package packer import ( "fmt" "sort" "strings" ttmp "text/template" multierror "github.com/hashicorp/go-multierror" version "github.com/hashicorp/go-version" "github.com/hashicorp/packer/template" "github.com/hashicorp/packer/template/interpolate" ) // Core is the main executor of Packer. If Packer is being used as a // library, this is the struct you'll want to instantiate to get anything done. type Core struct { Template *template.Template components ComponentFinder variables map[string]string builds map[string]*template.Builder version string secrets []string except []string only []string } // CoreConfig is the structure for initializing a new Core. Once a CoreConfig // is used to initialize a Core, it shouldn't be re-used or modified again. type CoreConfig struct { Components ComponentFinder Template *template.Template Variables map[string]string SensitiveVariables []string Version string // These are set by command-line flags Except []string Only []string } // The function type used to lookup Builder implementations. type BuilderFunc func(name string) (Builder, error) // The function type used to lookup Hook implementations. type HookFunc func(name string) (Hook, error) // The function type used to lookup PostProcessor implementations. type PostProcessorFunc func(name string) (PostProcessor, error) // The function type used to lookup Provisioner implementations. type ProvisionerFunc func(name string) (Provisioner, error) // ComponentFinder is a struct that contains the various function // pointers necessary to look up components of Packer such as builders, // commands, etc. type ComponentFinder struct { Builder BuilderFunc Hook HookFunc PostProcessor PostProcessorFunc Provisioner ProvisionerFunc } // NewCore creates a new Core. func NewCore(c *CoreConfig) (*Core, error) { result := &Core{ Template: c.Template, components: c.Components, variables: c.Variables, version: c.Version, only: c.Only, except: c.Except, } if err := result.validate(); err != nil { return nil, err } if err := result.init(); err != nil { return nil, err } for _, secret := range result.secrets { LogSecretFilter.Set(secret) } // Go through and interpolate all the build names. We should be able // to do this at this point with the variables. result.builds = make(map[string]*template.Builder) for _, b := range c.Template.Builders { v, err := interpolate.Render(b.Name, result.Context()) if err != nil { return nil, fmt.Errorf( "Error interpolating builder '%s': %s", b.Name, err) } result.builds[v] = b } return result, nil } // BuildNames returns the builds that are available in this configured core. func (c *Core) BuildNames() []string { r := make([]string, 0, len(c.builds)) for n := range c.builds { r = append(r, n) } sort.Strings(r) return r } // Build returns the Build object for the given name. func (c *Core) Build(n string) (Build, error) { // Setup the builder configBuilder, ok := c.builds[n] if !ok { return nil, fmt.Errorf("no such build found: %s", n) } builder, err := c.components.Builder(configBuilder.Type) if err != nil { return nil, fmt.Errorf( "error initializing builder '%s': %s", configBuilder.Type, err) } if builder == nil { return nil, fmt.Errorf( "builder type not found: %s", configBuilder.Type) } // rawName is the uninterpolated name that we use for various lookups rawName := configBuilder.Name // Setup the provisioners for this build provisioners := make([]coreBuildProvisioner, 0, len(c.Template.Provisioners)) for _, rawP := range c.Template.Provisioners { // If we're skipping this, then ignore it if rawP.OnlyExcept.Skip(rawName) { continue } // Get the provisioner provisioner, err := c.components.Provisioner(rawP.Type) if err != nil { return nil, fmt.Errorf( "error initializing provisioner '%s': %s", rawP.Type, err) } if provisioner == nil { return nil, fmt.Errorf( "provisioner type not found: %s", rawP.Type) } // Get the configuration config := make([]interface{}, 1, 2) config[0] = rawP.Config if rawP.Override != nil { if override, ok := rawP.Override[rawName]; ok { config = append(config, override) } } // If we're pausing, we wrap the provisioner in a special pauser. if rawP.PauseBefore > 0 { provisioner = &PausedProvisioner{ PauseBefore: rawP.PauseBefore, Provisioner: provisioner, } } else if rawP.Timeout > 0 { provisioner = &TimeoutProvisioner{ Timeout: rawP.Timeout, Provisioner: provisioner, } } provisioners = append(provisioners, coreBuildProvisioner{ pType: rawP.Type, provisioner: provisioner, config: config, }) } // Setup the post-processors postProcessors := make([][]coreBuildPostProcessor, 0, len(c.Template.PostProcessors)) for _, rawPs := range c.Template.PostProcessors { current := make([]coreBuildPostProcessor, 0, len(rawPs)) for _, rawP := range rawPs { if rawP.Skip(rawName) { continue } // -except skips post-processor & build foundExcept := false for _, except := range c.except { if except != "" && except == rawP.Name { foundExcept = true } } if foundExcept { continue } // Get the post-processor postProcessor, err := c.components.PostProcessor(rawP.Type) if err != nil { return nil, fmt.Errorf( "error