
RPC Broker 1.1

Developer’s Guide

February 2017

Department of Veterans Affairs (VA)

Office of Information and Technology (OI&T)

Enterprise Program Management Office (EPMO)

RPC Broker 1.1
Developer’s Guide ii February 2017

Revision History

Documentation Revisions

Date Revision Description Author

02/15/2017 3.0 Tech Edits based on release of RPC Broker
Patch XWB*1.1*65:

• Reformatted document to follow
current documentation standards
and style formatting requirements.

• Added Section 1.1.1.
• Updated Step 2 for 2-factor

authentication (2FA) and BSE “GUI
Developer Issues” in Section 1.1.2.

• Updated Section 1.3 for IPv4/IPv6
support, 2-factor authentication,
renamed XWBHash Unit, and
current Delphi software version
support. Also, added
“TXWBSSOiToken” to the list of
components.

• Restructured Section 1.4 to now list
changes by BDK patch release.
Updated the following content in
those sections for Patch
XWB*1.1*65:
o Caution Note for 2-factor

authentication.
o New/Modified components.
o Current Delphi software support

and 2-factor authentication.
o New library methods
o New properties.
o Modified type.

• Updated Section 1.5.2 for currently
supported Delphi software version.

• Updated Section 1.6.5 for support of
three types of silent login.

• Updated Section 2.1.1.3; clarified
SSO/UC-aware and capable of
CCOW single sign-on (SSO).

• Updated Section 2.1.3.4.
• Updated patch reference in Section

2.1.3.5.
• Changed “Using clause” to “Uses

clause” in Section 2.2.6.2.
• Added the “XWBSSOi Unit” and

• Developer H. W.
• Technical Writer: T.

B.

RPC Broker 1.1
Developer’s Guide iii February 2017

Date Revision Description Author
renamed “Hash Unit” to “XWBHash
Unit” in Section 2.3 and moved
“XWBHash Unit” to Section 2.3.10.

• Added Section 2.3.11, “XWBSSOi
Unit.”

• Added the following properties to
Table 4:
o SecurityPhrase Property
o SSHHide Property
o SSHport Property
o SSHpw Property
o SSHUser Property
o SSOiToken Property
o SSOiSECID Property
o SSOiADUPN Property
o SSOiLogonName Property
o UseSecureConnection Property

• Added the following properties to
Table 6:
o SSOiToken Property
o SSOiSECID Property
o SSOiADUPN Property
o SSOiLogonName Property

• Added Section 2.1.5,
“TXWBSSOiToken Component.”

• Added Caution statement to the
reference PType in Table 11, Table
14, and Table 61.

• Added the following new properties:
o SSOiADUPN Property

(TRPCBroker Component)
o SSOiADUPN Property

(TXWBSSOiToken Component)
o SSOiLogonName Property

(TRPCBroker Component)
o SSOiLogonName Property

(TXWBSSOiToken Component)
o SSOiSECID (TRPCBroker

Component)
o SSOiSECID Property

(TXWBSSOiToken Component)
o SSOiToken Property

(TRPCBroker Component)
o SSOiToken Property

(TXWBSSOiToken Component)
• Removed Note reference to the

RPC Broker 1.1
Developer’s Guide iv February 2017

Date Revision Description Author
example in Sections 2.6.32.3,
2.6.71.3, 7.16.2.1, and 7.16.2.2;
those sample files no longer
distributed.

• Modified/Renamed Section 4.
o Added new RPC Broker APIs

Section 4.1.
o Moved content and added

Section 4.2.
• Updated the option parameter

description to clarify it is an
“encrypted name” in Section 4.1.5.

• Added the following new RPCs to
Section 4.2:
o XWB CREATE CONTEXT
o XWB GET BROKER INFO
o XWB IM HERE

• Updated Section 4.2.9.1 regarding
Windows registry entries.

• Added Section 5, “Broker Security
Enhancement (BSE).” Consolidating
all developer-related content from
the standalone Broker Security
Enhancement (BSE) Supplement to
Patch: XWB*1.1*45 & XU*8.0*404
document into the RPC Broker
Developer’s Guide. Specifically,
content taken from Sections 3-6.

NOTE: Once all content is
transferred from the BSE standalone
document into the appropriate RPC
Broker documents, the Broker
Security Enhancement (BSE)
Supplement to Patch: XWB*1.1*45 &
XU*8.0*404 will be deleted and
removed from the VDL.

• Changed references from “Borland
Delphi” to “Embarcadero Delphi,”
removed Note referring to CAPRI,
and updated Steps 1-2, removed old
Step 3 (including RPC Broker login
components) and old Step 8
(recompiling application), updated
new Steps 3-7 in Section 5.1.2.

• Updated Section 6.2.
• Deleted “BAPI32.DLL not able to

support SSH” Note from Section 8.1.
• Added the MySsoToken Function to

Table 40.

RPC Broker 1.1
Developer’s Guide v February 2017

Date Revision Description Author
• Updated Section 8.3.2. Also, deleted

Section 8.7; it was a duplicate of
Section 8.3.2.

• Added Section 8.7, “MySsoToken
Function.”

• Added “SAML” and “XML” to the
Glossary, Table 66.

RPC Broker 1.1; XWB*1.1*65 BDK

04/28/2016 2.0 Tech Edits based on release of RPC Broker
Patch XWB*1.1*60 (released 06/11/2015):

• Reformatted document to follow
current documentation standards
and style formatting requirements.

• Updated the “Orientation” section.
• Updated Section 1.3.
• Updated Section 1.4.2.1 for

deprecated (removed) components.
• Updated Section 1.4.2.2 for added or

modified components.
• Updated Section 1.4.4 for added

functionality.
• Updated Section 1.4.5.2 for modified

methods.
• Updated Section 1.4.6.1 for

deprecated (removed) properties.
• Added Figure 1 caption.
• Removed deprecated properties

from Table 4, Table 6, Table 7, and
Table 9.

• Modified command line parameter in
Section 2.1.3.4.

• Updated Sections 2.4.1.4.1 and
2.4.1.4.2.

• Updated Section 2.6.52.4.
• Modified property references in

Sections 2.6.55.3 and 2.6.56.3.
• Updated Figure 53.
• Removed malfunction note in

Section 4.2.7.1.
• Updated Figure 59.
• Removed Winsock reference note

from Section 5.4.
• Removed caution note regarding

writing to Windows registry in
Section 6.17.

• Updated Section 7.1.

• Developer H. W.
• Technical Writer: T.

B.

RPC Broker 1.1
Developer’s Guide vi February 2017

Date Revision Description Author
• Removed references to “DSM” and

ZDCEBUG throughout.

Also, deleted Section 5.7,
“Identifying the Listener Process on
the Server” and Section 5.8,
“Identifying the Handler Process on
the Server,” since they referred to
DSM commands and processes.

• Updated help file references from
“BROKER.HLP” to
“Broker_1_1.chm” throughout.

• Updated references to show RPC
Broker Patch XWB*1.1*60 supports
Delphi XE7, XE6, XE5, and XE4
throughout.

RPC Broker 1.1; XWB*1.1*60 BDK

04/16/2014 1.2 Tech Edits:
• Added links to new properties added

with Patch XWB*1.1*50 in Section
Properties—Added or Modified.

• Corrected sort order of properties in
Table 6.

• Added the “run-time only” icon to the
Socket Property (read-only) and
User Property throughout.

• Corrected the Assign Procedure link
in Section 2.2.3.4.

• Added bullet list of Units described in
this document in Section 2.3.

• Deleted TMult Class from the list in
Section 2.3.8.1.

• Made other minor format and content
updates.

RPC Broker 1.1; XWB*1.1*50

• Technical Writer: T.
B.

04/14/2014 1.1 Tech Edits:
• Updated the “Definitions” section for

Units, Classes, Components, and
Routines.

• Updated the “About this Version of
the RPC Broker” section.

• Updated the order of the classes in
the “Classes—Added” section.

• Updated the “Components—Added
or Modified” section.

• Changed references from “TVCEdit
Unit” to “VCEdit Unit” throughout.

• Updated the “Properties—Added or

• Technical Writer: T.
B.

• Developer H. W.

RPC Broker 1.1
Developer’s Guide vii February 2017

Date Revision Description Author
Modified” section for properties
added with XWB*1.1*50.

• Updated Section 2.1.1.7 for
reference to Sample directory.

• Updated “TContextorControl
Component” section. Added Parent
class, Unit, and Description sub-
sections.

• Updated Table 6 with duplicate
properties from TCCOWRPCBroker,
because they have been made
available within the TRPCBroker
component.

• Updated Section 2.1.3.8 for CCOW
methods added to the TRPCBroker
Component.

• Changed references to correct
Sample directory throughout:

BDK32\Samples\BrokerEx

Also, changed references to the
BDK32\Samples\SharedRPCBroker
directory, since these were not
included with XWB*1.1*50.

• Updated Section 2.2.1.3.
• Updated Section 2.2.1.4:

o Changed Assign Method (TMult
Class) to Assign Procedure
(TMult Class).

o Changed Order Method to Order
Function throughout.

o Changed Position Method to
Position Function throughout.

o Changed Subscript Method to
Subscript Function throughout.

• Updated Section 2.2.3.3 title and
added the ParamArray property.

• Updated Section 2.2.3.4 title and
ParamArray Property.

• Updated Table 7; added the
NTToken Property.

• Updated description in Section
2.2.6.2.

• Added Caution note to Section 2.3.
• Updated Encryption and Decryption

Function links in Section 2.3.2.1.
• Added description in Section 2.3.4.

RPC Broker 1.1
Developer’s Guide viii February 2017

Date Revision Description Author
• Added description and Caution note

in Section 2.3.5.
• Added IsIPAddress Function to

Section 2.3.5.1.
• Added description to Section 2.3.6.
• Added the following methods to

Section 2.3.6.1: GetSessionInfo
Procedure, GetUserInfo Procedure,
SilentLogIn Function,
ValidAppHandle Function,
ValidAVCodes Function, and
ValidNTToken Function.

• Added description to Section 2.3.7.
• Added “Procedure to library methods

in Section 2.3.7.1.
• Added the “Wsockc Unit” section.
• Removed or modified references to

the BDK32\Samples\SilentSignOn
directory throughout.

• Added the “SecurityPhrase Property”
section.

• Added the following
properties/sections:
o SSHHide Property
o SSHport Property
o SSHpw Property
o SSHUser Property

• Added the “UseSecureConnection
Property” section.

• Corrected sample app name in
Section 3.7.8; added “.exe” and
deleted the Note.

• Added Caution and Note to Section
4.2.3.

• As per Keith Cox, head of the ICR
team, changed all XWB “public”
RPCs to “Controlled Subscription
throughout to improve VistA security.
Added Notes where appropriate.

• Updated Figure 53.
• Added Windows 7 Note to Section

4.2.7.1.
• Added Caution to Section 4.2.8.1.
• Deleted first reference Note in

Section 4.2.12.1, since repeated with
the Example.

• Updated Table 39: Added errors

RPC Broker 1.1
Developer’s Guide ix February 2017

Date Revision Description Author
20008 - 20112.

• Updated Figure 74.
• Updated example in Step 2 in the

“Tutorial—Step 4: Routine to List
Terminal Types” section.

• Updated Figure 81.
• Updated example in Step 3 in the

“Tutorial—Step 8: Routine to
Retrieve Terminal Types” section.

• Updated Figure 90.
• Updated Note in Section 6.16.4.1

and 6.16.4.2.
• Added Caution note to Section 6.17.
• Updated references to the

VB5EGCHO sample application to
have been distributed with an earlier
BDK.

RPC Broker 1.1

04/10/2014 1.0 Initial document:
• Content derived from the RPC

Broker 1.1 online HTML help topics
using RoboHelp utility.

• Reformatted document and made
sure it conforms to the current OI&T
National Documentations Standards.

• Made other minor grammar and
punctuation corrections throughout.

RPC Broker 1.1

• Technical Writer: T.
B.

• Developer H. W.

Patch Revisions
For the current patch history related to this software, see the Patch Module on FORUM.

RPC Broker 1.1
Developer’s Guide x February 2017

Table of Contents

Revision History .. ii
List of Figures ... xviii
List of Tables .. xx
Orientation .. xxiii
1 Introduction .. 1

1.1 Broker Overview ... 2
1.1.1 Broker Security Enhancement (BSE) Overview ... 2
1.1.2 Broker Call Steps ... 3

1.2 Definitions ... 4
1.2.1 Units .. 5
1.2.2 Classes .. 5
1.2.3 Objects .. 5
1.2.4 Components .. 6
1.2.5 Types ... 6
1.2.6 Methods ... 6
1.2.7 Routines: Functions and Procedures ... 6

1.3 About this Version of the RPC Broker .. 6
1.4 What’s New in the BDK .. 7

1.4.1 XWB*1.1*65 ... 7
1.4.2 XWB*1.1*60 ... 9
1.4.3 XWB*1.1*50 ... 10
1.4.4 XWB*1.1*40 ... 11
1.4.5 XWB*1.1*35 ... 12
1.4.6 XWB*1.1*26 ... 13
1.4.7 XWB*1.1*23 ... 13
1.4.8 XWB*1.1*14 ... 13
1.4.9 XWB*1.1*13 ... 14

1.5 Developer Considerations ... 15
1.5.1 Source Code .. 15
1.5.2 Design-time and Run-time Packages ... 16
1.5.3 Resource Reuse .. 16
1.5.4 Component Connect-Disconnect Behavior... 16

1.6 Application Considerations ... 17
1.6.1 Application Version Numbers ... 17
1.6.2 Deferred RPCs .. 17
1.6.3 Remote RPCs .. 17
1.6.4 Blocking RPCs ... 17
1.6.5 Silent Login .. 17

1.7 Online Help .. 17

RPC Broker 1.1
Developer’s Guide xi February 2017

2 RPC Broker Components, Classes, Units, Methods, Types, and
Properties ... 19

2.1 Components .. 19
2.1.1 TCCOWRPCBroker Component .. 19
2.1.2 TContextorControl Component .. 22
2.1.3 TRPCBroker Component ... 23
2.1.4 TXWBRichEdit Component .. 27
2.1.5 TXWBSSOiToken Component ... 27

2.2 Classes .. 29
2.2.1 TMult Class .. 29
2.2.2 TParamRecord Class ... 30
2.2.3 TParams Class .. 31
2.2.4 TVistaLogin Class .. 32
2.2.5 TVistaUser Class ... 33
2.2.6 TXWBWinsock Class ... 34

2.3 Units .. 35
2.3.1 CCOWRPCBroker Unit .. 35
2.3.2 LoginFrm Unit .. 35
2.3.3 MFunStr Unit .. 36
2.3.4 RPCConf1 Unit .. 36
2.3.5 RpcSLogin Unit .. 36
2.3.6 SplVista Unit .. 37
2.3.7 TRPCB Unit ... 37
2.3.8 VCEdit Unit .. 38
2.3.9 Wsockc Unit ... 38
2.3.10 XWBHash Unit ... 39
2.3.11 XWBSSOi Unit ... 39

2.4 Methods ... 40
2.4.1 Assign Method (TMult Class) ... 40
2.4.2 Assign Method (TParams Class) .. 44
2.4.3 Call Method .. 45
2.4.4 CreateContext Method ... 46
2.4.5 GetCCOWtoken Method .. 48
2.4.6 IsUserCleared Method ... 48
2.4.7 IsUserContextPending Method .. 49
2.4.8 lstCall Method .. 50
2.4.9 pchCall Method .. 51
2.4.10 Order Method ... 51
2.4.11 Position Method ... 52
2.4.12 strCall Method .. 53
2.4.13 Subscript Method ... 54
2.4.14 WasUserDefined Method ... 55

2.5 Types ... 56

RPC Broker 1.1
Developer’s Guide xii February 2017

2.5.1 TLoginMode Type .. 56
2.5.2 TParamType .. 57

2.6 Properties .. 57
2.6.1 AccessCode Property .. 57
2.6.2 BrokerVersion Property (read-only) .. 58
2.6.3 CCOWLogonIDName Property (read-only) .. 58
2.6.4 CCOWLogonIDValue Property (read-only) ... 58
2.6.5 CCOWLogonName Property (read-only) .. 59
2.6.6 CCOWLogonNameValue Property (read-only) ... 59
2.6.7 CCOWLogonVpid Property (read-only) .. 59
2.6.8 CCOWLogonVpidValue Property (read-only) ... 60
2.6.9 ClearParameters Property ... 60
2.6.10 ClearResults Property .. 61
2.6.11 Connected Property ... 62
2.6.12 Contextor Property ... 63
2.6.13 Count Property (TMult Class) ... 64
2.6.14 Count Property (TParams Class) ... 64
2.6.15 CurrentContext Property (read-only) .. 65
2.6.16 DebugMode Property ... 66
2.6.17 Division Property (TVistaLogin Class) .. 66
2.6.18 Division Property (TVistaUser Class) ... 66
2.6.19 DivList Property (read-only) ... 67
2.6.20 DomainName Property... 67
2.6.21 DTime Property .. 68
2.6.22 DUZ Property (TVistaLogin Class) ... 68
2.6.23 DUZ Property (TVistaUser Class) .. 68
2.6.24 ErrorText Property ... 69
2.6.25 First Property ... 69
2.6.26 IsProductionAccount Property .. 70
2.6.27 KernelLogIn Property ... 71
2.6.28 Language Property .. 71
2.6.29 Last Property ... 71
2.6.30 ListenerPort Property ... 72
2.6.31 LogIn Property ... 73
2.6.32 LoginHandle Property .. 73
2.6.33 Mode Property ... 74
2.6.34 Mult Property ... 74
2.6.35 MultiDivision Property .. 75
2.6.36 Name Property ... 76
2.6.37 OnFailedLogin Property ... 76
2.6.38 OnRPCBFailure Property ... 77
2.6.39 Param Property .. 78
2.6.40 PromptDivision Property .. 80
2.6.41 PType Property .. 81

RPC Broker 1.1
Developer’s Guide xiii February 2017

2.6.42 RemoteProcedure Property ... 83
2.6.43 Results Property .. 83
2.6.44 RPCBError Property (read-only) .. 84
2.6.45 RPCTimeLimit Property ... 85
2.6.46 RPCVersion Property ... 86
2.6.47 SecurityPhrase Property .. 87
2.6.48 Server Property .. 87
2.6.49 ServiceSection Property ... 88
2.6.50 ShowErrorMsgs Property ... 89
2.6.51 Socket Property (read-only) ... 89
2.6.52 Sorted Property .. 90
2.6.53 SSHHide Property .. 93
2.6.54 SSHport Property ... 93
2.6.55 SSHpw Property .. 94
2.6.56 SSHUser Property ... 94
2.6.57 SSOiADUPN Property (TRPCBroker Component) ... 95
2.6.58 SSOiADUPN Property (TXWBSSOiToken Component) 95
2.6.59 SSOiLogonName Property (TRPCBroker Component) 95
2.6.60 SSOiLogonName Property (TXWBSSOiToken Component) 96
2.6.61 SSOiSECID (TRPCBroker Component) ... 96
2.6.62 SSOiSECID Property (TXWBSSOiToken Component) 96
2.6.63 SSOiToken Property (TRPCBroker Component).. 97
2.6.64 SSOiToken Property (TXWBSSOiToken Component) 97
2.6.65 StandardName Property .. 97
2.6.66 Title Property ... 98
2.6.67 URLDetect Property ... 98
2.6.68 User Property ... 98
2.6.69 UseSecureConnection Property ... 99
2.6.70 Value Property ... 99
2.6.71 VerifyCode Property ... 100
2.6.72 VerifyCodeChngd Property .. 101
2.6.73 Vpid Property ... 101

3 Remote Procedure Calls (RPCs) ... 102
3.1 RPC Overview ... 102
3.2 What Makes a Good RPC? ... 103
3.3 Using an Existing M API ... 103
3.4 Creating RPCs .. 103
3.5 M Entry Point for an RPC ... 103

3.5.1 Relationship between an M Entry Point and an RPC 103
3.5.2 First Input Parameter (Required) .. 104
3.5.3 Return Value Types ... 104
3.5.4 Input Parameters (Optional) ... 106
3.5.5 Examples ... 106

RPC Broker 1.1
Developer’s Guide xiv February 2017

3.6 RPC Entry in the Remote Procedure File .. 107
3.6.1 REMOTE PROCEDURE File ... 107
3.6.2 Key Fields for RPC Operation .. 107
3.6.3 RPC Version .. 108
3.6.4 Blocking an RPC .. 108
3.6.5 Cleanup after RPC Execution .. 108
3.6.6 Documenting RPCs ... 108

3.7 Executing RPCs from Clients .. 109
3.7.1 How to Execute an RPC from a Client ... 109
3.7.2 RPC Security: How to Register an RPC ... 110
3.7.3 RPC Limits ... 111
3.7.4 RPC Time Limits .. 111
3.7.5 Maximum Size of Data ... 111
3.7.6 Maximum Number of Parameters .. 111
3.7.7 Maximum Size of Array .. 112
3.7.8 RPC Broker Example (32-Bit) .. 112

4 RPC Broker: Developer Tools ... 113
4.1 Application Programming Interface (API) ... 113

4.1.1 Overview .. 113
4.1.2 $$BROKER^XWBLIB: Test for Broker Context .. 113
4.1.3 $$RTRNFMT^XWBLIB(): Change RPC Return Type 114
4.1.4 CHKPRMIT^XWBSEC(): Check Permissions... 115
4.1.5 CRCONTXT^XWBSEC(): Create Context .. 116
4.1.6 SET^XWBSEC(): Set the State Variable .. 117

4.2 Functions, Methods, and Procedures ... 118
4.2.1 Overview .. 118
4.2.2 XWB CREATE CONTEXT ... 118
4.2.3 XWB GET BROKER INFO ... 119
4.2.4 XWB GET VARIABLE VALUE ... 119
4.2.5 XWB IM HERE ... 119
4.2.6 M Emulation Functions... 120
4.2.7 Encryption Functions ... 120
4.2.8 CheckCmdLine Function .. 121
4.2.9 GetServerInfo Function .. 122
4.2.10 GetServerIP Function .. 124
4.2.11 ChangeVerify Function .. 124
4.2.12 SilentChangeVerify Function .. 125
4.2.13 StartProgSLogin Method .. 125
4.2.14 VistA Splash Screen Procedures ... 127

4.3 Running RPCs on a Remote Server .. 129
4.3.1 Overview .. 129
4.3.2 Checking RPC Availability on a Remote Server ... 130
4.3.3 XWB ARE RPCS AVAILABLE ... 131

RPC Broker 1.1
Developer’s Guide xv February 2017

4.3.4 XWB IS RPC AVAILABLE .. 132
4.3.5 XWB DIRECT RPC .. 134
4.3.6 XWB REMOTE RPC .. 135
4.3.7 XWB REMOTE STATUS CHECK .. 136
4.3.8 XWB REMOTE GETDATA ... 137
4.3.9 XWB REMOTE CLEAR.. 138

4.4 Deferred RPCs .. 139
4.4.1 Overview .. 139
4.4.2 XWB DEFERRED RPC.. 140
4.4.3 XWB DEFERRED STATUS ... 141
4.4.4 XWB DEFERRED GETDATA .. 141
4.4.5 XWB DEFERRED CLEAR ... 142
4.4.6 XWB DEFERRED CLEARALL ... 142

5 Broker Security Enhancement (BSE) ... 144
5.1 Overview: Implementing Broker Security Enhancement (BSE) 144

5.1.1 Assumptions When Implementing BSE .. 144
5.1.2 Step-By-Step Procedures to Implement BSE ... 144

6 Debugging and Troubleshooting .. 154
6.1 Debugging and Troubleshooting Overview .. 154
6.2 How to Debug the Application ... 154
6.3 RPC Error Trapping .. 154
6.4 Broker Error Messages .. 155
6.5 EBrokerError ... 157

6.5.1 Unit .. 157
6.5.2 Description ... 157

6.6 Testing the RPC Broker Connection ... 158
6.7 Client Timeout and Buffer Clearing ... 158
6.8 Memory Leaks ... 158

7 Tutorial .. 160
7.1 Tutorial: Introduction ... 160

7.1.1 Tutorial Procedures .. 160
7.2 Tutorial: Advanced Preparation ... 161

7.2.1 Namespacing of Routines and RPCs ... 161
7.2.2 Tutorial Prerequisites ... 161

7.3 Tutorial—Step 1: RPC Broker Component .. 161
7.4 Tutorial—Step 2: Get Server/Port .. 163
7.5 Tutorial—Step 3: Establish Broker Connection.. 164
7.6 Tutorial—Step 4: Routine to List Terminal Types .. 165
7.7 Tutorial—Step 5: RPC to List Terminal Types .. 167
7.8 Tutorial—Step 6: Call ZxxxTT LIST RPC ... 167
7.9 Tutorial—Step 7: Associating IENs ... 169
7.10 Tutorial—Step 8: Routine to Retrieve Terminal Types 172
7.11 Tutorial—Step 9: RPC to Retrieve Terminal Types .. 173

RPC Broker 1.1
Developer’s Guide xvi February 2017

7.12 Tutorial—Step 10: Call ZxxxTT RETRIEVE RPC ... 174
7.13 Tutorial—Step 11: Register RPCs ... 176
7.14 Tutorial—Using VA FileMan Delphi Components (FMDC) 178
7.15 Tutorial—Source Code (Sample) ... 179
7.16 Silent Login ... 181

7.16.1 Handling Divisions during Silent Login ... 182
7.16.2 Silent Login Examples ... 183

7.17 Microsoft Windows Registry .. 185

8 DLL Interfaces (C, C++, Visual Basic) ... 186
8.1 DLL Interface Introduction ... 186

8.1.1 Header Files .. 186
8.1.2 Sample DLL Application ... 186

8.2 DLL Exported Functions .. 187
8.3 DLL Special Issues ... 187

8.3.1 RPC Results from DLL Calls .. 187
8.3.2 GetServerInfo Function and the DLL .. 188

8.4 C DLL Interface ... 189
8.4.1 C: Guidelines Overview.. 189
8.4.2 C: Initialize—LoadLibrary and GetProcAddress ... 189
8.4.3 C: Create Broker Components ... 190
8.4.4 C: Connect to the Server .. 191
8.4.5 C: Execute RPCs ... 191
8.4.6 C: Destroy Broker Components ... 192

8.5 C++ DLL Interface ... 193
8.5.1 C++: Guidelines Overview ... 193
8.5.2 C++: Initialize the Class ... 193
8.5.3 C++: Create Broker Instances .. 194
8.5.4 C++: Connect to the Server ... 194
8.5.5 C++: Execute RPCs ... 195
8.5.6 C++: Destroy Broker Instances .. 195
8.5.7 C++: TRPCBroker C++ Class Methods .. 196

8.6 Visual Basic DLL Interface ... 196
8.6.1 Visual Basic: Guidelines Overview ... 196
8.6.2 Visual Basic: Initialize .. 197
8.6.3 Visual Basic: Create Broker Components .. 197
8.6.4 Visual Basic: Connect to the Server ... 197
8.6.5 Visual Basic: Execute RPCs .. 198
8.6.6 Visual Basic: Destroy Broker Components ... 199

8.7 MySsoToken Function.. 199
8.7.1 Declarations ... 199
8.7.2 Return Value .. 200
8.7.3 Examples ... 200

8.8 RPCBCall Function ... 200

RPC Broker 1.1
Developer’s Guide xvii February 2017

8.8.1 Declarations ... 200
8.8.2 Parameter Description ... 200
8.8.3 Examples ... 201

8.9 RPCBCreate Function .. 201
8.9.1 Declarations ... 201
8.9.2 Return Value .. 201
8.9.3 Examples ... 202

8.10 RPCBCreateContext Function ... 202
8.10.1 Declarations ... 202
8.10.2 Return Value .. 202
8.10.3 Parameter Description ... 202
8.10.4 Examples ... 203

8.11 RPCBFree Function .. 203
8.11.1 Declarations ... 203
8.11.2 Parameter Description ... 203
8.11.3 Examples ... 204

8.12 RPCBMultItemGet Function ... 204
8.12.1 Declarations ... 204
8.12.2 Parameter Description ... 204
8.12.3 Examples ... 205

8.13 RPCBMultPropGet Function .. 205
8.13.1 Declarations ... 205
8.13.2 Parameter Description ... 205
8.13.3 Examples ... 206

8.14 RPCBMultSet Function ... 206
8.14.1 Declarations ... 206
8.14.2 Parameter Description ... 206
8.14.3 Examples ... 207

8.15 RPCBMultSortedSet Function ... 207
8.15.1 Declarations ... 207
8.15.2 Parameter Description ... 208
8.15.3 Examples ... 208

8.16 RPCBParamGet Function ... 208
8.16.1 Declarations ... 209
8.16.2 Parameter Description ... 209
8.16.3 Examples ... 210

8.17 RPCBParamSet Function ... 210
8.17.1 Declarations ... 210
8.17.2 Parameter Description ... 211
8.17.3 Examples ... 211

8.18 RPCBPropGet Function ... 212
8.18.1 Declarations ... 212
8.18.2 Examples ... 213

8.19 RPCBPropSet Function .. 213

RPC Broker 1.1
Developer’s Guide xviii February 2017

8.19.1 Declarations ... 213
8.19.2 Examples ... 214

Glossary.. 215

List of Figures

Figure 1: Delphi XE4 Tool Properties Dialogue: RPC Broker Help File Entry18
Figure 2: TRPCBroker Component—Example ..26
Figure 3: TXWBSSOiToken Component—Example ..28
Figure 4: TMult Class—Example ...30
Figure 5: TParamRecord Class—Example ..31
Figure 6: TParams Class—Example ...32
Figure 7: TMult Assign Method—Code Added to the Button1.OnClick Event41
Figure 8: TMult Assign Method—Assigning listbox Items to a TMULT: Sample Form Output42
Figure 9: TMult Assign Method—Code Added to the Button1.OnClick Event43
Figure 10: TMult Assign Method—Assigning One TMULT to another: Sample Form Output44
Figure 11: Assign Method (TParams Class)—Example ...45
Figure 12: Call Method—Example...46
Figure 13: CreateContext Method—Example ..47
Figure 14: IsUserCleared Method—Example ..49
Figure 15: lstCall Method—Example ...50
Figure 16: Order Method—Sample Code to Get the Next and Previous Elements in a TMult List

 ..52
Figure 17: Position Method—Sample Code that Shows How to Get the Position of an Item in a

TMult Variable ..53
Figure 18: strCall Method—Sample Code Showing the Use of the strCall Method54
Figure 19: Subscript Method—Example ..55
Figure 20: WasUserDefined Method—Example ..56
Figure 21: ClearParameters Property—Example ..61
Figure 22: ClearResults Property—Example ...61
Figure 23: Connected Property—Example (1 of 2) ..62
Figure 24: Connected Property—Example (2 of 2) ..63
Figure 25: Count Property (TMult Class)—Example ..64
Figure 26: Count Property (TParams Class)—Example ..64
Figure 27: CurrentContext Property—Example ...65
Figure 28: First Property—Example ..70
Figure 29: Last Property—Example ..72
Figure 30: ListenerPort Property—Example ..73
Figure 31: Mult Property—Example (1 of 2) ..75
Figure 32: Mult Property—Example (2 of 2) ..75
Figure 33: Error Handler—Example of Storing a Message with a Time Date Stamp78
Figure 34: Param Property—Example ...80
Figure 35: PType Property—Example ...82

RPC Broker 1.1
Developer’s Guide xix February 2017

Figure 36: RemoteProcedure Property—Example ..83
Figure 37: Results Property—Sample Array List Sequence ..83
Figure 38: Results Property—Sample Array List Sequence Sorted Alphabetically84
Figure 39: Results Property—Example ...84
Figure 40: Results Property—Sample Code Using the Results Property84
Figure 41: RPCTimeLimit Property—Example ..85
Figure 42: RPCVersion Property—Example on the Client ...86
Figure 43: RPCVersion Property—Example on the Server..87
Figure 44: Server Property—Example ...88
Figure 45: Socket Property—Example ..90
Figure 46: Sorted Property—Code Added to the Button1.OnClick Event...................................91
Figure 47: Sorted Property—Sample Form Output ..92
Figure 48: Value Property—Example .. 100
Figure 49: RPCs—Sample M Code to Add Two Numbers .. 106
Figure 50: RPCs—Sample M Code that Receives an Array of Numbers and Returns them as a

Sorted Array to the Client ... 106
Figure 51: RPCs—Param Property—Example Setting a List of Values 109
Figure 52: Error Handling—Example of a “try...except” Statement .. 109
Figure 53: XWB GET VARIABLE VALUE RPC—Example .. 119
Figure 54: GetServerInfo Function—Connect To Dialogue ... 122
Figure 55: GetServerInfo Function—Example ... 123
Figure 56: GetServerIP Function—Example ... 124
Figure 57: SilentChangeVerify Function—Example ... 126
Figure 58: SilentChangeVerify Function—Example of Command Line Code to Launch the

Application ... 126
Figure 59: SilentChangeVerify Function—Example of Command Line Code to Launch Program

Unrelated to TRPCBroker and VistA M Server Connections .. 126
Figure 60: Sample VistA Splash Screen.. 127
Figure 61: Sample Code to Display a VistA Splash Screen ... 128
Figure 62: XWB ARE RPCS AVAILABLE—Example .. 132
Figure 63: XWB IS RPC AVAILABLE—Example ... 133
Figure 64: XWB DIRECT RPC—Example ... 134
Figure 65: XWB REMOTE RPC—Example ... 136
Figure 66: XWB REMOTE STATUS CHECK—Example ... 137
Figure 67: XWB REMOTE GETDATA—Example .. 137
Figure 68: XWB REMOTE CLEAR—Example .. 138
Figure 69: XWB DEFERRED RPC—Example... 140
Figure 70: XWB DEFERRED STATUS—Example .. 141
Figure 71: XWB DEFERRED GETDATA—Example ... 142
Figure 72: XWB DEFERRED CLEAR—Example .. 142
Figure 73: XWB DEFERRED CLEARALL—Example .. 143
Figure 74: fBseSample1.pas File—Sample Code Excerpt (#1) ... 146
Figure 75: fBseSample1.pas File—Sample Code Excerpt (#2) ... 147
Figure 76: fBseSample1.pas File—Sample Code Excerpt (#3) ... 148

RPC Broker 1.1
Developer’s Guide xx February 2017

Figure 77: BSE Project—BrokerSecurityEnhancement Sample1 Application
(i.e., BseSample1.exe) ... 151

Figure 78: Sample Kernel Authentication Token ... 153
Figure 79: Sample Confirmation Message Indicating the User is Signed onto the Remote VistA

