packer-cn/builder/vmware/common/driver_parser.go

2433 lines
66 KiB
Go

package common
import (
"bytes"
"encoding/hex"
"fmt"
"log"
"math"
"net"
"os"
"reflect"
"regexp"
"sort"
"strconv"
"strings"
"time"
)
/** low-level parsing */
// strip the comments and extraneous newlines from a byte channel
func uncomment(in <-chan byte) chan byte {
out := make(chan byte)
go func(in <-chan byte, out chan byte) {
var endofline bool
for {
by, ok := <-in
if !ok {
break
}
// If we find a comment, then everything until the end of line
// needs to be culled. We keep track of that using the `endofline`
// flag.
if by == '#' {
endofline = true
} else if by == '\n' && endofline {
endofline = false
}
// If we're not in the processing of culling bytes, then write what
// we've read into our output chan.
if !endofline {
out <- by
}
}
close(out)
}(in, out)
return out
}
// convert a byte channel into a channel of pseudo-tokens
func tokenizeDhcpConfig(in chan byte) chan string {
var state string
var quote bool
out := make(chan string)
go func(out chan string) {
for {
by, ok := <-in
if !ok {
break
}
// If we're in a quote, then we continue until we're not in a quote
// before we start looing for tokens
if quote {
if by == '"' {
out <- state + string(by)
state, quote = "", false
continue
}
state += string(by)
continue
}
switch by {
case '"':
// Otherwise we're outside any quotes and can process bytes normaly
quote = true
state += string(by)
continue
case '\r':
fallthrough
case '\n':
fallthrough
case '\t':
fallthrough
case ' ':
// Whitespace is a separator, so we check to see if there's any state.
// If so, then write our state prior to resetting.
if len(state) == 0 {
continue
}
out <- state
state = ""
case '{':
fallthrough
case '}':
fallthrough
case ';':
// If we encounter a brace or a semicolon, then we need to emit our
// state and then the byte because it can be part of the token.
if len(state) > 0 {
out <- state
}
out <- string(by)
state = ""
default:
// Just a byte which needs to be aggregated into our state
state += string(by)
}
}
// If we still have any data left, then make sure to emit that
if len(state) > 0 {
out <- state
}
// Close our channel since we're responsible for it.
close(out)
}(out)
return out
}
/** mid-level parsing */
type tkParameter struct {
name string
operand []string
}
func (e *tkParameter) String() string {
var values []string
for _, val := range e.operand {
values = append(values, val)
}
return fmt.Sprintf("%s [%s]", e.name, strings.Join(values, ","))
}
type tkGroup struct {
parent *tkGroup
id tkParameter
groups []*tkGroup
params []tkParameter
}
func (e *tkGroup) String() string {
var id []string
id = append(id, e.id.name)
for _, val := range e.id.operand {
id = append(id, val)
}
var config []string
for _, val := range e.params {
config = append(config, val.String())
}
return fmt.Sprintf("%s {\n%s\n}", strings.Join(id, " "), strings.Join(config, "\n"))
}
// convert a channel of pseudo-tokens into an tkParameter struct
func parseTokenParameter(in chan string) tkParameter {
var result tkParameter
for {
token, ok := <-in
if !ok {
break
}
// If there's no name for this parameter yet, then the first token
// is our name. Snag it into our struct, and grab the next one.
if result.name == "" {
result.name = token
continue
}
// If encounter any braces or line-terminators, then we're done parsing.
// Anything else we find are just operands we need to keep track of.
if strings.ContainsAny("{};", token) {
break
} else {
result.operand = append(result.operand, token)
}
}
return result
}
// convert a channel of pseudo-tokens into an tkGroup tree */
func parseDhcpConfig(in chan string) (tkGroup, error) {
var tokens []string
var result tkGroup
// This utility function takes a list of tokens and line-terminates them
// before sending them to parseTokenParameter().
toParameter := func(tokens []string) tkParameter {
out := make(chan string)
go func(out chan string) {
for _, v := range tokens {
out <- v
}
out <- ";"
close(out)
}(out)
return parseTokenParameter(out)
}
// Start building our tree using result as our root node
node := &result
for {
tk, ok := <-in
if !ok {
break
}
switch tk {
case "{":
// If our next token is an opening brace, then we need to collect our
// current aggregated tokens to parse, push our current node onto the
// tree, and then pivot into it. Then we can reset our tokens for the child.
grp := &tkGroup{parent: node}
grp.id = toParameter(tokens)
node.groups = append(node.groups, grp)
node = grp
tokens = []string{}
case "}":
// Otherwise if it's a closing brace, then we need to pop back up to
// the parent node and resume parsing. If we have any tokens, then
// that was because they were unterminated. Raise an error in that case.
if node.parent == nil {
return tkGroup{}, fmt.Errorf("Refusing to close the global declaration")
}
if len(tokens) > 0 {
return tkGroup{}, fmt.Errorf("List of tokens was left unterminated : %v", tokens)
}
node = node.parent
tokens = []string{}
case ";":
// If we encounter a line-terminator, then the list of tokens we've been
// aggregating are ready to be parsed. Afterwards, we can write them
// to our current tree node.
arg := toParameter(tokens)
node.params = append(node.params, arg)
tokens = []string{}
default:
// Anything else requires us to aggregate our token into our list, and
// try grabbing the next one.
tokens = append(tokens, tk)
}
}
return result, nil
}
func tokenizeNetworkMapConfig(in chan byte) chan string {
var state string
var quote bool
var lastnewline bool
// This logic is very similar to tokenizeDhcpConfig except she needs to handle
// braces, and we don't. This is the only major difference from us.
out := make(chan string)
go func(out chan string) {
for {
by, ok := <-in
if !ok {
break
}
// If we're currently inide a quote, then we need to continue until
// we encounter the closing quote. We'll keep collecting our state
// in the meantime.
if quote {
if by == '"' {
out <- state + string(by)
state, quote = "", false
continue
}
state += string(by)
continue
}
switch by {
case '"':
// If we encounter a quote, then we need to transition into our
// quote-parsing state that keeps collecting data until the closing
// quote is encountered.
quote = true
state += string(by)
continue
case '\r':
fallthrough
case '\t':
fallthrough
case ' ':
// Whitespace is considered a separator, so if we encounter this
// then we can write our current state, and then reset.
if len(state) == 0 {
continue
}
out <- state
state = ""
case '\n':
// Newlines are a somewhat special case because they separate each
// attribute/line-item, and they can repeat. We need to preserve
// this token, so we write our current state, then the newline.
// We also maintain a flag so that we can consolidate multiple
// newlines together.
if lastnewline {
continue
}
if len(state) > 0 {
out <- state
}
out <- string(by)
state = ""
lastnewline = true
continue
case '.':
fallthrough
case '=':
// These characters separate attributes or tokens from one another,
// so they result in writing the state, the character, and then reset.
if len(state) > 0 {
out <- state
}
out <- string(by)
state = ""
default:
// Any byte we couldn't parse just gets aggregated for the next pass.
state += string(by)
}
// If we made it here, then we can guarantee that the we didn't just
// process a newline. Clear this flag for the next one we find.
lastnewline = false
}
// If there's anything left in our state, then the last line was just not
// newline-terminated. This is a common occurrence, so write our current
// state before we finish.
if len(state) > 0 {
out <- state
}
close(out)
}(out)
return out
}
func parseNetworkMapConfig(in chan string) (NetworkMap, error) {
var state []string
unsorted := make(map[string]map[string]string)
// A network map has the following syntax "network.attribute = value". This
// closure is responsible for using the "network" as a key into the `unsorted`
// mapping, and then assigning the "value" into it keyed by the "attribute".
addResult := func(network string, attribute string, value string) error {
_, ok := unsorted[network]
if !ok {
unsorted[network] = make(map[string]string)
}
val, err := strconv.Unquote(value)
if err != nil {
return err
}
current := unsorted[network]
current[attribute] = val
return nil
}
// Loop through all of our tokens making sure to update our unsorted map.
for {
tk, ok := <-in
if !ok {
// If our token channel is closed, then check to see if we've
// collected 3 items in our state. If so, then we can add this
// final attribute/value before we leave.
if len(state) == 3 {
err := addResult(state[0], state[1], state[2])
if err != nil {
return nil, err
}
}
break
}
// This switch makes sure we encounter these tokens in the correct order.
switch tk {
case ".":
if len(state) != 1 {
return nil, fmt.Errorf("Missing network index")
}
case "=":
if len(state) != 2 {
return nil, fmt.Errorf("Assignment to empty attribute")
}
case "\n":
if len(state) == 0 {
continue
}
if len(state) != 3 {
return nil, fmt.Errorf("Invalid attribute assignment : %v", state)
}
err := addResult(state[0], state[1], state[2])
if err != nil {
return nil, err
}
state = make([]string, 0)
default:
state = append(state, tk)
}
}
// Go through our unsorted map, and collect all of the keys for "network".
