte: 0,
Line: 1,
Column: 1,
},
})
p := newPeeker(tokens)
node, diags := parseValue(p)
if len(diags) == 0 && p.Peek().Type != tokenEOF {
diags = diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Extraneous data after value",
Detail: "Extra characters appear after the JSON value.",
Subject: p.Peek().Range.Ptr(),
})
}
return node, diags
}
func parseValue(p *peeker) (node, hcl.Diagnostics) {
tok := p.Peek()
wrapInvalid := func(n node, diags hcl.Diagnostics) (node, hcl.Diagnostics) {
if n != nil {
return n, diags
}
return invalidVal{tok.Range}, diags
}
switch tok.Type {
case tokenBraceO:
return wrapInvalid(parseObject(p))
case tokenBrackO:
return wrapInvalid(parseArray(p))
case tokenNumber:
return wrapInvalid(parseNumber(p))
case tokenString:
return wrapInvalid(parseString(p))
case tokenKeyword:
return wrapInvalid(parseKeyword(p))
case tokenBraceC:
return wrapInvalid(nil, hcl.Diagnostics{
{
Severity: hcl.DiagError,
Summary: "Missing JSON value",
Detail: "A JSON value must start with a brace, a bracket, a number, a string, or a keyword.",
Subject: &tok.Range,
},
})
case tokenBrackC:
return wrapInvalid(nil, hcl.Diagnostics{
{
Severity: hcl.DiagError,
Summary: "Missing array element value",
Detail: "A JSON value must start with a brace, a bracket, a number, a string, or a keyword.",
Subject: &tok.Range,
},
})
case tokenEOF:
return wrapInvalid(nil, hcl.Diagnostics{
{
Severity: hcl.DiagError,
Summary: "Missing value",
Detail: "The JSON data ends prematurely.",
Subject: &tok.Range,
},
})
default:
return wrapInvalid(nil, hcl.Diagnostics{
{
Severity: hcl.DiagError,
Summary: "Invalid start of value",
Detail: "A JSON value must start with a brace, a bracket, a number, a string, or a keyword.",
Subject: &tok.Range,
},
})
}
}
func tokenCanStartValue(tok token) bool {
switch tok.Type {
case tokenBraceO, tokenBrackO, tokenNumber, tokenString, tokenKeyword:
return true
default:
return false
}
}
func parseObject(p *peeker) (node, hcl.Diagnostics) {
var diags hcl.Diagnostics
open := p.Read()
attrs := []*objectAttr{}
// recover is used to shift the peeker to what seems to be the end of
// our object, so that when we encounter an error we leave the peeker
// at a reasonable point in the token stream to continue parsing.
recover := func(tok token) {
open := 1
for {
switch tok.Type {
case tokenBraceO:
open++
case tokenBraceC:
open--
if open <= 1 {
return
}
case tokenEOF:
// Ran out of source before we were able to recover,
// so we'll bail here and let the caller deal with it.
return
}
tok = p.Read()
}
}
Token:
for {
if p.Peek().Type == tokenBraceC {
break Token
}
keyNode, keyDiags := parseValue(p)
diags = diags.Extend(keyDiags)
if keyNode == nil {
return nil, diags
}
keyStrNode, ok := keyNode.(*stringVal)
if !ok {
return nil, diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid object property name",
Detail: "A JSON object property name must be a string",
Subject: keyNode.StartRange().Ptr(),
})
}
key := keyStrNode.Value
colon := p.Read()
if colon.Type != tokenColon {
recover(colon)
if colon.Type == tokenBraceC || colon.Type == tokenComma {
// Catch common mistake of using braces instead of brackets
// for an object.
return nil, diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Missing object value",
Detail: "A JSON object attribute must have a value, introduced by a colon.",
Subject: &colon.Range,
})
}
if colon.Type == tokenEquals {
// Possible confusion with native HCL syntax.