initializing post-processor '%s': %s", rawP.Type, err) } if postProcessor == nil { return nil, fmt.Errorf( "post-processor type not found: %s", rawP.Type) } current = append(current, coreBuildPostProcessor{ processor: postProcessor, processorType: rawP.Type, config: rawP.Config, keepInputArtifact: rawP.KeepInputArtifact, }) } // If we have no post-processors in this chain, just continue. if len(current) == 0 { continue } postProcessors = append(postProcessors, current) } // TODO hooks one day return &coreBuild{ name: n, builder: builder, builderConfig: configBuilder.Config, builderType: configBuilder.Type, postProcessors: postProcessors, provisioners: provisioners, templatePath: c.Template.Path, variables: c.variables, }, nil } // Context returns an interpolation context. func (c *Core) Context() *interpolate.Context { return &interpolate.Context{ TemplatePath: c.Template.Path, UserVariables: c.variables, } } // validate does a full validation of the template. // // This will automatically call template.validate() in addition to doing // richer semantic checks around variables and so on. func (c *Core) validate() error { // First validate the template in general, we can't do anything else // unless the template itself is valid. if err := c.Template.Validate(); err != nil { return err } // Validate the minimum version is satisfied if c.Template.MinVersion != "" { versionActual, err := version.NewVersion(c.version) if err != nil { // This shouldn't happen since we set it via the compiler panic(err) } versionMin, err := version.NewVersion(c.Template.MinVersion) if err != nil { return fmt.Errorf( "min_version is invalid: %s", err) } if versionActual.LessThan(versionMin) { return fmt.Errorf( "This template requires Packer version %s or higher; using %s", versionMin, versionActual) } } // Validate variables are set var err error for n, v := range c.Template.Variables { if v.Required { if _, ok := c.variables[n]; !ok { err = multierror.Append(err, fmt.Errorf( "required variable not set: %s", n)) } } } // TODO: validate all builders exist // TODO: ^^ provisioner // TODO: ^^ post-processor return err } func (c *Core) init() error { if c.variables == nil { c.variables = make(map[string]string) } // Go through the variables and interpolate the environment and // user variables ctx := c.Context() ctx.EnableEnv = true ctx.UserVariables = make(map[string]string) shouldRetry := true changed := false failedInterpolation := "" // Why this giant loop? User variables can be recursively defined. For // example: // "variables": { // "foo": "bar", // "baz": "{{user `foo`}}baz", // "bang": "bang{{user `baz`}}" // }, // In this situation, we cannot guarantee that we've added "foo" to // UserVariables before we try to interpolate "baz" the first time. We need // to have the option to loop back over in order to add the properly // interpolated "baz" to the UserVariables map. // Likewise, we'd need to loop up to two times to properly add "bang", // since that depends on "baz" being set, which depends on "foo" being set. // We break out of the while loop either if all our variables have been // interpolated or if after 100 loops we still haven't succeeded in // interpolating them. Please don't actually nest your variables in 100 // layers of other variables. Please. // c.Template.Variables is populated by variables defined within the Template // itself // c.variables is populated by variables read in from the command line and // var-files. // We need to read the keys from both, then loop over all of them to figure // out the appropriate interpolations. allVariables := make(map[string]string) // load in template variables for k, v := range c.Template.Variables { allVariables[k] = v.Default } // overwrite template variables with command-line-read variables for k, v := range c.variables { allVariables[k] = v } for i := 0; i < 100; i++ { shouldRetry = false // First, loop over the variables in the template for k, v := range allVariables { // Interpolate the default renderedV, err := interpolate.Render(v, ctx) switch err.(type) { case nil: // We only get here if interpolation has succeeded, so something is // different in this loop than in the last one. changed = true c.variables[k] = renderedV ctx.UserVariables = c.variables case ttmp.ExecError: castError := err.(ttmp.ExecError) if strings.Contains(castError.Error(), interpolate.ErrVariableNotSetString) { shouldRetry = true failedInterpolation = fmt.Sprintf(`"%s": "%s"; error: %s`, k, v, err) } else { return err } default: return fmt.Errorf( // unexpected interpolation error: abort the run "error interpolating default value for '%s': %s", k, err) } } if !shouldRetry { break } } if (changed == false) && (shouldRetry == true) { return fmt.Errorf("Failed to interpolate %s: Please make sure that "+ "the variable you're referencing has been defined; Packer treats "+ "all variables used to interpolate other user varaibles as "+ "required.", failedInterpolation) } for _, v := range c.Template.SensitiveVariables { secret := ctx.UserVariables[v.Key] c.secrets = append(c.secrets, secret) } return nil }