result := make([]map[string]string, 0)
var keys []string
for k := range unsorted {
keys = append(keys, k)
}
// This way we can sort them.
sort.Strings(keys)
// And then collect all of them into a list to return to the caller.
for _, k := range keys {
result = append(result, unsorted[k])
}
return result, nil
}
/** higher-level parsing */
/// parameters
type pParameter interface {
repr() string
}
type pParameterInclude struct {
filename string
}
func (e pParameterInclude) repr() string { return fmt.Sprintf("include-file:filename=%s", e.filename) }
type pParameterOption struct {
name string
value string
}
func (e pParameterOption) repr() string { return fmt.Sprintf("option:%s=%s", e.name, e.value) }
// allow some-kind-of-something
type pParameterGrant struct {
verb string // allow,deny,ignore
attribute string
}
func (e pParameterGrant) repr() string { return fmt.Sprintf("grant:%s,%s", e.verb, e.attribute) }
type pParameterAddress4 []string
func (e pParameterAddress4) repr() string {
return fmt.Sprintf("fixed-address4:%s", strings.Join(e, ","))
}
type pParameterAddress6 []string
func (e pParameterAddress6) repr() string {
return fmt.Sprintf("fixed-address6:%s", strings.Join(e, ","))
}
// hardware address 00:00:00:00:00:00
type pParameterHardware struct {
class string
address []byte
}
func (e pParameterHardware) repr() string {
res := make([]string, 0)
for _, v := range e.address {
res = append(res, fmt.Sprintf("%02x", v))
}
return fmt.Sprintf("hardware-address:%s[%s]", e.class, strings.Join(res, ":"))
}
type pParameterBoolean struct {
parameter string
truancy bool
}
func (e pParameterBoolean) repr() string { return fmt.Sprintf("boolean:%s=%v", e.parameter, e.truancy) }
type pParameterClientMatch struct {
name string
data string
}
func (e pParameterClientMatch) repr() string {
return fmt.Sprintf("match-client:%s=%s", e.name, e.data)
}
// range 127.0.0.1 127.0.0.255
type pParameterRange4 struct {
min net.IP
max net.IP
}
func (e pParameterRange4) repr() string {
return fmt.Sprintf("range4:%s-%s", e.min.String(), e.max.String())
}
type pParameterRange6 struct {
min net.IP
max net.IP
}
func (e pParameterRange6) repr() string {
return fmt.Sprintf("range6:%s-%s", e.min.String(), e.max.String())
}
type pParameterPrefix6 struct {
min net.IP
max net.IP
bits int
}
func (e pParameterPrefix6) repr() string {
return fmt.Sprintf("prefix6:/%d:%s-%s", e.bits, e.min.String(), e.max.String())
}
// some-kind-of-parameter 1024
type pParameterOther struct {
parameter string
value string
}
func (e pParameterOther) repr() string { return fmt.Sprintf("parameter:%s=%s", e.parameter, e.value) }
type pParameterExpression struct {
parameter string
expression string
}
func (e pParameterExpression) repr() string {
return fmt.Sprintf("parameter-expression:%s=\"%s\"", e.parameter, e.expression)
}
type pDeclarationIdentifier interface {
repr() string
}
type pDeclaration struct {
id pDeclarationIdentifier
parent *pDeclaration
parameters []pParameter
declarations []pDeclaration
}
func (e *pDeclaration) short() string {
return e.id.repr()
}
func (e *pDeclaration) repr() string {
res := e.short()
var parameters []string
for _, v := range e.parameters {
parameters = append(parameters, v.repr())
}
var groups []string
for _, v := range e.declarations {
groups = append(groups, fmt.Sprintf("-> %s", v.short()))
}
if e.parent != nil {
res = fmt.Sprintf("%s parent:%s", res, e.parent.short())
}
return fmt.Sprintf("%s\n%s\n%s\n", res, strings.Join(parameters, "\n"), strings.Join(groups, "\n"))
}
type pDeclarationGlobal struct{}
func (e pDeclarationGlobal) repr() string { return fmt.Sprintf("{global}") }
type pDeclarationShared struct{ name string }
func (e pDeclarationShared) repr() string { return fmt.Sprintf("{shared-network %s}", e.name) }
type pDeclarationSubnet4 struct{ net.IPNet }
func (e pDeclarationSubnet4) repr() string { return fmt.Sprintf("{subnet4 %s}", e.String()) }
type pDeclarationSubnet6 struct{ net.IPNet }
func (e pDeclarationSubnet6) repr() string { return fmt.Sprintf("{subnet6 %s}", e.String()) }
type pDeclarationHost struct{ name string }
func (e pDeclarationHost) repr() string { return fmt.Sprintf("{host name:%s}", e.name) }
type pDeclarationPool struct{}
func (e pDeclarationPool) repr() string { return fmt.Sprintf("{pool}") }
type pDeclarationGroup struct{}
func (e pDeclarationGroup) repr() string { return fmt.Sprintf("{group}") }
type pDeclarationClass struct{ name string }
func (e pDeclarationClass) repr() string { return fmt.Sprintf("{class}") }
/** parsers */
func parseParameter(val tkParameter) (pParameter, error) {
switch val.name {
case "include":
if len(val.operand) != 2 {
return nil, fmt.Errorf("Invalid number of parameters for pParameterInclude : %v", val.operand)
}
name := val.operand[0]
return pParameterInclude{filename: name}, nil
case "option":
if len(val.operand) != 2 {
return nil, fmt.Errorf("Invalid number of parameters for pParameterOption : %v", val.operand)
}
name, value := val.operand[0], val.operand[1]
return pParameterOption{name: name, value: value}, nil
case "allow":
fallthrough
case "deny":
fallthrough
case "ignore":
if len(val.operand) < 1 {
return nil, fmt.Errorf("Invalid number of parameters for pParameterGrant : %v", val.operand)
}
attribute := strings.Join(val.operand, " ")
return pParameterGrant{verb: strings.ToLower(val.name), attribute: attribute}, nil
case "range":
if len(val.operand) < 1 {
return nil, fmt.Errorf("Invalid number of parameters for pParameterRange4 : %v", val.operand)
}
idxAddress := map[bool]int{true: 1, false: 0}[strings.ToLower(val.operand[0]) == "bootp"]
if len(val.operand) > 2+idxAddress {
return nil, fmt.Errorf("Invalid number of parameters for pParameterRange : %v", val.operand)
}
if idxAddress+1 > len(val.operand) {
res := net.ParseIP(val.operand[idxAddress])
return pParameterRange4{min: res, max: res}, nil
}
addr1 := net.ParseIP(val.operand[idxAddress])
addr2 := net.ParseIP(val.operand[idxAddress+1])
return pParameterRange4{min: addr1, max: addr2}, nil
case "range6":
if len(val.operand) == 1 {
address := val.operand[0]
if strings.Contains(address, "/") {
cidr := strings.SplitN(address, "/", 2)
if len(cidr) != 2 {
return nil, fmt.Errorf("Unknown ipv6 format : %v", address)
}
address := net.ParseIP(cidr[0])
bits, err := strconv.Atoi(cidr[1])
if err != nil {
return nil, err
}
mask := net.CIDRMask(bits, net.IPv6len*8)
// figure out the network address
network := address.Mask(mask)
// make a broadcast address
broadcast := network
networkSize, totalSize := mask.Size()
hostSize := totalSize - networkSize
for i := networkSize / 8; i < totalSize/8; i++ {
broadcast[i] = byte(0xff)
}
octetIndex := network[networkSize/8]
bitsLeft := (uint32)(hostSize % 8)
broadcast[octetIndex] = network[octetIndex] | ((1 << bitsLeft) - 1)
// FIXME: check that the broadcast address was made correctly
return pParameterRange6{min: network, max: broadcast}, nil
}
res := net.ParseIP(address)
return pParameterRange6{min: res, max: res}, nil
}
if len(val.operand) == 2 {
addr := net.ParseIP(val.operand[0])
if strings.ToLower(val.operand[1]) == "temporary" {
return pParameterRange6{min: addr, max: addr}, nil
}
other := net.ParseIP(val.operand[1])
return pParameterRange6{min: addr, max: other}, nil
}
return nil, fmt.Errorf("Invalid number of parameters for pParameterRange6 : %v", val.operand)
case "prefix6":
if len(val.operand) != 3 {
return nil, fmt.Errorf("Invalid number of parameters for pParameterRange6 : %v", val.operand)
}
bits, err := strconv.Atoi(val.operand[2])
if err != nil {
return nil, fmt.Errorf("Invalid bits for pParameterPrefix6 : %v", val.operand[2])
}
minaddr := net.ParseIP(val.operand[0])
maxaddr := net.ParseIP(val.operand[1])
return pParameterPrefix6{min: minaddr, max: maxaddr, bits: bits}, nil
case "hardware":
if len(val.operand) != 2 {
