// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package flate import ( "math" "sort" ) type hcode uint32 type huffmanEncoder struct { codes []hcode freqcache []literalNode bitCount [17]int32 lns literalNodeSorter lfs literalFreqSorter } type literalNode struct { literal uint16 freq int32 } // A levelInfo describes the state of the constructed tree for a given depth. type levelInfo struct { // Our level. for better printing level int32 // The frequency of the last node at this level lastFreq int32 // The frequency of the next character to add to this level nextCharFreq int32 // The frequency of the next pair (from level below) to add to this level. // Only valid if the "needed" value of the next lower level is 0. nextPairFreq int32 // The number of chains remaining to generate for this level before moving // up to the next level needed int32 } func (h hcode) codeBits() (code uint16, bits uint8) { return uint16(h), uint8(h >> 16) } func (h *hcode) set(code uint16, bits uint8) { *h = hcode(code) | hcode(uint32(bits)<<16) } func (h *hcode) setBits(bits uint8) { *h = hcode(*h&0xffff) | hcode(uint32(bits)<<16) } func toCode(code uint16, bits uint8) hcode { return hcode(code) | hcode(uint32(bits)<<16) } func (h hcode) code() (code uint16) { return uint16(h) } func (h hcode) bits() (bits uint) { return uint(h >> 16) } func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} } func newHuffmanEncoder(size int) *huffmanEncoder { return &huffmanEncoder{codes: make([]hcode, size), freqcache: nil} } // Generates a HuffmanCode corresponding to the fixed literal table func generateFixedLiteralEncoding() *huffmanEncoder { h := newHuffmanEncoder(maxNumLit) codes := h.codes var ch uint16 for ch = 0; ch < maxNumLit; ch++ { var bits uint16 var size uint8 switch { case ch < 144: // size 8, 000110000 .. 10111111 bits = ch + 48 size = 8 break case ch < 256: // size 9, 110010000 .. 111111111 bits = ch + 400 - 144 size = 9 break case ch < 280: // size 7, 0000000 .. 0010111 bits = ch - 256 size = 7 break default: // size 8, 11000000 .. 11000111 bits = ch + 192 - 280 size = 8 } codes[ch] = toCode(reverseBits(bits, size), size) } return h } func generateFixedOffsetEncoding() *huffmanEncoder { h := newHuffmanEncoder(30) codes := h.codes for ch := uint16(0); ch < 30; ch++ { codes[ch] = toCode(reverseBits(ch, 5), 5) } return h } var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding() var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding() func (h *huffmanEncoder) bitLength(freq []int32) int64 { var total int64 for i, f := range freq { if f != 0 { total += int64(f) * int64(h.codes[i].bits()) } } return total } const maxBitsLimit = 16 // Return the number of literals assigned to each bit size in the Huffman encoding // // This method is only called when list.length >= 3 // The cases of 0, 1, and 2 literals are handled by special case code. // // list An array of the literals with non-zero frequencies // and their associated frequencies. The array is in order of increasing // frequency, and has as its last element a special element with frequency // MaxInt32 // maxBits The maximum number of bits that should be used to encode any literal. // Must be less than 16. // return An integer array in which array[i] indicates the number of literals // that should be encoded in i bits. func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 { if maxBits >= maxBitsLimit { panic("flate: maxBits too large") } n := int32(len(list)) list = list[0 : n+1] list[n] = maxNode() // The tree can't have greater depth than n - 1, no matter what. This // saves a little bit of work in some small cases if maxBits > n-1 { maxBits = n - 1 } // Create information about each of the levels. // A bogus "Level 0" whose sole purpose is so that // level1.prev.needed==0. This makes level1.nextPairFreq // be a legitimate value that never gets chosen. var levels [maxBitsLimit]levelInfo // leafCounts[i] counts the number of literals at the left // of ancestors of the rightmost node at level i. // leafCounts[i][j] is the number of literals at the left // of the level j ancestor. var leafCounts [maxBitsLimit][maxBitsLimit]int32 for level := int32(1); level <= maxBits; level++ { // For every level, the first two items are the first two characters. // We initialize the levels as if we had already figured this out. levels[level] = levelInfo{ level: level, lastFreq: list[1].freq, nextCharFreq: list[2].freq, nextPairFreq: list[0].freq + list[1].freq, } leafCounts[level][level] = 2 if level == 1 { levels[level].nextPairFreq = math.MaxInt32 } } // We need a total of 2*n - 2 items at top level and have already generated 2. levels[maxBits].needed = 2*n - 4 level := maxBits for { l := &levels[level] if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 { // We've run out of both leafs and pairs. // End all calculations for this level. // To make sure we never come back to this level or any lower level, // set nextPairFreq impossibly large. l.needed = 0 levels[level+1].nextPairFreq = math.MaxInt32 level++ continue } prevFreq := l.lastFreq if l.nextCharFreq < l.nextPairFreq { // The next item on this row is a leaf node. n := leafCounts[level][level] + 1 l.lastFreq = l.nextCharFreq // Lower leafCounts are the same of the previous node. leafCounts[level][level] = n l.nextCharFreq = list[n].freq } else { // The next item on this row is a pair from the previous row. // nextPairFreq isn't valid until we generate two // more values in the level below l.lastFreq = l.nextPairFreq // Take leaf counts from the lower level, except counts[level] remains the same. copy(leafCounts[level][:level], leafCounts[level-1][:level]) levels[l.level-1].needed = 2 } if l.needed--; l.needed == 0 { // We've done everything we need to do for this level. // Continue calculating one level up. Fill in nextPairFreq // of that level with the sum of the two nodes we've just calculated on // this level. if l.level == maxBits { // All done! break } levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq level++ } else { // If we stole from below, move down temporarily to replenish it. for levels[level-1].needed > 0 { level-- } } } // Somethings is wrong if at the end, the top level is null or hasn't used // all of the leaves. if leafCounts[maxBits][maxBits] != n { panic("leafCounts[maxBits][maxBits] != n") } bitCount := h.bitCount[:maxBits+1] //make([]int32, maxBits+1) bits := 1 counts := &leafCounts[maxBits] for level := maxBits; level > 0; level-- { // chain.leafCount gives the number of literals requiring at least "bits" // bits to encode. bitCount[bits] = counts[level] - counts[level-1] bits++ } return bitCount } // Look at the leaves and assign them a bit count and an encoding as specified // in RFC 1951 3.2.2 func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) { code := uint16(0) for n, bits := range bitCount { code <<= 1 if n == 0 || bits == 0 { continue } // The literals list[len(list)-bits] .. list[len(list)-bits] // are encoded using "bits" bits, and get the values // code, code + 1, .... The code values are // assigned in literal order (not frequency order). chunk := list[len(list)-int(bits):] h.lns.Sort(chunk) for _, node := range chunk { h.codes[node.literal] = toCode(reverseBits(code, uint8(n)), uint8(n)) code++ } list = list[0 : len(list)-int(bits)] } } // Update this Huffman Code object to be the minimum code for the specified frequency count. // // freq An array of frequencies, in which frequency[i] gives the frequency of literal i. // maxBits The maximum number of bits to use for any literal. func (h *huffmanEncoder) generate(freq []int32, maxBits int32) { if h.freqcache == nil { h.freqcache = make([]literalNode, 300) } list := h.freqcache[:len(freq)+1] // Number of non-zero literals count := 0 // Set list to be the set of all non-zero literals and their frequencies for i, f := range freq { if f != 0 { list[count] = literalNode{uint16(i), f} count++ } else { list[count] = literalNode{} //h.codeBits[i] = 0 h.codes[i].setBits(0) } } list[len(freq)] = literalNode{} // If freq[] is shorter than codeBits[], fill rest of codeBits[] with zeros // FIXME: Doesn't do what it says on the tin (klauspost) //h.codeBits = h.codeBits[0:len(freq)] list = list[0:count] if count <= 2 { // Handle the small cases here, because they are awkward for the general case code. With // two or fewer literals, everything has bit length 1. for i, node := range list { // "list" is in order of increasing literal value. h.codes[node.literal].set(uint16(i), 1) //h.codeBits[node.literal] = 1 //h.code[node.literal] = uint16(i) } return } h.lfs.Sort(list) // Get the number of literals for each bit count bitCount := h.bitCounts(list, maxBits) // And do the assignment h.assignEncodingAndSize(bitCount, list) } type literalNodeSorter []literalNode func (s *literalNodeSorter) Sort(a []literalNode) { *s = literalNodeSorter(a) sort.Sort(s) } func (s literalNodeSorter) Len() int { return len(s) } func (s literalNodeSorter) Less(i, j int) bool { return s[i].literal < s[j].literal } func (s literalNodeSorter) Swap(i, j int) { s[i], s[j] = s[j], s[i] } type literalFreqSorter []literalNode func (s *literalFreqSorter) Sort(a []literalNode) { *s = literalFreqSorter(a) sort.Sort(s) } func (s literalFreqSorter) Len() int { return len(s) } func (s literalFreqSorter) Less(i, j int) bool { if s[i].freq == s[j].freq { return s[i].literal < s[j].literal } return s[i].freq < s[j].freq } func (s literalFreqSorter) Swap(i, j int) { s[i], s[j] = s[j], s[i] }