M Server as a Visitor .. 153
Figure 80: Error Handling—EBrokerError Exception ... 157
Figure 81: Tutorial—Step 1:RPC Broker Component: Sample Form Output 162
Figure 82: Tutorial—Step 2: Get Server/Port: Example ... 163
Figure 83: Tutorial—Step 3: Establish Broker Connection: Example 164
Figure 84: Tutorial—Step 4: Routine to List Terminal Types: Example 166
Figure 85: Tutorial—Step 4: Routine to List Terminal Types: Example confirming global data

format .. 166
Figure 86: Tutorial—Step 5: RPC to List Terminal Types: Example .. 167
Figure 87: Tutorial—Step 6: Call ZxxxTT LIST RPC: Example .. 168
Figure 88: Tutorial—Step 6: Call ZxxxTT LIST RPC: Sample Output Form 169
Figure 89: Tutorial—Step 7: Associating IENs: Example of Creating a Variable to Save Results

 .. 170
Figure 90: Tutorial—Step 7: Associating IENs: Example of Creating an Event Handler to Free

Memory .. 170
Figure 91: Tutorial—Step 7: Associating IENs: Example of Creating an Event Handler to

Populate a List of Terminal Types .. 171
Figure 92: Tutorial—Step 7: Associating IENs: Example of Creating an Event Handler to Check

if an Item is Selected .. 171
Figure 93: Tutorial—Step 8: Routine to Retrieve Terminal Types: Example of a Subroutine to

Retrieve Fields for a Particular Terminal Type and Set Result Nodes 172
Figure 94: Tutorial—Step 8: Routine to Retrieve Terminal Types: Example Confirming Returned

Array Contains the Specified Fields ... 173
Figure 95: Tutorial—Step 9: RPC to Retrieve Terminal Types: Example of an RPC Setup 173
Figure 96: Tutorial—Step 10: Call ZxxxTT RETRIEVE RPC: Sample of an OnClick Event

Handler .. 175
Figure 97: Tutorial—Step 10: Call ZxxxTT RETRIEVE RPC: Testing the Application 176
Figure 98: Tutorial—Step 11: Register RPCs: Example .. 177
Figure 99: Tutorial Source Code ... 179
Figure 100: DivList Property—Sample List of Divisions ... 182
Figure 101: Silent Login—Example of Passing the Access and Verify Codes 183
Figure 102: Silent Login—Example of Passing in an Application Handle................................. 184
Figure 103: Silent Login—Calling the CheckCmdLine Procedure .. 185
Figure 104: C: Initialize—LoadLibrary and GetProcAddress: Using the Windows API

LoadLibrary Function to Load the DLL ... 189
Figure 105: C: Initialize—LoadLibrary and GetProcAddress: Mapping Function Pointers to the

Addresses of the Functions in the DLL... 190

List of Tables

Table 1: Documentation Symbol Descriptions .. xxiv

RPC Broker 1.1
Developer’s Guide xxi February 2017

Table 2: Commonly Used RPC Broker Terms .. xxvii
Table 3: Broker Client-side and Server-side Overview ... 2
Table 4: TCCOWRPCBroker Component—All Properties (listed alphabetically)20
Table 5: TCCOWRPCBroker Component—Unique Properties (listed alphabetically)21
Table 6: TRPCBroker Component—All Properties (listed alphabetically)24
Table 7: TXWBSSOi Component—All Properties (listed alphabetically)28
Table 8: TVistaLogin Class—All Properties (listed alphabetically) ...33
Table 9: TVistaUser Class—All Properties (listed alphabetically) ..34
Table 10: TLoginMode Type—Silent Login Values ..56
Table 11: PType Property—Values ...81
Table 12: ShowErrorMsgs Property—Values ..89
Table 13: RPC Settings to Determine How Data is Returned .. 104
Table 14: Param PType Value Types .. 106
Table 15: Remote Procedure File Information ... 107
Table 16: Remote Procedure File—Key Fields for RPC Operation.. 107
Table 17: RPC Multiple Fields for “B”-Type Options .. 110
Table 18: $$RTRNFMT^XWBLIB: The type Input Parameter Values 114
Table 19: CheckCmdLine Function—Argument .. 121
Table 20: ChangeVerify Function—Argument ... 124
Table 21: SilentChangeVerify Function—Arguments... 125
Table 22: StartProgSLogin Method—Arguments ... 126
Table 23: Direct RPCs .. 129
Table 24: Remote RPCs ... 129
Table 25: XWB ARE RPCS AVAILABLE—Parameters ... 131
Table 26: XWB IS RPC AVAILABLE—Parameters/Output .. 132
Table 27: XWB DIRECT RPC—Parameters/Output .. 134
Table 28: XWB REMOTE RPC—Parameters/Output .. 135
Table 29: XWB REMOTE STATUS CHECK—Output ... 136
Table 30: XWB REMOTE GETDATA—Output .. 137
Table 31: XWB REMOTE CLEAR—Output ... 138
Table 32: Deferred RPCs .. 139
Table 33: XWB DEFERRED RPC—Parameters/Output .. 140
Table 34: XWB DEFERRED STATUS—Output .. 141
Table 35: XWB DEFERRED GETDATA—Output .. 141
Table 36: XWB DEFERRED CLEAR—Output... 142
Table 37: XWB DEFERRED CLEARALL—Output .. 142
Table 38: Broker Error Messages.. 155
Table 39: Tutorial—Step 10: Call ZxxxTT RETRIEVE RPC: Sample RPC Fields Returned and

Label Information ... 174
Table 40: DLL Exported Functions .. 187
Table 41: C++: TRPCBroker C++ Class Methods ... 196
Table 42: MySsoToken Function—Declarations .. 199
Table 43: RPCBCall Function—Declarations .. 200
Table 44: RPCBCall Function—Parameters .. 200

RPC Broker 1.1
Developer’s Guide xxii February 2017

Table 45: RPCBCreate Function—Declarations .. 201
Table 46: RPCBCreateContext Function—Declarations .. 202
Table 47: RPCBCreateContext Function—Parameters ... 202
Table 48: RPCBFree Function—Declarations ... 203
Table 49: RPCBFree Function—Parameter .. 203
Table 50: RPCBMultItemGet Function—Declarations ... 204
Table 51: RPCBMultItemGet Function—Parameters... 204
Table 52: RPCBMultPropGet—Declarations ... 205
Table 53: RPCBMultPropGet—Parameters .. 205
Table 54: RPCBMultSet Function—Declarations .. 206
Table 55: RPCBMultSet Function—Parameters .. 206
Table 56: RPCBMultSortedSet Function—Declarations .. 207
Table 57: RPCBMultSortedSet Function—Parameters ... 208
Table 58: RPCBParamGet Function—Declarations .. 209
Table 59: RPCBParamGet Function—Parameters .. 209
Table 60: RPCBParamSet Function—Declarations ... 210
Table 61: RPCBParamSet Function—Parameters .. 211
Table 62: RPCBPropGet Function—Declarations ... 212
Table 63: RPCBPropGet Function—Parameters ... 212
Table 64: RPCBPropSet Function—Declarations .. 213
Table 65: RPCBPropSet Function—Parameters ... 214
Table 66: Glossary of Terms and Acronyms ... 215

RPC Broker 1.1
Developer’s Guide xxiii February 2017

Orientation

How to Use this Manual
Throughout this manual, advice and instructions are offered regarding the use of the Remote Procedure
Call (RPC) Broker 1.1 Development Kit (BDK) and the functionality it provides for Veterans Health
Information Systems and Technology Architecture (VistA).

Intended Audience
The intended audience of this manual is the following stakeholders:

• Enterprise Program Management Office (EPMO)—VistA legacy development teams.

• System Administrators—System administrators at Department of Veterans Affairs (VA) regional
and local sites who are responsible for computer management and system security on the VistA
M Servers.

• Information Security Officers (ISOs)—Personnel at VA sites responsible for system security.

• Product Support (PS).

Disclaimers
Software Disclaimer
 This software was developed at the Department of Veterans Affairs (VA) by employees of the Federal
Government in the course of their official duties. Pursuant to title 17 Section 105 of the United States
Code this software is not subject to copyright protection and is in the public domain. VA assumes no
responsibility whatsoever for its use by other parties, and makes no guarantees, expressed or implied,
about its quality, reliability, or any other characteristic. We would appreciate acknowledgement if the
software is used. This software can be redistributed and/or modified freely provided that any derivative
works bear some notice that they are derived from it, and any modified versions bear some notice that
they have been modified.

 CAUTION: To protect the security of VistA systems, distribution of this software for use
on any other computer system by VistA sites is prohibited. All requests for copies of
this software for non-VistA use should be referred to the VistA site’s local Office of
Information and Technology Field Office (OI&TFO).

Documentation Disclaimer
This manual provides an overall explanation of RPC Broker and the functionality contained in RPC
Broker 1.1; however, no attempt is made to explain how the overall VistA programming system is
integrated and maintained. Such methods and procedures are documented elsewhere. We suggest you
look at the various VA Internet and Intranet Websites for a general orientation to VistA. For example,
visit the Office of Information and Technology (OI&T) VistA Development Intranet website.

 DISCLAIMER: The appearance of any external hyperlink references in this manual does
not constitute endorsement by the Department of Veterans Affairs (VA) of this Website
or the information, products, or services contained therein. The VA does not exercise

RPC Broker 1.1
Developer’s Guide xxiv February 2017

any editorial control over the information you find at these locations. Such links are
provided and are consistent with the stated purpose of this VA Intranet Service.

Documentation Conventions
This manual uses several methods to highlight different aspects of the material:

• Various symbols are used throughout the documentation to alert the reader to special information.
Table 1 gives a description of each of these symbols:

Table 1: Documentation Symbol Descriptions

Symbol Description

NOTE / REF: Used to inform the reader of general information including
references to additional reading material

CAUTION / RECOMMENDATION / DISCLAIMER: Used to caution the reader
to take special notice of critical information

• Descriptive text is presented in a proportional font (as represented by this font).

• Conventions for displaying TEST data in this document are as follows:

o The first three digits (prefix) of any Social Security Numbers (SSN) begin with either “000”
or “666.”

o Patient and user names are formatted as follows:

− [Application Name]PATIENT,[N]

− [Application Name]USER,[N]

Where “[Application Name]” is defined in the Approved Application Abbreviations
document and “[N]” represents the first name as a number spelled out and incremented with
each new entry.

For example, in RPC Broker (XWB) test patient names would be documented as follows:

XWBPATIENT,ONE; XWBPATIENT,TWO; XWBPATIENT,14, etc.

For example, in RPC Broker (XWB) test user names would be documented as follows:

XWBUSER,ONE; XWBUSER,TWO; XWBUSER,14, etc.

• “Snapshots” of computer online displays (i.e., screen captures/dialogues) and computer source
code is shown in a non-proportional font and may be enclosed within a box.

• User’s responses to online prompts are in boldface and highlighted in yellow (e.g., <Enter>).

• Emphasis within a dialogue box is in boldface and highlighted in blue (e.g., STANDARD
LISTENER: RUNNING).

• Some software code reserved/key words are in boldface with alternate color font.

• References to “<Enter>” within these snapshots indicate that the user should press the <Enter>
key on the keyboard. Other special keys are represented within < > angle brackets. For example,
pressing the PF1 key can be represented as pressing <PF1>.

RPC Broker 1.1
Developer’s Guide xxv February 2017

• Author’s comments are displayed in italics or as “callout” boxes.

 NOTE: Callout boxes refer to labels or descriptions usually enclosed within a box, which
point to specific areas of a displayed image.

• The following conventions are used with regards to APIs:

o The following API types are documented:

− Supported:

This applies where any VistA application may use the attributes/functions defined by the
Integration Control Registration (ICR); these are also called “Public”. An example is an
ICR that describes a standard API. The package that creates/maintains the Supported
Reference must ensure it is recorded as a Supported Reference in the ICR database. There
is no need for other VistA packages to request an ICR to use these references; they are
open to all by default.

− Controlled Subscription:

Describes attributes/functions that must be controlled in their use. The decision to restrict
the Integration Control Registration (ICR) is based on the maturity of the custodian
package. Typically, these ICRs are created by the requesting package based on their
independent examination of the custodian package's features. For the ICR to be approved
the custodian grants permission to other VistA packages to use the attributes/functions of
the ICR; permission is granted on a one-by-one basis where each is based on a
solicitation by the requesting package.

 Private APIs are not documented.

o Headings for developer API descriptions (e.g., supported for use in applications and on the
Database Integration Committee [DBIC] list) include the routine tag (if any), the caret (“^”)
used when calling the routine, and the routine name. The following is an example:

$$BROKER^XWBLIB

o For APIs that take input parameter, the input parameter is labeled “required” when it is a
required input parameter and labeled “optional” when it is an optional input parameter.

o For APIs that take parameters, parameters are shown in lowercase and variables are shown in
uppercase. This is to convey that the parameter name is merely a placeholder; M allows you
to pass a variable of any name as the parameter or even a string literal (if the parameter is not
being passed by reference). The following is an example of the formatting for input
parameters:

XGLMSG^XGLMSG(msg_type,[.]var[,timeout])

o Rectangular brackets [] around a parameter are used to indicate that passing the parameter is
optional. Rectangular brackets around a leading period [.] in front of a parameter indicate that
you can optionally pass that parameter by reference.

o All APIs are categorized by function. This categorization is subjective and subject to change
based on feedback from the development community. In addition, some APIs could fall under
multiple categories; however, they are only listed once under a chosen category.

APIs within a category are first sorted alphabetically by Routine name and then within

RPC Broker 1.1
Developer’s Guide xxvi February 2017

routine name are sorted alphabetically by Tag reference. The “$$”, “^”, or “^%” prefixes on
APIs is ignored when alphabetizing.

• This manual refers to the M programming language. Under the 1995 American National
Standards Institute (ANSI) standard, M is the primary name of the MUMPS programming
language, and MUMPS is considered an alternate name. This manual uses the name M.

• All uppercase is reserved for the representation of M code, variable names, or the formal name of
options, field/file names, and security keys (e.g., the XUPROGMODE security key).

 NOTE: Other software code (e.g., Delphi/Pascal and Java) variable names and file/folder
names can be written in lower or mixed case.

Documentation Navigation
This document uses Microsoft® Word’s built-in navigation for internal hyperlinks. To add Back and
Forward navigation buttons to your toolbar, do the following:

1. Right-click anywhere on the customizable Toolbar in Word (not the Ribbon section).

2. Select Customize Quick Access Toolbar from the secondary menu.

3. Select the drop-down arrow in the “Choose commands from:” box.

4. Select All Commands from the displayed list.

5. Scroll through the command list in the left column until you see the Back command (circle with
arrow pointing left).

6. Select/Highlight the Back command and select Add to add it to your customized toolbar.

7. Scroll through the command list in the left column until you see the Forward command (circle
with arrow pointing right).

8. Select/Highlight the Forward command and select Add to add it to the customized toolbar.

9. Select OK.

You can now use these Back and Forward command buttons in the Toolbar to navigate back and forth in
the Word document when selecting hyperlinks within the document.

 NOTE: This is a one-time setup and is automatically available in any other Word document once
you install it on the Toolbar.

RPC Broker 1.1
Developer’s Guide xxvii February 2017

Commonly Used Terms
Table 2 is a list of terms and their descriptions that you may find helpful while reading the RPC Broker
documentation:

Table 2: Commonly Used RPC Broker Terms

Term Description

Client A single term used interchangeably to refer to a user, the workstation
(i.e., PC), and the portion of the program that runs on the workstation.

Component A software object that contains data and code. A component may or may not
be visible.

 REF: For a more detailed description, see the Embarcadero Delphi for
Windows User Guide.

GUI The Graphical User Interface application that is developed for the client
workstation.

Host The term Host is used interchangeably with the term Server.

Server The computer where the data and the RPC Broker remote procedure calls
(RPCs) reside.

 REF: For additional terms and definitions, see the “Glossary” section in this manual and other
RPC Broker manuals.

How to Obtain Technical Information Online
Exported VistA M Server-based software file, routine, and global documentation can be generated using
Kernel, MailMan, and VA FileMan utilities.

 NOTE: Methods of obtaining specific technical information online is indicated where applicable
under the appropriate section.

REF: For further information, see the RPC Broker Technical Manual.

Help at Prompts
VistA M Server-based software provides online help and commonly used system default prompts. Users
are encouraged to enter question marks at any response prompt. At the end of the help display, you are
immediately returned to the point from which you started. This is an easy way to learn about any aspect of
VistA M Server-based software.

RPC Broker 1.1
Developer’s Guide xxviii February 2017

Obtaining Data Dictionary Listings
Technical information about VistA M Server-based files and the fields in files is stored in data
dictionaries (DD). You can use the List File Attributes option on the Data Dictionary Utilities submenu in
VA FileMan to print formatted data dictionaries.

 REF: For details about obtaining data dictionaries and about the formats available, see the “List
File Attributes” chapter in the “File Management” section of the VA FileMan Advanced User
Manual.

Assumptions
This manual is written with the assumption that the reader is familiar with the following:

• VistA computing environment:

o Kernel—VistA M Server software

o Remote Procedure Call (RPC) Broker—VistA Client/Server software

o VA FileMan data structures and terminology—VistA M Server software

• Microsoft® Windows environment

• M programming language

• Object Pascal programming language.

• Object Pascal programming language/Embarcadero Delphi Integrated Development Environment
(IDE)—RPC Broker

References
Readers who wish to learn more about RPC Broker should consult the following:

• RPC Broker Release Notes

• RPC Broker Installation Guide

• RPC Broker Systems Management Guide

• RPC Broker Technical Manual

• RPC Broker User Guide

• RPC Broker Developer’s Guide (this manual)—Document and BDK Online Help, which
provides an overview of development with the RPC Broker. The help is distributed in two zip
files:

o Broker_1_1.zip (i.e., Broker_1_1.chm)—This zip file contains the standalone online HTML
help file. Unzip the contents and double-click on the Broker_1_1.chm file to open the help.

o Broker_1_1-HTML_Files.zip—This zip file contains the associated HTML help files. Unzip
the contents in the same directory and double-click on the index.htm file to open the help.

You can create an entry for Broker_1_1.chm in Delphi’s Tools Menu, to make it easily
accessible from within Delphi. To do this, use Delphi’s Tools | Configure Tools option and
create a new menu entry.

RPC Broker 1.1
Developer’s Guide xxix February 2017

• RPC Broker VA Intranet website.

This site provides announcements, additional information (e.g., Frequently Asked Questions
[FAQs], advisories), documentation links, archives of older documentation and software
downloads.

VistA documentation is made available online in Microsoft® Word format and in Adobe Acrobat Portable
Document Format (PDF). The PDF documents must be read using the Adobe Acrobat Reader, which is
freely distributed by Adobe Systems Incorporated at: http://www.adobe.com/

VistA documentation can be downloaded from the VA Software Document Library (VDL) Website:
http://www.va.gov/vdl/

The RPC Broker documentation is located on the VDL at:
https://www.va.gov/vdl/application.asp?appid=23

VistA documentation and software can also be downloaded from the Product Support (PS) Anonymous
Directories.

http://www.adobe.com/
http://www.va.gov/vdl/
https://www.va.gov/vdl/application.asp?appid=23

RPC Broker 1.1
Developer’s Guide 1 February 2017

1 Introduction
The RPC Broker is a client/server system within Department of Veterans Affairs (VA) Veterans Health
Information Systems and Technology Architecture (VistA) environment. It enables client applications to
communicate and exchange data with VistA M Servers.

This manual describes the development features of the RPC Broker. The emphasis is on using the RPC
Broker in conjunction with Delphi software. However, the RPC Broker supports other development
environments.

The manual provides a complete reference for development with the RPC Broker. For an overview of
development with the RPC Broker components, see the RPC Broker User Guide.

This manual is intended for the VistA development community and system administrators. A wider
audience of technical personnel engaged in operating and maintaining VA software might also find it
useful as a reference.

The following topics are discussed in this section:

• Broker Overview

o Broker Security Enhancement (BSE) Overview

o Broker Call Steps

• Definitions

• About this Version of the RPC Broker

• What’s New in the BDK

• Developer Considerations

• Application Considerations

• Online Help

 REF: For the latest RPC Broker product information, see the RPC Broker VA Intranet Website.

RPC Broker 1.1
Developer’s Guide 2 February 2017

1.1 Broker Overview
The RPC Broker is a bridge connecting the application front-end on the client workstation (e.g., Delphi-
based GUI applications) to the M-based data and business rules on the VistA M Server.

Table 3: Broker Client-side and Server-side Overview

Client Workstation: RPC Broker VistA M Server: RPC Broker

• Manages the connection to the client
workstation.

 REF: For details, see the RPC Broker
Systems Management Guide.

• The RPC Broker components allow
Delphi-based applications to make
RPCs to the server.

• The Broker Dynamic Link Library (DLL)
provides support for Commercial-Off-
The-Shelf (COTS)/HOST client/server
software.

• Manages the connection to the client.

 REF: For details, see the RPC Broker
Systems Management Guide.

• Authenticates client workstation.
• Authenticates user.
• Manages RPCs from the client, executes the

M code, and passes back return values.

The RPC Broker frees GUI developers from the details of the client-server connection and allows them to
concentrate executing operations on the VistA M Server.

1.1.1 Broker Security Enhancement (BSE) Overview
Some VistA application users require access to data located at remote sites at which the users:

• Do not have assigned Access and Verify codes.

• Have not been entered into the NEW PERSON file (#200) by system administrators.

• Want to avoid having multiple Access/Verify code pairs.

Some applications use the Broker Security Enhancement (BSE) to obtain such access. BSE enters the
user’s information into the NEW PERSON file (#200) as a visitor, but does not require an Access or
Verify code for the user at the remote site. This process accomplishes the following:

• Enables RPC Broker applications to access remote VistA M Servers with increased security.

• Ensures correct information for user access to prevent the mistaken identification of an incorrect
or non-existent user (spoofing) via unauthorized applications.

• Provides the ability for RPC Broker applications that have implemented BSE to specify their own
context option.

BSE adds a step to the RPC Broker signon process to authenticate the connecting application. This
involves passing a secret encoded phrase that is established on the VistA M Server via a patch and KIDS
build. BSE also adds a step to the RPC Broker signon context on the remote VistA M Server to
authenticate the user by connecting back to the authenticating VistA M Server to validate a token
established during the authentication process and retrieve the user’s information from the authenticating
server.

RPC Broker 1.1
Developer’s Guide 3 February 2017

1.1.2 Broker Call Steps
These steps present a basic outline of the events that go into an RPC Broker call, starting with the initial
client-server connection. Once the client machine and user are authenticated, any number of calls
(Steps 3-5) can occur through the open connection.

GUI developer issues are noted for each step.

1. Authentication of client workstation. When a client workstation initiates a session, the Broker
Listener on the server spawns a new job. The server then calls the client back to ensure that the
client’s address is accurate.

GUI Developer Issues:

None. This process is built into the RPC Broker.

 REF: For more details, see the RPC Broker Systems Management Guide on the VDL
at:
http://www.va.gov/vdl/documents/Infrastructure/Remote_Proc_Call_Broker_(RPC)/
xwb_1_1_sm.pdf

2. Authentication of user. After the server connects back to the client workstation, the user is asked
for user credentials, either 2-factor authentication (Public Key Infrastructure [PKI] certificate and
Personal Identification Number [PIN]) or an Access and Verify code. User authentication and
identification is done with calls to VistA Kernel RPCs, including:

• XUS SIGNON SETUP

• XUS ESSO VALIDATE

• XUS AV CODE
GUI Developer Issues:

Broker Security Enhancement (BSE)—BSE user authentication and identification on remote
VistA M servers is performed by passing a token to the XUS SIGNON SETUP RPC, which
the server then uses to validate the user’s credentials on the authenticating VistA M Server.

Creating user context—Applications must create a context for the user by calling the XWB
CREATE CONTEXT RPC. This process checks the user’s access to individual RPCs
associated with the application.

Enabling Silent Login—Developers must decide whether to enable Silent Login.

3. Client makes a Remote Procedure Call.
GUI Developer Issues:

Connecting to VistA—Developers creating Delphi GUI applications can use the TRPCBroker
Component to connect to VistA. For each transaction, the application must set parameters and
execute a call. Issues include:

• Determining data types for input and return.

• Determining the kind of call to make.

In addition to the RPC Broker components, other components are available. The VA FileMan
Delphi components (FMDC) encapsulate the details of retrieving, validating, and updating
VA FileMan data within a Delphi-based application.

http://www.va.gov/vdl/documents/Infrastructure/Remote_Proc_Call_Broker_(RPC)/xwb_1_1_sm.pdf
http://www.va.gov/vdl/documents/Infrastructure/Remote_Proc_Call_Broker_(RPC)/xwb_1_1_sm.pdf

RPC Broker 1.1
Developer’s Guide 4 February 2017

 REF: For more information on the VA FileMan Delphi Components (FMDC), see
the FMDC VA Intranet Website.

 NOTE: In the future, components may become available to encapsulate other VistA
functions.

4. RPC execution on server.
GUI Developer Issues:

A Remote Procedure Call (RPC) is a defined call to M code that runs on a VistA M Server.

 REF: For RPC information, see the “RPC Overview” section.

Issues include:

• Determining the best RPC—The BDK provides some RPC Broker APIs.

 REF: For more information on RPC Broker APIs, see the “Application
Programming Interface (API)” section.

• Creating RPCs from scratch—In many cases, an existing M API can be wrapped into
an RPC.

 REF: For more information, see the “Creating RPCs” and “RPC Overview”
sections.

• Registering RPCs. RPCs must be registered on the server, so users of the GUI VistA
application have access to them.

 REF: For more information on registering RPCs, see the “RPC Security:
How to Register an RPC” section.

5. RPC returns information to the client.
GUI Developer Issues:

Handling the return values, including any error messages.

1.2 Definitions
The RPC Broker BDK includes:

• Units

• Classes

• Objects

• Components

• Types

• Methods

• Routines: Functions and Procedures

RPC Broker 1.1
Developer’s Guide 5 February 2017

For each Class, Object, and Component, this manual lists the unit, declaration, properties, methods, and a
description of how to use the class, object, or component.

Some types and properties are public, some are private, and some are available only within the function or
procedure in which they are defined:

Unit

Interface {specifies that this unit is an interface to a class}

Uses

{list of external units being referenced within this unit}

Type

{Class definition}

Private

{private (available within this unit) variable, type, property, method, function, and procedure definitions}

Public

{published (available to units using this unit) Variable, type, property, method, function, and procedure
definitions}

Implementation

{Method, Function, and Procedure programming, which can contain their own Uses, Type, and
property definitions within themselves}

1.2.1 Units
A Unit is a Pascal source-code file or program composed of classes, objects, and components containing
all of the other elements. The BDK includes a number of units (e.g., winsockc.pas). This manual
documents some of the units provided, and details what parts of the BDK are declared in each unit.

Sometimes it is helpful to know in which unit a particular item, such as a type or routine, is declared in
the BDK. This is because if you use the item in your own code, you may need to include the
corresponding unit in your own Pascal unit’s Uses clause.

The BDK is not really a standalone program, but the units in the BDK are compiled with an application
(e.g., Computerized Patient Record System [CPRS]) to make a program. The interfaces to those units are
called components (well-defined and published to be used externally). For example, the wsockc unit in
the BDK uses (references) other external units (i.e., BDK and Delphi Run Time Library: AnsiStrings,
SysUtils, WinSock2, XWBBut1, WinProcs, WinTypes, Classes, Dialogs, Forms, Controls, StdCtrls,
ClipBrd, TRPCB, RpcbErr) to make the functions and procedures in those units available to wsockc.

1.2.2 Classes
A class, or class type, defines a structure consisting of fields, methods, and properties.

1.2.3 Objects
An object is a specific instance of that class with associated values.

RPC Broker 1.1
Developer’s Guide 6 February 2017

1.2.4 Components
A component as defined by this document is a self-contained object with a well-defined interface defined
by properties, methods, and events that makes it suitable for specialized purposes. Embarcadero Delphi
documentation uses a more generic definition of component to refer to the elements within a class.

 REF: For a more detailed description, see the Embarcadero Delphi for Windows User Guide.

1.2.5 Types
A type defines the possible range of values for a property or a method. A number of types are declared in
the BDK, which you may need to make use of in the code. Some types and properties are public, some are
private, and some are available only within the function or procedure in which they are defined.

 NOTE: For sections describing types in this manual, the unit and declaration for each type, as
well as a description of the type is also provided.

1.2.6 Methods
Delphi’s definition: “A method uses the same calling conventions as ordinary procedures and functions,
except that every method has an additional implicit parameter “Self”, which is a reference to the instance
or class in which the method is called. For example, clicking on a button invokes a method which changes
the properties of the button.”

1.2.7 Routines: Functions and Procedures
Procedures and functions, referred to collectively as routines, are self-contained statement blocks that can
be called from different locations in a program. Routines can either be functions or procedures. A
function returns a value, and a procedure does not.

 NOTE: For sections in this manual describing routines, the unit and declaration for each routine
is listed, as well as a description of the routine is provided.

 NOTE: In Delphi, routine is the generic term. It is not the same as a VistA M routine. In M, a
routine is the file containing everything else, including functions and procedures. In Delphi, that
would be called a Unit.

1.3 About this Version of the RPC Broker
RPC Broker 1.1 provides developers with the capability to develop VistA Client/Server software using
the following RPC Broker Delphi components in a 32-bit environment (listed alphabetically):

• TCCOWRPCBroker Component

• TContextorControl Component

• TRPCBroker Component (original component)

• TXWBRichEdit Component

• TXWBSSOiToken Component

RPC Broker 1.1
Developer’s Guide 7 February 2017

 REF: For a complete list of patches released with RPC Broker 1.1, see the National Patch
Module (NPM) on FORUM.

RPC Broker 1.1 supports IPv4/IPv6 dual-stack network addressing. It also supports 2-factor
authentication (2FA) using Identity and Access Management (IAM) Secure Token Service (STS)
delegated authentication.

To develop Delphi client VistA applications in a 32-bit environment you must have Delphi XE4 or newer.
This version of the RPC Broker does not support Delphi versions older than XE4 and has been tested with
versions up to and including Delphi 10 Berlin (10.1). This version of the RPC Broker does not allow you
to develop new applications in older versions of Delphi or in a 16-bit environment. However, the RPC
Broker routines on the VistA M Server continue to support VistA applications previously developed in
the 16-bit environment.

 NOTE: Applications developed using previous versions of the RPC Broker Development Kit
(BDK) can be adapted to use Delphi XE8 or newer by renaming references to the “Hash” Unit to
“XWBHash” to resolve a conflict with a new “Hash” Unit provided in Delphi XE8. Current
versions of the BDK use the renamed XWBHash Unit.

The default installation of the RPC Broker creates a separate Broker Development Kit (BDK) directory
(i.e., BDK32) that contains the required RPC Broker files for development.

 CAUTION: This statement defines the extent of support relative to use of Delphi. The
Office of Information and Technology (OI&T) only supports the Broker Development Kit
(BDK) running in the currently offered version of Delphi and the immediately previous
version of Delphi. This level of support became effective 06/12/2000.

Sites can continue to use outdated versions of the RPC Broker Development Kit, but do
so with the understanding that support is not available and that continued use of
outdated versions do not afford features that can be essential to effective client/server
operations in the VistA environment. An archive of old (no longer supported) Broker
Development Kits is maintained in the VA Intranet Broker Archive.

1.4 What’s New in the BDK
This section highlights the major changes made to the Broker Development Kit (BDK). Changes are
listed by BDK patch release in reverse order (latest to earliest):

1.4.1 XWB*1.1*65
As of BDK Patch XWB*1.1*65, the following changes were made to RPC Broker 1.1:

Functionality Added or Modified:
• Support for 2-Factor Authentication (2FA)—The TRPCBroker Component provides Windows

client support for 2-factor authentication using an IAM STS token. The user is authenticated into
IAM with smart-card credentials:

o Public Key Infrastructure (PKI) Certificate

and

o Personal Identification Number (PIN)

RPC Broker 1.1
Developer’s Guide 8 February 2017

The credentials are exchanged for a digitally signed token that is forwarded to VistA to
authenticate and identify the user.

• Support for Later Delphi Versions—BDK supports Delphi 10 Berlin (10.1), 10 Seattle (10.0),
XE8, XE7, XE6, XE5, and XE4.

Components Added or Modified:

• TXWBSSOiToken Component—Added this component to explicitly obtain an Identity and
Access Management (IAM) Secure Token Service (STS) token for 2-factor user authentication
and identification. It is used by the BAPI32.DLL to make the STS token available to non-RPC
Broker applications. It is not needed for TRPCBroker or TCCOWRPCBroker applications, as the
STS token is obtained and consumed internally for user authentication and identification.

• TRPCBroker Component—Modified to support 2-factor authentication by obtaining and using an
IAM STS token.

Library Methods Modified:
Silent Login Function—Used to authenticate into a VistA server without user interaction. It was modified
to accept a new lmSSOi login mode. A silent login is used to authenticate into VistA with STS token
credentials obtained from an earlier 2-factor authentication into IAM.

Properties Added or Modified (listed by component/class):

• TXWBSSOiToken Component Properties:

o SSOiADUPN Property (TXWBSSOiToken Component) (Published)

o SSOiLogonName Property (TXWBSSOiToken Component) (Published)

o SSOiSECID Property (TXWBSSOiToken Component) (Published)

o SSOiToken Property (TXWBSSOiToken Component) (Published)

• TRPCBroker Component Properties:

o SSOiADUPN Property (TRPCBroker Component) (Public)

o SSOiLogonName Property (TRPCBroker Component) (Public)

o SSOiSECID (TRPCBroker Component) (Public)

o SSOiToken Property (TRPCBroker Component) (Public)

o Connected Property (Published)

Types Modified:
TLoginMode Type

RPC Broker 1.1
Developer’s Guide 9 February 2017

1.4.2 XWB*1.1*60
As of BDK Patch XWB*1.1*60, the following changes were made to RPC Broker 1.1:

Functionality Added or Modified:
• Support for IPv4/IPv6 Dual-Stack—The TRPCBroker Component provides Windows client

support for IPv4/IPv6 dual-stack environment using new Application Programming Interfaces
(APIs). This patch also upgrade from WinSock 1.1 to WinSock 2.2. By using this BDK for
development of a Delphi client application, the application will be protocol independent and will
be able to connect to both IPv4 and IPv6 VistA servers.

• Support for Later Delphi Versions—BDK supports Delphi XE7, XE6, XE5, and XE4.

Components Deprecated (Removed):
• TSharedBroker Component—Deprecated and removed the TSharedBroker component from RPC

Broker 1.1. This component allowed applications to share a single Broker connection.

• TSharedRPCBroker Component—Deprecated and removed the TSharedRPCBroker component
from RPC Broker 1.1. This component allowed applications to share a single Broker connection.