return nil, fmt.Errorf("Invalid number of parameters for pParameterHardware : %v", val.operand)
}
class := val.operand[0]
octets := strings.Split(val.operand[1], ":")
address := make([]byte, 0)
for _, v := range octets {
b, err := strconv.ParseInt(v, 16, 0)
if err != nil {
return nil, err
}
address = append(address, byte(b))
}
return pParameterHardware{class: class, address: address}, nil
case "fixed-address":
ip4addrs := make(pParameterAddress4, len(val.operand))
copy(ip4addrs, val.operand)
return ip4addrs, nil
case "fixed-address6":
ip6addrs := make(pParameterAddress6, len(val.operand))
copy(ip6addrs, val.operand)
return ip6addrs, nil
case "host-identifier":
if len(val.operand) != 3 {
return nil, fmt.Errorf("Invalid number of parameters for pParameterClientMatch : %v", val.operand)
}
if val.operand[0] != "option" {
return nil, fmt.Errorf("Invalid match parameter : %v", val.operand[0])
}
optionName := val.operand[1]
optionData := val.operand[2]
return pParameterClientMatch{name: optionName, data: optionData}, nil
default:
length := len(val.operand)
if length < 1 {
return pParameterBoolean{parameter: val.name, truancy: true}, nil
} else if length > 1 {
if val.operand[0] == "=" {
return pParameterExpression{parameter: val.name, expression: strings.Join(val.operand[1:], "")}, nil
}
}
if length != 1 {
return nil, fmt.Errorf("Invalid number of parameters for pParameterOther : %v", val.operand)
}
if strings.ToLower(val.name) == "not" {
return pParameterBoolean{parameter: val.operand[0], truancy: false}, nil
}
return pParameterOther{parameter: val.name, value: val.operand[0]}, nil
}
}
func parseTokenGroup(val tkGroup) (*pDeclaration, error) {
params := val.id.operand
switch val.id.name {
case "group":
return &pDeclaration{id: pDeclarationGroup{}}, nil
case "pool":
return &pDeclaration{id: pDeclarationPool{}}, nil
case "host":
if len(params) == 1 {
return &pDeclaration{id: pDeclarationHost{name: params[0]}}, nil
}
case "subnet":
if len(params) == 3 && strings.ToLower(params[1]) == "netmask" {
addr := make([]byte, 4)
for i, v := range strings.SplitN(params[2], ".", 4) {
res, err := strconv.ParseInt(v, 10, 0)
if err != nil {
return nil, err
}
addr[i] = byte(res)
}
oc1, oc2, oc3, oc4 := addr[0], addr[1], addr[2], addr[3]
if subnet, mask := net.ParseIP(params[0]), net.IPv4Mask(oc1, oc2, oc3, oc4); subnet != nil && mask != nil {
return &pDeclaration{id: pDeclarationSubnet4{net.IPNet{IP: subnet, Mask: mask}}}, nil
}
}
case "subnet6":
if len(params) == 1 {
ip6 := strings.SplitN(params[0], "/", 2)
if len(ip6) == 2 && strings.Contains(ip6[0], ":") {
address := net.ParseIP(ip6[0])
prefix, err := strconv.Atoi(ip6[1])
if err != nil {
return nil, err
}
return &pDeclaration{id: pDeclarationSubnet6{net.IPNet{IP: address, Mask: net.CIDRMask(prefix, net.IPv6len*8)}}}, nil
}
}
case "shared-network":
if len(params) == 1 {
return &pDeclaration{id: pDeclarationShared{name: params[0]}}, nil
}
case "":
return &pDeclaration{id: pDeclarationGlobal{}}, nil
}
return nil, fmt.Errorf("Invalid pDeclaration : %v : %v", val.id.name, params)
}
func flattenDhcpConfig(root tkGroup) (*pDeclaration, error) {
result, err := parseTokenGroup(root)
if err != nil {
return nil, err
}
for _, p := range root.params {
param, err := parseParameter(p)
if err != nil {
return nil, err
}
result.parameters = append(result.parameters, param)
}
for _, p := range root.groups {
group, err := flattenDhcpConfig(*p)
if err != nil {
return nil, err
}
group.parent = result
result.declarations = append(result.declarations, *group)
}
return result, nil
}
/** reduce the tree into the things that we care about */
type grant uint
const (
ALLOW grant = iota
IGNORE grant = iota
DENY grant = iota
)
type configDeclaration struct {
id []pDeclarationIdentifier
composites []pDeclaration
address []pParameter
options map[string]string
grants map[string]grant
attributes map[string]bool
parameters map[string]string
expressions map[string]string
hostid []pParameterClientMatch
}
func createDeclaration(node pDeclaration) configDeclaration {
var hierarchy []pDeclaration
for n := &node; n != nil; n = n.parent {
hierarchy = append(hierarchy, *n)
}
var result configDeclaration
result.address = make([]pParameter, 0)
result.options = make(map[string]string)
result.grants = make(map[string]grant)
result.attributes = make(map[string]bool)
result.parameters = make(map[string]string)
result.expressions = make(map[string]string)
result.hostid = make([]pParameterClientMatch, 0)
// walk from globals to pDeclaration collecting all parameters
for i := len(hierarchy) - 1; i >= 0; i-- {
result.composites = append(result.composites, hierarchy[(len(hierarchy)-1)-i])
result.id = append(result.id, hierarchy[(len(hierarchy)-1)-i].id)
// update configDeclaration parameters
for _, p := range hierarchy[i].parameters {
switch p.(type) {
case pParameterOption:
result.options[p.(pParameterOption).name] = p.(pParameterOption).value
case pParameterGrant:
Grant := map[string]grant{"ignore": IGNORE, "allow": ALLOW, "deny": DENY}
result.grants[p.(pParameterGrant).attribute] = Grant[p.(pParameterGrant).verb]
case pParameterBoolean:
result.attributes[p.(pParameterBoolean).parameter] = p.(pParameterBoolean).truancy
case pParameterClientMatch:
result.hostid = append(result.hostid, p.(pParameterClientMatch))
case pParameterExpression:
result.expressions[p.(pParameterExpression).parameter] = p.(pParameterExpression).expression
case pParameterOther:
result.parameters[p.(pParameterOther).parameter] = p.(pParameterOther).value
default:
result.address = append(result.address, p)
}
}
}
return result
}
func (e *configDeclaration) repr() string {
var result []string
res := make([]string, 0)
for _, v := range e.id {
res = append(res, v.repr())
}
result = append(result, strings.Join(res, ","))
if len(e.address) > 0 {
res := make([]string, 0)
for _, v := range e.address {
res = append(res, v.repr())
}
result = append(result, fmt.Sprintf("address : %v", strings.Join(res, ",")))
}
if len(e.options) > 0 {
result = append(result, fmt.Sprintf("options : %v", e.options))
}
if len(e.grants) > 0 {
result = append(result, fmt.Sprintf("grants : %v", e.grants))
}
if len(e.attributes) > 0 {
result = append(result, fmt.Sprintf("attributes : %v", e.attributes))
}
if len(e.parameters) > 0 {
result = append(result, fmt.Sprintf("parameters : %v", e.parameters))
}
if len(e.expressions) > 0 {
result = append(result, fmt.Sprintf("parameter-expressions : %v", e.expressions))
}
if len(e.hostid) > 0 {
res := make([]string, 0)
for _, v := range e.hostid {
res = append(res, v.repr())
}
result = append(result, fmt.Sprintf("hostid : %v", strings.Join(res, " ")))
}
return strings.Join(result, "\n") + "\n"
}
func (e *configDeclaration) IP4() (net.IP, error) {
var result []string
for _, entry := range e.address {
switch entry.(type) {
case pParameterAddress4:
for _, s := range entry.(pParameterAddress4) {
result = append(result, s)
}
}
}
if len(result) > 1 {
return nil, fmt.Errorf("More than one address4 returned : %v", result)
} else if len(result) == 0 {
return nil, fmt.Errorf("No IP4 addresses found")
}
// Try and parse it as an IP4. If so, then it's good to return it as-is.
if res := net.ParseIP(result[0]); res != nil {
return res, nil
}
// Otherwise make an attempt to resolve it to an address.
res, err := net.ResolveIPAddr("ip4", result[0])
if err != nil {
return nil, err
}
return res.IP, nil
}
func (e *configDeclaration) IP6() (net.IP, error) {
var result []string
for _, entry := range e.address {
switch entry.(type) {
case pParameterAddress6:
for _, s := range entry.(pParameterAddress6) {
result = append(result, s)
}
}
}
if len(result) > 1 {
return nil, fmt.Errorf("More than one address6 returned : %v", result)
} else if len(result) == 0 {
return nil, fmt.Errorf("No IP6 addresses found")
}
// If we were able to parse it into an IP, then we can just return it.
