// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build gc #define NOSPLIT 4 #define RODATA 8 // func castagnoliSSE42(crc uint32, p []byte) uint32 TEXT ·castagnoliSSE42(SB), NOSPLIT, $0 MOVL crc+0(FP), AX // CRC value MOVQ p+8(FP), SI // data pointer MOVQ p_len+16(FP), CX // len(p) NOTL AX // If there's less than 8 bytes to process, we do it byte-by-byte. CMPQ CX, $8 JL cleanup // Process individual bytes until the input is 8-byte aligned. startup: MOVQ SI, BX ANDQ $7, BX JZ aligned CRC32B (SI), AX DECQ CX INCQ SI JMP startup aligned: // The input is now 8-byte aligned and we can process 8-byte chunks. CMPQ CX, $8 JL cleanup CRC32Q (SI), AX ADDQ $8, SI SUBQ $8, CX JMP aligned cleanup: // We may have some bytes left over that we process one at a time. CMPQ CX, $0 JE done CRC32B (SI), AX INCQ SI DECQ CX JMP cleanup done: NOTL AX MOVL AX, ret+32(FP) RET // func haveSSE42() bool TEXT ·haveSSE42(SB), NOSPLIT, $0 XORQ AX, AX INCL AX CPUID SHRQ $20, CX ANDQ $1, CX MOVB CX, ret+0(FP) RET // func haveCLMUL() bool TEXT ·haveCLMUL(SB), NOSPLIT, $0 XORQ AX, AX INCL AX CPUID SHRQ $1, CX ANDQ $1, CX MOVB CX, ret+0(FP) RET // func haveSSE41() bool TEXT ·haveSSE41(SB), NOSPLIT, $0 XORQ AX, AX INCL AX CPUID SHRQ $19, CX ANDQ $1, CX MOVB CX, ret+0(FP) RET // CRC32 polynomial data // // These constants are lifted from the // Linux kernel, since they avoid the costly // PSHUFB 16 byte reversal proposed in the // original Intel paper. DATA r2r1kp<>+0(SB)/8, $0x154442bd4 DATA r2r1kp<>+8(SB)/8, $0x1c6e41596 DATA r4r3kp<>+0(SB)/8, $0x1751997d0 DATA r4r3kp<>+8(SB)/8, $0x0ccaa009e DATA rupolykp<>+0(SB)/8, $0x1db710641 DATA rupolykp<>+8(SB)/8, $0x1f7011641 DATA r5kp<>+0(SB)/8, $0x163cd6124 GLOBL r2r1kp<>(SB), RODATA, $16 GLOBL r4r3kp<>(SB), RODATA, $16 GLOBL rupolykp<>(SB), RODATA, $16 GLOBL r5kp<>(SB), RODATA, $8 // Based on http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf // len(p) must be at least 64, and must be a multiple of 16. // func ieeeCLMUL(crc uint32, p []byte) uint32 TEXT ·ieeeCLMUL(SB), NOSPLIT, $0 MOVL crc+0(FP), X0 // Initial CRC value MOVQ p+8(FP), SI // data pointer MOVQ p_len+16(FP), CX // len(p) MOVOU (SI), X1 MOVOU 16(SI), X2 MOVOU 32(SI), X3 MOVOU 48(SI), X4 PXOR X0, X1 ADDQ $64, SI // buf+=64 SUBQ $64, CX // len-=64 CMPQ CX, $64 // Less than 64 bytes left JB remain64 MOVOU r2r1kp<>+0(SB), X0 loopback64: MOVOA X1, X5 MOVOA X2, X6 MOVOA X3, X7 MOVOA X4, X8 PCLMULQDQ $0, X0, X1 PCLMULQDQ $0, X0, X2 PCLMULQDQ $0, X0, X3 PCLMULQDQ $0, X0, X4 // Load next early MOVOU (SI), X11 MOVOU 16(SI), X12 MOVOU 32(SI), X13 MOVOU 48(SI), X14 PCLMULQDQ $0x11, X0, X5 PCLMULQDQ $0x11, X0, X6 PCLMULQDQ $0x11, X0, X7 PCLMULQDQ $0x11, X0, X8 PXOR X5, X1 PXOR X6, X2 PXOR X7, X3 PXOR X8, X4 PXOR X11, X1 PXOR X12, X2 PXOR X13, X3 PXOR X14, X4 ADDQ $0x40, DI ADDQ $64, SI // buf+=64 SUBQ $64, CX // len-=64 CMPQ CX, $64 // Less than 64 bytes left? JGE loopback64 // Fold result into a single register (X1) remain64: MOVOU r4r3kp<>+0(SB), X0 MOVOA X1, X5 PCLMULQDQ $0, X0, X1 PCLMULQDQ $0x11, X0, X5 PXOR X5, X1 PXOR X2, X1 MOVOA X1, X5 PCLMULQDQ $0, X0, X1 PCLMULQDQ $0x11, X0, X5 PXOR X5, X1 PXOR X3, X1 MOVOA X1, X5 PCLMULQDQ $0, X0, X1 PCLMULQDQ $0x11, X0, X5 PXOR X5, X1 PXOR X4, X1 // More than 16 bytes left? CMPQ CX, $16 JB finish // Encode 16 bytes remain16: MOVOU (SI), X10 MOVOA X1, X5 PCLMULQDQ $0, X0, X1 PCLMULQDQ $0x11, X0, X5 PXOR X5, X1 PXOR X10, X1 SUBQ $16, CX ADDQ $16, SI CMPQ CX, $16 JGE remain16 finish: // Fold final result into 32 bits and return it PCMPEQB X3, X3 PCLMULQDQ $1, X1, X0 PSRLDQ $8, X1 PXOR X0, X1 MOVOA X1, X2 MOVQ r5kp<>+0(SB), X0 // Creates 32 bit mask. Note that we don't care about upper half. PSRLQ $32, X3 PSRLDQ $4, X2 PAND X3, X1 PCLMULQDQ $0, X0, X1 PXOR X2, X1 MOVOU rupolykp<>+0(SB), X0 MOVOA X1, X2 PAND X3, X1 PCLMULQDQ $0x10, X0, X1 PAND X3, X1 PCLMULQDQ $0, X0, X1 PXOR X2, X1 // PEXTRD $1, X1, AX (SSE 4.1) BYTE $0x66; BYTE $0x0f; BYTE $0x3a BYTE $0x16; BYTE $0xc8; BYTE $0x01 MOVL AX, ret+32(FP) RET