// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package pgzip implements reading and writing of gzip format compressed files, // as specified in RFC 1952. // // This is a drop in replacement for "compress/gzip". // This will split compression into blocks that are compressed in parallel. // This can be useful for compressing big amounts of data. // The gzip decompression has not been modified, but remains in the package, // so you can use it as a complete replacement for "compress/gzip". // // See more at https://github.com/klauspost/pgzip package pgzip import ( "bufio" "errors" "hash" "io" "sync" "time" "github.com/klauspost/compress/flate" "github.com/klauspost/crc32" ) const ( gzipID1 = 0x1f gzipID2 = 0x8b gzipDeflate = 8 flagText = 1 << 0 flagHdrCrc = 1 << 1 flagExtra = 1 << 2 flagName = 1 << 3 flagComment = 1 << 4 ) func makeReader(r io.Reader) flate.Reader { if rr, ok := r.(flate.Reader); ok { return rr } return bufio.NewReader(r) } var ( // ErrChecksum is returned when reading GZIP data that has an invalid checksum. ErrChecksum = errors.New("gzip: invalid checksum") // ErrHeader is returned when reading GZIP data that has an invalid header. ErrHeader = errors.New("gzip: invalid header") ) // The gzip file stores a header giving metadata about the compressed file. // That header is exposed as the fields of the Writer and Reader structs. type Header struct { Comment string // comment Extra []byte // "extra data" ModTime time.Time // modification time Name string // file name OS byte // operating system type } // A Reader is an io.Reader that can be read to retrieve // uncompressed data from a gzip-format compressed file. // // In general, a gzip file can be a concatenation of gzip files, // each with its own header. Reads from the Reader // return the concatenation of the uncompressed data of each. // Only the first header is recorded in the Reader fields. // // Gzip files store a length and checksum of the uncompressed data. // The Reader will return a ErrChecksum when Read // reaches the end of the uncompressed data if it does not // have the expected length or checksum. Clients should treat data // returned by Read as tentative until they receive the io.EOF // marking the end of the data. type Reader struct { Header r flate.Reader decompressor io.ReadCloser digest hash.Hash32 size uint32 flg byte buf [512]byte err error closeErr chan error multistream bool readAhead chan read roff int // read offset current []byte closeReader chan struct{} lastBlock bool blockSize int blocks int activeRA bool // Indication if readahead is active mu sync.Mutex // Lock for above blockPool chan []byte } type read struct { b []byte err error } // NewReader creates a new Reader reading the given reader. // The implementation buffers input and may read more data than necessary from r. // It is the caller's responsibility to call Close on the Reader when done. func NewReader(r io.Reader) (*Reader, error) { z := new(Reader) z.blocks = defaultBlocks z.blockSize = defaultBlockSize z.r = makeReader(r) z.digest = crc32.NewIEEE() z.multistream = true z.blockPool = make(chan []byte, z.blocks) for i := 0; i < z.blocks; i++ { z.blockPool <- make([]byte, z.blockSize) } if err := z.readHeader(true); err != nil { return nil, err } return z, nil } // NewReaderN creates a new Reader reading the given reader. // The implementation buffers input and may read more data than necessary from r. // It is the caller's responsibility to call Close on the Reader when done. // // With this you can control the approximate size of your blocks, // as well as how many blocks you want to have prefetched. // // Default values for this is blockSize = 250000, blocks = 16, // meaning up to 16 blocks of maximum 250000 bytes will be // prefetched. func NewReaderN(r io.Reader, blockSize, blocks int) (*Reader, error) { z := new(Reader) z.blocks = blocks z.blockSize = blockSize z.r = makeReader(r) z.digest = crc32.NewIEEE() z.multistream = true // Account for too small values if z.blocks <= 0 { z.blocks = defaultBlocks } if z.blockSize <= 512 { z.blockSize = defaultBlockSize } z.blockPool = make(chan []byte, z.blocks) for i := 0; i < z.blocks; i++ { z.blockPool <- make([]byte, z.blockSize) } if err := z.readHeader(true); err != nil { return nil, err } return z, nil } // Reset discards the Reader z's state and makes it equivalent to the // result of its original state from NewReader, but reading from r instead. // This permits reusing a Reader rather than allocating a new one. func (z *Reader) Reset(r io.Reader) error { z.killReadAhead() z.r = makeReader(r) z.digest = crc32.NewIEEE() z.size = 0 z.err = nil z.multistream = true // Account for uninitialized values if z.blocks <= 0 { z.blocks = defaultBlocks } if z.blockSize <= 512 { z.blockSize = defaultBlockSize } if z.blockPool == nil { z.blockPool = make(chan []byte, z.blocks) for i := 0; i < z.blocks; i++ { z.blockPool <- make([]byte, z.blockSize) } } return z.readHeader(true) } // Multistream controls whether the reader supports multistream files. // // If enabled (the default), the Reader expects the input to be a sequence // of individually gzipped data streams, each with its own header and // trailer, ending at EOF. The effect is that the concatenation of a sequence // of gzipped files is treated as equivalent to the gzip of the concatenation // of the sequence. This is standard behavior for gzip readers. // // Calling Multistream(false) disables this behavior; disabling the behavior // can be useful when reading file formats that distinguish individual gzip // data streams or mix gzip data streams with other data streams. // In this mode, when the Reader reaches the end of the data stream, // Read returns io.EOF. If the underlying reader implements io.ByteReader, // it will be left positioned just after the gzip stream. // To start the next stream, call z.Reset(r) followed by z.Multistream(false). // If there is no next stream, z.Reset(r) will return io.EOF. func (z *Reader) Multistream(ok bool) { z.multistream = ok } // GZIP (RFC 1952) is little-endian, unlike ZLIB (RFC 1950). func get4(p []byte) uint32 { return uint32(p[0]) | uint32(p[1])<<8 | uint32(p[2])<<16 | uint32(p[3])<<24 } func (z *Reader) readString() (string, error) { var err error needconv := false for i := 0; ; i++ { if i >= len(z.buf) { return "", ErrHeader } z.buf[i], err = z.r.ReadByte() if err != nil { return "", err } if z.buf[i] > 0x7f { needconv = true } if z.buf[i] == 0 { // GZIP (RFC 1952) specifies that strings are NUL-terminated ISO 8859-1 (Latin-1). if needconv { s := make([]rune, 0, i) for _, v := range z.buf[0:i] { s = append(s, rune(v)) } return string(s), nil } return string(z.buf[0:i]), nil } } } func (z *Reader) read2() (uint32, error) { _, err := io.ReadFull(z.r, z.buf[0:2]) if err != nil { return 0, err } return uint32(z.buf[0]) | uint32(z.buf[1])<<8, nil } func (z *Reader) readHeader(save bool) error { z.killReadAhead() _, err := io.ReadFull(z.r, z.buf[0:10]) if err != nil { return err } if z.buf[0] != gzipID1 || z.buf[1] != gzipID2 || z.buf[2] != gzipDeflate { return ErrHeader } z.flg = z.buf[3] if save { z.ModTime = time.Unix(int64(get4(z.buf[4:8])), 0) // z.buf[8] is xfl, ignored z.OS = z.buf[9] } z.digest.Reset() z.digest.Write(z.buf[0:10]) if z.flg&flagExtra != 0 { n, err := z.read2() if err != nil { return err } data := make([]byte, n) if _, err = io.ReadFull(z.r, data); err != nil { return err } if save { z.Extra = data } } var s string if z.flg&flagName != 0 { if s, err = z.readString(); err != nil { return err } if save { z.Name = s } } if z.flg&flagComment != 0 { if s, err = z.readString(); err != nil { return err } if save { z.Comment = s } } if z.flg&flagHdrCrc != 0 { n, err := z.read2() if err != nil { return err } sum := z.digest.Sum32() & 0xFFFF if n != sum { return ErrHeader } } z.digest.Reset() z.decompressor = flate.NewReader(z.r) z.doReadAhead() return nil } func (z *Reader) killReadAhead() error { z.mu.Lock() defer z.mu.Unlock() if z.activeRA { if z.closeReader != nil { close(z.closeReader) } // Wait for