if res := net.ParseIP(result[0]); res != nil {
return res, nil
}
// Otherwise, try to resolve it into an address.
res, err := net.ResolveIPAddr("ip6", result[0])
if err != nil {
return nil, err
}
return res.IP, nil
}
func (e *configDeclaration) Hardware() (net.HardwareAddr, error) {
var result []pParameterHardware
for _, addr := range e.address {
switch addr.(type) {
case pParameterHardware:
result = append(result, addr.(pParameterHardware))
}
}
if len(result) > 0 {
return nil, fmt.Errorf("More than one hardware address returned : %v", result)
}
res := make(net.HardwareAddr, 0)
for _, by := range result[0].address {
res = append(res, by)
}
return res, nil
}
/*** Dhcp Configuration */
type DhcpConfiguration []configDeclaration
func ReadDhcpConfiguration(fd *os.File) (DhcpConfiguration, error) {
fromfile := consumeFile(fd)
uncommented := uncomment(fromfile)
tokenized := tokenizeDhcpConfig(uncommented)
// Parse the tokenized DHCP configuration into a tree. We need it as a tree
// because DHCP declarations can inherit options from their parent
parsetree, err := parseDhcpConfig(tokenized)
if err != nil {
return nil, err
}
// Flatten the tree into a list of pDeclaration objects. This is responsible
// for actually propagating options from the parent pDeclaration into all of
// its children.
global, err := flattenDhcpConfig(parsetree)
if err != nil {
return nil, err
}
// This closure is just to the goro that follows it in recursively walking
// through all of the declarations and writing them individually to a chan.
var walkDeclarations func(root pDeclaration, out chan *configDeclaration)
walkDeclarations = func(root pDeclaration, out chan *configDeclaration) {
res := createDeclaration(root)
out <- &res
for _, p := range root.declarations {
walkDeclarations(p, out)
}
}
// That way this goro can take each individual declaration and write it to
// a channel.
each := make(chan *configDeclaration)
go func(out chan *configDeclaration) {
walkDeclarations(*global, out)
out <- nil
}(each)
// For this loop to convert it into a itemized list.
var result DhcpConfiguration
for decl := <-each; decl != nil; decl = <-each {
result = append(result, *decl)
}
return result, nil
}
func (e *DhcpConfiguration) Global() configDeclaration {
result := (*e)[0]
if len(result.id) != 1 {
panic(fmt.Errorf("Something that can't happen happened"))
}
return result
}
func (e *DhcpConfiguration) SubnetByAddress(address net.IP) (configDeclaration, error) {
var result []configDeclaration
for _, entry := range *e {
switch entry.id[0].(type) {
case pDeclarationSubnet4:
id := entry.id[0].(pDeclarationSubnet4)
if id.Contains(address) {
result = append(result, entry)
}
case pDeclarationSubnet6:
id := entry.id[0].(pDeclarationSubnet6)
if id.Contains(address) {
result = append(result, entry)
}
}
}
if len(result) == 0 {
return configDeclaration{}, fmt.Errorf("No network declarations containing %s found", address.String())
}
if len(result) > 1 {
return configDeclaration{}, fmt.Errorf("More than 1 network declaration found : %v", result)
}
return result[0], nil
}
func (e *DhcpConfiguration) HostByName(host string) (configDeclaration, error) {
var result []configDeclaration
for _, entry := range *e {
switch entry.id[0].(type) {
case pDeclarationHost:
id := entry.id[0].(pDeclarationHost)
if strings.EqualFold(id.name, host) {
result = append(result, entry)
}
}
}
if len(result) == 0 {
return configDeclaration{}, fmt.Errorf("No host declarations containing %s found", host)
}
if len(result) > 1 {
return configDeclaration{}, fmt.Errorf("More than 1 host declaration found : %v", result)
}
return result[0], nil
}
/*** Network Map */
type NetworkMap []map[string]string
type NetworkNameMapper interface {
NameIntoDevices(string) ([]string, error)
DeviceIntoName(string) (string, error)
}
func ReadNetworkMap(fd *os.File) (NetworkMap, error) {
fromfile := consumeFile(fd)
uncommented := uncomment(fromfile)
tokenized := tokenizeNetworkMapConfig(uncommented)
// Now that we've tokenized the network map, we just need to parse it into
// a list of maps.
result, err := parseNetworkMapConfig(tokenized)
if err != nil {
return nil, err
}
return result, nil
}
func (e NetworkMap) NameIntoDevices(name string) ([]string, error) {
var devices []string
for _, val := range e {
if strings.EqualFold(val["name"], name) {
devices = append(devices, val["device"])
}
}
if len(devices) > 0 {
return devices, nil
}
return make([]string, 0), fmt.Errorf("Network name not found : %v", name)
}
func (e NetworkMap) DeviceIntoName(device string) (string, error) {
for _, val := range e {
if strings.EqualFold(val["device"], device) {
return val["name"], nil
}
}
return "", fmt.Errorf("Device name not found : %v", device)
}
func (e *NetworkMap) repr() string {
var result []string
for idx, val := range *e {
result = append(result, fmt.Sprintf("network%d.name = \"%s\"", idx, val["name"]))
result = append(result, fmt.Sprintf("network%d.device = \"%s\"", idx, val["device"]))
}
return strings.Join(result, "\n")
}
/*** parser for VMware Fusion's networking file */
func tokenizeNetworkingConfig(in chan byte) chan string {
var state string
var repeat_newline bool
out := make(chan string)
go func(out chan string) {
for {
by, ok := <-in
if !ok {
break
}
switch by {
case '\t':
fallthrough
case ' ':
// If we receive whitespace, then this is just a write to our
// state and then we reset.
if len(state) == 0 {
continue
}
out <- state
state = ""
case '\r':
// If windows has tampered with our newlines, then we normalize
// things by converting its value from 0x0d to 0x0a.
fallthrough
case '\n':
// Newlines can repeat, so this case is responsible for writing
// to the chan, and consolidating multiple newlines into a single.
if repeat_newline {
continue
}
if len(state) > 0 {
out <- state
}
out <- "\n"
state = ""
repeat_newline = true
continue
default:
// Anything other bytes just need to be aggregated into a string.
state += string(by)
}
repeat_newline = false
}
// If there's anything left in our state after the chan has been closed,
// then the input just wasn't terminated properly. It's still valid, so
// write we have to the channel.
if len(state) > 0 {
out <- state
}
close(out)
}(out)
return out
}
func splitNetworkingConfig(in chan string) chan []string {
out := make(chan []string)
// This goroutine is simple in that it takes a chan of tokens, and splits
// them across the newlines.
go func(out chan []string) {
row := make([]string, 0)
for {
tk, ok := <-in
if !ok {
break
}
if tk == "\n" {
// If we received a newline token, then we need to write our
// aggregated list of tokens and reset our "splitting" state.
if len(row) > 0 {
out <- row
}
row = make([]string, 0)
} else {
// Anything else just requires us to aggregate the token into
// our list.
row = append(row, tk)
}
}
if len(row) > 0 {
out <- row
}
close(out)
}(out)
return out
}
/// All token types in networking file.