return nil, diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Missing property value colon",
Detail: "JSON uses a colon as its name/value delimiter, not an equals sign.",
Subject: &colon.Range,
})
}
return nil, diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Missing property value colon",
Detail: "A colon must appear between an object property's name and its value.",
Subject: &colon.Range,
})
}
valNode, valDiags := parseValue(p)
diags = diags.Extend(valDiags)
if valNode == nil {
return nil, diags
}
attrs = append(attrs, &objectAttr{
Name: key,
Value: valNode,
NameRange: keyStrNode.SrcRange,
})
switch p.Peek().Type {
case tokenComma:
comma := p.Read()
if p.Peek().Type == tokenBraceC {
// Special error message for this common mistake
return nil, diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Trailing comma in object",
Detail: "JSON does not permit a trailing comma after the final property in an object.",
Subject: &comma.Range,
})
}
continue Token
case tokenEOF:
return nil, diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Unclosed object",
Detail: "No closing brace was found for this JSON object.",
Subject: &open.Range,
})
case tokenBrackC:
// Consume the bracket anyway, so that we don't return with the peeker
// at a strange place.
p.Read()
return nil, diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Mismatched braces",
Detail: "A JSON object must be closed with a brace, not a bracket.",
Subject: p.Peek().Range.Ptr(),
})
case tokenBraceC:
break Token
default:
recover(p.Read())
return nil, diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Missing attribute seperator comma",
Detail: "A comma must appear between each property definition in an object.",
Subject: p.Peek().Range.Ptr(),
})
}
}
close := p.Read()
return &objectVal{
Attrs: attrs,
SrcRange: hcl.RangeBetween(open.Range, close.Range),
OpenRange: open.Range,
CloseRange: close.Range,
}, diags
}
func parseArray(p *peeker) (node, hcl.Diagnostics) {
var diags hcl.Diagnostics
open := p.Read()
vals := []node{}
// recover is used to shift the peeker to what seems to be the end of
// our array, so that when we encounter an error we leave the peeker
// at a reasonable point in the token stream to continue parsing.
recover := func(tok token) {
open := 1
for {
switch tok.Type {
case tokenBrackO:
open++
case tokenBrackC:
open--
if open <= 1 {
return
}
case tokenEOF:
// Ran out of source before we were able to recover,
// so we'll bail here and let the caller deal with it.
return
}
tok = p.Read()
}
}
Token:
for {
if p.Peek().Type == tokenBrackC {
break Token
}
valNode, valDiags := parseValue(p)
diags = diags.Extend(valDiags)
if valNode == nil {
return nil, diags
}
vals = append(vals, valNode)
switch p.Peek().Type {
case tokenComma:
comma := p.Read()
if p.Peek().Type == tokenBrackC {
// Special error message for this common mistake
return nil, diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Trailing comma in array",
Detail: "JSON does not permit a trailing comma after the final value in an array.",
Subject: &comma.Range,
})
}
continue Token
case tokenColon:
recover(p.Read())
return nil, diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid array value",
Detail: "A colon is not used to introduce values in a JSON array.",
Subject: p.Peek().Range.Ptr(),
})
case tokenEOF:
recover(p.Read())
return nil, diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Unclosed object",
Detail: "No closing bracket was found for this JSON array.",
Subject: &open.Range,
})
case tokenBraceC:
recover(p.Read())
return nil, diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Mismatched brackets",
Detail: "A JSON array must be closed with a bracket, not a brace.",
Subject: p.Peek().Range.Ptr(),
})
case tokenBrackC:
break Token
default:
recover(p.Read())
return nil, diags.Append(&hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Missing attribute seperator comma",
Detail: "A comma must appear between each value in an array.",
Subject: p.Peek().Range.Ptr(),
})
}
}
close := p.Read()
return &arrayVal{
Values: vals,
SrcRange: hcl.RangeBetween(open.Range, close.Range),
OpenRange: open.Range,
}, diags
}
func parseNumber(p *peeker) (node, hcl.Diagnostics) {
tok := p.Read()
// Use encoding/json to validate the number syntax.