 CAUTION: The Shared Broker components have been deprecated and removed with
RPC Broker Patch XWB*1.1*60. They were not widely used, and had proven to be
difficult to maintain. They will not be updated to support IPv6 functionality or 2-factor
authentication. Application developers are encouraged to migrate their applications to
the standard TRPCBroker component when adding support for IPv6 and 2-factor
authentication.

Components Modified:
TRPCBroker Component:

• Modified to upgrade Windows Sockets (WinSock) from Version 1.1 to Version 2.2.

• Modified to support IPv4/IPv6 dual-stack addressing for connection to a VistA server.
Applications compiled with this BDK will be protocol independent and will be able to connect to
both IPv4 and IPv6 VistA servers.

• Modified to support lookup to the Windows Registry for Secure Shell (SSH) configuration for
connection to a VistA server.

• Deprecated and removed the old-style Broker (where VistA calls back to a different port on the
client workstation when making a connection). Applications compiled with this BDK will use the
new-style Broker (where VistA calls back to the originating port on the client workstation).

• Deprecated and removed the old-style Broker (where VistA calls back to a different port on the
client workstation when making a connection). Applications compiled with this BDK will use the
new-style Broker (where VistA calls back to the originating port on the client workstation).

Library Methods Modified:
GetServerInfo Function—Used to select the desired Server name and ListenerPort (see ListenerPort
Property). Added a new SSH Username field when adding a new Server/ListenerPort combination. This
field can be used to identify the Attachmate® Reflection/Micro Focus® SSH Username for SSH
connection to the specified server.

RPC Broker 1.1
Developer’s Guide 10 February 2017

Properties Deprecated (Removed; listed by component/class):
• TRPCBroker Component Properties:

The following TRPCBroker Component properties were deprecated, as the old-style Broker
connection is no longer supported:

o IsBackwardCompatibleConnection Property (Deprecated)

o IsNewStyleConnection Property (read-only) (Deprecated)

o OldConnectionOnly Property (Deprecated)

• TSharedBroker Component and TSharedRPCBroker Component Properties:

The following TSharedBroker Component and TSharedRPCBroker Component properties were
deprecated, as the Shared Broker itself has been deprecated:

o OnConnectionDropped Property (Deprecated)

o OnLogout Property (Deprecated)

1.4.3 XWB*1.1*50
As of BDK Patch XWB*1.1*50, the following changes were made to RPC Broker 1.1:

Functionality Added or Modified:
• Support for Secure Shell (SSH) Tunneling—The TRPCBroker Component enabled Secure Shell

(SSH) Tunnels to be used for secure connections. This functionality is controlled by setting an
internal property value (mandatory SSH) or command line option at run time. Support is provided
for the Attachmate® Reflection/Micro Focus® terminal emulator software using SSH tunneling for
clients within the VA, and support is provided for PuTTY Link (Plink) for secure channels for
clients outside the VA.

• Support for Broker Security Enhancement (BSE)—The TRPCBroker Component enabled visitor
access to remote sites using authentication established at a home site.

• Support for Later Delphi Versions—BDK supports Delphi XE5, XE4, XE3, and XE2.

Components Added or Modified:
TRPCBroker Component:

• Modified to include support for Secure Shell (SSH) tunneling using Attachmate®
Reflection/Micro Focus® Reflection SSH or PuTTY Link (Plink).

• Modified to include support for Broker Security Enhancement (BSE) modifications introduced in
patch XWB*1.1*45.

• Modified by wrapping CCOW User Context into the primary TRPCBroker Component so that if
the Contextor Property is set, then CCOW User Context is used.

 NOTE: All of the CCOW functionality used by and for the TCCOWRPCBroker
Component is still present, but it is now part of the regular TRPCBroker Component.

This means that there is no longer a need to have the separate TCCOWRPCBroker
Component. The TCCOWRPCBroker Component is included separately in XWB*1.1*50
for backward compatibility.

RPC Broker 1.1
Developer’s Guide 11 February 2017

Properties Added or Modified to the TCCOWRPCBroker Component:
• SecurityPhrase Property (Published)

• SSHHide Property (Published)

• SSHport Property (Public)

• SSHpw Property (Public)

• SSHUser Property (Public)

• UseSecureConnection Property (Published)

1.4.4 XWB*1.1*40
As of BDK Patch XWB*1.1*40, the following changes were made to RPC Broker 1.1:

Functionality Added or Modified:
Supports Single Sign-On/User Context (SSO/UC)—As of RPC Broker Patch XWB*1.1*40, the
TCCOWRPCBroker Component enabled Single Sign-On/User Context (SSO/UC) in CCOW-enabled
applications.

 REF: For more information on SSO/UC, see the Single Sign-On/User Context (SSO/UC)
Installation Guide and Single Sign-On/User Context (SSO/UC) Deployment Guide on the VA
Software Document Library (VDL).

Class Added:
TXWBWinsock Class

Components Added or Modified:
• TCCOWRPCBroker Component—Allows applications to be CCOW-enabled and Single Sign-

On/User Context (SSO/UC)-aware.

• TContextorControl Component—Communicates with the Vergence Locator service.

Library Methods Added to the TCCOWRPCBroker Component:
• GetCCOWtoken Method

• IsUserCleared Method

• IsUserContextPending Method

• WasUserDefined Method

Properties Added or Modified (listed by component/class):

• TCCOWRPCBroker Component Properties:

o CCOWLogonIDName Property (read-only) (Public)

o CCOWLogonIDValue Property (read-only) (Public)

o CCOWLogonName Property (read-only) (Public)

o CCOWLogonNameValue Property (read-only) (Public)

o CCOWLogonVpid Property (read-only) (Public)

o CCOWLogonVpidValue Property (read-only) (Public)

RPC Broker 1.1
Developer’s Guide 12 February 2017

o Contextor Property (Public)

• TVistaLogin Class Properties:

o DomainName Property (Public)

o IsProductionAccount Property (Public)

• TVistaUser Class Property:

Vpid Property (Public)

Types Added or Modified:
• TLoginMode Type

• TShowErorMsgs (see ShowErrorMsgs Property)

• TOnLoginFailure (see OnFailedLogin Property)

• TOnRPCBFailure (see OnRPCBFailure Property)

• TParamType

1.4.5 XWB*1.1*35
As of BDK Patch XWB*1.1*35, the following changes were made to RPC Broker 1.1:

Functionality Added or Modified:
Supports Non-Callback Connections—The RPC Broker components are built with a UCX or non-
callback Broker connection, so that it can be used from behind firewalls, routers, etc.

Properties Added or Modified in the TRPCBroker Component:
• BrokerVersion Property (read-only) (Public)

• CurrentContext Property (read-only) (Public)

• IsBackwardCompatibleConnection Property (Published; deprecated with XWB*1.1*60)

• IsNewStyleConnection Property (read-only) (Public; deprecated with XWB*1.1*60)

• KernelLogIn Property (Published)

• LogIn Property (Public)

• OldConnectionOnly Property (Published; deprecated with XWB*1.1*60)

• OnRPCBFailure Property (Public)

• RPCBError Property (read-only) (Public)

• ShowErrorMsgs Property (Published)

• User Property (Public)

RPC Broker 1.1
Developer’s Guide 13 February 2017

1.4.6 XWB*1.1*26
As of BDK Patch XWB*1.1*26, the following changes were made to RPC Broker 1.1:

Components Added or Modified:
• TSharedBroker Component (component deprecated with XWB*1.1*60)—Added the

TSharedBroker Component to RPC Broker 1.1. This component allows applications to share a
single Broker connection.

• TSharedRPCBroker Component (component deprecated with XWB*1.1*60)—Added the
TSharedRPCBroker Component to RPC Broker 1.1. This component allows applications to share
a single Broker connection.

1.4.7 XWB*1.1*23
As of BDK Patch XWB*1.1*23, the following changes were made to RPC Broker 1.1:

Properties Added or Modified (listed by component/class):
TSharedBroker Component and TSharedRPCBroker Component Properties (components deprecated with
XWB*1.1*60):

• AllowShared Property (Public; deprecated with XWB*1.1*60)

• OnConnectionDropped Property (Public; deprecated with XWB*1.1*60)

• OnLogout Property (Published; deprecated with XWB*1.1*60)

1.4.8 XWB*1.1*14
As of BDK Patch XWB*1.1*14, the following changes were made to RPC Broker 1.1:

• Separate Run-time and Design-time Packages:

 REF: For details and compiling instructions, see the “Design-time and Run-time
Packages” section in the “Developer Considerations” section.

• Broker Source Code Released:

The source code is located in the following directory:

BDK32\Source

 CAUTION: Modified BDK source code should not be used to create VistA GUI
applications. For more details, see the “Developer Considerations” section.

Not all methods and properties found in the source code are documented at this
time. Only those documented methods and properties are guaranteed to be
made backwards compatible in future versions of the BDK.

RPC Broker 1.1
Developer’s Guide 14 February 2017

1.4.9 XWB*1.1*13
As of BDK Patch XWB*1.1*13, the following changes were made to RPC Broker 1.1:

Functionality Added or Modified:
• Supports Silent Login—Provides functionality associated with the ability to make logins to a

VistA M Server without the RPC Broker asking for Access and Verify code information.

• Documented Deferred RPCs and Capability to Run RPCs on a Remote Server:

o Running RPCs on a Remote Server

o Deferred RPCs

• Multi-instances of the RPC Broker—RPC Broker code was modified to permit an application to
open two separate Broker instances with the same Server/ListenerPort (see Server Property and
ListenerPort Property) combination, resulting in two separate partitions on the server. Previously,
an attempt to open a second Broker instance ended up using the same partition. For this capability
to be useful for concurrent processing, an application would have to use threads to handle the
separate Broker sessions.

 CAUTION: Although there should be no problems, the RPC Broker is not
guaranteed to be thread safe.

• Operates in a 32-bit Microsoft® Windows environment.

Classes Added:
• TVistaLogin Class

• TVistaUser Class

Component Added or Modified:
TXWBRichEdit Component—This component replaced the Introductory Text Memo component on the
Login Form. It permits URLs to be identified and launched.

Library Methods Added to VCEdit Unit:

• ChangeVerify Function

• SilentChangeVerify Function

• StartProgSLogin Method

Library Methods Modified:
• CheckCmdLine Function—Changed from procedure to function with a Boolean return value.

• GetServerInfo Function—Used to select the desired Server name and ListenerPort (see
ListenerPort Property). It was modified to allow users to add a new Server/ListenerPort
combination to those available for selection. It also accepts and stores a valid IP address, if no
name is known for the location. This permits those who have access to other Server/ListenerPort
combinations that may not be available in the list on the current workstation to access them.
However, they still need a valid Access and Verify code to log on to the added location.

• TParams Class—Clear procedure was moved from Private to Public.

RPC Broker 1.1
Developer’s Guide 15 February 2017

• TRPCB Unit:

o TOnLoginFailure: Changed from Object: TObject, since this is what should be expected by
the procedure if it is called.

o TOnRPCBFailure: Changed from Object: TObject, since this is what should be expected by
the procedure if it is called.

Properties Added or Modified in TRPCBroker Component:
• BrokerVersion Property (read-only) (Public)

• CurrentContext Property (read-only) (Public)

• IsBackwardCompatibleConnection Property (Published; deprecated with XWB*1.1*60)

• IsNewStyleConnection Property (read-only) (Public; deprecated with XWB*1.1*60)

• KernelLogIn Property (Published)

• LogIn Property (Public)

• OldConnectionOnly Property (Published; deprecated with XWB*1.1*60)

• OnRPCBFailure Property (Public)

• RPCBError Property (read-only) (Public)

• ShowErrorMsgs Property (Published)

• User Property (Public)

Types Added or Modified:
• TLoginMode Type

• TShowErorMsgs (see ShowErrorMsgs Property)

• TOnLoginFailure (see OnFailedLogin Property)

• TOnRPCBFailure (see OnRPCBFailure Property)

• TParamType

1.5 Developer Considerations
1.5.1 Source Code
As of RPC Broker Patch XWB*1.1*14, the RPC Broker source code was released. The release of the
source code does not affect how a developer uses the Broker Components or other parts of the BDK.

 CAUTION: Modified BDK source code should not be used to create VistA GUI
applications.

Suggestions for changes, bugs, and enhancements to the BDK should be done via the Service Desk
Manager (SDM) support system for review and possible inclusion in a future patch.

The source code is located in the following directory:

 BDK32\Source

RPC Broker 1.1
Developer’s Guide 16 February 2017

1.5.2 Design-time and Run-time Packages
As of RPC Broker Patch XWB*1.1*14, the BDK has separate run-time and design-time packages. There
is no longer a VistA Broker package. The new packages are:

• XWB_DXEn

• XWB_RXEn

Where:

• “D”—Design-time

• “R”—Run-time

• “XEn”—Delphi version with which it should be used

For example, XWB_DXE5 is the design-time package for Delphi Version XE5.

Delphi 10 Seattle (10.0) and 10 Berlin (10.1) both use the XWB_RunTime and XWB_DesignTime
packages. The run-time package should not be used to create executables that depend on a separate
XWB_RXEn.bpl installed on client workstations. There is no procedure in place at this time to reliably
install the correct version of the run-time bpl on client workstations.

 CAUTION: Do not compile your project so that it relies on dynamic linking with the
BDK’s run-time package; that is, do not check the “Build with runtime packages” box on
the “Packages” tab of the “Project Options’ dialogue.

1.5.3 Resource Reuse
Developers should be aware of existing resources that may be of use. These resources may be available
nationally or through a particular project. Possibilities include:

• Delphi components, such as the VA FileMan Delphi components (FMDC).

 REF: For more information on the VA FileMan Delphi components (FMDC), see the
FMDC VA Intranet website.

• RPC Broker: Developer Tools

• Using an Existing M API

1.5.4 Component Connect-Disconnect Behavior
1.5.4.1 Connect
The first time one of the Broker components in your application connects, it establishes an actual
connection with the server. The connection record is added to the list of all active connections for your
application. This list is internal to the application and is completely under the control of the Broker
component and is transparent to you. If another Broker component tries to connect to the same
server/port, the existing connection record is found in the list and its socket is shared. The new connection
is also added to this list. This process is repeated with each connection request.

1.5.4.2 Disconnect
When a Broker component disconnects, its connection record is removed from the internal list of active
connections. If it happens to be the last record for the particular server/port combination, the connection is

RPC Broker 1.1
Developer’s Guide 17 February 2017

actually closed. This scheme provides the illusion of multiple connections without “clogging up” the
server.

1.6 Application Considerations
1.6.1 Application Version Numbers
There may be a need to set or pass application version numbers. The suggested format is as follows:

VersionNumber_PatchNumber (3 digits)

For example, Patch 22 of Version 8.2 would be formatted as follows:

8.2_022

1.6.2 Deferred RPCs
In order to increase efficiency, applications can run RPCs in the background.

 REF: For more information on Deferred RPCs, see the “Deferred RPCs” section.

1.6.3 Remote RPCs
In order to work with patient data across sites, applications can run RPCs on a remote server.

 REF: For more information on running RPCs on a remote server, see the “Running RPCs on a
Remote Server” section.

1.6.4 Blocking RPCs
Applications can install RPCs that should be used only in certain contexts. It is possible to block access to
an RPC.

 REF: For more information on blocking access to an RPC, see the “Blocking an RPC” section.

1.6.5 Silent Login
In special cases, applications can use one of three types of Silent Login to log in users without the RPC
Broker prompting for login information.

1.7 Online Help
Distribution of the BDK includes online help, which provides an overview of development with the RPC
Broker (e.g., components, properties, methods, etc.).

The help is distributed in two zip files:

• Broker_1_1.zip (i.e., Broker_1_1.chm)—This zip file contains the standalone online HTML help
file. Unzip the contents and double-click on the Broker_1_1.chm file to open the help.

• Broker_1_1-HTML_Files.zip—This zip file contains the associated HTML help files. Unzip the
contents in the same directory and double-click on the index.htm file to open the help.

 NOTE: You can make an entry for Broker_1_1.chm in Delphi’s Tools Menu to make it easily
accessible from within Delphi. To do this, use Delphi’s Tools | Configure Tools option and
create a new menu entry (see Figure 1).

RPC Broker 1.1
Developer’s Guide 18 February 2017

Figure 1: Delphi XE4 Tool Properties Dialogue: RPC Broker Help File Entry

RPC Broker 1.1
Developer’s Guide 19 February 2017

2 RPC Broker Components, Classes, Units, Methods,
Types, and Properties

2.1 Components
2.1.1 TCCOWRPCBroker Component

• Properties (All)

• Methods

• Example

2.1.1.1 Parent Class
TRPCBroker = class(TComponent)

2.1.1.2 Unit
CCOWRPCBroker.pas

2.1.1.3 Description
The TCCOWRPCBroker component (CCOWRPCBroker.pas) is derived from the existing TRPCBroker
Component. The TCCOWRPCBroker component (Trpcb.pas) allows VistA application developers to
make their applications CCOW-enabled and Single Sign-On/User Context (SSO/UC)-aware with all of
the client/server-related functionality in one integrated component. Using the TCCOWRPCBroker
component, an application can share User Context stored in the CCOW Context Vault.

When a VistA CCOW-enabled application is recompiled with the TCCOWRPCBroker component and
other required code modifications are made, that application becomes SSO/UC-aware and capable of
CCOW single sign-on (SSO).

 REF: For more detailed information on the application developer procedures and code
modifications needed to make CCOW-enabled RPC Broker-based applications SSO/UC aware,
see the “RPC Broker-based Client/Server Applications” section in the “Making VistA
Applications SSO/UC-aware” chapter in the Single Sign-On User Context (SSO/UC) Deployment
Guide.

 NOTE: Properties inherited from the parent component (i.e., TComponent) are not discussed in
this manual (only those properties added to the parent component are described). For help on
inherited properties, see Delphi’s documentation on the parent component (i.e., TComponent).

 REF: For help on inherited properties, see the parent component (i.e., TRPCBroker Component).

RPC Broker 1.1
Developer’s Guide 20 February 2017

2.1.1.4 Properties (All)
• Properties (Unique)

Table 4 lists all properties available with the TCCOWRPCBroker Component (includes those properties
inherited from the parent TRPCBroker Component):

Table 4: TCCOWRPCBroker Component—All Properties (listed alphabetically)

Read-only Run-time only Property

 BrokerVersion Property (read-only)

 CCOWLogonIDName Property (read-only)

 CCOWLogonIDValue Property (read-only)

 CCOWLogonName Property (read-only)

 CCOWLogonNameValue Property (read-only)

 CCOWLogonVpid Property (read-only)

 CCOWLogonVpidValue Property (read-only)

 ClearParameters Property

 ClearResults Property

 Connected Property

 Contextor Property

 CurrentContext Property (read-only)

 DebugMode Property

 KernelLogIn Property

 ListenerPort Property

 LogIn Property

 OnRPCBFailure Property

 Param Property

 RemoteProcedure Property

 Results Property

 RPCBError Property (read-only)

 RPCTimeLimit Property

 RPCVersion Property

RPC Broker 1.1
Developer’s Guide 21 February 2017

Read-only Run-time only Property

 SecurityPhrase Property

 Server Property

 ShowErrorMsgs Property

 Socket Property (read-only)

 SSHHide Property

 SSHport Property

 SSHpw Property

 SSHUser Property

 SSOiToken Property (TRPCBroker Component)

 SSOiSECID (TRPCBroker Component)

 SSOiADUPN Property (TRPCBroker Component)

 SSOiLogonName Property (TRPCBroker Component)

 User Property

 UseSecureConnection Property

2.1.1.5 Properties (Unique)
• Properties (All)

Table 5 lists the unique properties available with the TCCOWRPCBroker Component:
Table 5: TCCOWRPCBroker Component—Unique Properties (listed alphabetically)

Read-only Run-time only Property

 CCOWLogonIDName Property (read-only)

 CCOWLogonIDValue Property (read-only)

 CCOWLogonName Property (read-only)

 CCOWLogonNameValue Property (read-only)

 CCOWLogonVpid Property (read-only)

 CCOWLogonVpidValue Property (read-only)

 Contextor Property

RPC Broker 1.1
Developer’s Guide 22 February 2017

 NOTE: Since the TCCOWRPCBroker Component is a class derived from the TRPCBroker
Component, it contains all of the Properties (All), Methods, etc., of its parent.

2.1.1.6 Methods
• GetCCOWtoken Method

• IsUserCleared Method

• IsUserContextPending Method

• WasUserDefined Method

2.1.1.7 Example
For examples, see the Samples directory on the use of the TCCOWRPCBroker Component; located in
the following directory:

BDK32\Samples\BrokerEx

2.1.2 TContextorControl Component
As of RPC Broker Patch XWB*1.1*40, the TContextorControl component was added to RPC Broker 1.1.

2.1.2.1 Parent Class
TRPCBroker = class(TOleServer)

2.1.2.2 Unit
TRPCB Unit

2.1.2.3 Description
The TContextorControl component provides Delphi developers with access to the CCOW Vergence
Locator service.

RPC Broker 1.1
Developer’s Guide 23 February 2017

2.1.3 TRPCBroker Component
• Properties (All)

• Methods

• Example

2.1.3.1 Parent Class
TRPCBroker = class(TComponent)

2.1.3.2 Unit
TRPCB Unit

2.1.3.3 Description
The TRPCBroker component provides Delphi developers with an easy, object-based access to the Broker.
It is compatible with the Delphi object oriented (OO) environment. This component, when placed on a
Delphi form, allows applications to connect to the VistA M Server and reference M data within Delphi’s
Integrated Development Environment (IDE). It makes a Delphi form and everything on it “data aware.”

The TRPCBroker component (Trpcb.pas) provides VistA application developers with all of the
client/server-related functionality in one integrated component. Using the TRPCBroker component, an
application can connect to the VistA M Server by simply setting the Connected Property to True. Remote
procedures on the server can be executed by preparing the Param Property and RemoteProcedure Property
and invoking any of the following methods:

• Call Method

• strCall Method

• lstCall Method

The TRPCBroker component can be found on the Kernel tab in the component palette.

 NOTE: Properties inherited from the parent component (i.e., TComponent) are not discussed in
this manual (only those properties added to the parent component are described). For help on
inherited properties, see Delphi’s documentation on the parent component (i.e., TComponent).

2.1.3.4 Support for Secure Shell (SSH) Tunneling
As of RPC Broker Patch XWB*1.1*50 support was added for a Secure Shell (SSH) tunneling service to
provide secure data transfer between the client and the VistA M Server.

The Attachmate® Reflection/Micro Focus® Reflection terminal emulator software with SSH tunneling is
used inside the VA to provide secure data transfer between the client and the VistA M Server. SSH
tunneling is also supported for PuTTY Link (Plink) for those using VistA outside of the VA.

For SSH tunneling using Reflection, either set a command line option or a property within the
application. SSH is enabled if the UseSecureConnection Property is set to “secureAttachmate”. SSH is
also enabled if either of the following command line parameters are set:

• SSHPort=portnumber (to specify a particular port number—If not specified, it uses the port
number for the remote server).

• SSHUser=username (for the remote server, where username is of the form xxxvista, where the
xxx is the station’s three letter abbreviation).

RPC Broker 1.1
Developer’s Guide 24 February 2017

For SSH tunneling using Plink.exe, either set a command line option or a property within the application.
SSH is enabled if the UseSecureConnection property is set to “securePlink”. SSH is also enabled if the
following command line parameter is set:

SSHpw=password

2.1.3.5 Support for Broker Security Enhancement (BSE)
As of RPC Broker Patch XWB*1.1*45, the RPC Broker supports the Broker Security Enhancement
(BSE). The TRPCBroker component was modified to enable visitor access to remote sites using
authentication established at a home site.

2.1.3.6 CCOW User Context Wrapped into the Primary TRPCBroker Component
As of RPC Broker Patch XWB*1.1*50, the RPC Broker wraps CCOW User Context into the primary
TRPCBroker component so that if the Contextor Property is set, then CCOW User Context is used. This
means that there is no longer a need to have the separate TCCOWRPCBroker Component.

 NOTE: All of the functionality used by and for the TCCOWRPCBroker Component is still
present, but it is now part of the regular TRPCBroker component.

2.1.3.7 Properties (All)
Table 6 lists all of the properties available with the TRPCBroker Component:

Table 6: TRPCBroker Component—All Properties (listed alphabetically)

Read-only Run-time only Property
 BrokerVersion Property (read-only)

 CCOWLogonIDName Property (read-only)

 CCOWLogonIDValue Property (read-only)

 CCOWLogonName Property (read-only)

 CCOWLogonNameValue Property (read-only)

 CCOWLogonVpid Property (read-only)

 CCOWLogonVpidValue Property (read-only)

 ClearParameters Property

 ClearResults Property

 Connected Property

 Contextor Property
 CurrentContext Property (read-only)

 DebugMode Property

 KernelLogIn Property

 ListenerPort Property

 LogIn Property

 OnRPCBFailure Property

RPC Broker 1.1
Developer’s Guide 25 February 2017

Read-only Run-time only Property

 Param Property

 RemoteProcedure Property

 Results Property
 RPCBError Property (read-only)

 RPCTimeLimit Property

 RPCVersion Property

 SecurityPhrase Property

 Server Property

 ShowErrorMsgs Property
 Socket Property (read-only)

 SSHHide Property

 SSHport Property

 SSHpw Property

 SSHUser Property

 SSOiToken Property (TRPCBroker Component)

 SSOiSECID (TRPCBroker Component)

 SSOiADUPN Property (TRPCBroker Component)

 SSOiLogonName Property (TRPCBroker Component)
 User Property

 UseSecureConnection Property

2.1.3.8 Methods
• Call Method

• CreateContext Method

• GetCCOWtoken Method

• IsUserCleared Method

• IsUserContextPending Method

• lstCall Method

• pchCall Method

• strCall Method

• WasUserDefined Method

RPC Broker 1.1
Developer’s Guide 26 February 2017

2.1.3.9 Example
The following example demonstrates how a TRPCBroker Component can be used to:

1. Connect to the VistA M Server.

2. Execute various remote procedures.

3. Return the results.

4. Disconnect from the server.

The example in Figure 2 assumes that a TRPCBroker Component already exists on the form as
brkrRPCBroker1:

Figure 2: TRPCBroker Component—Example
procedure TForm1.Button1Click(Sender: TObject);
begin
 try
 {connect to the server}
 brkrRPCBroker1.Connected := True;
 //assign RPC name
 brkrRPCBroker1.RemoteProcedure := ‘SOME APPLICATION RPC’;
 {make the call}
 brkrRPCBroker1.Call;
 {display results}
 ListBox1.Items := brkrRPCBroker1.Results;
 {disconnect from the server}
 brkrRPCBroker1.Connected := False;
 except
 //put error handling code here
 end;
end;

 REF: For more examples, see the Samples directory on the use of the TRPCBroker Component;
located in the following directory:

BDK32\Samples\BrokerEx

RPC Broker 1.1
Developer’s Guide 27 February 2017

2.1.4 TXWBRichEdit Component
Property

2.1.4.1 Parent Class
TXWBRichEdit = class(TComponent)

2.1.4.2 Unit
XwbRich20

2.1.4.3 Description
The TXWBRichEdit component replaces the Introductory Text Memo component on the Login Form.
TXWBRichEdit (XwbRich20.pas) is a version of the TRichEdit component that uses Version 2 of
Microsoft’s RichEdit Control and adds the ability to detect and respond to a Uniform Resource Locator
(URL) in the text. This component permits developers to provide some requested functionality on the
login form. As an XWB namespaced component, it was required to be put on the Kernel tab of the
component palette; however, it rightly belongs on the Win32 tab.

 NOTE: Properties inherited from the parent component (i.e., TComponent) are not discussed in
this manual (only those properties added to the parent component are described). For help on
inherited properties, refer to Delphi’s documentation on the parent component
(i.e., TComponent).

2.1.4.4 Property
The following is the TXWBRichEdit Component property:

URLDetect Property

2.1.5 TXWBSSOiToken Component
• Properties (All)

• Example

2.1.5.1 Parent Class
TXWBSSOiToken = class(TComponent)

2.1.5.2 Unit
XWBSSOi Unit

2.1.5.3 Description
The TXWBSSOiToken component provides Delphi developers with an easy, object-based access to an
Identity and Access Management (IAM) Secure Token Service (STS) token. It is compatible with the
Delphi object oriented (OO) environment. This component, when placed on a Delphi form, allows
applications to authenticate a user with the IAM STS Server and exchange the user’s 2-factor
authentication (Public Key Infrastructure [PKI] certificate and Personal Identification Number [PIN])
credentials for a STS token.

The TXWBSSOiToken component (XWBSSOi.pas) does not need to be explicitly added to RPC Broker
applications for 2-factor authentication (2FA) into VistA, but is available should authentication be
required into another system that accepts the STS token.

The TXWBSSOi component can be found on the Kernel tab in the component palette.

RPC Broker 1.1
Developer’s Guide 28 February 2017

 NOTE: Properties inherited from the parent component (i.e., TComponent) are not discussed in
this manual (only those properties added to the parent component are described). For help on
inherited properties, see Delphi’s documentation on the parent component (i.e., TComponent).

2.1.5.4 Properties (All)
Table 7 lists all of the properties available with the TXWBSSOiToken Component:

Table 7: TXWBSSOi Component—All Properties (listed alphabetically)

Read-only Run-time only Property

 SSOiToken Property (TXWBSSOiToken Component)

 SSOiADUPN Property (TXWBSSOiToken Component)

 SSOiLogonName Property (TXWBSSOiToken Component)

 SSOiSECID Property (TXWBSSOiToken Component)

2.1.5.5 Example
The following example demonstrates how a TXWBSSOiToken Component can be used to:

1. Create (obtain) an IAM STS token.

2. Assign the token and user values to strings.

3. Delete the token (free up memory).

The example in Figure 3 assumes that a TXWBSSOiToken Component already exists on the form as
mySSOiToken:

Figure 3: TXWBSSOiToken Component—Example
procedure TForm1.Button1Click(Sender: TObject; myToken: String; myName: String);
begin
 try
 {authenticate to the server}
 mySSOiToken := TXWBSSOiToken.Create(nil);
 //assign token values to strings
 myToken := mySSOiToken.SSOiToken;
 myName := mySSOiToken.SSOiLogonName;
 {release the memory used by the token}
 mySSOiToken.Free;
 except
 //put error handling code here
 end;
end;

RPC Broker 1.1
Developer’s Guide 29 February 2017

2.2 Classes
2.2.1 TMult Class

• Properties

• Methods

• Example

2.2.1.1 Unit
TRPCB Unit

2.2.1.2 Description
The TMult class is used whenever a list of multiple values needs to be passed to a remote procedure call
(RPC) in a single parameter. The Mult Property of a parameter is of TMult type. The information put in
the TMult variable is really stored in a TStringList, but the access methods (used to read and write) take
strings as subscripts and provide the illusion of a string-subscripted array.

It is important to note that items in a TMult class may or may not be sorted. If the Sorted Property is:

• False (default)—Items are stored in the order they are added.

• True—Items are stored in ascending alphabetical order by subscripts.

If you attempt to reference an element by a nonexistent subscript you get an error in the form of a Delphi
exception. Do not forget that M syntax dictates that all strings must be surrounded by double quotes. So,
if your goal is to pass a string subscripted array of strings using TMult as a parameter to an RPC on the
VistA M Server, do not forget to surround each of the subscripts and their associated values with double
quotes (“). Otherwise, M assumes that you are passing a list of variables and attempts to reference them,
which is probably not what you want.

2.2.1.3 Properties
The following are the TMult Class properties:

• Count Property (TMult Class)

• First Property

• Last Property

• MultArray Property

• Sorted Property

2.2.1.4 Methods
The following are the TMult Class methods:

• Assign Procedure (TMult Class)

• Order Function

• Position Function

• Subscript Function

RPC Broker 1.1
Developer’s Guide 30 February 2017

2.2.1.5 Example
The program code in Figure 4demonstrates how to store and retrieve elements from a TMult variable:

Figure 4: TMult Class—Example
procedure TForm1.Button1Click(Sender: TObject);
var
 Mult: TMult;
 Subscript: string;
begin
 {Create Mult. Make Form1 its owner}
 Mult := TMult.Create(Form1);
 {Store element pairs one by one}
 Mult[‘First’] := ‘One’;
 Mult[‘Second’] := ‘Two’;
 {Use double quotes for M strings}
 Mult[‘“First”‘] := ‘“One”’;
 {Label1.Caption gets “One”}
 Label1.Caption := Mult[‘“First”’];
 {Error! ‘Third’ subscripted element was never stored}
 Label1.Caption := Mult[‘Third’];
end;

2.2.2 TParamRecord Class
• Properties

• Example

2.2.2.1 Unit
TRPCB Unit

2.2.2.2 Description
The TParamRecord Class is used to hold all of the information on a single RPC parameter. Depending on
the type of the parameter needed, different properties are used. The PType Property is always used to let
the Broker on the VistA M Server know how to interpret the parameter. For a single value parameter, the
Value Property should be used. In the case of a list or a word-processing text, use the Mult Property.

The TParamRecord relationship to the TRPCBroker Component is as follows:

The TRPCBroker Component contains the Param Property (i.e., TParams Class).

The TParams Class contains the ParamArray property (array [I:integer]: TParamRecord Class).

The TParamRecord Class contains the Mult Property (i.e., TMult Class).

The TMult Class contains the MultArray property (array[S: string]: string).

The MultArray property internally uses a TStringList in which each element’s object
is a TString.

 CAUTION: Developers should rarely need to use TParamRecord by itself in their code.
TParamRecord is the type of the elements in the ParamArray, default array property of
the TRPCBroker Component Param Property. This means that when you are working
with a Param[x] element, you are in reality working with an instance of TParamRecord.

RPC Broker 1.1
Developer’s Guide 31 February 2017

 REF: For more information on RPCs, see the “RPC Overview” section.

2.2.2.3 Properties
The following are the TParamRecord Class properties:

• Mult Property

• PType Property

• Value Property

2.2.2.4 Example
The program code in Figure 5 demonstrates how you can use a TParamRecord variable to save a copy of
a single parameter of a TRPCBroker Component. This example assumes that prior to calling this
procedure, a TRPCBroker variable has been created and some parameters have been set up. Pay close
attention to how properties are copied one at a time. This is the only way that a separate copy could be
created. If you try to simply assign one of the TRPCBroker parameters to the TParamRecord variable,
you simply re-point the TParamRecord variable to that parameter:

Figure 5: TParamRecord Class—Example
procedure TForm1.Button1Click(Sender: TObject);
var
 ParamRecord: TParamRecord;
begin
 {Create ParamRecord. Make Form1 its owner}
 ParamRecord := TParamRecord.Create(Form1);
 {Store properties one at a time}
 ParamRecord.Value := RPCBroker.Param[0].Value;
 ParamRecord.PType := RPCBroker.Param[0].PType;
 {This is how to copy a Mult}
 ParamRecord.Mult.Assign(RPCBroker.Param[0].Mult);
end;

2.2.3 TParams Class
• Properties

• Methods

• Example

2.2.3.1 Unit
TRPCB Unit

2.2.3.2 Description
The TParams class is used to hold parameters (i.e., array of TParamRecord) used in a remote procedure
call (RPC). You do not need to know in advance how many parameters you need or allocate memory for
them; a simple reference or an assignment to a parameter creates it.