// VERSION token
type networkingVERSION struct {
value string
}
func networkingReadVersion(row []string) (*networkingVERSION, error) {
if len(row) != 1 {
return nil, fmt.Errorf("Unexpected format for VERSION entry : %v", row)
}
res := &networkingVERSION{value: row[0]}
if !res.Valid() {
return nil, fmt.Errorf("Unexpected format for VERSION entry : %v", row)
}
return res, nil
}
func (s networkingVERSION) Repr() string {
if !s.Valid() {
return fmt.Sprintf("VERSION{INVALID=\"%v\"}", s.value)
}
return fmt.Sprintf("VERSION{%f}", s.Number())
}
func (s networkingVERSION) Valid() bool {
tokens := strings.SplitN(s.value, "=", 2)
if len(tokens) != 2 || tokens[0] != "VERSION" {
return false
}
tokens = strings.Split(tokens[1], ",")
if len(tokens) != 2 {
return false
}
for _, t := range tokens {
_, err := strconv.ParseUint(t, 10, 64)
if err != nil {
return false
}
}
return true
}
func (s networkingVERSION) Number() float64 {
var result float64
tokens := strings.SplitN(s.value, "=", 2)
tokens = strings.Split(tokens[1], ",")
integer, err := strconv.ParseUint(tokens[0], 10, 64)
if err != nil {
integer = 0
}
result = float64(integer)
mantissa, err := strconv.ParseUint(tokens[1], 10, 64)
if err != nil {
return result
}
denomination := math.Pow(10.0, float64(len(tokens[1])))
return result + (float64(mantissa) / denomination)
}
// VNET_X token
type networkingVNET struct {
value string
}
func (s networkingVNET) Valid() bool {
if strings.ToUpper(s.value) != s.value {
return false
}
tokens := strings.SplitN(s.value, "_", 3)
if len(tokens) != 3 || tokens[0] != "VNET" {
return false
}
_, err := strconv.ParseUint(tokens[1], 10, 64)
if err != nil {
return false
}
return true
}
func (s networkingVNET) Number() int {
tokens := strings.SplitN(s.value, "_", 3)
res, err := strconv.Atoi(tokens[1])
if err != nil {
return ^int(0)
}
return res
}
func (s networkingVNET) Option() string {
tokens := strings.SplitN(s.value, "_", 3)
if len(tokens) == 3 {
return tokens[2]
}
return ""
}
func (s networkingVNET) Repr() string {
if !s.Valid() {
tokens := strings.SplitN(s.value, "_", 3)
return fmt.Sprintf("VNET{INVALID=%v}", tokens)
}
return fmt.Sprintf("VNET{%d} %s", s.Number(), s.Option())
}
// Interface name
type networkingInterface struct {
name string
}
func (s networkingInterface) Interface() (*net.Interface, error) {
return net.InterfaceByName(s.name)
}
// networking command entry types
type networkingCommandEntry_answer struct {
vnet networkingVNET
value string
}
type networkingCommandEntry_remove_answer struct {
vnet networkingVNET
}
type networkingCommandEntry_add_nat_portfwd struct {
vnet int
protocol string
port int
target_host net.IP
target_port int
}
type networkingCommandEntry_remove_nat_portfwd struct {
vnet int
protocol string
port int
}
type networkingCommandEntry_add_dhcp_mac_to_ip struct {
vnet int
mac net.HardwareAddr
ip net.IP
}
type networkingCommandEntry_remove_dhcp_mac_to_ip struct {
vnet int
mac net.HardwareAddr
}
type networkingCommandEntry_add_bridge_mapping struct {
intf networkingInterface
vnet int
}
type networkingCommandEntry_remove_bridge_mapping struct {
intf networkingInterface
}
type networkingCommandEntry_add_nat_prefix struct {
vnet int
prefix int
}
type networkingCommandEntry_remove_nat_prefix struct {
vnet int
prefix int
}
type networkingCommandEntry struct {
entry interface{}
answer *networkingCommandEntry_answer
remove_answer *networkingCommandEntry_remove_answer
add_nat_portfwd *networkingCommandEntry_add_nat_portfwd
remove_nat_portfwd *networkingCommandEntry_remove_nat_portfwd
add_dhcp_mac_to_ip *networkingCommandEntry_add_dhcp_mac_to_ip
remove_dhcp_mac_to_ip *networkingCommandEntry_remove_dhcp_mac_to_ip
add_bridge_mapping *networkingCommandEntry_add_bridge_mapping
remove_bridge_mapping *networkingCommandEntry_remove_bridge_mapping
add_nat_prefix *networkingCommandEntry_add_nat_prefix
remove_nat_prefix *networkingCommandEntry_remove_nat_prefix
}
func (e networkingCommandEntry) Name() string {
switch e.entry.(type) {
case networkingCommandEntry_answer:
return "answer"
case networkingCommandEntry_remove_answer:
return "remove_answer"
case networkingCommandEntry_add_nat_portfwd:
return "add_nat_portfwd"
case networkingCommandEntry_remove_nat_portfwd:
return "remove_nat_portfwd"
case networkingCommandEntry_add_dhcp_mac_to_ip:
return "add_dhcp_mac_to_ip"
case networkingCommandEntry_remove_dhcp_mac_to_ip:
return "remove_dhcp_mac_to_ip"
case networkingCommandEntry_add_bridge_mapping:
return "add_bridge_mapping"
case networkingCommandEntry_remove_bridge_mapping:
return "remove_bridge_mapping"
case networkingCommandEntry_add_nat_prefix:
return "add_nat_prefix"
case networkingCommandEntry_remove_nat_prefix:
return "remove_nat_prefix"
}
return ""
}
func (e networkingCommandEntry) Entry() reflect.Value {
this := reflect.ValueOf(e)
switch e.entry.(type) {
case networkingCommandEntry_answer:
return reflect.Indirect(this.FieldByName("answer"))
case networkingCommandEntry_remove_answer:
return reflect.Indirect(this.FieldByName("remove_answer"))
case networkingCommandEntry_add_nat_portfwd:
return reflect.Indirect(this.FieldByName("add_nat_portfwd"))
case networkingCommandEntry_remove_nat_portfwd:
return reflect.Indirect(this.FieldByName("remove_nat_portfwd"))
case networkingCommandEntry_add_dhcp_mac_to_ip:
return reflect.Indirect(this.FieldByName("add_dhcp_mac_to_ip"))
case networkingCommandEntry_remove_dhcp_mac_to_ip:
return reflect.Indirect(this.FieldByName("remove_dhcp_mac_to_ip"))
case networkingCommandEntry_add_bridge_mapping:
return reflect.Indirect(this.FieldByName("add_bridge_mapping"))
case networkingCommandEntry_remove_bridge_mapping:
return reflect.Indirect(this.FieldByName("remove_bridge_mapping"))
case networkingCommandEntry_add_nat_prefix:
return reflect.Indirect(this.FieldByName("add_nat_prefix"))
case networkingCommandEntry_remove_nat_prefix:
return reflect.Indirect(this.FieldByName("remove_nat_prefix"))
}
return reflect.Value{}
}
func (e networkingCommandEntry) Repr() string {
result := make(map[string]interface{})
entryN, entry := e.Name(), e.Entry()
entryT := entry.Type()
for i := 0; i < entry.NumField(); i++ {
fld, fldT := entry.Field(i), entryT.Field(i)
result[fldT.Name] = fld
}
return fmt.Sprintf("%s -> %v", entryN, result)
}
// networking command entry parsers
func parseNetworkingCommand_answer(row []string) (*networkingCommandEntry, error) {
if len(row) != 2 {
return nil, fmt.Errorf("Expected %d arguments. Received only %d.", 2, len(row))
}
vnet := networkingVNET{value: row[0]}
if !vnet.Valid() {
return nil, fmt.Errorf("Invalid format for VNET.")
}
result := networkingCommandEntry_answer{vnet: vnet, value: row[1]}
return &networkingCommandEntry{entry: result, answer: &result}, nil
}
func parseNetworkingCommand_remove_answer(row []string) (*networkingCommandEntry, error) {
if len(row) != 1 {
return nil, fmt.Errorf("Expected %d argument. Received %d.", 1, len(row))
}
vnet := networkingVNET{value: row[0]}
if !vnet.Valid() {
return nil, fmt.Errorf("Invalid format for VNET.")