// TODO: Do this more directly to produce better diagnostics.
var num json.Number
err := json.Unmarshal(tok.Bytes, &num)
if err != nil {
return nil, hcl.Diagnostics{
{
Severity: hcl.DiagError,
Summary: "Invalid JSON number",
Detail: fmt.Sprintf("There is a syntax error in the given JSON number."),
Subject: &tok.Range,
},
}
}
// We want to guarantee that we parse numbers the same way as cty (and thus
// native syntax HCL) would here, so we'll use the cty parser even though
// in most other cases we don't actually introduce cty concepts until
// decoding time. We'll unwrap the parsed float immediately afterwards, so
// the cty value is just a temporary helper.
nv, err := cty.ParseNumberVal(string(num))
if err != nil {
// Should never happen if above passed, since JSON numbers are a subset
// of what cty can parse...
return nil, hcl.Diagnostics{
{
Severity: hcl.DiagError,
Summary: "Invalid JSON number",
Detail: fmt.Sprintf("There is a syntax error in the given JSON number."),
Subject: &tok.Range,
},
}
}
return &numberVal{
Value: nv.AsBigFloat(),
SrcRange: tok.Range,
}, nil
}
func parseString(p *peeker) (node, hcl.Diagnostics) {
tok := p.Read()
var str string
err := json.Unmarshal(tok.Bytes, &str)
if err != nil {
var errRange hcl.Range
if serr, ok := err.(*json.SyntaxError); ok {
errOfs := serr.Offset
errPos := tok.Range.Start
errPos.Byte += int(errOfs)
// TODO: Use the byte offset to properly count unicode
// characters for the column, and mark the whole of the
// character that was wrong as part of our range.
errPos.Column += int(errOfs)
errEndPos := errPos
errEndPos.Byte++
errEndPos.Column++
errRange = hcl.Range{
Filename: tok.Range.Filename,
Start: errPos,
End: errEndPos,
}
} else {
errRange = tok.Range
}
var contextRange *hcl.Range
if errRange != tok.Range {
contextRange = &tok.Range
}
// FIXME: Eventually we should parse strings directly here so
// we can produce a more useful error message in the face fo things
// such as invalid escapes, etc.
return nil, hcl.Diagnostics{
{
Severity: hcl.DiagError,
Summary: "Invalid JSON string",
Detail: fmt.Sprintf("There is a syntax error in the given JSON string."),
Subject: &errRange,
Context: contextRange,
},
}
}
return &stringVal{
Value: str,
SrcRange: tok.Range,
}, nil
}
func parseKeyword(p *peeker) (node, hcl.Diagnostics) {
tok := p.Read()
s := string(tok.Bytes)
switch s {
case "true":
return &booleanVal{
Value: true,
SrcRange: tok.Range,
}, nil
case "false":
return &booleanVal{
Value: false,
SrcRange: tok.Range,
}, nil
case "null":
return &nullVal{
SrcRange: tok.Range,
}, nil
case "undefined", "NaN", "Infinity":
return nil, hcl.Diagnostics{
{
Severity: hcl.DiagError,
Summary: "Invalid JSON keyword",
Detail: fmt.Sprintf("The JavaScript identifier %q cannot be used in JSON.", s),
Subject: &tok.Range,
},
}
default:
var dym string
if suggest := keywordSuggestion(s); suggest != "" {
dym = fmt.Sprintf(" Did you mean %q?", suggest)
}
return nil, hcl.Diagnostics{
{
Severity: hcl.DiagError,
Summary: "Invalid JSON keyword",
Detail: fmt.Sprintf("%q is not a valid JSON keyword.%s", s, dym),
Subject: &tok.Range,
},
}
}
}

25
vendor/github.com/hashicorp/hcl/v2/json/peeker.go generated vendored Normal file
View File

@ -0,0 +1,25 @@
package json
type peeker struct {
tokens []token
pos int
}
func newPeeker(tokens []token) *peeker {
return &peeker{
tokens: tokens,
pos: 0,
}
}
func (p *peeker) Peek() token {
return p.tokens[p.pos]
}
func (p *peeker) Read() token {
ret := p.tokens[p.pos]
if ret.Type != tokenEOF {
p.pos++
}
return ret
}

Some files were not shown because too many files have changed in this diff Show More