The Clear procedure can be used to remove/clear data from TParams.

 NOTE: Previously, this procedure was Private, but as of Patch XWB*1.1*13, it was made
Public.

RPC Broker 1.1
Developer’s Guide 32 February 2017

2.2.3.3 Properties
The following are the TParams Class properties:

• Count Property (TParams Class)

• ParamArray Property

2.2.3.4 Methods
The following are the TParams Class methods:

• Assign Procedure (TParams Class)

• Clear Procedure

2.2.3.5 Example
The program code in Figure 6 demonstrates how a TParams Class can be used to save off the
TRPCBroker Component parameters and restore them later:

Figure 6: TParams Class—Example
procedure TForm1.Button1Click(Sender: TObject);
var
 SaveParams: TParams;
 SaveRemoteProcedure: string;
begin
 {create holding variable with Form1 as owner}
 SaveParams := TParams.Create(self);
 {save parameters}
 SaveParams.Assign(brkrRPCBroker1.Param);
 SaveRemoteProcedure := brkrRPCBroker1.RemoteProcedure;
 brkrRPCBroker1.RemoteProcedure := ‘SOME OTHER PROCEDURE’;
 brkrRPCBroker1.ClearParameters := True;
 brkrRPCBroker1.Call;
 {restore parameters}
 brkrRPCBroker1.Param.Assign(SaveParams);
 brkrRPCBroker1.RemoteProcedure := SaveRemoteProcedure;
 {release memory}
 SaveParams.Free;
end;

2.2.4 TVistaLogin Class
Properties

2.2.4.1 Unit
TRPCB Unit

2.2.4.2 Description
The TVistaLogin class is used to hold login parameters for Silent Login.

 REF: For examples of silent logon by passing Access and Verify codes, see the “Silent Login
Examples” section.

RPC Broker 1.1
Developer’s Guide 33 February 2017

2.2.4.3 Properties
Table 8 lists all of the properties available with the TVistaLogin Class:

Table 8: TVistaLogin Class—All Properties (listed alphabetically)

Read-only Run-time only Property

 AccessCode Property

 Division Property (TVistaLogin Class)

 DivList Property (read-only)

 DomainName Property

 DUZ Property (TVistaLogin Class)

 ErrorText Property

 IsProductionAccount Property

 LoginHandle Property

 Mode Property

 MultiDivision Property

 NTToken Property

 OnFailedLogin Property

 PromptDivision Property

 VerifyCode Property

2.2.5 TVistaUser Class
Properties

2.2.5.1 Unit
TRPCB Unit

2.2.5.2 Description
The TVistaUser class is used to hold parameters related to the current user. These parameters are filled in
as part of the login procedure.

 NOTE: This class is used as a property by the TRPCBroker class. This property, with its
associated data, is available to all applications, whether or not they are using a Silent Login.

RPC Broker 1.1
Developer’s Guide 34 February 2017

2.2.5.3 Properties
Table 9 lists all of the properties available with the TVistaUser Class:

Table 9: TVistaUser Class—All Properties (listed alphabetically)

Read-only Run-time only Property

 Division Property (TVistaUser Class)

 DTime Property

 DUZ Property (TVistaUser Class)

 Language Property

 Name Property

 ServiceSection Property

 StandardName Property

 Title Property

 VerifyCodeChngd Property

 Vpid Property

2.2.6 TXWBWinsock Class
2.2.6.1 Unit
TRPCB Unit

2.2.6.2 Description
The code handling connections and transmission was moved into the TXWBWinsock class, which is
defined in wsockc.pas. It facilitates the ability for making and maintaining multiple independent RPC
Broker connections. To get around cyclic issues with the Uses clause, XWBWinsock within Trpcb.pas is
defined as TObject and must be cast to TXWBWinsock when it is used.

The methods in the wsockc.pas unit were originally library methods or methods not associated with a
class. To ensure that the TCCOWRPCBroker Component is thread-safe (i.e., thread safe operation of
RPC Broker instances created in different threads), it became necessary for each instance of the
TRPCBroker to have its own instance of these methods, values, etc. Thus, the TXWBWinsock class was
created to encapsulate the Public members.

Methods within the TXWBWinsock class should not be referenced directly. Connections to VistA are
made by setting the TVistaLogin Connected Property to “true” and ended by setting the Connected
Property to “false”.

RPC Broker 1.1
Developer’s Guide 35 February 2017

2.3 Units

 CAUTION: Not all units found in the source code are documented at this time. Only
those documented methods and properties are guaranteed to be made backwards
compatible in future versions of the BDK.

The following Units are described in this document (listed alphabetically):

• CCOWRPCBroker Unit

• LoginFrm Unit

• MFunStr Unit

• RPCConf1 Unit

• RpcSLogin Unit

• SplVista Unit

• TRPCB Unit

• VCEdit Unit

• Wsockc Unit

• XWBHash Unit

• XWBSSOi Unit

2.3.1 CCOWRPCBroker Unit
The CCOWRPCBroker unit authenticates a user using CCOW user context.

2.3.1.1 Library Method
AuthenticateUser Procedure

 REF: To see a listing of items declared in this unit including their declarations, use the
ObjectBrowser.

2.3.2 LoginFrm Unit
As of Patch XWB*1.1*13, a “Change VC” check box was added to the to the login form. The user can
use this check box to indicate that she/he wants to change their Verify code. If this box has been checked,
after the user has completed logging in to the system, the Change Verify code dialogue is displayed.

 REF: To see a listing of items declared in this unit including their declarations, use the
ObjectBrowser.

RPC Broker 1.1
Developer’s Guide 36 February 2017

2.3.3 MFunStr Unit
The MFunStr unit contains Delphi functions that emulate MUMPS functions.

2.3.3.1 Library Methods
• Piece Function

• Translate Function

 REF: To see a listing of items declared in this unit including their declarations, use the
ObjectBrowser.

2.3.4 RPCConf1 Unit
The RPCConf1 unit contains server selection dialogue.

 CAUTION: This unit assumes that a single IP address is assigned to a host. That is no
longer a reasonable assumption in a modern computing environment. These functions
are expected to be deprecated and replaced in future versions of the BDK.

2.3.4.1 Library Methods
• GetServerInfo Function

• GetServerIP Function

• IsIPAddress Function

 REF: To see a listing of items declared in this unit including their declarations, use the
ObjectBrowser.

2.3.5 RpcSLogin Unit
The RpcSLogin unit contains silent login functionality.

2.3.5.1 Library Methods
• CheckCmdLine Function

• GetSessionInfo Procedure

• GetUserInfo Procedure

• SilentLogIn Function

• StartProgSLogin Procedure

• ValidAppHandle Function

• ValidAVCodes Function

• ValidNTToken Function

 REF: To see a listing of items declared in this unit including their declarations, use the
ObjectBrowser.

RPC Broker 1.1
Developer’s Guide 37 February 2017

 REF: For more information on silent login, see the “Silent Login” section.

2.3.6 SplVista Unit
The SplVista unit displays the VistA splash screen.

2.3.6.1 Library Methods
• SplashOpen Procedure

• SplashClose Procedure

 REF: For more information on splash screens, see the “VistA Splash Screen Procedures” section.

 REF: To see a listing of items declared in this unit including their declarations, use the
ObjectBrowser.

2.3.7 TRPCB Unit
The TRPCB unit contains the declarations for the various RPC Broker components.

When you add a component declared in this unit to a form, the unit is automatically added to the uses
clause of that form’s unit.

The following items are automatically declared in the uses clause:

SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, Forms, Dialogs

2.3.7.1 Classes
• TParamRecord Class

• TParams Class

• TVistaLogin Class

• TVistaUser Class

2.3.7.2 Component
TRPCBroker Component

2.3.7.3 Library Methods
• GetAppHandle

• TMult Class Methods

• TParams Class Method

• TRPCBroker Component Methods

RPC Broker 1.1
Developer’s Guide 38 February 2017

2.3.7.4 Types
• EBrokerError

• TLoginMode Type

• TParamType

 REF: To see a listing of items declared in this unit including their declarations, use the
ObjectBrowser.

2.3.8 VCEdit Unit
The RPC Broker calls the VCEdit unit at logon when users must change their Verify code (i.e., Verify
code has expired). There is also a check box on the Signon form that allows uses to change their Verify
code at any time.

2.3.8.1 Library Methods
• ChangeVerify Function

• SilentChangeVerify Function

 REF: To see a listing of items declared in this unit including their declarations, use the
ObjectBrowser.

2.3.9 Wsockc Unit
The Wsockc unit contains the interface to the Microsoft® Windows operating system TCP/IP network
interface. It provides the communications between the RPC Broker GUI and the VistA M Server.

When a component declared in this unit is added to a form, the unit is automatically added to the uses
clause of that form’s unit.

The following items are automatically declared in the uses clause:

AnsiStrings, SysUtils, Classes, Windows, WinTypes, WinProcs, Winsock2, Xwbut1,
Trpcb, RpcbErr, Dialogs, Forms, Controls, StdCtrls, ClipBrd

2.3.9.1 Component
TXWBWinsock Component

 REF: To see a listing of items declared in this unit including their declarations, use the
ObjectBrowser.

RPC Broker 1.1
Developer’s Guide 39 February 2017

2.3.10 XWBHash Unit
2.3.10.1 Library Methods

• Encrypt Function

• Decrypt Function

 REF: For more information on encryption/decryption functions, see the “Encryption Functions”
section.

 REF: To see a listing of items declared in this unit including their declarations, use the
ObjectBrowser.

2.3.11 XWBSSOi Unit
The XWBSSOi unit contains the interface to the Identity and Access Management (IAM) Secure Token
Service (STS) server.

When a component declared in this unit is added to a form, the unit is automatically added to the uses
clause of that form’s unit.

The following items are automatically declared in the uses clause:

Messages, Windows, Classes, SysUtils, Variants, Controls, Dialogs, Forms, Graphics,
OleCtrls, MSHTML, SHDocVw, MFunStr, XWBut1

2.3.11.1 Component
TXWBSSOiToken Component

 REF: To see a listing of items declared in this unit including their declarations, use the
ObjectBrowser.

RPC Broker 1.1
Developer’s Guide 40 February 2017

2.4 Methods
2.4.1 Assign Method (TMult Class)
2.4.1.1 Applies to
TMult Class

2.4.1.2 Declaration

procedure Assign(Source: TPersistent);

2.4.1.3 Description
The Assign method for a TMult Class takes Tstrings, a TStringList, or another TMult. In the case where
the source is a TMult, the owner of the Assign method gets the exact copy of the source with all string
subscripts and values. In the case where the source is a Tstrings or a TStringList, the items are copied
such that the strings property of each item becomes the Value, while the index becomes the subscript in
the string form.

 REF: For information about the size of parameters and results that can be passed to and returned
from the TMult Class, see the “RPC Limits” section.

2.4.1.4 Example
2.4.1.4.1 TMult Assign Method—Assigning listbox Items to a TMULT
To assign listbox items to a TMult, do the following:

1. Start a new VCL Forms application.

2. Drop one TListBox, one TMemo, and one TButton on the form. Arrange controls as in Figure 8.

3. Add Vcl.StdCtrls and TRPCB to the “uses” clause.

4. Copy the code in Figure 7 to the Button1.OnClick event:

RPC Broker 1.1
Developer’s Guide 41 February 2017

Figure 7: TMult Assign Method—Code Added to the Button1.OnClick Event

procedure TForm1.Button1Click(Sender: TObject);
var
 Mult1: TMult;
 Subscript: string;
begin

 //Create Mult1. Make Form1 its owner
 Mult1 := TMult.Create(Form1);

 //Fill listbox with some strings
 ListBox1.Items.Add(‘One’);
 ListBox1.Items.Add(‘Two’);
 ListBox1.Items.Add(‘Three’);
 ListBox1.Items.Add(‘Four’);
 ListBox1.Items.Add(‘Five’);

 //assign (copy) listbox strings to Mult
 Mult1.Assign(ListBox1.Items);

 //configure memo box for better display
 Memo1.Font.Name := ‘Courier’;
 Memo1.Lines.Clear;
 Memo1.Lines.Add(‘Tstrings assigned:’);

 //set a starting point
 Subscript := ‘’;
 repeat
 //get next Mult element
 Subscript := Mult1.Order(Subscript, 1);
 //if not the end of list
 if Subscript <> ‘’ then
 //display subscript
 Memo1.Lines.Add(Format(‘%10s’, [Subscript]) + ‘ - ’ + Mult1[Subscript])

 //stop when reached the end
 until Subscript = ‘’;
end;

RPC Broker 1.1
Developer’s Guide 42 February 2017

5. Run the project and click on the button.

The expected output is shown in Figure 8:
Figure 8: TMult Assign Method—Assigning listbox Items to a TMULT: Sample Form Output

RPC Broker 1.1
Developer’s Guide 43 February 2017

2.4.1.4.2 TMult Assign Method—Assigning One TMULT to Another
The program code in Figure 9 demonstrates the use of the TMult assign method to assign one TMult to
another:

1. Start a new VCL Forms application.

2. Drop one TMemo and one TButton on the form. Arrange controls as in Figure 10.

3. Add Vcl.StdCtrls and TRPCB to the “uses” clause.

4. Copy the code in Figure 9 to the Button1.OnClick event:
Figure 9: TMult Assign Method—Code Added to the Button1.OnClick Event

procedure TForm1.Button1Click(Sender: TObject);
var
 Mult1, Mult2: TMult;
 Subscript: string;
begin
 //Create Mult1. Make Form1 its owner
 Mult1 := TMult.Create(Form1);
 //Create Mult2. Make Form1 its owner
 Mult2 := TMult.Create(Form1);

 //Fill Mult1 with some strings
 Mult1[‘First’] := ‘One’;
 Mult1[‘Second’] := ‘Two’;
 Mult1[‘Third’] := ‘Three’;
 Mult1[‘Fourth’] := ‘Four’;
 Mult1[‘Fifth’] := ‘Five’;

 //assign (copy) Mult1 strings to Mult2
 Mult2.Assign(Mult1);

 //configure memo box for better display
 Memo1.Font.Name := ‘Courier’;
 Memo1.Lines.Clear;
 Memo1.Lines.Add(‘TMult assigned:’);

 //set a starting point
 Subscript := ‘’;
 repeat
 //get next Mult element
 Subscript := Mult2.Order(Subscript, 1);
 //if not the end of list
 if Subscript <> ‘’ then
 //display subscript value
 Memo1.Lines.Add(Format(‘%10s’, [Subscript]) + ‘ - ’ + Mult2[Subscript])
 //stop when reached the end
 until Subscript = ‘’;
end;

RPC Broker 1.1
Developer’s Guide 44 February 2017

5. Run the project and click on the button.

The expected output is shown in Figure 10:
Figure 10: TMult Assign Method—Assigning One TMULT to another: Sample Form Output

2.4.2 Assign Method (TParams Class)
2.4.2.1 Applies to
TParams Class

2.4.2.2 Declaration

procedure Assign(Source: TParams);

2.4.2.3 Description
The Assign method for a TParams Class takes another TParams Class parameter. The Assign method is
useful for copying one TParams Class to another. The entire contents of the passed in TParams Class are
copied into the owner of the Assign method. The Assign method first deletes all of the parameters in the
receiving class and then copies the parameters from the passed in class, creating a whole duplicate copy.

 REF: For information about the size of parameters and results that can be passed to and returned
from the TParams Class, see the “RPC Limits” section.

RPC Broker 1.1
Developer’s Guide 45 February 2017

2.4.2.4 Example
The program code in Figure 11 demonstrates how a TParams Class assign method can be used to save off
the TRPCBroker Component parameters and restore them later:

Figure 11: Assign Method (TParams Class)—Example
procedure TForm1.Button1Click(Sender: TObject);
var
 SaveParams: TParams;
 SaveRemoteProcedure: string;
begin
 SaveParams := TParams.Create(self) {create holding variable with Form1 as owner}
 SaveParams.Assign(brkrRPCBroker1.Param); {save parameters}
 SaveRemoteProcedure := brkrRPCBroker1.RemoteProcedure;
 brkrRPCBroker1.RemoteProcedure := ‘SOME OTHER PROCEDURE’;
 brkrRPCBroker1.ClearParameters := True;
 brkrRPCBroker1.Call;
 brkrRPCBroker1.Param.Assign(SaveParams); {restore parameters}
 brkrRPCBroker1.RemoteProcedure := SaveRemoteProcedure;
 SaveParams.Free; {release memory}
end;

2.4.3 Call Method
2.4.3.1 Declaration

procedure Call;

2.4.3.2 Description
This method executes a remote procedure on the VistA M Server and returns the results in the Results
Property. Call expects the name of the remote procedure and its parameters to be set up in the
RemoteProcedure Property and Param Property respectively. If the ClearResults Property is True, then
the Results Property is cleared before the call. If the ClearParameters Property is True, then the Param
Property is cleared after the call finishes.

 REF: For information about the size of parameters and results that can be passed to and returned
from the TRPCBroker Component, see the “RPC Limits” section.

 NOTE: Whenever the Broker makes a call to the VistA M Server, if the cursor is crDefault, the
cursor is automatically changed to the hourglass symbol as seen in other Microsoft-compliant
software. If the application has already modified the cursor from crDefault to something else, the
Broker does not change the cursor.

 REF: For a demonstration using the Call method, run the RPC Broker Example (32-Bit)
(i.e., BrokerExample.exe); located in the following directory:

BDK32\Samples\BrokerEx

RPC Broker 1.1
Developer’s Guide 46 February 2017

2.4.3.3 Example
The program code in Figure 12 demonstrates the use of the Call Method in a hypothetical example of
bringing back demographic information for a patient and then displaying the results in a memo box:

Figure 12: Call Method—Example
procedure TForm1.Button1Click(Sender: TObject);
begin
 brkrRPCBroker1.RemoteProcedure := ‘GET PATIENT DEMOGRAPHICS’;
 brkrRPCBroker1.Param[0].Value := ‘DFN’;
 brkrRPCBroker1.Param[0].PType := reference;
 brkrRPCBroker1.Call;
 Memo1.Lines := brkrRPCBroker1.Results;
end;

 REF: For a demonstration using the Call Method, run the RPC Broker Example (32-Bit)
(i.e., BrokerExample.exe); located in the following directory:

BDK32\Samples\BrokerEx

2.4.4 CreateContext Method
2.4.4.1 Declaration

function CreateContext(strContext: string): boolean;

Use the CreateContext method of the TRPCBroker Component to create a context for your application.
To create context, pass an option name in the strContext parameter. If the function returns True, a context
was created, and your application can use all RPCs entered in the option’s RPC multiple. If the
TRPCBroker Component is not connected at the time context is created, a connection is established. If for
some reason a context could not be created, the CreateContext method returns False.

Since context is nothing more than a client/server “B”-type option in the OPTION file (#19), standard
Kernel Menu Manager (MenuMan) security is applied in establishing a context. Therefore, a context
option can be granted to users exactly the same way as regular options are done using MenuMan. Before
any RPC can run, it must have a context established for it to on the VistA M Server. Thus, all RPCs must
be registered to one or more “B”-type options. This plays a major role in Broker security.

 REF: For information about registering RPCs, see the “RPC Security: How to Register an RPC”
section.

A context cannot be established for the following reasons:

• The user has no access to that option.

• The option is temporarily out of order.

An application can switch from one context to another as often as it needs to. Each time a context is
created the previous context is overwritten.

RPC Broker 1.1
Developer’s Guide 47 February 2017

 REF: For information about saving off the current context in order to temporarily create a
different context and then restore the previous context, see the “CurrentContext Property (read-
only)” section.

 REF: For information about the size of parameters and results that can be passed to and returned
from the TRPCBroker Component, see the “RPC Limits” section.

 NOTE: Whenever the Broker makes a call to the VistA M Server, if the cursor is crDefault, the
cursor is automatically changed to the hourglass symbol as seen in other Microsoft-compliant
software. If the application has already modified the cursor from crDefault to something else, the
Broker does not change the cursor.

 REF: For a demonstration that creates an application context, run the RPC Broker Example (32-
Bit) (i.e., BrokerExample.exe); located in the following directory:

BDK32\Samples\BrokerEx

2.4.4.2 Example
The program code in Figure 13 demonstrates the use of the CreateContext Method:

Figure 13: CreateContext Method—Example
procedure TForm1.Button1Click(Sender: TObject);
begin
 brkrRPCBroker1.Connected := True;
 if brkrRPCBroker1.CreateContext(‘MY APPLICATION’) then
 Label1.Caption := ‘Context MY APPLICATION was successfully created.’
 else
 Label1.Caption := ‘Context MY APPLICATION could not be created.’;
end;

 REF: For a demonstration that creates an application context, run the RPC Broker Example (32-
Bit) (i.e., BrokerExample.exe); located in the following directory:

 BDK32\Samples\BrokerEx

RPC Broker 1.1
Developer’s Guide 48 February 2017

2.4.5 GetCCOWtoken Method
2.4.5.1 Declaration

function GetCCOWtoken(Contextor: TContextorControl): string;

This method returns the CCOW token as a string value. This value is passed in as authentication for the
current user. The developer should not need access to this, since it is handled directly within the code for
making the connection.

 NOTE: The TContextorControl component is the interface for the Sentillion Vergence
ContextorControl that communicates with the Context Vault. The component is created based on
the type library for the DLL.

Since developers may want to use the TContextorControl component to initialize their own instances, the
TContextorControl component is placed on the Kernel palette in Delphi; however, it is almost as easy to
simply create it at runtime without using a component.

 REF: For an example of the GetCCOWtoken method, run the RPC Broker Example (32-Bit)
(i.e., BrokerExample.exe); located in the following directory:

 BDK32\Samples\BrokerEx

2.4.6 IsUserCleared Method
2.4.6.1 Declaration

function IsUserCleared: Boolean;

This method returns a value of True if the user value in the Context Vault has been cleared. The value is
only of interest if the WasUserDefined Method has a True value (since unless the user has been defined
previously, it would not have a value). This method returns:

• True—CCOWUser Context is currently cleared.

• False—CCOWUser Context is currently not cleared

This method is used in response to an OnPending event to determine if the pending change is User
Context related, and if so, whether the User value in the Context Vault has been cleared. If the value has
been cleared, then the application should shut down. Switching User Context is not supported, since
Office of Cyber and Information Security (OCIS) policy indicates that the current user must sign off the
client workstation and the new user must sign on the client workstation.

RPC Broker 1.1
Developer’s Guide 49 February 2017

2.4.6.2 Example
In the event handler for the Commit event of the TContextorControl, developers can check whether or not
the user was previously defined, and is now undefined or null. In this case, developers would want to do
any necessary processing, and then halt.

Figure 14: IsUserCleared Method—Example
Procedure TForm1.CommitHandler(Sender: TObject)
begin
 with CCOWRPCBroker1 do
 if WasUserDefined and IsUserCleared then
 begin
 // do any necessary processing before halting
 halt;
 end;
end;

2.4.7 IsUserContextPending Method
2.4.7.1 Declaration

function IsUserContextPending(aContextItemCollection: IContextItemCollection):
Boolean;

This method returns a value of True if the pending context change is related to User Context; if not, then
it may be related to the Patient Context, etc. This method returns:

• True—CCOW pending context change is related to User Context.

• False—CCOW pending context change is not related to User Context (e.g., Patient Context
change).

This method is used in response to an OnPending event to determine if the pending change is User
Context related, and if so, whether the User value in the Context Vault has been cleared. If the value has
been cleared, then the application should shut down. Switching User Context is not supported, since
Office of Cyber and Information Security (OCIS) policy indicates that the current user must sign off the
client workstation and the new user must sign on the client workstation.

 REF: For an example of the IsUserContextPending method, run the RPC Broker Example (32-
Bit) (i.e., BrokerExample.exe); located in the following directory:

BDK32\Samples\BrokerEx

RPC Broker 1.1
Developer’s Guide 50 February 2017

2.4.8 lstCall Method
2.4.8.1 Declaration

procedure lstCall(OutputBuffer: Tstrings;

This method executes a remote procedure on the VistA M Server and returns the results into the passed
Tstrings- or TStringList-type variable, which you create outside of the call. It is important to free the
memory later. lstCall expects the name of the remote procedure and its parameters to be set up in the
RemoteProcedure Property and Param Property respectively. The Results Property is not affected by this
call. If the ClearParameters Property is True, then the Param Property is cleared after the call finishes.

 REF: For information about the size of parameters and results that can be passed to and returned
from the TRPCBroker Component, see the “RPC Limits” section.

 NOTE: Whenever the Broker makes a call to the VistA M Server, if the cursor is crDefault, the
cursor is automatically changed to the hourglass symbol as seen in other Microsoft-compliant
software. If the application has already modified the cursor from crDefault to something else, the
Broker does not change the cursor.

 REF: For a demonstration using the lstCall method, run the RPC Broker Example (32-Bit)
(i.e., BrokerExample.exe); located in the following directory:

 BDK32\Samples\BrokerEx

2.4.8.2 Example
The program code in Figure 15 demonstrates the use of the lstCall Method in a hypothetical example of
bringing back a list of user’s keys and automatically filling a list box with data:

Figure 15: lstCall Method—Example
procedure TForm1.Button1Click(Sender: TObject);
begin
 brkrRPCBroker1.RemoteProcedure := ‘GET MY KEYS’;
 brkrRPCBroker1.lstCall(ListBox1.Items);
end;

 REF: For a demonstration using the lstCall Method, run the RPC Broker Example (32-Bit)
(i.e., BrokerExample.exe); located in the following directory:

 BDK32\Samples\BrokerEx

RPC Broker 1.1
Developer’s Guide 51 February 2017

2.4.9 pchCall Method
2.4.9.1 Declaration

function pchCall: Pchar;

The pchCall function is the lowest level call used by the TRPCBroker Component and each of the other
Call methods (i.e., Call Method, strCall Method, and lstCall Method), which are implemented via
pchCall. The return value is a Pchar, which can contain anything from a null string, a single text string, or
many strings each separated by Return and/or Line Feed characters. For converting multiple lines within
the return value into a Tstrings, use the SetText method of the Tstrings.

2.4.10 Order Method
2.4.10.1 Applies to
TMult Class

2.4.10.2 Declaration

function Order(const StartSubscript: string; Direction: integer): string;

2.4.10.3 Description
The Order method works very similar to the $ORDER function in M. Using the Order method you can
traverse through the list of elements in the Mult Property of an RPC parameter.

The StartSubscript parameter is the subscript of the element whose next or previous sibling is returned. If
the Direction parameter is a positive number, then the subscript of the following element is returned,
while if it is 0 or negative, then the predecessor’s subscript is returned. If the list is empty, or there are no
more elements beyond the StartSubscript parameter, then empty string is returned. You can use the empty
string as a StartSubscript parameter; then, depending on the Direction parameter, you get the subscript of
the first or the last element in the list.

There are some important differences between this Order method and the M $ORDER function:

• The Order method requires both parameters to be passed in.

• If the StartSubscript parameter is not an empty string, it must be equal to one of the subscripts in
the list; otherwise, an empty string is returned.

• It is case-sensitive.

• Unlike arrays in M, elements in TMult may or may not be in alphabetical order, depending on the
Sorted Property; so, Order may not return the next or previous subscript in collating sequence.

 REF: For information about the size of parameters and results that can be passed to and returned
from the TMult Class, see the “RPC Limits” section.

RPC Broker 1.1
Developer’s Guide 52 February 2017

2.4.10.4 Example
The program code in Figure 16 demonstrates how to get the next and previous elements in a TMult list:

Figure 16: Order Method—Sample Code to Get the Next and Previous Elements in a TMult List
procedure TForm1.Button1Click(Sender: TObject);
var
 Mult: TMult;
 Subscript: string;
begin
 {Create Mult. Make Form1 its owner}
 Mult := TMult.Create(Form1);
 Mult[‘First’] := ‘One’;
 {Store element pairs one by one}
 Mult[‘Second’] := ‘Two’;
 Mult[‘Third’] := ‘Three’;
 Mult[‘Fourth’] := ‘Four’;
 {Subscript is Fourth}
 Subscript := Mult.Order(‘Third’,1);
 {Subscript isnd}
 Subscript := Mult.Order(‘Third’,-1);
 {Subscript is ‘’. THIRD subscript does not exist}
 Subscript := Mult.Order(‘THIRD’,1);
 {Subscript is First}
 Subscript := Mult.Order(‘’,1);
 {Subscript is Fourth}
 Subscript := Mult.Order(‘’,-1);
end;

2.4.11 Position Method
2.4.11.1 Applies to
TMult Class

2.4.11.2 Declaration

function Position(const Subscript: string): longint;

2.4.11.3 Description
The Position method takes the string subscript of an item in a TMult variable and returns its numeric
index position, much like a TStringList’s IndexOf method. Because TMult uses a TStringList internally,
the IndexOf method is used to implement the Position method. The first position in the TMult is 0. If
TMult is empty, or the Subscript does not identify an existing item, Position returns -1.

The Position and Subscript methods are the reciprocals of each other.

 REF: For information about the size of parameters and results that can be passed to and returned
from the TMult Class, see the “RPC Limits” section.

RPC Broker 1.1
Developer’s Guide 53 February 2017

2.4.11.4 Example
The program code in Figure 17 demonstrates how to get the position of an item in a TMult variable:

Figure 17: Position Method—Sample Code that Shows How to Get the Position of an Item in a
TMult Variable

procedure TForm1.Button1Click(Sender: TObject);
var
 Mult: TMult;
begin
 {Create Mult. Make Form1 its owner}
 Mult := TMult.Create(Form1);
 Label1.Caption := ‘The position of the ‘‘Third’’ element is ‘ +
 {is -1 since the list is empty}
 IntToStr(Mult.Postion(‘Third’));
 Mult[‘Second’] := ‘Two’;
 Label1.Caption := ‘The position of the ‘‘Third’’ element is ‘ +
 {is -1 since ‘Third’ item does not exit}
 IntToStr(Mult.Postion(‘Third’));
 Label1.Caption := ‘The position of the ‘‘Second’’ element is ‘ +
 {is 0, TMult positions start with 0}
 IntToStr(Mult.Postion(‘Second’));
end;

2.4.12 strCall Method

function strCall: string;

This method executes a remote procedure on the VistA M Server and returns the results as a value of a
function. The strCall method expects the name of the remote procedure and its parameters to be set up in
the RemoteProcedure Property and Param Property respectively. The Results Property is not affected by
this call. If the ClearParameters Property is True, then the Param Property is cleared after the call
finishes.

 REF: For information about the size of parameters and results that can be passed to and returned
from the TRPCBroker Component, see the “RPC Limits” section.

 NOTE: Whenever the Broker makes a call to the VistA M Server, if the cursor is crDefault, the
cursor is automatically changed to the hourglass symbol as seen in other Microsoft-compliant
software. If the application has already modified the cursor from crDefault to something else, the
Broker does not change the cursor.

 REF: For a demonstration using the strCall method, run the RPC Broker Example (32-Bit)
(i.e., BrokerExample.exe); located in the following directory:

BDK32\Samples\BrokerEx

RPC Broker 1.1
Developer’s Guide 54 February 2017

2.4.12.1 Example
The program code in Figure 18 demonstrates the use of the strCall Method in a hypothetical example of
bringing back the name of the user currently logged on and automatically displaying it in a label:

Figure 18: strCall Method—Sample Code Showing the Use of the strCall Method
procedure TForm1.Button1Click(Sender: TObject);
begin
 brkrRPCBroker1.RemoteProcedure := ‘GET CURRENT USER NAME’;
 Label1.Caption := brkrRPCBroker1.strCall;
end;

 REF: For a demonstration using the strCall Method, run the RPC Broker Example (32-Bit)
(i.e., BrokerExample.exe) located in the following directory:

 BDK32\Samples\BrokerEx

2.4.13 Subscript Method
2.4.13.1 Applies to
TMult Class

2.4.13.2 Declaration

function Subscript(const Position: longint): string;

2.4.13.3 Description
The Subscript method takes the numeric position of an item in a TMult variable and returns its string
subscript. If TMult is empty, or the Position is greater than the number of items in the list, an empty string
is returned.

The Subscript Method and Position Method are the reciprocals of each other.

 REF: For information about the size of parameters and results that can be passed to and returned
from the TMult Class, see the “RPC Limits” section.

RPC Broker 1.1
Developer’s Guide 55 February 2017

2.4.13.4 Example
The program code in Figure 19 demonstrates how to get the subscript of an item in a TMult variable:

Figure 19: Subscript Method—Example
procedure TForm1.Button1Click(Sender: TObject);
var
 Mult: TMult;
begin
 {Create Mult. Make Form1 its owner}
 Mult := TMult.Create(Form1);
 Label1.Caption := ‘The subscript of the item at position 1 is ’ +
 {is empty since the list is empty}
 Mult.Subscript(1);
 Mult[‘Second’] := ‘Two’;
 Label1.Caption := ‘The subscript of the item at position 1 is ’ +
 {is empty. Only one item in list so far at 0th position}
 Mult.Subscript(1);
 Mult[‘Third’] := ‘Three’;
 Label1.Caption := ‘The subscript of the item at position 1 is ’ +
 {is Third}
 Mult.Subscript(1);
end;

2.4.14 WasUserDefined Method

function WasUserDefined: Boolean;

This method is used to determine whether or not a User Context is currently or was previously defined in
the Context Vault. It returns True any time after the initial establishment of User Context. This method
returns:

• True—CCOW User Context established.

• False—CCOW User Context not established.

This method is used in response to an OnPending event to determine if the pending change is User
Context related, and if so, whether the User value in the Context Vault has been cleared. If the value has
been cleared, then the application should shut down. Switching User Context is not supported, since
Office of Cyber and Information Security (OCIS) policy indicates that the current user must sign off the
client workstation and the new user must sign on the client workstation.

RPC Broker 1.1
Developer’s Guide 56 February 2017

2.4.14.1 Example
In the event handler for the Commit event of the TContextorControl, developers can check whether or not
the user was previously defined, and is now undefined or null. In this case, developers would want to do
any necessary processing, and then halt.