}
result := networkingCommandEntry_remove_answer{vnet: vnet}
return &networkingCommandEntry{entry: result, remove_answer: &result}, nil
}
func parseNetworkingCommand_add_nat_portfwd(row []string) (*networkingCommandEntry, error) {
if len(row) != 5 {
return nil, fmt.Errorf("Expected %d arguments. Received only %d.", 5, len(row))
}
vnet, err := strconv.Atoi(row[0])
if err != nil {
return nil, fmt.Errorf("Unable to parse first argument as an integer. : %v", row[0])
}
protocol := strings.ToLower(row[1])
if !(protocol == "tcp" || protocol == "udp") {
return nil, fmt.Errorf("Expected \"tcp\" or \"udp\" for second argument. : %v", row[1])
}
sport, err := strconv.Atoi(row[2])
if err != nil {
return nil, fmt.Errorf("Unable to parse third argument as an integer. : %v", row[2])
}
dest := net.ParseIP(row[3])
if dest == nil {
return nil, fmt.Errorf("Unable to parse fourth argument as an IPv4 address. : %v", row[2])
}
dport, err := strconv.Atoi(row[4])
if err != nil {
return nil, fmt.Errorf("Unable to parse fifth argument as an integer. : %v", row[4])
}
result := networkingCommandEntry_add_nat_portfwd{vnet: vnet - 1, protocol: protocol, port: sport, target_host: dest, target_port: dport}
return &networkingCommandEntry{entry: result, add_nat_portfwd: &result}, nil
}
func parseNetworkingCommand_remove_nat_portfwd(row []string) (*networkingCommandEntry, error) {
if len(row) != 3 {
return nil, fmt.Errorf("Expected %d arguments. Received only %d.", 3, len(row))
}
vnet, err := strconv.Atoi(row[0])
if err != nil {
return nil, fmt.Errorf("Unable to parse first argument as an integer. : %v", row[0])
}
protocol := strings.ToLower(row[1])
if !(protocol == "tcp" || protocol == "udp") {
return nil, fmt.Errorf("Expected \"tcp\" or \"udp\" for second argument. : %v", row[1])
}
sport, err := strconv.Atoi(row[2])
if err != nil {
return nil, fmt.Errorf("Unable to parse third argument as an integer. : %v", row[2])
}
result := networkingCommandEntry_remove_nat_portfwd{vnet: vnet - 1, protocol: protocol, port: sport}
return &networkingCommandEntry{entry: result, remove_nat_portfwd: &result}, nil
}
func parseNetworkingCommand_add_dhcp_mac_to_ip(row []string) (*networkingCommandEntry, error) {
if len(row) != 3 {
return nil, fmt.Errorf("Expected %d arguments. Received only %d.", 3, len(row))
}
vnet, err := strconv.Atoi(row[0])
if err != nil {
return nil, fmt.Errorf("Unable to parse first argument as an integer. : %v", row[0])
}
mac, err := net.ParseMAC(row[1])
if err != nil {
return nil, fmt.Errorf("Unable to parse second argument as hwaddr. : %v", row[1])
}
ip := net.ParseIP(row[2])
if ip == nil {
return nil, fmt.Errorf("Unable to parse third argument as ipv4. : %v", row[2])
}
result := networkingCommandEntry_add_dhcp_mac_to_ip{vnet: vnet - 1, mac: mac, ip: ip}
return &networkingCommandEntry{entry: result, add_dhcp_mac_to_ip: &result}, nil
}
func parseNetworkingCommand_remove_dhcp_mac_to_ip(row []string) (*networkingCommandEntry, error) {
if len(row) != 2 {
return nil, fmt.Errorf("Expected %d arguments. Received only %d.", 2, len(row))
}
vnet, err := strconv.Atoi(row[0])
if err != nil {
return nil, fmt.Errorf("Unable to parse first argument as an integer. : %v", row[0])
}
mac, err := net.ParseMAC(row[1])
if err != nil {
return nil, fmt.Errorf("Unable to parse second argument as hwaddr. : %v", row[1])
}
result := networkingCommandEntry_remove_dhcp_mac_to_ip{vnet: vnet - 1, mac: mac}
return &networkingCommandEntry{entry: result, remove_dhcp_mac_to_ip: &result}, nil
}
func parseNetworkingCommand_add_bridge_mapping(row []string) (*networkingCommandEntry, error) {
if len(row) != 2 {
return nil, fmt.Errorf("Expected %d arguments. Received only %d.", 2, len(row))
}
intf := networkingInterface{name: row[0]}
vnet, err := strconv.Atoi(row[1])
if err != nil {
return nil, fmt.Errorf("Unable to parse second argument as an integer. : %v", row[2])
}
result := networkingCommandEntry_add_bridge_mapping{intf: intf, vnet: vnet - 1}
return &networkingCommandEntry{entry: result, add_bridge_mapping: &result}, nil
}
func parseNetworkingCommand_remove_bridge_mapping(row []string) (*networkingCommandEntry, error) {
if len(row) != 1 {
return nil, fmt.Errorf("Expected %d argument. Received %d.", 1, len(row))
}
intf := networkingInterface{name: row[0]}
/*
number, err := strconv.Atoi(row[0])
if err != nil {
return nil, fmt.Errorf("Unable to parse first argument as an integer. : %v", row[0])
}
*/
result := networkingCommandEntry_remove_bridge_mapping{intf: intf}
return &networkingCommandEntry{entry: result, remove_bridge_mapping: &result}, nil
}
func parseNetworkingCommand_add_nat_prefix(row []string) (*networkingCommandEntry, error) {
if len(row) != 2 {
return nil, fmt.Errorf("Expected %d arguments. Received only %d.", 2, len(row))
}
vnet, err := strconv.Atoi(row[0])
if err != nil {
return nil, fmt.Errorf("Unable to parse first argument as an integer. : %v", row[0])
}
if !strings.HasPrefix(row[1], "/") {
return nil, fmt.Errorf("Expected second argument to begin with \"/\". : %v", row[1])
}
prefix, err := strconv.Atoi(row[1][1:])
if err != nil {
return nil, fmt.Errorf("Unable to parse prefix out of second argument. : %v", row[1])
}
result := networkingCommandEntry_add_nat_prefix{vnet: vnet - 1, prefix: prefix}
return &networkingCommandEntry{entry: result, add_nat_prefix: &result}, nil
}
func parseNetworkingCommand_remove_nat_prefix(row []string) (*networkingCommandEntry, error) {
if len(row) != 2 {
return nil, fmt.Errorf("Expected %d arguments. Received only %d.", 2, len(row))
}
vnet, err := strconv.Atoi(row[0])
if err != nil {
return nil, fmt.Errorf("Unable to parse first argument as an integer. : %v", row[0])
}
if !strings.HasPrefix(row[1], "/") {
return nil, fmt.Errorf("Expected second argument to begin with \"/\". : %v", row[1])
}
prefix, err := strconv.Atoi(row[1][1:])
if err != nil {
return nil, fmt.Errorf("Unable to parse prefix out of second argument. : %v", row[1])
}
result := networkingCommandEntry_remove_nat_prefix{vnet: vnet - 1, prefix: prefix}
return &networkingCommandEntry{entry: result, remove_nat_prefix: &result}, nil
}
type networkingCommandParser struct {
command string
callback func([]string) (*networkingCommandEntry, error)
}
var NetworkingCommandParsers = []networkingCommandParser{
/* DictRecordParseFunct */ {command: "answer", callback: parseNetworkingCommand_answer},
/* DictRecordParseFunct */ {command: "remove_answer", callback: parseNetworkingCommand_remove_answer},
/* NatFwdRecordParseFunct */ {command: "add_nat_portfwd", callback: parseNetworkingCommand_add_nat_portfwd},
/* NatFwdRecordParseFunct */ {command: "remove_nat_portfwd", callback: parseNetworkingCommand_remove_nat_portfwd},
/* DhcpMacRecordParseFunct */ {command: "add_dhcp_mac_to_ip", callback: parseNetworkingCommand_add_dhcp_mac_to_ip},
/* DhcpMacRecordParseFunct */ {command: "remove_dhcp_mac_to_ip", callback: parseNetworkingCommand_remove_dhcp_mac_to_ip},
/* BridgeMappingRecordParseFunct */ {command: "add_bridge_mapping", callback: parseNetworkingCommand_add_bridge_mapping},
/* BridgeMappingRecordParseFunct */ {command: "remove_bridge_mapping", callback: parseNetworkingCommand_remove_bridge_mapping},
/* NatPrefixRecordParseFunct */ {command: "add_nat_prefix", callback: parseNetworkingCommand_add_nat_prefix},
/* NatPrefixRecordParseFunct */ {command: "remove_nat_prefix", callback: parseNetworkingCommand_remove_nat_prefix},
}
func NetworkingParserByCommand(command string) *func([]string) (*networkingCommandEntry, error) {
for _, p := range NetworkingCommandParsers {
if p.command == command {
return &p.callback
}
}
return nil
}
func parseNetworkingConfig(rows chan []string) chan networkingCommandEntry {
out := make(chan networkingCommandEntry)
go func(in chan []string, out chan networkingCommandEntry) {
for {
row, ok := <-in
if !ok {
break
}
if len(row) >= 1 {
parser := NetworkingParserByCommand(row[0])
if parser == nil {
log.Printf("Invalid command : %v", row)
continue
}
callback := *parser
entry, err := callback(row[1:])
if err != nil {
log.Printf("Unable to parse command : %v %v", err, row)
continue
}
out <- *entry
}
}
close(out)
}(rows, out)
return out
}
type NetworkingConfig struct {
answer map[int]map[string]string
nat_portfwd map[int]map[string]string
dhcp_mac_to_ip map[int]map[string]net.IP
//bridge_mapping map[net.Interface]uint64 // XXX: we don't need the actual interface for anything but informing the user.