decompressor to be closed and return error, if any. e, ok := <-z.closeErr z.activeRA = false if !ok { // Channel is closed, so if there was any error it has already been returned. return nil } return e } return nil } // Starts readahead. // Will return on error (including io.EOF) // or when z.closeReader is closed. func (z *Reader) doReadAhead() { z.mu.Lock() defer z.mu.Unlock() z.activeRA = true if z.blocks <= 0 { z.blocks = defaultBlocks } if z.blockSize <= 512 { z.blockSize = defaultBlockSize } ra := make(chan read, z.blocks) z.readAhead = ra closeReader := make(chan struct{}, 0) z.closeReader = closeReader z.lastBlock = false closeErr := make(chan error, 1) z.closeErr = closeErr z.size = 0 z.roff = 0 z.current = nil decomp := z.decompressor go func() { defer func() { closeErr <- decomp.Close() close(closeErr) close(ra) }() // We hold a local reference to digest, since // it way be changed by reset. digest := z.digest var wg sync.WaitGroup for { var buf []byte select { case buf = <-z.blockPool: case <-closeReader: return } buf = buf[0:z.blockSize] // Try to fill the buffer n, err := io.ReadFull(decomp, buf) if err == io.ErrUnexpectedEOF { err = nil } if n < len(buf) { buf = buf[0:n] } wg.Wait() wg.Add(1) go func() { digest.Write(buf) wg.Done() }() z.size += uint32(n) // If we return any error, out digest must be ready if err != nil { wg.Wait() } select { case z.readAhead <- read{b: buf, err: err}: case <-closeReader: // Sent on close, we don't care about the next results return } if err != nil { return } } }() } func (z *Reader) Read(p []byte) (n int, err error) { if z.err != nil { return 0, z.err } if len(p) == 0 { return 0, nil } for { if len(z.current) == 0 && !z.lastBlock { read := <-z.readAhead if read.err != nil { // If not nil, the reader will have exited z.closeReader = nil if read.err != io.EOF { z.err = read.err return } if read.err == io.EOF { z.lastBlock = true err = nil } } z.current = read.b z.roff = 0 } avail := z.current[z.roff:] if len(p) >= len(avail) { // If len(p) >= len(current), return all content of current n = copy(p, avail) z.blockPool <- z.current z.current = nil if z.lastBlock { err = io.EOF break } } else { // We copy as much as there is space for n = copy(p, avail) z.roff += n } return } // Finished file; check checksum + size. if _, err := io.ReadFull(z.r, z.buf[0:8]); err != nil { z.err = err return 0, err } crc32, isize := get4(z.buf[0:4]), get4(z.buf[4:8]) sum := z.digest.Sum32() if sum != crc32 || isize != z.size { z.err = ErrChecksum return 0, z.err } // File is ok; should we attempt reading one more? if !z.multistream { return 0, io.EOF } // Is there another? if err = z.readHeader(false); err != nil { z.err = err return } // Yes. Reset and read from it. return z.Read(p) } func (z *Reader) WriteTo(w io.Writer) (n int64, err error) { total := int64(0) for { if z.err != nil { return total, z.err } // We write both to output and digest. for { // Read from input read := <-z.readAhead if read.err != nil { // If not nil, the reader will have exited z.closeReader = nil if read.err != io.EOF { z.err = read.err return total, z.err } if read.err == io.EOF { z.lastBlock = true err = nil } } // Write what we got n, err := w.Write(read.b) if n != len(read.b) { return total, io.ErrShortWrite } total += int64(n) if err != nil { return total, err } // Put block back z.blockPool <- read.b if z.lastBlock { break } } // Finished file; check checksum + size. if _, err := io.ReadFull(z.r, z.buf[0:8]); err != nil { z.err = err return total, err } crc32, isize := get4(z.buf[0:4]), get4(z.buf[4:8]) sum := z.digest.Sum32() if sum != crc32 || isize != z.size { z.err = ErrChecksum return total, z.err } // File is ok; should we attempt reading one more? if !z.multistream { return total, nil } // Is there another? err = z.readHeader(false) if err == io.EOF { return total, nil } if err != nil { z.err = err return total, err } } } // Close closes the Reader. It does not close the underlying io.Reader. func (z *Reader) Close() error { return z.killReadAhead() }