Figure 20: WasUserDefined Method—Example
Procedure TForm1.CommitHandler(Sender: TObject);
begin
 with CCOWRPCBroker1 do
 if WasUserDefined and IsUserCleared then
 begin
 // do any necessary processing before halting
 halt;
 end;
end;

2.5 Types
2.5.1 TLoginMode Type
The TLoginMode type is used with the Mode Property as part of the TVistaLogin Class.

2.5.1.1 Unit
TRPCB Unit

type TLoginMode = (lmAVCodes, lmAppHandle);

2.5.1.2 Description
The TLoginMode type includes the acceptable values that can be used during Silent Login. If the
KernelLogIn Property is set to False, then it is a Silent Login. Thus, one of these mode types has to be set
in the TVistaLogin Class Mode Property. The Broker uses the information to perform a Silent Login.

Table 10 lists the possible values:
Table 10: TLoginMode Type—Silent Login Values

Value Meaning

lmAVCodes Used if the application is passing in the user’s Access and Verify codes during Silent
Login.

lmAppHandle Used to pass in an application handle rather than a user’s Access and Verify codes
during Silent Login. It sets the mode to lmAppHandle and the KernelLogIn Property
to False. Indicates that an application handle is being passed to the application when
it was being started as opposed to Access and Verify codes.

RPC Broker 1.1
Developer’s Guide 57 February 2017

2.5.2 TParamType
2.5.2.1 Unit
TRPCB Unit

2.5.2.2 Declaration

TParamType = (literal, reference, list, global, empty, stream, undefined);

2.5.2.3 Description
The TParamType type defines the possible values of the RPC parameter type (PType Property of
TParamRecord Class).

The global, empty, and stream values (added with RPC Broker Patch XU*1.1*40) can only be used if a
new-style (i.e., non-callback) connection is present.

 CAUTION: Use of the undefined TParam Type in applications is not supported. It exists
for the RPC Broker’s internal use only.

2.6 Properties
2.6.1 AccessCode Property
2.6.1.1 Applies to
TVistaLogin Class

2.6.1.2 Declaration

property AccessCode: String;

2.6.1.3 Description
The AccessCode property is available at run-time only. It holds the Access code for the lmAVCodes
mode of Silent Login. The user’s Access code value should be set in as clear text. It is encrypted before it
is transmitted to the VistA M Server.

 REF: For examples of silent logon by passing Access and Verify codes, see the “Silent Login
Examples” section.

 REF: For more information on Access codes, see the “Part 1: Sign-On/Security” section in the
Kernel Systems Management Guide.

RPC Broker 1.1
Developer’s Guide 58 February 2017

2.6.2 BrokerVersion Property (read-only)
2.6.2.1 Applies to
TRPCBroker Component

2.6.2.2 Declaration

property BrokerVersion: String;

2.6.2.3 Description
The BrokerVersion property is available at run-time only. This read-only property indicates the RPC
Broker version used in generating the application (currently, it returns the string “XWB*1.1*60”).

2.6.3 CCOWLogonIDName Property (read-only)
2.6.3.1 Applies to
TCCOWRPCBroker Component

2.6.3.2 Declaration

property CCOWLogonIDName: String;

2.6.3.3 Description
The CCOWLogonIDName property is available at run-time only. This read-only property is the name
used within the CCOW Context Vault to store the LogonId.

It permits the user to identify the logon ID name associated with the CCOWLogonIDValue Property
(read-only) logon ID name value used within the Context Vault related to User Context.

2.6.4 CCOWLogonIDValue Property (read-only)
2.6.4.1 Applies to
TCCOWRPCBroker Component

2.6.4.2 Declaration

property CCOWLogonIDValue: String;

2.6.4.3 Description
The CCOWLogonIDValue property is available at run-time only. This read-only property gives the value
currently associated with the LogonId in the CCOW Context Vault.

It permits the user to identify the logon ID value associated with the CCOWLogonIDName Property
(read-only) logon ID name used within the Context Vault related to User Context.

RPC Broker 1.1
Developer’s Guide 59 February 2017

2.6.5 CCOWLogonName Property (read-only)
2.6.5.1 Applies to
TCCOWRPCBroker Component

2.6.5.2 Declaration

property CCOWLogonName: String;

2.6.5.3 Description
The CCOWLogonName property is available at run-time only. This read-only property gives the name
used to store the LogonName of the currently active user.

It permits the user to identify the logon name associated with the CCOWLogonNameValue Property
(read-only) logon name value used within the Context Vault related to User Context.

2.6.6 CCOWLogonNameValue Property (read-only)
2.6.6.1 Applies to
TCCOWRPCBroker Component

2.6.6.2 Declaration

property CCOWLogonNameValue: String;

2.6.6.3 Description
The CCOWLogonNameValue property is available at run-time only. This read-only property gives the
value of the LogonName of the currently active user.

It permits the user to identify the logon name value associated with the CCOWLogonName Property
(read-only) logon name used within the Context Vault related to User Context.

2.6.7 CCOWLogonVpid Property (read-only)
2.6.7.1 Applies to
TCCOWRPCBroker Component

2.6.7.2 Declaration

property CCOWLogonVpid: String;

2.6.7.3 Description
The CCOWLogonVpid property is available at run-time only. This read-only property gives the name
used to store the LogonVpid value in the CCOW Context Vault.

It permits the user to identify the logon VA Person Identification (VPID) name associated with the
CCOWLogonVpidValue Property (read-only) logon VPID value used within the Context Vault related to
User Context.

RPC Broker 1.1
Developer’s Guide 60 February 2017

2.6.8 CCOWLogonVpidValue Property (read-only)
2.6.8.1 Applies to
TCCOWRPCBroker Component

2.6.8.2 Declaration

property CCOWLogonVpidValue: String;

2.6.8.3 Description
The CCOWLogonVpidValue property is available at run-time only. This read-only property gives the
value of the VA Person Identification (VPID) value for the currently logged on user, if the facility has
been enumerated; otherwise, the value returned is a null string.

It permits the user to identify the logon VPID value associated with the CCOWLogonVpid Property
(read-only) logon VPID name used within the Context Vault related to User Context.

2.6.9 ClearParameters Property
2.6.9.1 Applies to
TRPCBroker Component

2.6.9.2 Declaration

property ClearParameters: Boolean;

2.6.9.3 Description
The ClearParameters design-time property gives the developer the option to clear the Param Property
after every invocation of any of the following methods:

• Call Method

• strCall Method

• lstCall Method

Setting ClearParameters to True clears the Param Property.

Simple assignment of True to this property clears the Param Property after every invocation of the Call
Method, strCall Method, and lstCall Method. Thus, the parameters need only be prepared for the next call
without being concerned about what was remaining from the previous call.

By setting ClearParameters to False, the developer can make multiple calls with the same Param
Property. It is also appropriate to set this property to False when a majority of the parameters in the
Param Property should remain the same between calls. However, minor changes to the parameters can
still be made.

RPC Broker 1.1
Developer’s Guide 61 February 2017

2.6.9.4 Example
The program code in Figure 21 sets the ClearParameters Property to True:

Figure 21: ClearParameters Property—Example
procedure TForm1.Button1Click(Sender: TObject);
begin
 brkrRPCBroker1.ClearParameters := True;
end;

2.6.10 ClearResults Property
2.6.10.1 Applies to
TRPCBroker Component

2.6.10.2 Declaration

property ClearResults: Boolean;

2.6.10.3 Description
The ClearResults design-time property gives the developer the option to clear the Results Property prior
to every invocation of the Call Method. The strCall Method and lstCall Method are unaffected by this
property. Setting ClearResults to True clears the Results Property.

If this property is True, then the Results Property is cleared before every invocation of the Call Method;
thus, assuring that only the results of the last call are returned. Conversely, a setting of False accumulates
the results of multiple calls in the Results Property.

2.6.10.4 Example
The program code in Figure 22 sets the ClearResults Property to True:

Figure 22: ClearResults Property—Example
procedure TForm1.Button1Click(Sender: TObject);
begin
 brkrRPCBroker1.ClearResults := True;
end;

RPC Broker 1.1
Developer’s Guide 62 February 2017

2.6.11 Connected Property
2.6.11.1 Applies to
TRPCBroker Component

property Connected: Boolean;

2.6.11.2 Description
The Connected design-time property connects the application to the VistA M Server:

• Setting this property to True connects the application to the server.

• Setting it to False disconnects the application from the server.

It is not necessary for your application to manually establish a connection to the VistA M Server. RPC
Broker 1.1 automatically connects and disconnects from the server. When you invoke an RPC, if a
connection has not already been established, one is established for you. However, a user is not able to run
the RPC unless a context has been created with the CreateContext Method.

The Connected property is also used to authenticate a user into a VistA M Server. After making the
connection, it makes a call to Identity and Access Management (IAM) Secure Token Service (STS) for 2-
factor authentication of the user. The STS returns a token, which is used to authenticate the user into a
VistA M Server. If a token cannot be obtained, VistA user authentication fails over to Access and Verify
codes.

There are other advantages to establishing a connection manually. You can check if a connection is
established, and branch accordingly depending on whether or not a connection was established. One good
place to do this is in the application form’s OnCreate event. For that event, you could include code as
shown in Figure 23:

Figure 23: Connected Property—Example (1 of 2)
try
 brkrRPCBroker1.Connected:= True;
except
 on EBrokerError do
begin
 ShowMessage(‘Connection to server could not be established!’);
 Application.Terminate;
end;
end;

This code sets the TRPCBroker Component’s Connected property to True to establish a connection. If a
Broker exception (i.e., EBrokerError) was raised (in which case the connection was not established), it
provides a message to the user and calls the Terminate method to exit.

To verify that your application is connected to the VistA M Server, check the value of the Connected
property.

If a connected TRPCBroker Component is destroyed (e.g., when the application is closed) that component
first disconnects from the VistA M Server. However, for programming clarity, it is advisable to
disconnect your application from the server manually by setting the Connected property to False.

RPC Broker 1.1
Developer’s Guide 63 February 2017

If your application uses more than one Broker component, you should be aware of the component’s
connect and disconnect behavior.

 REF: For more information on connect-disconnect behavior, see the “Component Connect-
Disconnect Behavior” section.

2.6.11.3 Example
The program code in Figure 24 sets the Connected Property to True:

Figure 24: Connected Property—Example (2 of 2)
procedure TForm1.btnConnectClick(Sender: TObject);
begin
 brkrRPCBroker1.Server := edtServer.Text;
 brkrRPCBroker1.ListenerPort := StrToInt(edtPort.Text);
 brkrRPCBroker1.Connected := True;
end;

 NOTE: The Server Property and ListenerPort Property must be set at design or run-time before
setting the Connected Property to True.

2.6.12 Contextor Property
2.6.12.1 Applies to
TCCOWRPCBroker Component

2.6.12.2 Declaration

property Contextor: TContextorControl;
 read Fcontextor write FContextor; //CCOW

2.6.12.3 Description
The Contextor property is available at run-time only. It must be set to an active instance of the
TContextorControl component in order to initiate a login with CCOW User Context. If it is not set to an
active instance, then the component basically reverts to an instance of a TRPCBroker Component, since
none of the features of CCOW User Context is used.

 NOTE: The TContextorControl component is the interface for the Sentillion Vergence
ContextorControl that communicates with the Context Vault. The component is created based on
the type library for the DLL.

Since developers may want to use the TContextorControl component to initialize their own
instances, the TContextorControl component is placed on the Kernel palette in Delphi; however,
it is almost as easy to simply create it at runtime without using a component.

RPC Broker 1.1
Developer’s Guide 64 February 2017

2.6.13 Count Property (TMult Class)
2.6.13.1 Applies to
TMult Class

2.6.13.2 Declaration

property Count: Word;

2.6.13.3 Description
The Count design-time property contains the number of items in a TMult Class. If TMult Class is empty,
Count is zero.

2.6.13.4 Example
The program code in Figure 25 displays the number of items in a Mult class in the caption of a label when
the user clicks the CountItems button:

Figure 25: Count Property (TMult Class)—Example
procedure TForm1.CountItemsClick(Sender: TObject);
begin
 Label1.Caption := ‘There are ’ + IntToStr(Mult.Count) + ‘ items in the Mult.’
end;

2.6.14 Count Property (TParams Class)
2.6.14.1 Applies to
TParams Class

2.6.14.2 Declaration

property Count: Word;

2.6.14.3 Description
The Count property contains the number of parameters in a TParams Class. If the TParams Class is
empty, Count is zero.

2.6.14.4 Example
The program code in Figure 26 displays the number of parameters in a TParams variable within the
caption of a label when the user clicks the CountParameters button:

Figure 26: Count Property (TParams Class)—Example
procedure TForm1.CountParametersClick(Sender: TObject);
begin
 Label1.Caption := ‘There are ’ + IntToStr(brkrRPCBroker1.Param.Count) + ‘
parameters.’;
end;

RPC Broker 1.1
Developer’s Guide 65 February 2017

2.6.15 CurrentContext Property (read-only)
2.6.15.1 Applies to
TRPCBroker Component

2.6.15.2 Declaration

property CurrentContext: String;

2.6.15.3 Description
The CurrentContext property is available at run-time only. This read-only property provides the current
context. Developers can:

• Save off the current context into a local variable.

• Set a new context.

• Restore the original context from the local variable before finishing.

This permits the application to use the CreateContext Method with an additional context when an initial
context has already been established.

2.6.15.4 Example
The program code in Figure 27 demonstrates the use of the CurrentContext Property (read-only) in a
hypothetical example of saving and restoring the current context of an application:

Figure 27: CurrentContext Property—Example
procedure TForm1.MyFantasticModule;
var
 OldContext: String;
begin
 OldContext := RPCB.CurrentContext; // save off old context
 try
 RPCB.SetContext(‘MyContext’);
 .
 .
 .
 finally
 RPCB.SetContext(OldContext); // restore context before leaving
 end;
end;

RPC Broker 1.1
Developer’s Guide 66 February 2017

2.6.16 DebugMode Property
2.6.16.1 Applies to
TRPCBroker Component

2.6.16.2 Declaration

property DebugMode: Boolean;

2.6.16.3 Description
The DebugMode design-time property formerly controlled how the VistA M Server process should be
started. The default setting is False. Setting this property to True has no effect on the VistA M Server
process. Control of debugging has been moved from the client to the server.

For debugging purposes, it can be very helpful to:

1. Set break points.

2. Run the server process interactively.

3. Step through the execution.

 REF: For more information, see the “How to Debug the Application” section.

2.6.17 Division Property (TVistaLogin Class)
2.6.17.1 Applies to
TVistaLogin Class

2.6.17.2 Declaration

property Division: String;

2.6.17.3 Description
The Division property is available at run-time only. It can be set to the desired Division for a user for
Silent Login.

 REF: For information about handling multi-divisions during the Silent Login process, see the
“Handling Divisions during Silent Login” section.

2.6.18 Division Property (TVistaUser Class)
2.6.18.1 Applies to
TVistaUser Class

RPC Broker 1.1
Developer’s Guide 67 February 2017

property Division: String;

2.6.18.2 Description
The Division property is available at run-time only. It is set to the division for a user when they are
logged on.

2.6.19 DivList Property (read-only)
2.6.19.1 Applies to
TVistaLogin Class

2.6.19.2 Declaration

property DivList: Tstrings;

2.6.19.3 Description
The DivList property is available at run-time only. This read-only property is a list of divisions that are
available for selection by the user for the signon division. This list is filled in, if appropriate, during the
Silent Login at the same time that the user is determined to have multiple divisions from which to select.
The first entry in the list is the number of divisions present, followed by the names of the divisions that
are available to the user.

 REF: For information about handling multi-divisions during the Silent Login process, see the
“Handling Divisions during Silent Login” section.

2.6.20 DomainName Property
2.6.20.1 Applies to
TVistaLogin Class

2.6.20.2 Declaration

property DomainName: String;

2.6.20.3 Description
The DomainName property is available at run-time only. It can be used to obtain the domain name of the
server to which the RPC Broker is currently connected.

RPC Broker 1.1
Developer’s Guide 68 February 2017

2.6.21 DTime Property
2.6.21.1 Applies to
TVistaUser Class

2.6.21.2 Declaration

property DTime: String;

2.6.21.3 Description
The DTime property is available at run-time only. It holds the user’s DTime. DTime sets the time a user
has to respond to timed read. It can be set from 1 to 99999 seconds.

2.6.22 DUZ Property (TVistaLogin Class)
2.6.22.1 Applies to
TVistaLogin Class

2.6.22.2 Declaration

property DUZ: String;

2.6.22.3 Description
The DUZ property is available at run-time only. It holds the user’s Internal Entry Number (IEN) from the
NEW PERSON file (#200) for TVistaLogin.

2.6.23 DUZ Property (TVistaUser Class)
2.6.23.1 Applies to
TVistaUser Class

2.6.23.2 Declaration

property DUZ: String;

2.6.23.3 Description
The DUZ property is available at run-time only. It holds the user’s Internal Entry Number (IEN) from the
NEW PERSON file (#200) for TVistaUser.

RPC Broker 1.1
Developer’s Guide 69 February 2017

2.6.24 ErrorText Property
2.6.24.1 Applies to
TVistaLogin Class

2.6.24.2 Declaration

property ErrorText: String;

2.6.24.3 Description
The ErrorText property is available at run-time only. It holds text of any error message returned by the
VistA M Server during the attempted Silent Login. It should be checked if the login fails. For example, it
could indicate the following:

• Verify code needs to be changed.

• Invalid Access/Verify code pair.

• Invalid Division.

2.6.25 First Property
2.6.25.1 Applies to
TMult Class

2.6.25.2 Declaration

property First: String;

2.6.25.3 Description
The First design-time property contains the subscript of the first item in a TMult Class. The first item is
always in the 0th Position. You can think of the First property as a shortcut to executing the
TMult.Order(‘’,1) method. If a TMult variable does not contain any items, the First property is empty.

 REF: For more information, see the “Order Method” and “Position Method” sections.

RPC Broker 1.1
Developer’s Guide 70 February 2017

2.6.25.4 Example
The program code in Figure 28 displays the subscript and value of the first item in a Mult variable in the
caption of a label when the user clicks the GetFirst button:

Figure 28: First Property—Example
procedure TForm1.GetFirstClick(Sender: TObject);
var
 Mult: TMult;
 Subscript: string;
begin
 {Create Mult. Make Form1 its owner}
 Mult := TMult.Create(Form1);
 Mult[‘Fruit’] := ‘Apple’;
 {Store element pairs one by one)
 Mult[‘Vegetable’] := ‘Potato’;
 Label1.Caption := ‘The subscript of the first element: ’ + Mult.First + ‘, and
its value: ’ + Mult[Mult.First];
end;

2.6.26 IsProductionAccount Property
2.6.26.1 Applies to
TVistaLogin Class

2.6.26.2 Declaration

property IsProductionAccount: Boolean;

2.6.26.3 Description
The IsProductionAccount property is available at run-time only. It can be checked to determine if the
current connection is to a Production account:

• True—If the account is a Production account.

• False—If the account is not a Production account.

While it is declared as a read-write property, it should be considered to be read-only, since changing its
value does not change the nature of the server to which the RPC Broker is connected.

RPC Broker 1.1
Developer’s Guide 71 February 2017

2.6.27 KernelLogIn Property
2.6.27.1 Applies to
TRPCBroker Component

2.6.27.2 Declaration

property KernelLogIn: Boolean;

2.6.27.3 Description
The KernelLogin design-time property is a Boolean property, which indicates the manner of signon:

• True—Presents the regular Kernel login security form.

• False—Broker uses the TVistaLogin Class for signon.

The TVistaLogin Class is referenced during Silent Login.

 REF: For examples of silent logon by passing Access and Verify codes, see the “Silent Login
Examples” section.

2.6.28 Language Property
2.6.28.1 Applies to
TVistaUser Class

2.6.28.2 Declaration

property Language: String;

2.6.28.3 Description
The Language property is available at run-time only. It holds the user’s language from the NEW
PERSON file (#200).

2.6.29 Last Property
2.6.29.1 Applies to
TMult Class

2.6.29.2 Declaration

property Last: String;

2.6.29.3 Description
The Last design-time property contains the subscript of the last item in a TMult Class. The last item is
always in count-1 Position. You can think of the Last property as a shortcut to executing the
TMult.Order(‘’,-1) method. If a TMult variable does not contain any items, the Last property is empty.

RPC Broker 1.1
Developer’s Guide 72 February 2017

 REF: For more information, see the “Order Method” and “Position Method” sections.

2.6.29.4 Example
The program code in Figure 29 displays the subscript and value of the last item in a Mult variable in the
caption of a label when the user clicks the GetLast button:

Figure 29: Last Property—Example
procedure TForm1.GetLastClick(Sender: TObject);
var
 Mult: TMult;
 Subscript: string;
begin
 {Create Mult. Make Form1 its owner}
 Mult := TMult.Create(Form1);
 Mult[‘Fruit’] := ‘Apple’;
 {Store element pairs one by one}
 Mult[‘Vegetable’] := ‘Potato’;
 Label1.Caption := ‘The subscript of the last element: ’ + Mult.Last + ‘, and its
value: ’ + Mult[Mult.Last];
end;

2.6.30 ListenerPort Property
2.6.30.1 Applies to
TRPCBroker Component

2.6.30.2 Declaration

property ListenerPort: Integer;

2.6.30.3 Description
The ListenerPort design-time property gives the developer the ability to select the Listener port on the
VistA M Server. It must always be set before connecting to the server.

If one VistA M Server system has two or more environments (UCIs) that support client/server
applications (e.g., Test and Production accounts), the Broker Listener processes must be listening on
unique ports. Thus, you must specify which Listener port to use when you start the Listener on the VistA
M Server. Consequently, if you have more than one Listener running on the same server, the application
needs to specify the correct Listener for its connection request. This is accomplished using the
ListenerPort property.

After the initial connection, the VistA M Server connection is moved to another port number [i.e., Socket
Property (read-only)], which is used for the remainder of the session.

RPC Broker 1.1
Developer’s Guide 73 February 2017

2.6.30.4 Example
The program code in Figure 30 demonstrates using the ListenerPort Property:

Figure 30: ListenerPort Property—Example
procedure TForm1.btnConnectClick(Sender: TObject);
begin
 brkrRPCBroker1.ListenerPort := 9001;
 brkrRPCBroker1.Connected := True;
end;

2.6.31 LogIn Property
2.6.31.1 Applies to
TRPCBroker Component

2.6.31.2 Declaration

property LogIn: TVistaLogin;

2.6.31.3 Description
The LogIn property is available at run-time only. It holds parameters that the application needs to pass for
Silent Login. The instance of the TVistaLogin used for this property is created automatically during the
creation of the TRPCBroker object, and is therefore, available for reference as a TRPCBroker property
without any user setup.

 REF: For examples of silent logon by passing Access and Verify codes, see the “Silent Login
Examples” section.

2.6.32 LoginHandle Property
2.6.32.1 Applies to
TVistaLogin Class

2.6.32.2 Declaration

property LoginHandle: String;

2.6.32.3 Description
The LoginHandle property is available at run-time only. It holds the Application Handle for the
lmAppHandle mode of Silent Login. The Application Handle is obtained from the VistA M Server by a
currently running application using the GetAppHandle function in the TRPCB Unit. The function returns
a String value, which is then passed as a command line argument with an application that is being started.
The new application must know to look for the handle, and if present, set up the Silent Login. The
StartProgSLogin (see the “StartProgSLogin Method” section) procedure in the RpcSLogin Unit can be
used directly or as an example of how the application would be started with a valid AppHandle as a
command line argument. The CheckCmdLine procedure (see the “CheckCmdLine Function” section) in

RPC Broker 1.1
Developer’s Guide 74 February 2017

the RpcSLogin Unit can be used in an application to determine whether an AppHandle has been passed
and to initiate the Broker connection or used as an example of how this could be done.

 NOTE: The two procedures referenced here also pass the current values from the Server
Property, ListenerPort Property, and Division Property (TVistaLogin Class) for the user so that
the connection would be made to the same VistA M Server as the original application.

The AppHandle that is obtained via the GetAppHandle function is only valid for approximately
20 seconds, after which the Silent Login would fail.

2.6.33 Mode Property
2.6.33.1 Applies to
TVistaLogin Class

2.6.33.2 Declaration

property Mode: TloginMode;

2.6.33.3 Description
The Mode property is available at run-time only. It indicates the mode of Silent Login. The possible
values include: lmAVCodes and lmAppHandle.

 REF: For examples of silent logon by passing Access and Verify codes, see the “Silent Login
Examples” section.

2.6.34 Mult Property
2.6.34.1 Applies to
TParamRecord Class

2.6.34.2 Declaration

property Mult: TMult;

2.6.34.3 Description
(Mult is a property of the TParamRecord Class used in the Param Property.)

The Mult design-time property of a TParamRecord Class, which is the type of each TRPCBroker
Component’s Param[x] element, can be used to pass a string-subscripted array of strings to the VistA M
Server. For example, if you need to pass a patient’s name and Social Security Number (SSN) to a remote
procedure, you could pass them as two separate parameters as PType literals, or you could pass them in
one parameter using the Mult property as a PType list. If one is being sent, a Mult must be the last
element in the Param array.

RPC Broker 1.1
Developer’s Guide 75 February 2017

2.6.34.4 Example
The program code in Figure 31 demonstrates how the Mult Property can be used to pass several data
elements to the VistA M Server in one parameter:

Figure 31: Mult Property—Example (1 of 2)
procedure TForm1.Button1Click(Sender: TObject);
begin
 with brkrRPCBroker1 do begin
 Param[0].PType :=list;
 Param[0].Mult[‘“NAME”’] := ‘XWBBROKER,ONE’
 Param[0].Mult[‘“SSN”’] := ‘000456789’;
 RemoteProcedure := ‘SETUP PATIENT INFO’;
 Call;
 end;
end;

Assuming variable P1 is used on the VistA M Server to receive this array, it would look like Figure 32:
Figure 32: Mult Property—Example (2 of 2)

P1(“NAME”)=XWBBROKER,ONE
P1(“SSN”)=000456789

2.6.35 MultiDivision Property
2.6.35.1 Applies to
TVistaLogin Class

2.6.35.2 Declaration

property MultiDivision: Boolean;

2.6.35.3 Description
The MultiDivision property is available at run-time only. It indicates whether the user has multi-
divisional access. It is set during the Silent Login process, if the user has more than one division that can
be selected.

 REF: For information about handling multi-divisions during the Silent Login process, see the
“Handling Divisions during Silent Login” section.

RPC Broker 1.1
Developer’s Guide 76 February 2017

2.6.36 Name Property
2.6.36.1 Applies to
TVistaUser Class

2.6.36.2 Declaration

property Name: String;

2.6.36.3 Description
The Name property is available at run-time only. It holds the user’s name from the NEW PERSON file
(#200).

2.6.37 OnFailedLogin Property
2.6.37.1 Applies to
TVistaLogin Class

2.6.37.2 Declaration

property OnFailedLogin: TOnLoginFailure;

2.6.37.3 Description
The OnFailedLogin property is available at run-time only. It holds a procedure to be invoked on a failed
Silent Login that permits an application to handle errors as desired; where TOnLoginFailure is defined as:

TOnLoginFailure = procedure (VistaLogin: TVistaLogin) of object;

For example, an application could define:

Procedure HandleLoginError(Sender: TObject);

And then set:

OnFailedLogin := HandleLoginError;

 REF: For examples of silent logon by passing Access and Verify codes, see the “Silent Login
Examples” section.

RPC Broker 1.1
Developer’s Guide 77 February 2017

2.6.38 OnRPCBFailure Property
2.6.38.1 Applies to
TRPCBroker Component

2.6.38.2 Declaration

property OnRPCBFailure: TOnRPCBFailure;

2.6.38.3 Description
The OnRPCBFailure property is available at run-time only. It holds a procedure to be invoked when the
Broker generates an exception that permits an application to handle errors as desired, where
TOnRPCBFailure is defined as:

TOnRPCBFailure = procedure (RPCBroker: TRPCBroker) of object;

The text associated with the error causing the exception is found in the RPCBError Property (read-only).

 NOTE: If the OnFailedLogin Property is also set, it handles any login errors and does not pass
them up.

2.6.38.4 Example
For example, an application could define:

Procedure HandleBrokerError(Sender: TObject);

And then set:

OnRPCBFailure := HandleBrokerError;

 NOTE: The initialization of the OnRPCBFailure property should be before the first call to the
TRPCBroker Component.

RPC Broker 1.1
Developer’s Guide 78 February 2017

Figure 33 shows an instance of an error handler that takes the Message property of the exception and
stores it with a time date stamp into a file named Error.Log in the same directory with the application exe:

Figure 33: Error Handler—Example of Storing a Message with a Time Date Stamp
procedure TForm1.HandleBrokerError(Sender: TObject);
var
 ErrorText: String;
 Path: String;
 StrLoc: TStringList;
 NowVal: TDateTime;
begin
 NowVal := Now;
 ErrorText := TRPCBroker(Sender).RPCBError;
 StrLoc := TStringList.Create;
 try
 Path := ExtractFilePath(Application.ExeName);
 Path := Path + ‘Error.Log’;
 if FileExists(Path) then
 StrLoc.LoadFromFile(Path);
 StrLoc.Add(FormatDateTime(‘mm/dd/yyyy hh:mm:ss ’,NowVal) + ErrorText);
 StrLoc.SaveToFile(Path);
 finally
 StrLoc.Free;
 end;
end;

2.6.39 Param Property
2.6.39.1 Applies to
TRPCBroker Component

2.6.39.2 Declaration

property Param: TParams;

2.6.39.3 Description
The Param property is available at run-time only. It holds all of the parameters that the application needs
to pass to the remote procedure using any of the following methods:

• Call Method

• strCall Method

• lstCall Method
Param is a zero-based array of the TParamRecord Class. You do not need to explicitly allocate any
memory for the Param property. Simple reference to an element or a value assignment (:=) dynamically
allocates memory as needed. You should start with the 0th element and proceed in sequence. Do not skip
elements.

RPC Broker 1.1
Developer’s Guide 79 February 2017

Each element in the Param array has the following properties:

• Mult Property

• PType Property

• Value Property

 CAUTION: Passing multiple parameters of PType list in one remote procedure call (RPC)
is not supported at this time. Only one list parameter can be passed to an RPC, and it
must be the last parameter in the actual list.

The Param relationship to the TRPCBroker Component is as follows:

The TRPCBroker Component contains the Param property (i.e., TParams Class).

The TParams Class contains the ParamArray property (array [I:integer]: TParamRecord Class).

The TParamRecord Class contains the Mult Property (i.e., TMult Class).

The TMult Class contains the MultArray property (array[S: string]: string).

The MultArray property internally uses a TStringList in which each element’s object
is a TString

If the remote procedure on the VistA M Server does not require any incoming parameters, applications
can pass an empty Param property. The client application merely sets the RemoteProcedure Property and
makes the call. If the Param property retains a value from a previous call, it can be cleared using the
ClearParameters Property. Thus, it is possible to make a call without passing any parameters.

 CAUTION: The following restrictions apply with the Param property:

1. You are not allowed to “skip” passing parameters, such as TAG^ROUTINE(1,,3). If
there are fewer elements in the Param array than exist as input parameters in the
RPC, the subsequent parameters are not passed to the RPC.

2. Passing multiple array parameters in one remote procedure call is not supported at
this time. Only one array parameter can be passed to an RPC, and it must be the
last parameter in the actual list.

 REF: For a demonstration using the Param Property, run the RPC Broker Example (32-Bit)
(i.e., BrokerExample.exe); located in the following directory:

BDK32\Samples\BrokerEx

RPC Broker 1.1
Developer’s Guide 80 February 2017

2.6.39.4 Example
The program code in Figure 34 demonstrates how the Param Property of a TRPCBroker Component is
referenced and filled with two parameters that the remote procedure expects:

Figure 34: Param Property—Example
procedure TForm1.Button1Click(Sender: TObject);
begin
 {first parameter is a single string}
 brkrRPCBroker1.Param[0].Value := ‘02/27/14’;
 brkrRPCBroker1.Param[0].PType := literal;
 {second parameter is a list}
 brkrRPCBroker1.Param[1].Mult[‘“NAME”’] := ‘XWBUSER,ONE’;
 brkrRPCBroker1.Param[1].Mult[‘“SSN”’] := ‘000-45-6789’;
 brkrRPCBroker1.Param[1].PType := list;
end;

 REF: For a demonstration using the Param Property, run the RPC Broker Example (32-Bit)
(i.e., BrokerExample.exe); located in the following directory:

 BDK32\Samples\BrokerEx

2.6.40 PromptDivision Property
2.6.40.1 Applies to
TVistaLogin Class

2.6.40.2 Declaration

property PromptDivison: Boolean;

2.6.40.3 Description
The PromptDivision property is available at run-time only. It should be set to:

• True—If the user should be prompted for Division during Silent Login. The prompt only occurs
if the user has multi-division access.

• False—If the prompt should not be displayed due to the manner in which the application is
running.

However, if set to False and multi-division access is a possibility, then the application must handle it in
another way. For example, the application developer would do the following:

1. Set Login.PromptDivision to False.

2. Set the Connected Property to True to signon.

3. On return, check whether the Connected Property was set to True or check whether the
Login.ErrorText Property was non-null (and especially “No Division Selected”).

4. If the connection was successful, there is no problem; otherwise, proceed to Steps 5 - 8.

5. Check the Login. MultiDivision Property and see if it was set to True, which is expected.

RPC Broker 1.1
Developer’s Guide 81 February 2017

6. If the Login.MultiDivision Property is set to True, check the Login.DivList Property (read-only)
for a list of the available divisions (remember the first entry is the number of entries that follow),
and in whatever method was available to the application, have the user select the correct division.

7. Set the Login.Division Property (TVistaLogin Class) to the selected Division.

8. Set the Connected Property to True, so the connection would be attempted to be established
again.

 REF: For examples of silent logon by passing Access and Verify codes, see the “Silent Login
Examples” section.

2.6.41 PType Property
2.6.41.1 Applies to
TParamRecord Class

2.6.41.2 Declaration

property PType: TParamType;

2.6.41.3 Description
PType is a property of the TParamRecord Class used in the Param Property.

The PType design-time property determines how the parameter is interpreted and handled by the Broker.
Table 11: PType Property—Values

Value Definition

literal Delphi string value, passed as a string literal to the VistA M server. The VistA M Server
receives the contents of the corresponding Value Property as one string or one number.

reference Delphi string value, treated on the VistA M Server as an M variable name and resolved
from the symbol table at the time the RPC executes. The VistA M Server receives the
contents of the corresponding Value Property as a name of a variable defined on the
server. Using indirection, the Broker on the server resolves this parameter before
handing it off to the application.