bridge_mapping map[string]int
nat_prefix map[int][]int
}
func (c NetworkingConfig) repr() string {
return fmt.Sprintf("answer -> %v\nnat_portfwd -> %v\ndhcp_mac_to_ip -> %v\nbridge_mapping -> %v\nnat_prefix -> %v", c.answer, c.nat_portfwd, c.dhcp_mac_to_ip, c.bridge_mapping, c.nat_prefix)
}
func flattenNetworkingConfig(in chan networkingCommandEntry) NetworkingConfig {
var result NetworkingConfig
var vmnet int
result.answer = make(map[int]map[string]string)
result.nat_portfwd = make(map[int]map[string]string)
result.dhcp_mac_to_ip = make(map[int]map[string]net.IP)
result.bridge_mapping = make(map[string]int)
result.nat_prefix = make(map[int][]int)
for {
e, ok := <-in
if !ok {
break
}
switch e.entry.(type) {
case networkingCommandEntry_answer:
vnet := e.answer.vnet
answers, exists := result.answer[vnet.Number()]
if !exists {
answers = make(map[string]string)
result.answer[vnet.Number()] = answers
}
answers[vnet.Option()] = e.answer.value
case networkingCommandEntry_remove_answer:
vnet := e.remove_answer.vnet
answers, exists := result.answer[vnet.Number()]
if exists {
delete(answers, vnet.Option())
} else {
log.Printf("Unable to remove answer %s as specified by `remove_answer`.\n", vnet.Repr())
}
case networkingCommandEntry_add_nat_portfwd:
vmnet = e.add_nat_portfwd.vnet
protoport := fmt.Sprintf("%s/%d", e.add_nat_portfwd.protocol, e.add_nat_portfwd.port)
target := fmt.Sprintf("%s:%d", e.add_nat_portfwd.target_host, e.add_nat_portfwd.target_port)
portfwds, exists := result.nat_portfwd[vmnet]
if !exists {
portfwds = make(map[string]string)
result.nat_portfwd[vmnet] = portfwds
}
portfwds[protoport] = target
case networkingCommandEntry_remove_nat_portfwd:
vmnet = e.remove_nat_portfwd.vnet
protoport := fmt.Sprintf("%s/%d", e.remove_nat_portfwd.protocol, e.remove_nat_portfwd.port)
portfwds, exists := result.nat_portfwd[vmnet]
if exists {
delete(portfwds, protoport)
} else {
log.Printf("Unable to remove nat port-forward %s from interface %s%d as requested by `remove_nat_portfwd`.\n", protoport, NetworkingInterfacePrefix, vmnet)
}
case networkingCommandEntry_add_dhcp_mac_to_ip:
vmnet = e.add_dhcp_mac_to_ip.vnet
dhcpmacs, exists := result.dhcp_mac_to_ip[vmnet]
if !exists {
dhcpmacs = make(map[string]net.IP)
result.dhcp_mac_to_ip[vmnet] = dhcpmacs
}
dhcpmacs[e.add_dhcp_mac_to_ip.mac.String()] = e.add_dhcp_mac_to_ip.ip
case networkingCommandEntry_remove_dhcp_mac_to_ip:
vmnet = e.remove_dhcp_mac_to_ip.vnet
dhcpmacs, exists := result.dhcp_mac_to_ip[vmnet]
if exists {
delete(dhcpmacs, e.remove_dhcp_mac_to_ip.mac.String())
} else {
log.Printf("Unable to remove dhcp_mac_to_ip entry %v from interface %s%d as specified by `remove_dhcp_mac_to_ip`.\n", e.remove_dhcp_mac_to_ip, NetworkingInterfacePrefix, vmnet)
}
case networkingCommandEntry_add_bridge_mapping:
intf := e.add_bridge_mapping.intf
if _, err := intf.Interface(); err != nil {
log.Printf("Interface \"%s\" as specified by `add_bridge_mapping` was not found on the current platform. This is a non-critical error. Ignoring.", intf.name)
}
result.bridge_mapping[intf.name] = e.add_bridge_mapping.vnet
case networkingCommandEntry_remove_bridge_mapping:
intf := e.remove_bridge_mapping.intf
if _, err := intf.Interface(); err != nil {
log.Printf("Interface \"%s\" as specified by `remove_bridge_mapping` was not found on the current platform. This is a non-critical error. Ignoring.", intf.name)
}
delete(result.bridge_mapping, intf.name)
case networkingCommandEntry_add_nat_prefix:
vmnet = e.add_nat_prefix.vnet
_, exists := result.nat_prefix[vmnet]
if exists {
result.nat_prefix[vmnet] = append(result.nat_prefix[vmnet], e.add_nat_prefix.prefix)
} else {
result.nat_prefix[vmnet] = []int{e.add_nat_prefix.prefix}
}
case networkingCommandEntry_remove_nat_prefix:
vmnet = e.remove_nat_prefix.vnet
prefixes, exists := result.nat_prefix[vmnet]
if exists {
for index := 0; index < len(prefixes); index++ {
if prefixes[index] == e.remove_nat_prefix.prefix {
result.nat_prefix[vmnet] = append(prefixes[:index], prefixes[index+1:]...)
break
}
}
} else {
log.Printf("Unable to remove nat prefix /%d from interface %s%d as specified by `remove_nat_prefix`.\n", e.remove_nat_prefix.prefix, NetworkingInterfacePrefix, vmnet)
}
}
}
return result
}
// Constructor for networking file
func ReadNetworkingConfig(fd *os.File) (NetworkingConfig, error) {
// start piecing together all of the differents parts of the file and split
// it into its individual rows.
fromfile := consumeFile(fd)
tokenized := tokenizeNetworkingConfig(fromfile)
rows := splitNetworkingConfig(tokenized)
// consume the version _first_. this is important because if the version is
// wrong, then there's likely tokens that we won't know how to interpret.
parsed_version, err := networkingReadVersion(<-rows)
if err != nil {
return NetworkingConfig{}, err
}
// verify that it's 1.0 since that's all we support for now.
if version := parsed_version.Number(); version != 1.0 {
return NetworkingConfig{}, fmt.Errorf("Expected version %f of networking file. Received version %f.", 1.0, version)
}
// now that our version has been confirmed, we can proceed to parse the
// rest of the file and parseNetworkingConfig is free to consume rows as
// much as it wants to.
entries := parseNetworkingConfig(rows)
// convert what we've parsed into a configuration that's easy to interpret
return flattenNetworkingConfig(entries), nil
}
// netmapper interface
type NetworkingType int
const (
NetworkingType_HOSTONLY = iota + 1
NetworkingType_NAT
NetworkingType_BRIDGED
)
func networkingConfig_InterfaceTypes(config NetworkingConfig) map[int]NetworkingType {
result := make(map[int]NetworkingType)
// defaults
result[0] = NetworkingType_BRIDGED
result[1] = NetworkingType_HOSTONLY
result[8] = NetworkingType_NAT
// walk through config collecting bridged interfaces
for _, vmnet := range config.bridge_mapping {
result[vmnet] = NetworkingType_BRIDGED
}
// walk through answers finding out which ones are nat versus hostonly
for vmnet, table := range config.answer {
// everything should be defined as a virtual adapter...
if table["VIRTUAL_ADAPTER"] == "yes" {
// validate that the VNET entry contains everything we expect it to
_, subnetQ := table["HOSTONLY_SUBNET"]
_, netmaskQ := table["HOSTONLY_NETMASK"]
if !(subnetQ && netmaskQ) {
log.Printf("Interface %s%d is missing some expected keys (HOSTONLY_SUBNET, HOSTONLY_NETMASK). This is non-critical. Ignoring..", NetworkingInterfacePrefix, vmnet)
}
// distinguish between nat or hostonly
if table["NAT"] == "yes" {
result[vmnet] = NetworkingType_NAT
} else {
result[vmnet] = NetworkingType_HOSTONLY
}
} else {
// if it's not a virtual_adapter, then it must be an alias (really a bridge).
result[vmnet] = NetworkingType_BRIDGED
}
}
return result
}
func networkingConfig_NamesToVmnet(config NetworkingConfig) map[NetworkingType][]int {
types := networkingConfig_InterfaceTypes(config)
// now sort the keys
var keys []int
for vmnet := range types {
keys = append(keys, vmnet)
}
sort.Ints(keys)
// build result dictionary
result := make(map[NetworkingType][]int)
for i := 0; i < len(keys); i++ {
t := types[keys[i]]
result[t] = append(result[t], keys[i])
}
return result
}
const NetworkingInterfacePrefix = "vmnet"
func (e NetworkingConfig) NameIntoDevices(name string) ([]string, error) {
netmapper := networkingConfig_NamesToVmnet(e)
name = strings.ToLower(name)
var vmnets []string
var networkingType NetworkingType
if name == "hostonly" && len(netmapper[NetworkingType_HOSTONLY]) > 0 {
networkingType = NetworkingType_HOSTONLY
} else if name == "nat" && len(netmapper[NetworkingType_NAT]) > 0 {
networkingType = NetworkingType_NAT
} else if name == "bridged" && len(netmapper[NetworkingType_BRIDGED]) > 0 {
networkingType = NetworkingType_BRIDGED
} else {
return make([]string, 0), fmt.Errorf("Network name not found: %v", name)
}
for i := 0; i < len(netmapper[networkingType]); i++ {
vmnets = append(vmnets, fmt.Sprintf("%s%d", NetworkingInterfacePrefix, netmapper[networkingType][i]))
}
return vmnets, nil
}
func (e NetworkingConfig) DeviceIntoName(device string) (string, error) {
types := networkingConfig_InterfaceTypes(e)
lowerdevice := strings.ToLower(device)
if !strings.HasPrefix(lowerdevice, NetworkingInterfacePrefix) {
return device, nil
}
vmnet, err := strconv.Atoi(lowerdevice[len(NetworkingInterfacePrefix):])
if err != nil {
return "", err
}
network := types[vmnet]
switch network {
case NetworkingType_HOSTONLY:
return "hostonly", nil
case NetworkingType_NAT:
return "nat", nil
case NetworkingType_BRIDGED:
return "bridged", nil
}
return "", fmt.Errorf("Unable to determine network type for device %s%d.", NetworkingInterfacePrefix, vmnet)
}
/** generic async file reader */
func consumeFile(fd *os.File) chan byte {
fromFile := make(chan byte)
go func() {
b := make([]byte, 1)
for {
_, err := fd.Read(b)
if err != nil {
// In case of any error we must stop
// ErrClosed may appear since file is closed and this goroutine still left running
break
}
fromFile <- b[0]
}
close(fromFile)
}()
return fromFile
}
/** Consume a byte channel until a terminal byte is reached, and write each list of bytes to a channel */
func consumeUntilSentinel(sentinel byte, in chan byte) (result []byte, ok bool) {
// This is a simple utility that will consume from a channel until a sentinel
// byte has been reached. Consumed data is returned in `result, and if
// there's no more data to read, then `ok` will be false.
