packer-cn/common/bootcommand/boot_command_ast.go

158 lines
3.5 KiB
Go

package bootcommand
import (
"context"
"fmt"
"log"
"strings"
"time"
)
// KeysAction represents what we want to do with a key press.
// It can take 3 states. We either want to:
// * press the key once
// * press and hold
// * press and release
type KeyAction int
const (
KeyOn KeyAction = 1 << iota
KeyOff
KeyPress
)
func (k KeyAction) String() string {
switch k {
case KeyOn:
return "On"
case KeyOff:
return "Off"
case KeyPress:
return "Press"
}
panic(fmt.Sprintf("Unknwon KeyAction %d", k))
}
type expression interface {
// Do executes the expression
Do(context.Context, BCDriver) error
// Validate validates the expression without executing it
Validate() error
}
type expressionSequence []expression
// Do executes every expression in the sequence and then flushes remaining
// scancodes.
func (s expressionSequence) Do(ctx context.Context, b BCDriver) error {
// validate should never fail here, since it should be called before
// expressionSequence.Do. Only reason we don't panic is so we can clean up.
if errs := s.Validate(); errs != nil {
return fmt.Errorf("Found an invalid boot command. This is likely an error in Packer, so please open a ticket.")
}
for _, exp := range s {
if err := ctx.Err(); err != nil {
return err
}
if err := exp.Do(ctx, b); err != nil {
return err
}
}
return b.Flush()
}
// Validate tells us if every expression in the sequence is valid.
func (s expressionSequence) Validate() (errs []error) {
for _, exp := range s {
if err := exp.Validate(); err != nil {
errs = append(errs, err)
}
}
return
}
// GenerateExpressionSequence generates a sequence of expressions from the
// given command. This is the primary entry point to the boot command parser.
func GenerateExpressionSequence(command string) (expressionSequence, error) {
seq := expressionSequence{}
if command == "" {
return seq, nil
}
got, err := ParseReader("", strings.NewReader(command))
if err != nil {
return nil, err
}
for _, exp := range got.([]interface{}) {
seq = append(seq, exp.(expression))
}
return seq, nil
}
type waitExpression struct {
d time.Duration
}
// Do waits the amount of time described by the expression. It is cancellable
// through the context.
func (w *waitExpression) Do(ctx context.Context, driver BCDriver) error {
driver.Flush()
log.Printf("[INFO] Waiting %s", w.d)
select {
case <-time.After(w.d):
return nil
case <-ctx.Done():
return ctx.Err()
}
}
// Validate returns an error if the time is <= 0
func (w *waitExpression) Validate() error {
if w.d <= 0 {
return fmt.Errorf("Expecting a positive wait value. Got %s", w.d)
}
return nil
}
func (w *waitExpression) String() string {
return fmt.Sprintf("Wait<%s>", w.d)
}
type specialExpression struct {
s string
action KeyAction
}
// Do sends the special command to the driver, along with the key action.
func (s *specialExpression) Do(ctx context.Context, driver BCDriver) error {
return driver.SendSpecial(s.s, s.action)
}
// Validate always passes
func (s *specialExpression) Validate() error {
return nil
}
func (s *specialExpression) String() string {
return fmt.Sprintf("Spec-%s(%s)", s.action, s.s)
}
type literal struct {
s rune
action KeyAction
}
// Do sends the key to the driver, along with the key action.
func (l *literal) Do(ctx context.Context, driver BCDriver) error {
return driver.SendKey(l.s, l.action)
}
// Validate always passes
func (l *literal) Validate() error {
return nil
}
func (l *literal) String() string {
return fmt.Sprintf("LIT-%s(%s)", l.action, string(l.s))
}