 CAUTION: The use of a reference-type input parameter represents a
significant security risk. The M entry point should include code to screen
the input value for M code injection (e.g., function calls, M commands, or
direct global reads).

list A single-dimensional array of strings in the Mult subproperty of the Param Property,
which is passed to the VistA M Server where it is placed in an array. String subscripting
can be used. This value is used whenever an application wants to send a list of values to
the VistA M Server. Data is placed in a local array. In this case, the content of the
corresponding Mult Property is sent, while the Value Property is ignored.

global This value is similar to list, but instead of data being placed in a local array, it is placed in
a global array. Use of this value removes the potential problem of allocation errors when
large quantities of data are transmitted.

RPC Broker 1.1
Developer’s Guide 82 February 2017

Value Definition

empty This value indicates that no parameter value is to be passed; it simply passes an empty
argument.

stream This value indicates that the data should be passed as a single stream of data.

undefined The Broker uses this value internally. It should not be used by an application.

For instance, if you need to pass an empty string to the remote procedure call (RPC), the Value Property
should be set to ‘’ (i.e., null) and the PType to literal. Using reference, a developer can pass an M variable
(e.g., DUZ) without even knowing its value. However, if the M variable being referenced is not defined
on the VistA M Server, a run-time error occurs. When passing a list to an RPC:

1. Set the PType to list.

2. Populate the Mult Property.

3. Do not put anything into the Value Property (in this case, Value is ignored).

 REF: For a demonstration using PType, run the RPC Broker Example (32-Bit)
(i.e., BrokerExample.exe); located in the following directory:

BDK32\Samples\BrokerEx

2.6.41.4 Example
The program code in Figure 35 demonstrates a couple of different uses of the PType Property.
Remember, that each Param[x] element is really a TParamRecord Class.

Figure 35: PType Property—Example
procedure TForm1.Button1Click(Sender: TObject);
begin
 with brkrRPCBroker1 do begin
 RemoteProcedure := ‘SET NICK NAME’;
 Param[0].Value := ‘DUZ’;
 Param[0].PType := reference;
 Param[1].Value := edtNickName.Text;
 Param[1].PType := literal;
 Call;
 end;
end;

 REF: For a demonstration using PType, run the RPC Broker Example (32-Bit)
(i.e., BrokerExample.exe); located in the following directory:

BDK32\Samples\BrokerEx

RPC Broker 1.1
Developer’s Guide 83 February 2017

2.6.42 RemoteProcedure Property
2.6.42.1 Applies to
TRPCBroker Component

2.6.42.2 Declaration

property RemoteProcedure: TRemoteProc;

2.6.42.3 Description
The RemoteProcedure design-time property should be set to the name of the remote procedure call entry
in the REMOTE PROCEDURE File (#8994).

2.6.42.4 Example
The program code in Figure 36 demonstrates using the RemoteProcedure Property:

Figure 36: RemoteProcedure Property—Example
procedure TForm1.Button1Click(Sender: TObject);
begin
 brkrRPCBroker1.RemoteProcedure := ‘MY APPLICATION REMOTE PROCEDURE’;
 brkrRPCBroker1.Call;
end;

2.6.43 Results Property
2.6.43.1 Applies to
TRPCBroker Component

2.6.43.2 Declaration

property Results: Tstrings;

2.6.43.3 Description
The Results design-time property contains the results of a Call Method. In the case where the RPC returns
a single value, it is returned in Results[0]. If a call returns a list of values, the Results property is filled in
the order the list collates on the VistA M Server. The Results property can only contain values of array
elements—subscripts are not returned.

For example:

On the VistA M Server, the M routine constructs the list in the sequence shown in Figure 37:
Figure 37: Results Property—Sample Array List Sequence

S LIST(“CCC”)=“First”
S LIST(1)=“Second”
S LIST(“AAA”)=“Third”
S LIST(2)=“Fourth”

RPC Broker 1.1
Developer’s Guide 84 February 2017

Before Broker returns the list to the client, M re-sorts it in alphabetical order as shown in Figure 38:
Figure 38: Results Property—Sample Array List Sequence Sorted Alphabetically

LIST(1)=“Second”
LIST(2)=“Fourth”
LIST(“AAA”)=“Third”
LIST(“CCC”)=“First”

On the client, the Results property content is shown in Figure 39:
Figure 39: Results Property—Example

brkrRPCBroker1.Results[0]=Second
brkrRPCBroker1.Results[1]=Fourth
brkrRPCBroker1.Results[2]=Third
brkrRPCBroker1.Results[3]=First

2.6.43.4 Example
The program code in Figure 40 demonstrates using the Results Property:

Figure 40: Results Property—Sample Code Using the Results Property
procedure TForm1.btnSendClick(Sender: TObject);
begin
 {clears Results between calls}
 brkrRPCBroker1.ClearResults := True;
 {the following code returns a single value}
 brkrRPCBroker1.RemoteProcedure := ‘SEND BACK SOME SINGLE VALUE’;
 brkrRPCBroker1.Call;
 Label1.Caption := ‘Value returned is: ’ + brkrRPCBroker1.Results[0];
 {the following code returns several values}
 brkrRPCBroker1.RemoteProcedure := ‘SEND BACK LIST OF VALUES’;
 brkrRPCBroker1.Call;
 ListBox1.Items := RPCBroker.Results;
end;

2.6.44 RPCBError Property (read-only)
2.6.44.1 Applies to
TRPCBroker Component

2.6.44.2 Declaration

property RPCBError: String;

2.6.44.3 Description
The RPCBError property is available at run-time only. This read-only property contains the Message
property associated with the exception or error that was encountered by the instance of the TRPCBroker
Component.

RPC Broker 1.1
Developer’s Guide 85 February 2017

2.6.45 RPCTimeLimit Property
2.6.45.1 Applies to
TRPCBroker Component

2.6.45.2 Declaration

property RPCTimeLimit: Integer;

2.6.45.3 Description
The RPCTimeLimit property is a public integer property that is available at run-time only. It specifies the
length of time a client waits for a response from an RPC. The default and minimum value of this property
is 30 seconds. If an RPC is expected to take more than 30 seconds to complete, adjust the RPCTimeLimit
property accordingly. However, it is not advisable to have an RPCTimeLimit that is too long; otherwise,
the client-end of the application appears to “hang”, if the VistA M Server does not respond in a timely
fashion.

2.6.45.4 Example
The program code in Figure 41 demonstrates using the RPCTimeLimit Property:

Figure 41: RPCTimeLimit Property—Example
procedure TForm1.Button1Click(Sender: TObject);
var
 intSaveRPCTimeLimit: integer;
begin
 brkrRPCBroker1.RemoteProcedure := ‘GET ALL LAB RESULTS’;
 brkrRPCBroker1.Param[0].Value := ‘DFN’;
 brkrRPCBroker1.Param[0].PType := reference;
 {save off current time limit}
 intSaveRPCTimeLimit := brkrRPCBroker1.RPCTimeLimit;
 {can take up to a minute to complete}
 brkrRPCBroker1.RPCTimeLimit := 60;
 brkrRPCBroker1.Call;
 {restore previous time limit}
 brkrRPCBroker1.RPCTimeLimit := intSaveRPCTimeLimit;
end;

RPC Broker 1.1
Developer’s Guide 86 February 2017

2.6.46 RPCVersion Property
2.6.46.1 Applies to
TRPCBroker Component

2.6.46.2 Declaration

property RPCVersion: String;

2.6.46.3 Description
The RPCVersion design-time property is a published string type property used to pass the version of the
RPC. This can be useful for backward compatibility.

As you introduce new functionality into an existing RPC, your RPC can branch into different parts of the
code based on the value of the RPCVersion property. The Broker sets the XWBAPVER variable on the
VistA M Server to the contents of the RPCVersion property. This property cannot be empty and defaults
to “0” (zero).

You can use the application version number in the RPCVersion property.

 REF: For a suggested method for constructing version numbers, see the “Application
Considerations” section.

2.6.46.4 Example
In the following examples (Figure 42 and Figure 43), an RPC is first called with two parameters that are
added together and the sum returned to the client. Again, this same RPC is called with the same
parameters; however, this time it uses a different RPC version value. Thus, the two numbers are simply
concatenated together and the resulting string is returned:

2.6.46.4.1 On the Client
Figure 42: RPCVersion Property—Example on the Client

procedure TForm1.Button1Click(Sender: TObject);
begin
 {make sure the results get cleared}
 brkrRPCBroker1.ClearResults := True;
 {just re-use the same parameters}
 brkrRPCBroker1.ClearParameters := False;
 brkrRPCBroker1.RemoteProcedure := ‘MY APPLICATION REMOTE PROCEDURE’;
 brkrRPCBroker1.Param[0].Value := ‘333’;
 brkrRPCBroker1.Param[0].PType := literal;
 brkrRPCBroker1.Param[1].Value := ‘444’;
 brkrRPCBroker1.Param[1].PType := literal;
 brkrRPCBroker1.Call;
 {the result is 777}
 Label1.Caption := ‘Result of the call: ’ + brkrRPCBroker1.Results[0];
 brkrRPCBroker1.RPCVersion := ‘2’;
 brkrRPCBroker1.Call;
 {the result is 333444}
 Label2.Caption := ‘Result of the call: ’ + brkrRPCBroker1.Results[0];
end;

RPC Broker 1.1
Developer’s Guide 87 February 2017

2.6.46.4.2 On the Server
Figure 43: RPCVersion Property—Example on the Server

TAG(RESULT,PARAM1,PARAM2) ;Code for MY APPLICATION REMOTE PROCEDURE
 IF XWBAPVER<2 SET RESULT=PARAM1+PARAM2
 ELSE SET RESULT=PARAM1_PARAM2
 QUIT RESULT

2.6.47 SecurityPhrase Property
2.6.47.1 Applies to
TRPCBroker Component

2.6.47.2 Declaration

property SecurityPhrase: String;

2.6.47.3 Description
The SecurityPhrase property is available at run-time only. It holds the unique Security Phrase for the
application to be used with Broker Security Enhancement (BSE) logon. The Security Phrase identifies the
application as an authorized user of BSE visitor access on the VistA M Server.

 RECOMMENDATION: Since the Security Phrase is the applications identifier, a good
security practice is to identify the Security Phrase as a const value in an include file
when compiling any RPC Broker Delphi-based program implementing BSE. Add a
substitute include file containing a generic Security Phrase (not the one used to compile
the application) with the release of the source code.

 REF: For more information on the application Security Phrase, see the “Step-By-Step Procedures
to Implement BSE” section.

2.6.48 Server Property
2.6.48.1 Applies to
TRPCBroker Component

2.6.48.2 Declaration

property Server: String;

2.6.48.3 Description
The Server design-time property contains the name or Internet Protocol (IP) address of the VistA M
Server system. If the name is used instead of the IP address, Microsoft® Windows Winsock should be
able to resolve it. Winsock can resolve a name to an IP address either through the Domain Name Service
(DNS) or by looking it up in the HOSTS file on the client workstation. In the case where the same name
exists in the DNS and in the HOSTS file, the HOSTS file entry takes precedence. Changing the name of

RPC Broker 1.1
Developer’s Guide 88 February 2017

the VistA M Server while the TRPCBroker Component is connected disconnects the TRPCBroker
Component from the previous server.

 REF: For common Winsock error messages, see the RPC Broker “FAQ: Common Winsock
Error/Status Messages” at the RPC Broker VA Intranet website.

2.6.48.4 Example
The program code in Figure 44 demonstrates using the Server Property:

Figure 44: Server Property—Example
procedure TForm1.btnConnectClick(Sender: TObject);
begin
 brkrRPCBroker1.ListenerPort := 9999;
 brkrRPCBroker1.Server := ‘DHCPSERVER’;
 brkrRPCBroker1.Connected := True;
end;

2.6.49 ServiceSection Property
2.6.49.1 Applies to
TVistaUser Class

2.6.49.2 Declaration

property ServiceSection: String;

2.6.49.3 Description
The ServiceSection property is available at run-time only. It holds the user’s service section from the
NEW PERSON file (#200).

RPC Broker 1.1
Developer’s Guide 89 February 2017

2.6.50 ShowErrorMsgs Property
2.6.50.1 Applies to
TRPCBroker Component

2.6.50.2 Declaration

property ShowErrorMsgs: TShowErrorMsgs;

2.6.50.3 Description
The ShowErrorMsgs design-time property gives the developer the ability to determine how an exception
is handled, if an error handler has not been provided through the OnRpcbError property (i.e., a procedure
property that is set to the name of a procedure that is called if an error is encountered). If the
OnRpcbError property is assigned, then exception processing is delegated to that procedure. Otherwise,
exception handling is based on the value of ShowErrorMsgs property.

Table 12 lists the possible values:
Table 12: ShowErrorMsgs Property—Values

Value Meaning

semRaise
(default)

This is the default value. The Broker does not handle the error directly but
passes it off to the application in general to process, which can result in a
different message box display or some other type of error indication.

semQuiet The error is not displayed or raised. This requires the application to check the
value of the RPCBError Property (read-only) following calls to the Broker to
determine whether an error has occurred, and if so, what the error was. This
can be desirable, if the application requires that errors not result in display
boxes, etc., as might be the case with an NT service or Web application.

2.6.51 Socket Property (read-only)
2.6.51.1 Applies to
TRPCBroker Component

2.6.51.2 Declaration

property Socket: Integer;

2.6.51.3 Description
The Socket property is available at run-time only. It contains the active port being used for the TCP/IP
connection to the VistA M Server. This is the port that is currently in use on the server as opposed to the
ListenerPort (see ListenerPort Property) that was used to make the initial connection. After the initial
connection, the server connection is moved to another port number (i.e., Socket), which is used for the
remainder of the session.

RPC Broker 1.1
Developer’s Guide 90 February 2017

2.6.51.4 Example
The program code in Figure 45 populates the Socket Property (read-only) with the active port on the
VistA M Server:

Figure 45: Socket Property—Example
function ExistingSocket(Broker: TRPCBroker): integer;
var
 Index: integer;
begin
 Result := 0;
 if Assigned(BrokerConnections) and
 BrokerConnections.Find(Broker.Server + ‘:’ + IntToStr(Broker.ListenerPort),
Index) then
 Result := TRPCBroker(BrokerConnections.Objects[Index]).Socket;
end;

2.6.52 Sorted Property
2.6.52.1 Applies to
TMult Class

2.6.52.2 Declaration

property Sorted: Boolean;

2.6.52.3 Description
The Sorted design-time property value determines the order of the items in a TMult variable. If Sorted is
True, the items are sorted in ascending order of their string subscripts. If Sorted is False (default), the
items are unsorted, and appear in the order they were added. Keep in mind that changing Sorted from
False to True irreversibly sorts the list so that changing Sorted back to False does not put the list back in
its original order, unless the original order was already sorted of course.

RPC Broker 1.1
Developer’s Guide 91 February 2017

2.6.52.4 Example
The program code in Figure 46 demonstrates the effect the Sorted Property has on a TMult variable.
Notice that by setting the Sorted Property back to False, the list does not revert to its unsorted order:

1. Start a new VCL Forms application.

2. Drop one TMemo and one TButton on the form. Arrange controls as in Figure 47.

3. Add Vcl.StdCtrls and TRPCB to the “uses” clause.

4. Copy the code in Figure 46 to the Button1.OnClick event:
Figure 46: Sorted Property—Code Added to the Button1.OnClick Event

procedure TForm1.Button1Click(Sender: TObject);
var
 Mult1: TMult;
 Subscript: string;
begin
 //Create Mult1. Make Form1 its owner
 Mult1 := TMult.Create(Form1);
 //Fill Mult1 with some strings
 Mult1[‘First’] := ‘One’;
 Mult1[‘Second’] := ‘Two’;
 Mult1[‘Third’] := ‘Three’;
 Mult1[‘Fourth’] := ‘Four’;
 Mult1[‘Fifth’] := ‘Five’;
 //configure memo box for better display
 Memo1.Font.Name := ‘Courier’;
 Memo1.ScrollBars := ssVertical;
 Memo1.Lines.Clear;
 Memo1.Lines.Add(‘Natural order:’);
 //set a starting point
 Subscript := ‘’;
 repeat
 //get next Mult element
 Subscript := Mult1.Order(Subscript, 1);
 //if not the end of list
 if Subscript <> ‘’ then
 //display subscript value
 Memo1.Lines.Add(Format(‘%10s’, [Subscript]) + ‘ - ’ + Mult1[Subscript])
 //stop when reached the end
 until Subscript = ‘’;

 //list is now sorted alphabetically
 Mult1.Sorted := True;
 Memo1.Lines.Add(‘’);
 Memo1.Lines.Add(‘Sorted order:’);
 //set a starting point
 Subscript := ‘’;
 repeat
 //get next Mult element
 Subscript := Mult1.Order(Subscript, 1);
 //if not the end of list
 if Subscript <> ‘’ then
 //display subscript value
 Memo1.Lines.Add(Format(‘%10s’, [Subscript]) + ‘ = ’ + Mult1[Subscript])
 //stop when reached the end
 until Subscript = ‘’;

 //existing entries remain in sorted order
 Mult1.Sorted := False;
 Memo1.Lines.Add(‘’);

RPC Broker 1.1
Developer’s Guide 92 February 2017

 Memo1.Lines.Add(‘Unsorted order:’);
 //set a starting point
 Subscript := ‘’;
 repeat
 //get next Mult element
 Subscript := Mult1.Order(Subscript, 1);
 //if not the end of list
 if Subscript <> ‘’ then
 //display subscript value
 Memo1.Lines.Add(Format(‘%10s’, [Subscript]) + ‘ - ’ +
Mult1[Subscript])
 //stop when reached the end
 until Subscript = ‘’‘;
end;

5. Run project and click on the button.

The expected output is shown in Figure 47:
Figure 47: Sorted Property—Sample Form Output

You may have to scroll up and down to see all of the output.

RPC Broker 1.1
Developer’s Guide 93 February 2017

2.6.53 SSHHide Property
2.6.53.1 Applies to
TRPCBroker Component

2.6.53.2 Declaration

property SSHHide: Boolean;

2.6.53.3 Description
The SSHhide property is used when making secured (Secure Shell [SSH]) broker connections. It
determines whether the SSH Tunnel application control box is hidden (“true”) or minimized (“false”,
default) at application run-time.

2.6.54 SSHport Property
2.6.54.1 Applies to
TRPCBroker Component

2.6.54.2 Declaration

property SSHport: String;

2.6.54.3 Description
The SSHport property is available at run-time only. It holds a specific port number for SSH Tunneling if
the UseSecureConnection Property is set to “SSH” or “PLINK” (either as a command line option or
within the application). If not specified, the application uses the RPC Broker listener port for the remote
server. This is useful if the server is running separate listeners for SSH and non-secured connections.

To set the SSHport property as a command line option, include the following:

SSHPort=portnumber

RPC Broker 1.1
Developer’s Guide 94 February 2017

2.6.55 SSHpw Property
2.6.55.1 Applies to
TRPCBroker Component

2.6.55.2 Declaration

property SSHpw: String;

2.6.55.3 Description
The SSHpw property is available at run-time only. It holds a password for SSH Tunneling if the
UseSecureConnection Property is set to “PLINK” (either as a command line option or within the
application). If not specified, the password is set to null.

To set the SSHpw property as a command line option, include the following:

SSHpw=password

2.6.56 SSHUser Property
2.6.56.1 Applies to
TRPCBroker Component

2.6.56.2 Declaration

property SSHUser: String;

2.6.56.3 Description
The SSHUser property is available at run-time only. It holds a specific username for SSH Tunneling if the
UseSecureConnection Property is set to “SSH” (either as a command line option or within the
application). For VA VistA servers, the username is typically of the form xxxvista, where the xxx is the
station’s three letter abbreviation.

To set the SSHUser property as a command line option, include the following:

SSHUser=username

RPC Broker 1.1
Developer’s Guide 95 February 2017

2.6.57 SSOiADUPN Property (TRPCBroker Component)
2.6.57.1 Applies to
TRPCBroker Component

2.6.57.2 Declaration

property SSOiADUPN: String;

2.6.57.3 Description
The SSOiADUPN property is available at run-time only. It holds the authenticated user’s Active
Directory (AD) User Principal Name (UPN) for the current connection. The value is obtained from the
SSOiADUPN Property (TXWBSSOiToken Component).

2.6.58 SSOiADUPN Property (TXWBSSOiToken Component)
2.6.58.1 Applies to
TXWBSSOiToken Component

2.6.58.2 Declaration

property SSOiADUPN: String;

2.6.58.3 Description
The SSOiADUPN property is available at run-time only. It holds the authenticated user’s Active
Directory (AD) User Principal Name (UPN) for the current token. The value is extracted from the
SSOiToken Property (TXWBSSOiToken Component).

2.6.59 SSOiLogonName Property (TRPCBroker Component)
2.6.59.1 Applies to
TRPCBroker Component

2.6.59.2 Declaration

property SSOiLogonName: String;

2.6.59.3 Description
The SSOiLogonName property is available at run-time only. It holds the authenticated user’s Active
Directory (AD) user name for the current connection. The value is obtained from the SSOiLogonName
Property (TXWBSSOiToken Component).

RPC Broker 1.1
Developer’s Guide 96 February 2017

2.6.60 SSOiLogonName Property (TXWBSSOiToken Component)
2.6.60.1 Applies to
TXWBSSOiToken Component

2.6.60.2 Declaration

property SSOiLogonName: String;

2.6.60.3 Description
The SSOiLogonName property is available at run-time only. It holds the authenticated user’s Active
Directory (AD) user name for the current token. The value is extracted from the SSOiToken Property
(TXWBSSOiToken Component).

2.6.61 SSOiSECID (TRPCBroker Component)
2.6.61.1 Applies to
TRPCBroker Component

2.6.61.2 Declaration

property SSOiSECID: String;

2.6.61.3 Description
The SSOiSECID property is available at run-time only. It holds the authenticated user’s Identity and
Access Management Security ID (SecID) for the current connection. The value is obtained from the
SSOiSECID Property (TXWBSSOiToken Component).

2.6.62 SSOiSECID Property (TXWBSSOiToken Component)
2.6.62.1 Applies to
TXWBSSOiToken Component

2.6.62.2 Declaration

property SSOiSECID: String;

2.6.62.3 Description
The SSOiSECID property is available at run-time only. It holds the authenticated user’s Identity and
Access Management Security ID (SecID) for the current token. The value is extracted from the
TXWBSSOiToken component SSOiToken property.

RPC Broker 1.1
Developer’s Guide 97 February 2017

2.6.63 SSOiToken Property (TRPCBroker Component)
2.6.63.1 Applies to
TRPCBroker Component

2.6.63.2 Declaration

property SSOiToken: String;

2.6.63.3 Description
The SSOiToken property is available at run-time only. It holds a digitally-signed XML document (stored
as a string) containing user attributes needed to authenticate a user into VistA. The value is obtained from
the SSOiToken Property (TXWBSSOiToken Component).

2.6.64 SSOiToken Property (TXWBSSOiToken Component)
2.6.64.1 Applies to
TXWBSSOiToken Component

2.6.64.2 Declaration

property SSOiToken: String;

2.6.64.3 Description
The SSOiToken property is available at run-time only. It holds a digitally-signed XML document (stored
as a string) containing user attributes needed to authenticate a user into VistA for the current connection.
The value is obtained by authenticating the user into the Identity and Access Management (IAM) Secure
Token Service (STS) server using mutual Transport Layer Security (TLS) 2-factor authentication.

2.6.65 StandardName Property
2.6.65.1 Applies to
TVistaUser Class

2.6.65.2 Declaration

property StandardName: String;

2.6.65.3 Description
The StandardName property is available at run-time only. It holds the user’s standard name from the
NEW PERSON file (#200).

RPC Broker 1.1
Developer’s Guide 98 February 2017

2.6.66 Title Property
2.6.66.1 Applies to
TVistaUser Class

2.6.66.2 Declaration

property Title: String;

2.6.66.3 Description
The Title property is available at run-time only. It holds the user’s title from the NEW PERSON file
(#200).

2.6.67 URLDetect Property
2.6.67.1 Applies to TXWBRichEdit Component
2.6.67.2 Declaration

property URLDetect: Boolean;

2.6.67.3 Description
The URLDetect design-time property is used to create active (“live”) links in an application. If this
property is set to True, URLs (http:, mailto:, file:, etc.) are shown in blue and underlined. If the user
clicks on the URL, it opens the URL in the appropriate application. If the property is False (the default),
URLs appear as normal text and are not active.

2.6.68 User Property
2.6.68.1 Applies to
TRPCBroker Component

2.6.68.2 Declaration

property User: TVistaUser;

2.6.68.3 Description
The User property is available at run-time only. This instance of the TVistaUser Class object is created
during the Create process for the TRPCBroker instance. The object contains data on the current user and
is updated as a part of the user authentication process.

 REF: For examples of silent logon by passing Access and Verify codes, see the “Silent Login
Examples” section.

RPC Broker 1.1
Developer’s Guide 99 February 2017

2.6.69 UseSecureConnection Property
2.6.69.1 Applies to
TRPCBroker Component

2.6.69.2 Declaration

property UseSecureConnection: Constant;

2.6.69.3 Description
The UseSecureConnection property is used to specify whether SSH Tunneling is to be used when making
the connection. It can be specified within an application or at run-time as a command line option.

To set the UseSecureConnection property within an application, use one of the following command lines:

• secureNone:

UseSecureConnection := 0; //Do not use SSH tunneling (default)

• secureAttachmate:

UseSecureConnection := 1; //Use Attachmate/Micro Focus Reflection SSH

• securePlink:

UseSecureConnection := 2; //Use PuTTY Link (Plink) SSH

To set the UseSecureConnection property as a command line option, include either of the following:

• “SSH”—Attachmate®/Micro Focus® Reflection.

• “PLINK”—PuTTY Link (Plink).

2.6.70 Value Property
2.6.70.1 Applies to
TParamRecord Class

2.6.70.2 Declaration

property Value: String;

2.6.70.3 Description
The Value design-time property is used to pass either a single string or a single variable reference to the
VistA M Server, depending on the PType (see Table 11).

RPC Broker 1.1
Developer’s Guide 100 February 2017

2.6.70.4 Example
The program code in Figure 48 demonstrates a couple of different uses of the Value Property. Remember
that each Param[x] element is really a TParamRecord Class.

Figure 48: Value Property—Example
procedure TForm1.Button1Click(Sender: TObject);
begin
 with brkrRPCBroker1 do begin
 RemoteProcedure := ‘SET NICK NAME’;
 {A variable reference}
 Param[0].Value := ‘DUZ’;
 Param[0].Ptype := reference;
 {A string}
 Param[1].Value := edtNickName.Text;
 Param[1].Ptype := literal;
 Call;
 end;
end;

2.6.71 VerifyCode Property
2.6.71.1 Applies to
TVistaLogin Class

2.6.71.2 Declaration

property VerifyCode: String;

2.6.71.3 Description
The VerifyCode property is available at run-time only. It holds the Verify code for lmAVCodes mode of
Silent Login. Like the AccessCode Property, the user’s Verify code is also encrypted before it is
transmitted to the VistA M Server.

 REF: For examples of silent logon by passing Access and Verify codes, see the “Silent Login
Examples” section.

 REF: For more information on Verify codes, see the “Part 1: Sign-On/Security” section in the
Kernel Systems Management Guide.

RPC Broker 1.1
Developer’s Guide 101 February 2017

2.6.72 VerifyCodeChngd Property
2.6.72.1 Applies to
TVistaUser Class

2.6.72.2 Declaration

property VerifyCodeChngd: Boolean;

2.6.72.3 Description
The VerifyCodeChngd property is available at run-time only. It indicates whether or not the user’s Verify
code has changed.

2.6.73 Vpid Property
2.6.73.1 Applies to
TVistaUser Class

2.6.73.2 Declaration

property Vpid: String;

2.6.73.3 Description
The Vpid property is available at run-time only. It returns the Department of Veterans Affairs Person
Identifier (VPID) value for the current user from the NEW PERSON file (#200), if the facility has already
been enumerated. If the facility has not been enumerated, the value returned is a null string.

RPC Broker 1.1
Developer’s Guide 102 February 2017

3 Remote Procedure Calls (RPCs)
3.1 RPC Overview
A Remote Procedure Call (RPC) is a defined call to M code that runs on a VistA M Server. A client
application, through the RPC Broker, can make a call to the VistA M Server and execute an RPC on the
server. This is the mechanism through which a client application can:

• Send data to a VistA M Server.

• Execute code on a VistA M Server.

• Retrieve data from a VistA M Server.

An RPC can take optional parameters to do some task and then return either a single value or an array to
the client application. RPCs are stored in the REMOTE PROCEDURE File (#8994).

The following topics are covered:

• What Makes a Good RPC?

• Using an Existing M API

• Creating RPCs

• M Entry Point for an RPC:

o Relationship between an M Entry Point and an RPC

o First Input Parameter (Required)

o Return Value Types

o Input Parameters (Optional)

o Examples

• RPC Entry in the Remote Procedure File:

o REMOTE PROCEDURE File

o Key Fields for RPC Operation

o RPC Version

o Blocking an RPC

o Cleanup after RPC Execution

o Documenting RPCs

• Executing RPCs from Clients:

o How to Execute an RPC from a Client

o RPC Security: How to Register an RPC

o RPC Limits

o RPC Time Limits

o Maximum Size of Data

o Maximum Number of Parameters

RPC Broker 1.1
Developer’s Guide 103 February 2017

o Maximum Size of Array

o RPC Broker Example (32-Bit)

3.2 What Makes a Good RPC?
The following characteristics help to make a good remote procedure call (RPC):

• Silent calls (no I/O to terminal or screen, no user intervention required).

• Minimal resources required (passes data in brief, controlled increments).

• Discrete calls (requiring as little information as possible from the process environment).

• Generic as possible (different parts of the same package as well as other packages could use the
same RPC).

3.3 Using an Existing M API
In some cases, an existing M API provides a useful M entry point for an RPC. As with any M entry point,
you need to add the RPC entry that invokes the M entry point, in the REMOTE PROCEDURE File
(#8994).

 REF: See also: “Relationship between an M Entry Point and an RPC” section.

3.4 Creating RPCs
You can create your own custom RPCs to perform actions on the VistA M Server and to retrieve data
from the VistA M Server. Then you can call these RPCs from your client application. Creating an RPC
requires you to perform the following:

• Write and test the M entry point that is called by the RPC.

• Add the RPC entry that invokes the M entry point, in the REMOTE PROCEDURE File (#8994).

3.5 M Entry Point for an RPC
3.5.1 Relationship between an M Entry Point and an RPC
An RPC can be thought of as a wrapper placed around an M entry point for use with client applications.
Each RPC invokes a single M entry point.

An M entry point has defined input and output values/parameters that are passed via the standard M
invoking methods. An RPC, however, needs to do the following:

• Accept input from the Broker (i.e., passing data/parameters from the client application).

• Pass data to the M entry point in a specified manner.

• Receive values back from the M code in a pre-determined format.

• Pass M code output back through the Broker to the client application.

You can use the $$BROKER^XWBLIB function in M code to determine whether the code is being run in
an environment where it was invoked by the Broker. This can help you use M code simultaneously for
Broker and non-Broker applications.

You can use the RPCVersion Property to support multiple versions of an RPC. The RPCVersion Property
Example shows you how to do this on the client and server sides.

RPC Broker 1.1
Developer’s Guide 104 February 2017

3.5.2 First Input Parameter (Required)
The RPC Broker always passes a variable by reference in the first input parameter to your M routine. It
expects results (one of five Return Value Types) to be returned in this parameter. You must always set
some return value into that first parameter before your routine returns.

3.5.3 Return Value Types
There are five RETURN VALUE TYPEs for RPCs as shown in Table 13. You should choose a return
value type that is appropriate to the type of data your RPC needs to return. For example, to return the
DUZ, a return value type of SINGLE VALUE would be appropriate.

The RETURN VALUE TYPE you choose determines what values you should set into the return value
parameter of your M entry point.

You should always set some value into the Return Value parameter of the M entry point, even if your
RPC encounters an error condition.

The RPC settings in Table 13, combined with your M entry point, determine how data is returned to your
client application:

Table 13: RPC Settings to Determine How Data is Returned

RPC Return
Value Type

How M Entry Point Should Set the Return
Parameter

RPC Word
Wrap On
Setting

Values returned in
Client Results

Single Value Set the return parameter to a single value. For
example:

TAG(RESULT) ;
S RESULT=“XWBUSER,ONE”
Q

No effect Value of parameter,
in Results[0].

Array Set an array of strings into the return
parameter, each subscripted one level
descendant. For example:

TAG(RESULT) ;
S RESULT(1)=“ONE”
S RESULT(2)=“TWO”
Q

If your array is large, consider using the
GLOBAL ARRAY return value type, to avoid
memory allocation errors.

No effect Array values, each
in a Results item.

Word
Processing

Set the return parameter the same as you set it
for the ARRAY type. The only difference is that
the WORD WRAP ON setting affects the
WORD PROCESSING return value type.

True

False

Array values, each
in a Results item.

Array values, all
concatenated into
Results[0].

Global Array Set the return parameter to a closed global
reference in ^TMP. The global’s data nodes are
traversed using $QUERY, and all data values

True

Array values, each
in a Results item.

RPC Broker 1.1
Developer’s Guide 105 February 2017

RPC Return
Value Type

How M Entry Point Should Set the Return
Parameter

RPC Word
Wrap On
Setting

Values returned in
Client Results

on global nodes descendant from the global
reference are returned.
This type is especially useful for returning data
from VA FileMan WORD PROCESSING type
fields, where each line is on a 0-subscripted
node.

 CAUTION: The global reference you
pass is killed by the Broker at the
end of RPC Execution as part of
RPC cleanup. Do not pass a global
reference that is not in ^TMP or that
should not be killed.

This type is useful for returning large amounts
of data to the client, where using the ARRAY
type can exceed the symbol table limit and
crash your RPC.
For example, to return signon introductory text
you could do:

TAG(RESULT);
M ^TMP(“A6A”,$J)=
^XTV(8989.3,1,”INTRO”)
;this node not needed
K ^TMP(“A6A”,$J,0)
S RESULT=$NA(^TMP(“A6A”,$J))
Q

False Array values, all
concatenated into
Results[0].

Global
Instance

Set the return parameter to a closed global
reference.
For example the following code returns the
whole 0th node from the NEW PERSON file
(#200) for the current user:

TAG(RESULT) ;
S RESULT=$NA(^VA(200,DUZ,0))
Q

No effect Value of global
node, in Results[0].

 NOTE: In the M code called by an RPC, you can use the $$RTRNFMT^XWBLIB function to
change the RETURN VALUE TYPE of an RPC on-the-fly.

RPC Broker 1.1
Developer’s Guide 106 February 2017

3.5.4 Input Parameters (Optional)
The M entry point for an RPC can optionally have input parameters (i.e., beyond the first parameter,
which is always used to return an output value). The client passes data to your M entry point through
these parameters.