for ok = true; ; {
if by, success := <-in; !success {
ok = false
break
} else if by == sentinel {
break
} else {
result = append(result, by)
}
}
return
}
/** Simple utility to ignore chars when consuming a channel */
func filterOutCharacters(ignore []byte, in chan byte) chan byte {
out := make(chan byte)
go func(ignore_s string) {
for {
if by, ok := <-in; !ok {
break
} else if !strings.ContainsAny(ignore_s, string(by)) {
out <- by
}
}
close(out)
}(string(ignore))
return out
}
/**
This consumes bytes within a pair of some bytes, like parentheses, brackets, braces...
We start by reading bytes until we encounter openByte. These will be returned as
the first parameter. Then we can enter a goro and consume bytes until we get to
closeByte. At that point we're done, and we can exit.
**/
func consumeOpenClosePair(openByte, closeByte byte, in chan byte) ([]byte, chan byte) {
result := make([]byte, 0)
// Consume until we get to openByte. We'll return what we consumed because
// it isn't actually relevant to what we're trying to accomplish.
for by := range in {
if by == openByte {
break
} else {
result = append(result, by)
}
}
// Now we can feed input to our goro and a consumer can see what's contained
// between their requested pairs
out := make(chan byte)
go func(out chan byte) {
by := openByte
// We only made it here because we received an openByte, so let's make
// sure we send it down the channel.
out <- by
// Now just spin in a loop shipping bytes down the channel until we hit
// closeByte, or we're at the very end...whichever comes first.
var ok bool
for by != closeByte {
by, ok = <-in
if !ok {
by = closeByte
}
out <- by
}
close(out)
}(out)
// Return what we consumed, and a channel that yields everything in between
// the openByte and closeByte pair.
return result, out
}
// Basic decoding of a dhcpd lease address
func decodeDhcpdLeaseBytes(input string) ([]byte, error) {
processed := &bytes.Buffer{}
// Split the string into pieces as we'll need to validate it.
for _, item := range strings.Split(input, ":") {
if len(item) != 2 {
return []byte{}, fmt.Errorf("bytes are not well-formed (%v)", input)
}
processed.WriteString(item)
}
length := hex.DecodedLen(processed.Len())
// Decode the processed data into the result...
result := make([]byte, length)
if n, err := hex.Decode(result, processed.Bytes()); err != nil {
return []byte{}, err
// Check that our decode length corresponds to what was intended
} else if n != length {
return []byte{}, fmt.Errorf("expected to decode %d bytes, got %d instead", length, n)
}
// ...and then return it.
return result, nil
}
/*** Dhcp Leases */
type dhcpLeaseEntry struct {
address string
starts, ends time.Time
starts_weekday, ends_weekday int
ether, uid []byte
extra []string
}
func readDhcpdLeaseEntry(in chan byte) (entry *dhcpLeaseEntry, err error) {
// Build the regexes we'll use to legitimately parse each item
ipLineRe := regexp.MustCompile(`lease\s+(.+?)\s*$`)
startTimeLineRe := regexp.MustCompile(`starts\s+(\d+)\s+(.+?)\s*$`)
endTimeLineRe := regexp.MustCompile(`ends\s+(\d+)\s+(.+?)\s*$`)
macLineRe := regexp.MustCompile(`hardware\s+ethernet\s+(.+?)\s*$`)
uidLineRe := regexp.MustCompile(`uid\s+(.+?)\s*$`)
/// Read up to the lease item and validate that it actually matches
lease, ch := consumeOpenClosePair('{', '}', in)
// If we couldn't read the lease, then this item is busted and we're prolly
// done reading the channel.
if len(lease) == 0 {
return nil, nil
}
matches := ipLineRe.FindStringSubmatch(string(lease))
if matches == nil {
res := strings.TrimSpace(string(lease))
return &dhcpLeaseEntry{extra: []string{res}}, fmt.Errorf("Unable to parse lease entry (%#v)", string(lease))
}
if by, ok := <-ch; ok && by == '{' {
// If we found a lease match and we're definitely beginning a lease
// entry, then create our storage.
entry = &dhcpLeaseEntry{address: matches[1]}
} else if ok {
// If we didn't see a begin brace, then this entry is mangled which
// means that we should probably bail
return &dhcpLeaseEntry{address: matches[1]}, fmt.Errorf("Missing parameters for lease entry %v", matches[1])
} else if !ok {
// If our channel is closed, so we bail "cleanly".
return nil, nil
}
/// Now we can parse the inside of the block.
for insideBraces := true; insideBraces; {
item, ok := consumeUntilSentinel(';', ch)
item_s := string(item)
if !ok {
insideBraces = false
}
// Parse out the start time
matches = startTimeLineRe.FindStringSubmatch(item_s)
if matches != nil {
if entry.starts, err = time.Parse("2006/01/02 15:04:05", matches[2]); err != nil {
log.Printf("Error trying to parse start time (%v) for entry %v", matches[2], entry.address)
}
if entry.starts_weekday, err = strconv.Atoi(matches[1]); err != nil {
log.Printf("Error trying to parse start weekday (%v) for entry %v", matches[1], entry.address)
}
continue
}
// Parse out the end time
matches = endTimeLineRe.FindStringSubmatch(item_s)
if matches != nil {
if entry.ends, err = time.Parse("2006/01/02 15:04:05", matches[2]); err != nil {
log.Printf("Error trying to parse end time (%v) for entry %v", matches[2], entry.address)
}
if entry.ends_weekday, err = strconv.Atoi(matches[1]); err != nil {
log.Printf("Error trying to parse end weekday (%v) for entry %v", matches[1], entry.address)
}
continue
}
// Parse out the hardware ethernet
matches = macLineRe.FindStringSubmatch(item_s)
if matches != nil {
if entry.ether, err = decodeDhcpdLeaseBytes(matches[1]); err != nil {
log.Printf("Error trying to parse hardware ethernet address (%v) for entry %v", matches[1], entry.address)
}
continue
}
// Parse out the uid
matches = uidLineRe.FindStringSubmatch(item_s)
if matches != nil {
if entry.uid, err = decodeDhcpdLeaseBytes(matches[1]); err != nil {
log.Printf("Error trying to parse uid (%v) for entry %v", matches[1], entry.address)
}
continue
}
// Check to see if we're terminating the brace, so we can skip
// to the next iteration.
if strings.HasSuffix(item_s, "}") {
continue
}
// Just stash it for now because we have no idea what it is.
entry.extra = append(entry.extra, strings.TrimSpace(item_s))
}
return entry, nil
}
func ReadDhcpdLeaseEntries(fd *os.File) ([]dhcpLeaseEntry, error) {
fch := consumeFile(fd)
uncommentedch := uncomment(fch)
wch := filterOutCharacters([]byte{'\n', '\r', '\v'}, uncommentedch)
result := make([]dhcpLeaseEntry, 0)
errors := make([]error, 0)
// Consume dhcpd lease entries from the channel until we just plain run out.
for i := 0; ; i += 1 {
if entry, err := readDhcpdLeaseEntry(wch); entry == nil {
// If our entry is nil, then we've run out of input and finished
// parsing the file to completion.
break
} else if err != nil {
// If we received an error, then log it and keep track of it. This
// way we can warn the user later which entries we had issues with.
log.Printf("Error parsing dhcpd lease entry #%d: %s", 1+i, err)
errors = append(errors, err)
} else {
// If we've parsed an entry successfully, then aggregate it to
// our slice of results.
result = append(result, *entry)
}
}
// If we received any errors then include alongside our results.
if len(errors) > 0 {
return result, fmt.Errorf("Errors found while parsing dhcpd lease entries: %v", errors)
}
return result, nil
}