The client can send data to an RPC (and therefore the entry point) in one of the three Param Property
types in Table 14:

Table 14: Param PType Value Types

Param PType Param Value

literal Delphi string value, passed as a string literal to the VistA M Server.

reference Delphi string value, treated on the VistA M Server as an M variable name and
resolved from the symbol table at the time the RPC executes.

 CAUTION: The use of a reference-type input parameter represents a
significant security risk. The M entry point should include code to
screen the input value for M code injection (e.g., function calls, M
commands, or direct global reads).

list A single-dimensional array of strings in the Mult Property of the Param Property is
passed to the VistA M Server where it is placed in an array. String subscripting can
be used.

The type of the input parameters passed in the Param Property of the TRPCBroker Component
determines the format of the data you must be prepared to receive in your M entry point.

3.5.5 Examples
The examples in Figure 49 and Figure 50 illustrate sample M code that could be used in simple RPCs:

1. The example in Figure 49 takes two numbers and returns their sum:
Figure 49: RPCs—Sample M Code to Add Two Numbers

SUM(RESULT,A,B) ;add two numbers
 S RESULT=A+B
 Q

2. The example in Figure 50 receives an array of numbers and returns them as a sorted array to the
client:
Figure 50: RPCs—Sample M Code that Receives an Array of Numbers and Returns them as

a Sorted Array to the Client
SORT(RESULT,UNSORTED) ;sort numbers
 N I
 S I=“”
 F S I=$O(UNSORTED(I)) Q:I=”“ S RESULT(UNSORTED(I))=UNSORTED(I)
 Q

RPC Broker 1.1
Developer’s Guide 107 February 2017

3.6 RPC Entry in the Remote Procedure File
3.6.1 REMOTE PROCEDURE File
The RPC Broker consists of a single global that stores the REMOTE PROCEDURE file (#8994):

Table 15: Remote Procedure File Information

File # File Name Global Location

8994 REMOTE PROCEDURE ^XWB(8994,

This is the common file used by all applications to store all remote procedure calls accessed via the
Broker. All RPCs used by any site-specific client/server application software using the RPC Broker
interface must be registered and stored in this file.

This file is used as a repository of server-based procedures in the context of the Client/Server architecture.
By using the Remote Procedure Call (RPC) Broker, applications running on client workstations can
invoke (call) the procedures in this file to be executed by the server and the results are returned to the
client application.

 NOTE: The RPC subfield (#19.05) of the OPTION File (#19) points to RPC field (#.01) of the
REMOTE PROCEDURE file (#8994).

3.6.2 Key Fields for RPC Operation
After the M code is complete, you need to add the RPC to the REMOTE PROCEDURE File (#8994).
Table 16 lists the fields in the REMOTE PROCEDURE file (#8994) that are key to the correct operation
of an RPC:

Table 16: Remote Procedure File—Key Fields for RPC Operation

Field Name Required? Description

NAME (#.01) Yes The name that identifies the RPC (this entry should
be namespaced in the package namespace).

TAG (#.02) Yes The tag at which the remote procedure call begins.

ROUTINE (#.03) Yes The name of the routine that should be invoked to
start the RPC.

WORD WRAP ON (#.08) No Affects GLOBAL ARRAY and WORD PROCESSING
return value types only. If set to False, all data values
are returned in a single concatenated string in
Results[0]. If set to True, each array node on the M
side is returned as a distinct array item in Results.

RETURN VALUE TYPE (#.04) Yes This can be one of five types:
• SINGLE VALUE
• ARRAY
• WORD PROCESSING
• GLOBAL ARRAY
• GLOBAL INSTANCE

This setting controls how the Broker processes an
RPC’s return parameter (see “Return Value Types“).

RPC Broker 1.1
Developer’s Guide 108 February 2017

3.6.3 RPC Version
The VERSION field of the REMOTE PROCEDURE File (#8994) indicates the version number of an
RPC installed at a site. The field can be set either by an application developer and exported by KIDS or
by a site manager using VA FileMan.

Applications can use XWB IS RPC AVAILABLE or XWB ARE RPCS AVAILABLE to check the
availability of a version of an RPC on a server. This is especially useful for RPCs run remotely, as the
remote server may not have the latest RPC installed.

3.6.4 Blocking an RPC
The INACTIVE field of the REMOTE PROCEDURE File (#8994) allows blocking of RPCs. The
blocking can apply to local access (users directly logged into the site) or remote access (users logged on
to a different site) or both. The field can be set either by an application developer and exported by Kernel
Installation & Distribution System (KIDS) or by a site manager using VA FileMan.

 REF: For more information on remote access, see the “Running RPCs on a Remote Server”
section.

3.6.4.1 Value in INACTIVE field
• 1 = Completely unusable

• 2 = Unusable locally

• 3 = Unusable remotely

3.6.5 Cleanup after RPC Execution
The Broker uses XUTL^XUSCLEAN to clean up globals upon application termination.

In addition, there is an RPC RETURN VALUE TYPE (see “Return Value Types“), GLOBAL ARRAY,
where the application RPC returns a closed form global reference, for example:

^TMP(“EKG”,666333551)

The Broker kills the data for the global reference for this type of RPC at the end of RPC execution.

3.6.6 Documenting RPCs
Each individual application development team is responsible for identifying and providing documentation
for all object components, classes, and remote procedure calls they create. Other developers using these
components need to know what RPCs are called, because they need to register them with their
applications.

RPCs should be documented in the DESCRIPTION field (#1) in the REMOTE PROCEDURE File
(#8994) for those RPCs installed on your system. This gives you the capability of generating a catalogue
of RPCs from File #8994.

RPC Broker 1.1
Developer’s Guide 109 February 2017

3.6.6.1 Delphi Component Library and Sample RPCs
In the future, an Enterprise library of services, object components, classes, Application Programming
Interfaces (APIs), Remote Procedure Calls (RPCs), etc. that are in use and available to the development
community at large may be available. The essential benefit of this type of library is the promotion of
object re-use; thereby, enhancing development productivity, application consistency, and quality
assurance. Therefore, it could contain a wide variety of services, object components, APIs, classes, RPCs,
etc. from many VistA software applications.

The immediate intent is to classify and catalogue all of the object classes in use (including the standard
Delphi classes), and to make the catalogue available to all interested parties.

3.7 Executing RPCs from Clients
3.7.1 How to Execute an RPC from a Client

1. If your RPC has any input parameters beyond the mandatory First Input Parameter (Required), set
a Param node in the TRPCBroker Component’s Param Property for each. For each input
parameter, set the following sub-properties:

• Value Property

• PType Property (literal, list, or reference)

If the parameter’s PType Property is list, instead of specifying a value, set a list of values in the
Mult Property.

Figure 51 is an example of some settings of the Param Property:
Figure 51: RPCs—Param Property—Example Setting a List of Values

brkrRPCBroker1.Param[0].Value := ‘03/31/14’;
brkrRPCBroker1.Param[0].PType := literal;
brkrRPCBroker1.Param[1].Mult[‘“NAME”‘] := ‘XWBUSER, ONE’;
brkrrpcbroker1.param[1].mult[‘“ssn”‘] :=“000-45-6789” ;/pre=”“>
brkrRPCBroker1.Param[1].PType := list;

2. Set the TRPCBroker Component’s RemoteProcedure Property to the name of the RPC to execute:

brkrRPCBroker1.RemoteProcedure:=‘A6A LIST’

3. Invoke the TRPCBroker Component’s Call Method to execute the RPC. All calls to the Call
Method should be done within an exception handler try...except statement, so that all
communication errors (which trigger the EBrokerError exception) can be trapped and handled.
For example:

Figure 52: Error Handling—Example of a “try...except” Statement
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage(‘A problem was encountered communicating with the
server.’);
end;

RPC Broker 1.1
Developer’s Guide 110 February 2017

4. Any results returned by your RPC are returned in the TRPCBroker Component’s Results
Property. Depending on how you set up your RPC, results are returned either in a single node of
the Results Property (Results[0]), or in multiple nodes of the Results Property.

 NOTE: You can also use the lstCall Method and strCall Method to execute an RPC. The main
difference between these methods and the Call Method is that the lstCall Method and the strCall
Method do not use the Results Property, instead returning results into a location you specify.

3.7.2 RPC Security: How to Register an RPC
Security for RPCs is handled through the RPC registration process. Each client application must create a
context for itself, which checks if the application user has access to a “B”-type option in the Kernel menu
system. Only RPCs assigned to that option can be run by the client application.

To enable your application to create a context for itself:

1. Create a “B”-type option in the OPTION file (#19) for your application.

 NOTE: The OPTION TYPE “B” represents a Broker client/server type option.

2. In the RPC multiple for this option type, add an entry for each RPC that your application calls.
The fields listed in Table 17 can be set up for each RPC in your option:

Table 17: RPC Multiple Fields for “B”-Type Options

Field Name (#) Entry Description

RPC (#.01) Required This field is used to enter a pointer to the REMOTE
PROCEDURE File (#8994). This field links the remote
procedure call in the REMOTE PROCEDURE File (#8994) to
the package option.

RPCKEY (#1) Optional This field is used to restrict the use of a remote procedure call
to a particular package option. The RPCKEY field is a free-text
pointer to the SECURITY KEY file (#19.1).

RULES (#2) Optional This field is used to enter M code that is executed when an
RPC request is made to verify whether the request should be
honored.

3. When you export your package using Kernel Installation and Distribution System (KIDS), export
both your RPCs and your package option. KIDS automatically associates the RPCs with the
package option.

4. Your application must create a context for itself on the VistA M Server, which checks access to
RPCs. In the initial code of your client application, make a call to the CreateContext Method of
your TRPCBroker Component. Pass your application’s “B”-type option’s name as a parameter.
For example:

if not brkrRPCBroker1.CreateContext(option_name) then
 Application.Terminate;

5. If the CreateContext Method returns True, only those RPCs designated in the RPC multiple of
your application option is permitted to run.

RPC Broker 1.1
Developer’s Guide 111 February 2017

6. If the CreateContext Method returns False, you should terminate your application (if you do not,
your application runs but you get errors every time you try to access an RPC).

7. End-users of your application must have the “B”-type option assigned to them on one of their
menus, in order for the CreateContext Method to return True. This allows system managers to
control access to client applications.

3.7.3 RPC Limits
The following is a list of various constants, maximum, and minimum parameters associated with the use
of the RPC Broker:

• Maximum Number of Parameters that can be passed to the VistA M Server.

• Maximum Size of Array that can be passed to the VistA M Server.

• Maximum Size of Data that can be received in the VistA Graphical User Interface (GUI)
application from the VistA M Server.

• RPC Time Limits.

3.7.4 RPC Time Limits
A public READ/WRITE property (i.e., RPCTimeLimit Property) allows the application to change the
network operation timeout prior to a call. This can be useful during times when it is known that a certain
RPC, by its nature, can take a significant amount of time to execute. The value of this property is an
integer that cannot be less than 30 seconds nor greater than 32767 seconds. Care should be taken when
altering this value, since the network operation blocks the application until the operation finishes or the
timeout is triggered.

There is also a server time limit for how long to stay connected when the client does not respond.

3.7.5 Maximum Size of Data
The VistA M Server can transmit very large buffers of data back to the Microsoft® Windows client. The
Windows client receives the returned data from an RPC into a 32-bit PASCAL string. RPCs can be
written on the VistA M Server so that they store their results in an M GLOBAL structure, which can span
RAM and disk storage media. This GLOBAL storage could be quite large depending on the assigned
system quotas to the VistA M Server process. The return of the RPC can deliver this quantity to the
Windows client. The actual limit depends on the capacity that the Microsoft® Windows operating system
allows the client to process. Tests on a 32-megabyte RAM system have allowed buffers of several
megabytes of data to be transmitted from the VistA M Server to the Microsoft® Windows client.

3.7.6 Maximum Number of Parameters
The remote procedure calls (RPCs) become M DO procedures on the VistA M Server. Since RPCs are
communicated to the VistA M Server through a message mechanism, additional information is included
with the message.

Parameters are processed as PASCAL short strings with a maximum of 255 characters. Each parameter is
encoded with a three-character length plus a type character. Therefore, every parameter occupies length
(parameter) + four. The maximum transmission at this time is 240 characters, since additional header
information is present with every RPC.

A theoretical maximum, where every parameter was length 1 would give number of parameters = 240/5
or 48 parameters. A single parameter (e.g., a long string) could not exceed 240 - 4, or 236 characters.
Future support will be based on the PASCAL 32-bit string, which can, theoretically, reach 2 GB.
Limitations on the VistA M Server still limit this to far less, however.

RPC Broker 1.1
Developer’s Guide 112 February 2017

3.7.7 Maximum Size of Array
Although approximately only 240 characters can be sent to the VistA M Server as call parameters, a
single array parameter can be passed in with greater capacity. The RPC can carry both literal and array
parameters except that literal parameters are placed first and the single array last in order. Arrays are
instantiated at the VistA M Server and are stored in a local array format. The maximum size is dependent
on the symbol space available to the VistA M Server process. The index size and the value size are
subject to limitations; the index and value each cannot exceed 255 - 3, or 252 characters approximately
for each individual array elements.

At the time of this writing, 30 to 40 K arrays have easily been passed to the VistA M Server in a single
RPC call.

3.7.8 RPC Broker Example (32-Bit)
The RPC Broker Example sample application provided with the BDK (i.e., BrokerExample.exe)
demonstrates the basic features of developing RPC Broker applications, including:

• Connecting to a VistA M Server.

• Creating an application context (see CreateContext Method).

• Using the GetServerInfo Function.

• Displaying the VistA splash screen (see “VistA Splash Screen Procedures” section).

• Setting the TRPCBroker Param Property for each Param PType (literal, reference, list).

• Calling RPCs with the Call Method.

• Calling RPCs with the lstCall Method and strCall Method.

 REF: The BrokerExample.exe and client source code files for the BrokerExample.exe
application are located in the following directory:

 BDK32\Samples\BrokerEx

RPC Broker 1.1
Developer’s Guide 113 February 2017

4 RPC Broker: Developer Tools
In addition to the RPC Broker components, the Broker Development Kit (BDK) provides other
development tools, including:

• Application Programming Interface (API)

• Functions, Methods, and Procedures

• Running RPCs on a Remote Server

• Deferred RPCs

4.1 Application Programming Interface (API)
4.1.1 Overview
RPC Broker uses Kernel Application Programming Interfaces (APIs) and Remote Procedure Calls
(RPCs) for most user authentication (Signon) and authorization (Security) actions. However, there are a
few APIs and RPCs unique to Broker connections that are used by a variety of interfaces into VistA. For
example, VistALink and VistA Services Assembler both use the CHKPRMIT^XWBSEC API to
determine if a user has authorization to use a particular Remote Procedure.

The RPC Broker software provides the following APIs on the VistA M Server for use in RPC code:

• $$BROKER^XWBLIB: Test for Broker Context

• $$RTRNFMT^XWBLIB(): Change RPC Return

• CHKPRMIT^XWBSEC(): Check Permissions

• CRCONTXT^XWBSEC(): Create Context

• SET^XWBSEC(): Set the State Variable

4.1.2 $$BROKER^XWBLIB: Test for Broker Context
Reference Type: Supported

Category: RPC Broker

ICR #: 2198

Description: Use this extrinsic function in the M code called by an RPC to determine if the
current process is being executed by the RPC Broker.

Format: $$BROKER^XWBLIB

Input Parameters: none.

Output: return value: Returns:

• 1—If the current process is being executed by the
Broker.

• 0—If the current process is not being executed by
the Broker.

RPC Broker 1.1
Developer’s Guide 114 February 2017

4.1.2.1 Example

I $$BROKER^XWBLIB D .; broker-specific code

4.1.3 $$RTRNFMT^XWBLIB(): Change RPC Return Type
Reference Type: Supported

Category: RPC Broker

ICR #: 2238

Description: Use this extrinsic function in the M code called by an RPC to change the return
value type that the RPC returns on-the-fly.

Format: $$RTRNFMT^XWBLIB(type,wrap)

Input Parameters: type: (required) Set this to the RETURN VALUE TYPE to
which you want to change the RPC’s setting. Set it to one
of the following numeric or free text values:

Table 18: $$RTRNFMT^XWBLIB: The type Input
Parameter Values

Numeric Free Text

1 SINGLE VALUE

2 ARRAY

3 WORD PROCESSING

4 GLOBAL ARRAY

5 GLOBAL INSTANCE

 wrap: (required) Set value to:

• 1—Set RPC’s WORD WRAP ON setting to True.

• 0—Set RPC’s WORD WRAP ON setting to False.

Output: return value: Returns:

• 0—If the return value type could not be changed.

• numeric code—Representing the return value
type to which the RPC is changed.

4.1.3.1 Example

I ‘$$RTRNFMT^XWBLIB(“ARRAY”,1) D .; branch to code if cannot change RPC type

RPC Broker 1.1
Developer’s Guide 115 February 2017

4.1.4 CHKPRMIT^XWBSEC(): Check Permissions
Reference Type: Controlled Subscription

Category: Signon/Security

ICR #: 4053

Description: This API checks to see if the remote procedure is permitted to run. It checks for:

• User-held security keys

• User context (context option)

• Out-of-order settings

• RPC version

If the user is an Application Proxy, it checks to see if Application Proxy access to
the remote procedure is permitted.

Some remote procedures are allowed in any context:

• XUS BSE TOKEN

• XUS CVC

• XUS GET USER INFO

• XUS GET TOKEN

• XUS IAM BIND USER

• XUS KAAJEE GET USER INFO

• XUS KAAJEE LOGOUT

• XUS KEY CHECK

• XUS SET VISITOR

• XWB CREATE CONTEXT

• XWB IM HERE

• XWB IS RPC AVAILABLE

• XWB RPC LIST

All Kernel “XUS” and RPC Broker “XWB” remote procedures are allowed in
“XUS SIGNON” context.

Format: CHKPRMIT^XWBSEC(xwbrp)

Make sure to perform the following steps before calling this API:

1. NEW all non-namespaced variables.

2. Set all input variables.

3. Call the API.

Input Parameters: xwbrp: (required) This is the name of the remote procedure to
look up in the REMOTE PROCEDURE file (#8994).

RPC Broker 1.1
Developer’s Guide 116 February 2017

Output Variables: XWBSEC: Returns:

• “”—Null in XWBSEC environment variable if the
remote procedure is permitted to run.

• Error Message—If the remote procedure is not
permitted. If an error is returned, then the
XWBSEC environment variable is set to return the
same error message.

 NOTE: XWBSEC is an environment variable, so
that the information is included in the error trap
should a subsequent processing error occur.

4.1.5 CRCONTXT^XWBSEC(): Create Context
Reference Type: Controlled Subscription

Category: Signon/Security

ICR #: 4053

Description: This API creates a valid RPC Broker user context.

Format: CRCONTXT^XWBSEC(result,option)

Make sure to perform the following steps before calling this API:

1. NEW all non-namespaced variables.

2. Set all input variables.

3. Call the API.

Input Parameters: option: (required) This is the encrypted name of the B-type menu
option to look up in the OPTION file (#19). If the option
has been assigned to the user as a SECONDARY MENU
OPTION, then the context can be set.

 REF: For more information on context options, see
the “RPC Security: How to Register an RPC”
section.

Output: result: Returns:

• 1—Successful: If the context is successfully
created.

• 0 (and error message)—Unsuccessful: If the
context could not be created.

RPC Broker 1.1
Developer’s Guide 117 February 2017

Output Variables: XWBSEC: If an error is returned, then the XWBSEC environment
variable is set to return the same error message.

 NOTE: XWBSEC is an environment variable, so
that the information is included in the error trap
should a subsequent processing error occur.

4.1.6 SET^XWBSEC(): Set the State Variable
Reference Type: Controlled Subscription

Category: Signon/Security

ICR #: 4053

Description: This API sets the XWBSTATE environment variable (array) to contain a passed
in value. This is generally used to record the current status of a Broker
connection for monitoring or testing.

 NOTE: XWBSTATE is an environment variable, so that the information is
included in the error trap should a subsequent processing error occur.

Format: SET^XWBSEC(%,value)

Make sure to perform the following steps before calling this API:

1. NEW all non-namespaced variables.

2. Set all input variables.

3. Call the API.

Input Parameters: value: (required) This is free text state value to be added to the
XWBSTATE array.

Output Variables: %: Returns this variable equal to the value input parameter
and also sets the XWBSTATE(%) environment variable
equal to the value input parameter.

RPC Broker 1.1
Developer’s Guide 118 February 2017

4.2 Functions, Methods, and Procedures
4.2.1 Overview
Additional functions, methods, and procedures include:

• XWB CREATE CONTEXT

• XWB GET BROKER INFO

• XWB GET VARIABLE VALUE

• XWB IM HERE

• M Emulation Functions

• Encryption Functions

• CheckCmdLine Function

• GetServerInfo Function

• GetServerIP Function

• ChangeVerify Function

• SilentChangeVerify Function

• StartProgSLogin Method

• VistA Splash Screen Procedures

4.2.2 XWB CREATE CONTEXT
The XWB CREATE CONTEXT RPC (distributed with the RPC Broker) is used to establish the context
on the VistA M Server, which is checked by the Broker Listener before executing any other remote
procedure. Since context is nothing more than a client/server “B”-type option in the OPTION file (#19),
standard MenuMan security is applied in establishing a context. Therefore, a context option can be
granted to users exactly the same way as regular options are done using MenuMan.

A context cannot be established for the following reasons:

• User has no access to that option

• Option is temporarily out of order

An application can switch from one context to another as often as it needs. Each time a context is created
the previous context is overwritten.

Pass the encrypted (using the Encrypt function in the XWBHash unit) OPTION name in Param[0].Value,
and the type (literal) in Param[0].PType. The TRPCBroker CreateContext method sets up these values
and calls the RPC for you. Also, the current context of your user must give them permission to execute
the XWB GET VARIABLE VALUE RPC (it must be included in the RPC multiple of the “B”-type
option registered with the CreateContext Method).

 NOTE: XWB CREATE CONTEXT is a Private RPC. If an application uses the TRPCBroker
CreateContext method, a subscription is not needed as the RPC is owned by the RPC Broker
package.

RPC Broker 1.1
Developer’s Guide 119 February 2017

4.2.3 XWB GET BROKER INFO
The XWB GET BROKER INFO RPC (distributed with the RPC Broker) is used to return information
regarding setup and parameters of the Broker Listener on the VistA M Server. The RPC currently returns
only the timeout period for handler READs.

There are no input parameters.

 NOTE: XWB GET BROKER INFO is currently used only within the RPC Broker package,
and has not been made available to other applications.

4.2.4 XWB GET VARIABLE VALUE
You can call the XWB GET VARIABLE VALUE RPC (distributed with the RPC Broker) to retrieve
the value of any M variable in the VistA M Server environment. Pass the variable name in
Param[0].Value, and the type (reference) in Param[0].PType. Also, the current context of your user must
give them permission to execute the XWB GET VARIABLE VALUE RPC (it must be included in the
RPC multiple of the “B”-type option registered with the CreateContext Method).

 WARNING: The XWB GET VARIABLE VALUE RPC is intended to retrieve the value of an
M variable (e.g., DUZ or DTIME). This is the only supported function of this RPC. If the
RPC is used in an application in any other way than the way it was intended, results can
be unpredictable and the application could cease to function in future software patches.

 NOTE: XWB GET VARIABLE VALUE is available only on a Controlled Subscription basis.

4.2.4.1 Example
Figure 53 is an example of the XWB GET VARIABLE VALUE RPC:

Figure 53: XWB GET VARIABLE VALUE RPC—Example
brkrRPCBroker1.RemoteProcedure := ‘XWB GET VARIABLE VALUE’;
brkrRPCBroker1.Param[0].Value :=‘DUZ’;
brkrRPCBroker1.Param[0].PType := reference;
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage(‘Connection to server could not be established!’);
end;
ShowMessage(‘DUZ is ‘+brkrRPCBroker1.Results[0]);

4.2.5 XWB IM HERE
The XWB IM HERE RPC (distributed with the RPC Broker) is used to establish continued existence of
the client connection to the VistA M Server (keepalive). It resets the server READ timeout. The RPC
currently returns a meaningless value of “1”, which is not used on the client.

There are no input parameters.

 NOTE: XWB IM HERE is a Private RPC. If an application uses the Delphi RPC Broker
Development Kit (BDK), a subscription is not needed as the RPC is owned by the RPC Broker
package.

RPC Broker 1.1
Developer’s Guide 120 February 2017

4.2.6 M Emulation Functions
4.2.6.1 Piece Function
The Piece function is a scaled down Pascal version of M’s $PIECE function. It is declared in
MFUNSTR.PAS.

function Piece(x: string; del: string; piece: integer) : string;

4.2.6.2 Translate Function
The Translate function is a scaled down Pascal version of M’s $TRANSLATE function. It is declared in
MFUNSTR.PAS.

function Translate(passedString, identifier, associator: string): string;

4.2.6.3 Examples
4.2.6.3.1 Piece Function

Piece3Str:=piece(‘123^456^789’,’^’,3);

4.2.6.3.2 Translate Function

hiStr:=translate(‘HI’,’ABCDEFGHI’,’abcdefghi’);

4.2.7 Encryption Functions
Kernel and the RPC Broker provide encryption functions that can be used to encrypt messages sent
between the client and the server.

4.2.7.1 In Delphi
Include XWBHash in the “uses” clause of the unit in which you are encrypting or decrypting.

Function prototypes are as follows:

function Decrypt(EncryptedText: string): string;

function Encrypt(NormalText: string): string;

RPC Broker 1.1
Developer’s Guide 121 February 2017

4.2.7.2 On the VistA M Server
4.2.7.2.1 Encrypt Function
To encrypt a string, do the following:

>S CIPHER=$$ENCRYP^XUSRB1(“Hello world!”) W CIPHER
/U’llTG~TVl&f-

4.2.7.2.2 Decrypt Function
To decrypt a string, do the following:

>S PLAIN=$$DECRYP^XUSRB1(CIPHER) W PLAIN
Hello world!

These encryption functions can be used for any communication between the client and the server where
encryption is desired.

4.2.8 CheckCmdLine Function
With Patch XWB*1.1*13, the CheckCmdLine method was changed from a procedure to a function with a
Boolean return value.

function CheckCmdLine(SLBroker: TRPCBroker): Boolean;

4.2.8.1 Argument
Table 19: CheckCmdLine Function—Argument

Argument Description

SLBroker The instance of the Broker with which information on the command line should
be used, and to be used for the connection, if a Silent Login is possible.

4.2.8.2 Result
The return value indicates whether the information on the command line was sufficient to connect the
RPCBroker instance to the specified Server/ListenerPort (see Server Property and ListenerPort Property).

• True—Broker is connected to the VistA M Server.

• False—Broker is not connected to the VistA M Server.

RPC Broker 1.1
Developer’s Guide 122 February 2017

4.2.9 GetServerInfo Function
The GetServerInfo function retrieves the end-user’s selection of server and port to which to connect. Use
this function to set a TRPCBroker Component’s Server, and ListenerPort (see Server Property and
ListenerPort Property) to reflect the end-user’s choice before connecting to the VistA M Server.

If there is more than one server/port from which to choose, GetServerInfo displays an application window
that allows users to select a service to connect:

Figure 54: GetServerInfo Function—Connect To Dialogue

4.2.9.1 Syntax

function GetServerInfo(var Server, Port: string): integer;

 NOTE: The unit is the RPCConf1 Unit.

The GetServerInfo function handles the following scenarios:

• If there are no values for server and port in the Microsoft Windows Registry, GetServerInfo does
not display its dialogue window, and the automatic default values returned are
BROKERSERVER/9999. GetServerInfo returns mrOK.

• If exactly one server and port entry is defined in the Microsoft Windows Registry, GetServerInfo
does not display its dialogue window. The values in the single Microsoft Windows Registry entry
are returned to the calling application, with no user interaction. GetServerInfo returns mrOK.

• If more than one server and port entry exists in the Microsoft Windows Registry, the dialogue
window is displayed. The only time that passed in server and port values are returned to the
calling application is if the user selects Cancel. However, if a user selects an entry and presses
OK, the server and port parameters are changed and returned to the calling application.
GetServerInfo returns mrOK if the user selected OK, or mrCancel if the user selected Cancel.

RPC Broker 1.1
Developer’s Guide 123 February 2017

• A typical Microsoft® Windows Registry entry for a VistA M Server contains the following
characteristics:

o Located in either of the following registries:

− HKEY_LOCAL_MACHINE (HKLM)—Registry for accessibility to all users of a
computer.

− HKEY_CURRENT_USER (HKCU)—Registry for accessibility to a single user.

o Located in the following registry subdirectory:

Software\Vista\Broker\Servers

o String-type registry entry, where Value name contains the IP address or Fully Qualified
Domain Name (FQDN) of the server, followed by the port number of the RPC Broker listener
on the server. The information should be separated by a comma. For example:

myserver.vha.med.va.gov,19999

o The optional Value data contains the SSHUsername to be used to establish an encrypted
connection to the VistA M Server.

 REF: For a demonstration using the Broker and GetServerInfo function, run the RPC Broker
Example (32-Bit) (i.e., BrokerExample.exe); located in the following directory:

BDK32\Samples\BrokerEx

4.2.9.2 Example
Figure 55 is an example of the GetServerInfo function:

Figure 55: GetServerInfo Function—Example
procedure TForm1.btnConnectClick(Sender: TObject);
var
 strServer, strPort, strSSHUsername: string;
begin
 if GetServerInfo(strServer, strPort, strSSHUsername)<> mrCancel then
 begin
 {getsvrinfo begin}
 brkrRPCBroker1.Server := strServer;
 brkrRPCBroker1.ListenerPort := StrToInt(strPort);
 brkrRPCBroker1.SSHUser := strSSHUsername;
 brkrRPCBroker1.Connected := True;
 {getsvrinfo end}
 end;
end;

 REF: For a demonstration using the Broker and GetServerInfo function, run the RPC Broker
Example (32-Bit) (i.e., BrokerExample.exe); located in the following directory:

BDK32\Samples\BrokerEx

RPC Broker 1.1
Developer’s Guide 124 February 2017

4.2.10 GetServerIP Function
The GetServerIP function provides a means for determining the Internet Protocol (IP) address for a
specified VistA M Server address. The value returned is a string containing the IP address, or if it could
not be resolved, the string “Unknown!”

function GetServerIP(ServerName: string): string;

4.2.10.1 Example
Figure 56 is an example of the GetServerIP function:

Figure 56: GetServerIP Function—Example
 // include the unit RpcConf1 in the Uses clause
 // An edit box on the form is assumed to be named edtIPAddress
 // Another edit box (edtInput) is used to input a desired server name

uses RpcConf1;

procedure Tform1.Button1Click(Sender: TObject);
var
 ServerName: string;
begin
 ServerName := ‘forum.med.va.gov’;
 edtIPAddress.Text := GetServerIP(edtInput.Text);
 // For Forum.va.gov returns ‘999.999.9.99’
 // For garbage returns ‘Unknown!’
end;

 CAUTION: The GetServerIP function has limited use in a modern TCP/IP network, as
multiple IP addresses can be assigned to a single server. It is expected to be deprecated
and replaced in future releases with a function that returns a list of IP addresses.

4.2.11 ChangeVerify Function
The ChangeVerify function can be used to provide the user with the ability to change his/her Verify code.

function ChangeVerify(RPCBroker: TRPCBroker): Boolean;

4.2.11.1 Argument
 Table 20: ChangeVerify Function—Argument

Argument Description

RPCBroker The Broker instance for the account on which the Verify code is to be changed.

RPC Broker 1.1
Developer’s Guide 125 February 2017

4.2.11.2 Result
The return value indicates whether the user changed their Verify code or not.

• True—User changed their Verify code.

• False—User did not change their Verify code.

4.2.12 SilentChangeVerify Function
The SilentChangeVerify function can be used to change the Verify code for a user without any dialogue
windows being displayed.

function SilentChangeVerify(RPCBroker: TRPCBroker; OldVerify,
 NewVerify1, NewVerify2: String; var Reason: String): Boolean;

4.2.12.1 Arguments
Table 21: SilentChangeVerify Function—Arguments

Argument Description

RPCBroker The current instance of the Broker for the account for which the Verify code is to
be changed.

OldVerify The string representing the current Verify code for the user.

NewVerify1 A string representing the new Verify code for the user.

NewVerify2 A second independent entry for the string representing the new Verify code for
the user.

Reason A string that on return contains the reason why the Verify code was not changed
(if the result value is False).

4.2.12.2 Result
The return value indicates whether the Verify code was successfully changed or not:

• True—Verify code was successfully changed.

• False—Verify code was not successfully changed. The reason for the failure is in the Reason
argument.

4.2.13 StartProgSLogin Method
The StartProgSLogin method can be used to initiate another program with information sufficient for a
Silent Login, or it can be used to launch a standalone program that does not use a TRPCBroker
Component connection. If the program is being used to launch another executable with information for a
Silent Login, it is recommended that the CheckCmdLine Function be used in the program being launched
(since this function uses the command line information to make a Silent Login if possible).

procedure StartProgSLogin(const ProgLine: String; ConnectedBroker: TRPCBroker);

RPC Broker 1.1
Developer’s Guide 126 February 2017

4.2.13.1 Arguments
Table 22: StartProgSLogin Method—Arguments

Argument Description

ProgLine This is the command line that should be used as the basis for launching the
executable. It contains the executable (and path, if not in the working directory
or in the system path) and any command line arguments desired. If the
ConnectedBroker argument is not nil, then the following are added to the
command line and the application launched:

• VistA M Server address
• ListenerPort
• Division
• ApplicationToken

ConnectedBroker This is the instance of the TRPCBroker that should be used to obtain an
ApplicationToken for a Silent Login. The VistA M Server address and
ListenerPort for this instance are used as command line arguments for
launching the application, so that it makes a connection to the same
Server/ListenerPort (see Server Property and ListenerPort Property)
combination. If the application to be launched is not related to the TRPCBroker,
then this argument should be set to nil.

4.2.13.2 Example 1
To launch a program, Sample1.exe, with command line arguments xval=MyData and yval=YourData,
and connect with a Silent Login (which would be handled in Sample1.exe via the CheckCmdLine
Function):

Figure 57: SilentChangeVerify Function—Example
MyCommand := ‘C:\Program Files\VISTA\Test1\Sample1.exe xval=MyData yval=YourData’;
StartProgSLogin(MyCommand, RPCBroker1);

This results in the command line in Figure 58 being used to launch the application:
Figure 58: SilentChangeVerify Function—Example of Command Line Code to Launch the

Application
C:\Program Files\VISTA\Test1\Sample1.exe xval=MyData yval=YourData s=ServerName
p=9999 d=Division h=AppHandleValue

4.2.13.3 Example 2
To launch a program unrelated to TRPCBroker and VistA M Server connections (e.g., Microsoft®
Notepad), the command line as desired is used as the first argument, and the value nil is used as the
second argument:

Figure 59: SilentChangeVerify Function—Example of Command Line Code to Launch Program
Unrelated to TRPCBroker and VistA M Server Connections

MyCommand := ‘Notepad logtable.txt’;
StartProgSLogin(MyCommand, nil);

RPC Broker 1.1
Developer’s Guide 127 February 2017

4.2.14 VistA Splash Screen Procedures
The BDK provides two procedures in the SplVista.PAS unit to display a VistA Splash Screen when an
application loads:

• procedure SplashOpen;

• procedure SplashClose(TimeOut: longint);

It is recommended that the VistA Splash Screen be opened and closed in the section of Pascal code in an
application’s project file (i.e., .DPR).

4.2.14.1 Using a Splash Screen in an Application
To use the VistA Splash Screen in an application

1. Open your application’s project file (i.e., .DPR). In Delphi:

a. Select View.

b. Select Project Source.

2. Include the SplVista in the uses clause of the project source.

3. Call SplashOpen immediately after the first form of your application is created and call
SplashClose just prior to invoking the Application.Run method.

4. Use the TimeOut parameter to ensure a minimum display time. The TimeOut parameter is the
minimum number of milliseconds the splash screen is displayed to the user.

The VistA Splash Screen is illustrated in Figure 60:
Figure 60: Sample VistA Splash Screen

RPC Broker 1.1
Developer’s Guide 128 February 2017

4.2.14.2 Example
Figure 61 is an example of code to display the VistA Splash Screen in an application:

Figure 61: Sample Code to Display a VistA Splash Screen
uses
 Forms, Unit1 in ‘Unit1.pas’, SplVista;

{$R *.RES}

begin
 Application.Initialize;
 Application.CreateForm(TForm1, Form1);
 SplashOpen;
 SplashClose(2000);
 Application.Run;
end.

 REF: For a demonstration using the VistA Splash Screen, run the RPC Broker Example (32-Bit)
(i.e., BrokerExample.exe); located in the following directory:

BDK32\Samples\BrokerEx

RPC Broker 1.1
Developer’s Guide 129 February 2017

4.3 Running RPCs on a Remote Server
4.3.1 Overview
The RPC Broker can be used to facilitate invocation of Remote Procedure Calls on a remote VistA M
Server. Applications can use either XWB DIRECT RPC or XWB REMOTE RPC to pass the following:

• Desired remote VistA M Server.

• Desired remote RPC.

• Any parameters for the remote RPC.

The RPC Broker on the local VistA M Server uses VistA Health Level Seven (HL7) as a vehicle to pass
the remote RPC name and parameters to the remote VistA M Server. VistA HL7 is used to send any
results from the remote server back to the local server. The RPC Broker on the local VistA M Server then
passes the results back to the client application.

 NOTE: The local VistA M Server is the server the user is logged into. The remote VistA M
Server is any server the user is not logged into.

4.3.1.1 Using Direct RPCs
Table 23: Direct RPCs

RPC Description

XWB DIRECT RPC This RPC blocks all other Broker calls until the results of the remote RPC are
returned. The data is passed and the user waits for the results to return from
the remote system.

4.3.1.2 Using Remote RPCs
Table 24: Remote RPCs

RPC Description

XWB REMOTE RPC This RPC allows other activity while the remote RPC is in
process. In response to XWB REMOTE RPC the local VistA M
Server returns a HANDLE to the user application. At this point
other Broker calls can commence while the server-to-server
communication continues in the background.

XWB REMOTE STATUS CHECK This RPC allows the application to check the local VistA M
Server for the presence of results from the remote RPC. This
RPC passes the HANDLE to the local server and receives back
the status of the remote RPC.

XWB REMOTE GETDATA This RPC retrieves the results from the remote RPC after the
status check indicates that the data has returned to the local
VistA M Server. The RPC passes the HANDLE and receives
back an array with whatever data has been sent back from the
remote site.

XWB REMOTE CLEAR This RPC must be used to clear the data under the HANDLE in
the ^XTMP Global.

XWB DEFERRED CLEARALL Applications using XWB REMOTE RPC should use XWB
DEFERRED CLEARALL on application close to clear all known

RPC Broker 1.1
Developer’s Guide 130 February 2017

RPC Description
data associated with the job on the VistA M Server.

 NOTE: All XWB Remote Procedure Calls (RPCs) are available only on a Controlled
Subscription basis.

4.3.2 Checking RPC Availability on a Remote Server
Applications can check the availability of RPCs on a remote VistA M Server. Use either of the following:

• XWB DIRECT RPC

• XWB REMOTE RPC

To pass either of the following:

• XWB IS RPC AVAILABLE (example)

• XWB ARE RPCS AVAILABLE (example)

To the remote server.

The Run Context Parameter in XWB IS RPC AVAILABLE or XWB ARE RPCS AVAILABLE should
be set to “R” or null to check that the remote VistA M Server allows RPCs to be run by users not logged
into that remote server.

 NOTE: All XWB Remote Procedure Calls (RPCs) are available only on a Controlled
Subscription basis.

RPC Broker 1.1
Developer’s Guide 131 February 2017

4.3.3 XWB ARE RPCS AVAILABLE
Checking RPC Availability on a Remote Server

Use this RPC to determine if a set of RPCs is available on a VistA M Server. The RUN CONTEXT
PARAMETER allows you to test availability on a local or remote VistA M Server. The RPC INPUT
PARAMETER passes the names and (optionally) minimum version number of the RPCs to be checked.

Table 25: XWB ARE RPCS AVAILABLE—Parameters

Parameter Description

RETURN VALUE A 0-based array. The index corresponds to the index of the RPC in the
RPC Input Parameter:

• 1—RPC Available.
• 0—RPC Not available.

RUN CONTEXT
PARAMETER
(Optional)

Pass the run context (local or remote) of the RPC in Param[0].Value, and
the type (literal) in Param[0].PType. Possible values:

• L—Check if available to be run locally (by a user logged into the
VistA M Server).

• R—Check if available to be run remotely (by a user logged in a
different VistA M Server).

If this parameter is not sent, the RPC is checked for both local and remote,
and both run contexts must be available for the return to be “1” (RPC
Available). The check is done against the INACTIVE field in the REMOTE
PROCEDURE file (see the “Blocking an RPC” section).

RPC INPUT
PARAMETER

Pass a 0-based array of the names and (optionally) version numbers of
RPCs to be tested in Param[1].Mult[], and the type (List) in
Param[1].PType. The format is:

RPCName^RPCVersionNumber

The RPCVersionNumber is used only if the Run Context parameter = “R”.
If a numeric value is in the second ^-piece and Run Context = “R”, it is
checked against the value in the VERSION field of the REMOTE
PROCEDURE file (see the “RPC Version” section). If the version number
passed is less than or equal to the number in the VERSION field, the RPC
is marked available.

 NOTE: If the VERSION field Is null, the check fails for a numeric
value in this parameter.

Also, the current context of your user must give them permission to execute the XWB ARE RPCS
AVAILABLE (it must be included in the RPC multiple of the “B”-type option registered with the
CreateContext Method).

 NOTE: XWB ARE RPCS AVAILABLE is available only on a Controlled Subscription basis.

RPC Broker 1.1
Developer’s Guide 132 February 2017

4.3.3.1 Example
Figure 62 is an example of the XWB ARE RPCS AVAILABLE RPC:

Figure 62: XWB ARE RPCS AVAILABLE—Example
brkrRPCBroker1.RemoteProcedure := ‘XWB ARE RPCS AVAILABLE’;
brkrRPCBroker1.Param[0].Ptype:= Literal;
brkrRPCBroker1.Param[0].Value := ‘L’;
brkrRPCBroker1.Param[1].Ptype := List;
brkrRPCBroker1.Param[1].Mult[‘0’] = ‘MY FIRST RPC’;
brkrRPCBroker1.Param[1].Mult[‘1’] = ‘MY OTHER RPC^2’;
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage(‘Connection to server could not be established!’);
end;
.; branch code to handle availability of RPCs

4.3.4 XWB IS RPC AVAILABLE
Checking RPC Availability on a Remote Server

Use this RPC to determine if a particular RPC is available on a VistA M Server. The RPC PARAMETER
passes the name of the RPC to be checked. The RUN CONTEXT PARAMETER allows you to test
availability to a local or a remote user. The VERSION NUMBER PARAMETER allows you to check for
a minimum version of an RPC on a remote VistA M Server.

Table 26: XWB IS RPC AVAILABLE—Parameters/Output

Parameter/Output Description

RETURN VALUE Boolean:
• 1—RPC Available
• 0—RPC Not Available

RPC PARAMETER Pass the name of the RPC to be tested in Param[0].Value, and the
type (literal) in Param[0].PType.

RUN CONTEXT
PARAMETER (Optional)

Pass the run context (local or remote) of the RPC in Param[1].Value,
and the type (literal) in Param[1].PType. Possible values:

• L—Check if available to be run locally (by a user logged into
the VistA M Server)

• R—Check if available to be run remotely (by a user logged in
a different VistA M Server)

If this parameter is not sent, the RPC is checked for both local and
remote and both run contexts must be available for the return to be
“1” (RPC Available). The check is done against the INACTIVE field in
the REMOTE PROCEDURE file (see the “Blocking an RPC” section).

VERSION NUMBER
PARAMETER (Optional)

Pass the minimum acceptable version number of the RPC in
Param[2].Value, and the type (literal) in Param[2].PType. This
parameter is only used if the RUN CONTEXT parameter = “R”. If a
numeric value is in this parameter, it is checked against the value in
the VERSION field of the REMOTE PROCEDURE file (see the “RPC
Version” section). If the version number passed is less than or equal
to the number in the VERSION field, the RPC is marked available.

RPC Broker 1.1
Developer’s Guide 133 February 2017

Parameter/Output Description

 NOTE: If the VERSION field is null, the check fails for a numeric
value in this parameter.

Also, the current context of your user must give them permission to execute the XWB IS RPC
AVAILABLE (it must be included in the RPC multiple of the “B”-type option registered with the
CreateContext Method).

 NOTE: XWB IS RPC AVAILABLE is available only on a Controlled Subscription basis.

4.3.4.1 Example
Figure 63 is an example of the XWB IS RPC AVAILABLE RPC:

Figure 63: XWB IS RPC AVAILABLE—Example
brkrRPCBroker1.RemoteProcedure := ‘XWB IS RPC AVAILABLE’;
brkrRPCBroker1.Param[0].Value :=‘XWB GET VARIABLE VALUE’;
brkrRPCBroker1.Param[0].PType := literal;
brkrRPCBroker1.Param[1].Value := ‘R’;
brkrRPCBroker1.Param[1].PType := literal;
 {no version number passed in this example as XWB GET VARIABLE VALUE has only one
version}
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage(‘Connection to server could not be established!’);
end;
.; branch code to handle RPC availability

RPC Broker 1.1
Developer’s Guide 134 February 2017

4.3.5 XWB DIRECT RPC
Use this RPC to request that an RPC be run on a remote system. This RPC blocks all other Broker calls
until the results of the remote RPC are returned. Use XWB REMOTE RPC to allow other Broker activity
while the remote RPC runs.

 REF: For a comparison of the two methods, see the “Running RPCs on a Remote Server”
section.

Table 27: XWB DIRECT RPC—Parameters/Output

Parameter/Output Description

LOCATION PARAMETER Pass the station number of the remote VistA M Server in
Param[0].Value, and the type (literal) in Param[0].PType.

RPC PARAMETER Pass the name of the RPC to be run in Param[1].Value, and the type
(literal) in Param[1].PType.

RPC VERSION
PARAMETER (Optional)

Pass minimum version of RPC to be run in Param[2].Value, and the
type (literal) in Param[2].PType. It is checked against the value in the
VERSION field of the REMOTE PROCEDURE file (see the “RPC
Version” section) on the remote VistA M Server.

PARAMETERS TO THE
REMOTE RPC

Pass up to seven parameters for the remote RPC in Param[3] through
Param[9].

RETURN VALUE An array with whatever data has been sent back from the remote site.
In the case of an error condition, the first node of the array is equal to
a string with the syntax “-1^error text”.

 NOTE: XWB DIRECT RPC is available only on a Controlled Subscription basis.

4.3.5.1 Example
Figure 64 is an example of the XWB DIRECT RPC:

Figure 64: XWB DIRECT RPC—Example
brkrRPCBroker1.RemoteProcedure := ‘XWB DIRECT RPC’;
brkrRPCBroker1.Param[0].Ptype:= Literal;
brkrRPCBroker1.Param[0].Value := ‘Station Number’;
brkrRPCBroker1.Param[1].Ptype:= Literal;
brkrRPCBroker1.Param[1].Value := ‘XWB GET VARIABLE VALUE’;
{no version numbers for remote RPC so null value in Param[2]}
brkrRPCBroker1.Param[2].Ptype:= Literal;
brkrRPCBroker1.Param[2].Value := ‘’;
brkrRPCBroker1.Param[3].Ptype:= Reference;
brkrRPCBroker1.Param[3].Value := ‘DUZ’;
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage(‘Connection to server could not be established!’);
end;
.; code to handle brkrRPCBroker1.Results[]

RPC Broker 1.1
Developer’s Guide 135 February 2017

4.3.6 XWB REMOTE RPC
Use this RPC to request that an RPC be run on a remote system. This RPC allows other Broker activity
while the remote RPC runs. Use XWB DIRECT RPC to block all other Broker activity while the remote
RPC runs.

 REF: For a comparison of the two methods, see the “Running RPCs on a Remote Server”
section.

XWB REMOTE RPC requests the remote RPC. The return value is a HANDLE that is used to check
status and retrieve data. The following RPCs must be used to complete the transaction

• XWB REMOTE STATUS CHECK

• XWB REMOTE GETDATA

• XWB REMOTE CLEAR
Table 28: XWB REMOTE RPC—Parameters/Output

Parameter/Output Description

LOCATION
PARAMETER

Pass the station number of the remote VistA M Server in Param[0].Value,
and the type (literal) in Param[0].PType.

RPC PARAMETER Pass the name of the RPC to be run in Param[1].Value, and the type
(literal) in Param[1].PType.

RPC VERSION
PARAMETER
(Optional)

Pass minimum version of RPC to be run in Param[2].Value, and the type
(literal) in Param[2].PType. It is checked against the value in the VERSION
field of the REMOTE PROCEDURE file (see the “RPC Version” section) on
the remote VistA M Server.

PARAMETERS TO
THE REMOTE RPC

Pass up to seven parameters for the remote RPC in Param[3] through
Param[9].

RETURN VALUE An array. The first node is equal to a string that serves as a HANDLE. This
HANDLE should be stored by the application and used to check the status
and retrieve the data. In the case of an error condition the first node of the
array is equal to a string with the syntax “-1^error text”.

 NOTE: XWB REMOTE RPC is available only on a Controlled Subscription basis.

RPC Broker 1.1
Developer’s Guide 136 February 2017

4.3.6.1 Example
Figure 65 is an example of the XWB REMOTE RPC:

Figure 65: XWB REMOTE RPC—Example
brkrRPCBroker1.RemoteProcedure := ‘XWB REMOTE RPC’;
brkrRPCBroker1.Param[0].Ptype:= Literal;
brkrRPCBroker1.Param[0].Value := ‘Station Number’;
brkrRPCBroker1.Param[1].Ptype:= Literal;
brkrRPCBroker1.Param[1].Value := ‘MY RPC’;
brkrRPCBroker1.Param[2].Ptype:= Literal;
brkrRPCBroker1.Param[2].Value := ‘1’;
brkrRPCBroker1.Param[3].Ptype:= Reference;
brkrRPCBroker1.Param[3].Value := ‘MY RPC PARAMETER’;
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage(‘Connection to server could not be established!’);
end;
.; code to store HANDLE returned in brkrRPCBroker1.Results[]

The application needs to use XWB REMOTE STATUS CHECK, XWB REMOTE GETDATA, and
XWB REMOTE CLEAR to complete the transaction.

4.3.7 XWB REMOTE STATUS CHECK
Use this RPC to check for results of XWB REMOTE RPC. Periodically call this RPC and pass the
HANDLE returned by XWB REMOTE RPC.

Table 29: XWB REMOTE STATUS CHECK—Output

Output Description

RETURN VALUE The return value is always an array. The first node of the array is equal to one of
the following values:

• “-1^Bad Handle—An invalid handle has been passed.
• “0^New”—The request has been sent via VistA HL7.
• “0^Running”—VistA HL7 indicates that the message is being processed.
• “1^Done”—RPC has completed and the data has been returned to the

local VistA M Server. The data is not returned by this RPC. Use XWB
REMOTE GETDATA to retrieve the data.

The second node of the array is the status from the VistA HL7 software.

 NOTE: XWB REMOTE STATUS CHECK is available only on a Controlled Subscription basis.

RPC Broker 1.1
Developer’s Guide 137 February 2017

4.3.7.1 Example
Figure 66 is an example of the XWB REMOTE STATUS CHECK RPC:

Figure 66: XWB REMOTE STATUS CHECK—Example
brkrRPCBroker1.RemoteProcedure := ‘XWB REMOTE STATUS CHECK’;
brkrRPCBroker1.Param[0].Value :=‘MYHANDLE’;
brkrRPCBroker1.Param[0].PType := literal;
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage(‘Connection to server could not be established!’);
end;
.; code to handle results of check

4.3.8 XWB REMOTE GETDATA
Use this RPC to retrieve the results of XWB REMOTE RPC. Before calling this RPC, use XWB
REMOTE STATUS CHECK to ensure that the results have been returned to the local VistA M Server.
When the results have arrived, call this RPC and pass the HANDLE returned by XWB REMOTE RPC.

After the application is finished with the data on the VistA M Server, it should use XWB REMOTE
CLEAR to clear the ^XTMP global.

Table 30: XWB REMOTE GETDATA—Output

Output Description

RETURN VALUE An array containing the data. In the case of an error condition the first node of the
array is equal to a string with the syntax “-1^error text”.

 NOTE: XWB REMOTE GETDATA is available only on a Controlled Subscription basis.

4.3.8.1 Example
Figure 67 is an example of the XWB REMOTE GETDATA RPC:

Figure 67: XWB REMOTE GETDATA—Example
brkrRPCBroker1.RemoteProcedure := ‘XWB REMOTE GETDATA’;
brkrRPCBroker1.Param[0].Value :=‘MYHANDLE’;
brkrRPCBroker1.Param[0].PType := literal;
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage(‘Connection to server could not be established!’);
end;
.; code to handle data

RPC Broker 1.1
Developer’s Guide 138 February 2017

4.3.9 XWB REMOTE CLEAR
This RPC is used to clear the data created by a remote RPC under the HANDLE in the ^XTMP. Pass the
HANDLE returned by XWB REMOTE RPC.

Table 31: XWB REMOTE CLEAR—Output

Output Description

RETURN VALUE An array. The first node in the array is equal to 1.

 NOTE: XWB REMOTE CLEAR is available only on a Controlled Subscription basis.

4.3.9.1 Example
Figure 68 is an example of the XWB REMOTE CLEAR RPC:

Figure 68: XWB REMOTE CLEAR—Example
brkrRPCBroker1.RemoteProcedure := ‘XWB REMOTE CLEAR’;
brkrRPCBroker1.Param[0].Value :=‘MYHANDLE’;
brkrRPCBroker1.Param[0].PType := literal;
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage(‘Connection to server could not be established!’);
end;

RPC Broker 1.1
Developer’s Guide 139 February 2017

4.4 Deferred RPCs
4.4.1 Overview
Remote Procedure Calls can be run in the background with XWB DEFERRED RPC.

4.4.1.1 Using Deferred RPCs
Table 32: Deferred RPCs

RPC Description

XWB DEFERRED RPC Use this RPC to pass the name of the RPC to be run in deferred
mode and any parameters associated with the deferred RPC. In
response to this RPC the VistA M Server returns a HANDLE to the
user application. At this point other Broker calls can commence
while the job runs in the background.

XWB DEFERRED STATUS This RPC allows the application to check the local VistA M Server
for the presence of results from the deferred RPC. This RPC
passes the HANDLE to the local server and receives back the
status of the remote RPC.

XWB DEFERRED GETDATA This RPC is the vehicle for retrieving the results from the remote
RPC after the status check indicates that the data has returned to
the local VistA M Server. The RPC passes the HANDLE and
receives back an array with whatever data has been returned by the
deferred RPC.

XWB DEFERRED CLEAR This RPC must be used to clear the data under the HANDLE in the
^XTMP Global.

XWB DEFERRED CLEARALL Applications using XWB DEFERRED RPC should use XWB
DEFERRED CLEARALL on application close to clear all known
data associated with the job on the VistA M Server.

 NOTE: All XWB Remote Procedure Calls (RPCs) are available only on a Controlled
Subscription basis.

RPC Broker 1.1
Developer’s Guide 140 February 2017

4.4.2 XWB DEFERRED RPC
Use this RPC to request that an RPC be run in deferred mode. The return value is a HANDLE used to
check status and retrieve data. The following RPCs must be used to complete the transaction:

• XWB DEFERRED STATUS

• XWB DEFERRED GETDATA

• XWB DEFERRED CLEAR
Table 33: XWB DEFERRED RPC—Parameters/Output

Parameter/Output Description

RPC PARAMETER Pass the name of the RPC to be run in Param[0].Value, and the type
(literal) in Param[0].PType.

RPC VERSION
PARAMETER
(Optional)

Pass minimum version of RPC to be run in Param[1].Value, and the type
(literal) in Param[1].PType. It is checked against the value in the VERSION
field of the REMOTE PROCEDURE file (see the “RPC Version” section) on
the remote VistA M Server.

PARAMETERS TO
THE REMOTE RPC

Pass up to eight parameters for the remote RPC in Param[2] through
Param[9].

RETURN VALUE An array. The first node is equal to a string that serves as a HANDLE. This
HANDLE should be stored by the application and used to check the status
and retrieve the data. In the case of an error condition, the first node of the
array is equal to a string with the syntax “-1^error text”.

4.4.2.1 Example
Figure 69 is an example of the XWB DEFERRED RPC:

Figure 69: XWB DEFERRED RPC—Example
brkrRPCBroker1.RemoteProcedure := ‘XWB DEFERRED RPC’;
brkrRPCBroker1.Param[0].Ptype:= Literal;
brkrRPCBroker1.Param[0].Value := ‘MY RPC’;
brkrRPCBroker1.Param[1].Ptype:= Literal;
brkrRPCBroker1.Param[1].Value := ‘1’;
brkrRPCBroker1.Param[2].Ptype:= Reference;
brkrRPCBroker1.Param[2].Value := ‘MY RPC PARAMETER’;
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage(‘Connection to server could not be established!’);
end;
.; code to store HANDLE returned in brkrRPCBroker1.Results[0]

The application needs to use XWB DEFERRED STATUS, XWB DEFERRED GETDATA, and XWB
DEFERRED CLEAR to complete the transaction.

RPC Broker 1.1
Developer’s Guide 141 February 2017

4.4.3 XWB DEFERRED STATUS
Use this RPC to check for results of XWB DEFERRED RPC. Periodically, call this RPC and pass the
HANDLE returned by XWB REMOTE RPC.

Table 34: XWB DEFERRED STATUS—Output

Output Description

RETURN VALUE The return value is always an array. The first node of the array is equal to one of
the following values:

• “-1^Bad Handle”—An invalid handle has been passed.
• “0^New”—The request has been sent via VistA HL7.
• “0^Running”—VistA HL7 indicates that the message is being processed.
• “1^Done”—RPC has completed and the data has been returned to the

local VistA M Server. The data is not returned by this RPC. Use XWB
REMOTE GETDATA to retrieve the data.

 NOTE: XWB DEFERRED STATUS is available only on a Controlled Subscription basis.

4.4.3.1 Example
Figure 70 is an example of the XWB DEFERRED STATUS RPC:

Figure 70: XWB DEFERRED STATUS—Example
brkrRPCBroker1.RemoteProcedure := ‘XWB DEFERRED STATUS’;
brkrRPCBroker1.Param[0].Value :=‘MYHANDLE’;
brkrRPCBroker1.Param[0].PType := literal;
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage(‘Connection to server could not be established!’);
end;
 .; code to handle results of check

4.4.4 XWB DEFERRED GETDATA
Use this RPC to retrieve the results of XWB DEFERRED RPC. Before calling this RPC, use XWB
DEFERRED STATUS to ensure that the job has finished. When the results are available, call this RPC
and pass the HANDLE returned by XWB DEFERRED RPC.

After the application is finished with the data on the VistA M Server, it should use XWB DEFERRED
CLEAR to clear the ^XTMP global.

Table 35: XWB DEFERRED GETDATA—Output

Output Description

RETURN VALUE An array containing the data. In the case of an error condition the first node of the
array is equal to a string with the syntax “-1^error text”.

 NOTE: XWB DEFERRED GETDATA is available only on a Controlled Subscription basis.

RPC Broker 1.1
Developer’s Guide 142 February 2017

4.4.4.1 Example
Figure 71 is an example of the XWB DEFERRED GETDATA RPC:

Figure 71: XWB DEFERRED GETDATA—Example
brkrRPCBroker1.RemoteProcedure := ‘XWB DEFERRED GETDATA’;
brkrRPCBroker1.Param[0].Value :=‘MYHANDLE’;
brkrRPCBroker1.Param[0].PType := literal;
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage(‘Connection to server could not be established!’);
end;
.; code to handle data

4.4.5 XWB DEFERRED CLEAR
This RPC is used to clear the data created by a deferred RPC under the HANDLE in the ^XTMP global.
Pass the HANDLE returned by XWB DEFERRED RPC.

Table 36: XWB DEFERRED CLEAR—Output

Output Description

RETURN VALUE An array. The first node in the array is equal to 1.

 NOTE: XWB DEFERRED CLEAR is available only on a Controlled Subscription basis.

4.4.5.1 Example
Figure 72 is an example of the XWB DEFERRED CLEAR RPC:

Figure 72: XWB DEFERRED CLEAR—Example
brkrRPCBroker1.RemoteProcedure := ‘XWB DEFERRED CLEAR’;
brkrRPCBroker1.Param[0].Value :=‘MYHANDLE’;
brkrRPCBroker1.Param[0].PType := literal;
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage(‘Connection to server could not be established!’);
end;

4.4.6 XWB DEFERRED CLEARALL
This RPC is used to CLEAR ALL the data known to a remote RPC or deferred RPC job in the ^XTMP
global. It makes use of the list in ^TMP(“XWBHDL”,$J,handle). Applications using XWB REMOTE
RPC or the XWB DEFERRED RPC should use this RPC on application close to clear all known data
associated with the job on the VistA M Server.

Table 37: XWB DEFERRED CLEARALL—Output

Output Description

RETURN VALUE An array. The first node in the array is equal to 1.

RPC Broker 1.1
Developer’s Guide 143 February 2017

 NOTE: XWB DEFERRED CLEARALL is available only on a Controlled Subscription basis.

4.4.6.1 Example
Figure 73 is an example of the XWB DEFERRED CLEARALL RPC:

Figure 73: XWB DEFERRED CLEARALL—Example
brkrRPCBroker1.RemoteProcedure := ‘XWB DEFERRED CLEAR’;
try
 brkrRPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage(‘Connection to server could not be established!’);
end;

RPC Broker 1.1
Developer’s Guide 144 February 2017

5 Broker Security Enhancement (BSE)
5.1 Overview: Implementing Broker Security Enhancement

(BSE)
This section describes how application developers can modify their Veterans Health Information Systems
and Technology Architecture (VistA) RPC Broker Delphi-based client/server applications in order to
implement the Broker Security Enhancement (BSE). The following topics are discussed:

• Assumptions When Implementing BSE

• Step-By-Step Procedures to Implement BSE

5.1.1 Assumptions When Implementing BSE
The following assumptions are made regarding application developers and VistA software applications
when implementing BSE:

• Developer Training—Application developers should already be knowledgeable/trained in
creating RPC Broker Delphi-based applications.

• RPC Broker-based Applications—RPC Broker Delphi-based application already exists.

• Login at Startup—Applications automatically initiate login at application startup (i.e., users are
presented with 2-factor authentication or an Access/Verify login dialogue).

• VistA M Server Patches—All BSE Project-related VistA M Server patches have been loaded on
the appropriate servers.

5.1.2 Step-By-Step Procedures to Implement BSE
This section describes the procedures that VistA application developers must follow in order to implement
the Broker Security Enhancement (BSE) in their RPC Broker Delphi-based applications (i.e., COM client
applications developed in Embarcadero Delphi), so that the application can make remote user/visitor
connections.

1. Create a unique Application Security Phrase (required).

Use the $$SHAHASH^XUSHSH API to create a Base-64 Encoded SHA256 hashed Security
Phrase (case sensitive) that is unique for your application.

For example, in M, go to Programmer Mode and enter the following command:
W $$SHAHASH^XUSHSH(256,"My Application Security Phrase",”B”)

The resulting sample value is:
TQu07MtTls83BGuWK/Kyb4naAUWHaVQjTzstCuDJKHw=

 CAUTION: This is a sample value only; do not use this as your Application
Security Phrase!

This is a one-way hash value for the Security Phrase that is only known to the application that
creates it.

RPC Broker 1.1
Developer’s Guide 145 February 2017

 RECOMMENDATION: Since the Security Phrase is the application's identifier,
VistA Infrastructure (VI) recommends developers identify the Security Phrase as
a const value in an include file in any RPC Broker Delphi-based program
implementing BSE. A substitute include file containing a phrase similar to that
used above should then be included with release of the source code.

 REF: For more information on the application Security Phrase, see the "Security Phrase"
section in the RPC Broker User Guide.

2. Create an entry in the REMOTE APPLICATION file (#8994.5) (required).

An application must send out a patch that creates an entry for their RPC Broker Delphi-based
application that has implemented BSE in the REMOTE APPLICATION file (#8994.5).
Developers must add entries to the following fields in File #8994.5:

• NAME (#.01)—Enter a descriptive name for your application.

• CONTEXTOPTION (#.02)—Enter the name of the "B"-Type context option that the
users will need to run the application. This context option should be within your
application’s namespace, or your application should have an Integration Control
Registration (ICR) agreement in place documenting permission to use a context option
owned by another application.

• APPLICATIONCODE (#.03)—Enter the hashed value of the Security Phrase you created
in Step 1.

• CALLBACKTYPE Multiple (#1):

o CALLBACKTYPE (#.01)—Current values for this field are:

− R—RPC Broker TCP/IP connection (recommended for non-medical centers).

− M—M-to-M Broker connection.

− H—HyperText Transport Protocol (HTTP) connection communication. You
must also add an entry in the URLSTRING field (#.04).

− S—Station-number callback (recommended for medical centers).

o CALLBACKPORT (#.02)—Enter the Port number to be used for the callback
connection. This required field should be set to “-1” for Station-number callback
type, as the actual port number is passed to the remote VistA M Server as part of the
process.

o CALLBACKSERVER (#.03)—Enter the address of the server to be used for the
callback connection. This should be a Domain Name Service (DNS) name-based
address rather than an Internet Protocol (IP) address, because IP addresses can
change. This field is not required for Station-number callback type, as the remote
VistA M Server looks up the IP address of the authenticating VistA M Server based
on the site number passed to the remote VistA M Server as part of the process.

o URLSTRING (#.04)—Used only if the CALLBACKTYPE field (#.01) contains H
for HyperText Transport Protocol (HTTP). Enter the Uniform Resource Locator
(URL) string for the callback to the HTTP server. This field is not required for
Station-number, RPC Broker, or M-to-M callback types.

RPC Broker 1.1
Developer’s Guide 146 February 2017

 NOTE: For more information on the REMOTE APPLICATION file (#8994.5) and
specific field entries, see the "REMOTE APPLICATION file (#8994.5)" section in the
RPC Broker User Guide.

 REF: Use the sample code in the BseSample1.pas file as a basis for implementing BSE
in your application. The BseSample1.pas file is located in the following directory:

BDK32\Samples\BSE
Figure 74: fBseSample1.pas File—Sample Code Excerpt (#1)

procedure TForm1.DoConnection(Key: String);
var
 TokenValue: String;
begin
 RPCB.Server := AuthServer.Text;
 RPCB.ListenerPort := StrToInt(AuthPort.Text);
 RPCB.Connected := True;
 if RPCB.Connected then
 begin
 RPCB.RemoteProcedure := 'XUS SET VISITOR';
 RPCB.Call;
 TokenValue := RPCB.Results[0];
 RPCB.Connected := False;
 ShowMessage('Token: '+TokenValue);
 if not (TokenValue = '') then
 begin
 RPCB.Server := RemoteServer.Text;
 RPCB.ListenerPort := StrToInt(RemotePort.Text);
 RPCB.SecurityPhrase := Key + '^' + TokenValue;
 RPCB.Connected := True;
 if RPCB.Connected then
 begin
 ShowMessage('Signed on to Remote Server');
 RPCB.CreateContext('XWB BROKER EXAMPLE');
 btnDisconnect.Enabled := True;
 btnEcho.Enabled := True;
 btnM2M.Enabled := False;
 btnTCPIP.Enabled := False;
 end
 else
 ShowMessage('Connection to Remote Server failed!');
 end;
 end
 else
 ShowMessage('Initial Sign-on Failed');
end;

RPC Broker 1.1
Developer’s Guide 147 February 2017

3. Get BSE Authentication Token (required).

After authenticating the user into the authenticating VistA M Server, the client application calls
the XUS SET VISITOR RPC to get the BSE Authentication Token for the user. This token is
then passed to the RPC Broker component and used to create an extended Security Pass Phrase
(see Step 4). This token is eventually used to obtain the necessary user information for populating
a user as a "visitor" entry in the remote site's NEW PERSON file (#200).

VistA Kernel software on the authenticating VistA M Server creates the BSE Authentication
Token. Kernel stores this token in the ^XTMP temporary global.

Figure 75: fBseSample1.pas File—Sample Code Excerpt (#2)
 RPCB.Server := AuthServer.Text;
 RPCB.ListenerPort := StrToInt(AuthPort.Text);
 RPCB.Connected := True;
 if RPCB.Connected then
 begin
 RPCB.RemoteProcedure := 'XUS SET VISITOR';
 RPCB.Call;
 TokenValue := RPCB.Results[0];
 RPCB.Connected := False;

4. Create and encode an extended Security Pass Phrase (required).

The application creates an extended Security Pass Phrase (string). The Security Pass Phrase
consists of the unhashed application Security Phrase (Step 1) concatenated with the BSE
Authentication Token delimited by a caret ("^"). For example:

My Application Security Phrase^XWBHDL977-124367_0

Station-number callback requires the authenticating VistA M Server’s station number as
identified in the INSTITUTION file (#4) and the port number of the station’s RPC Broker
listener, delimited by a caret ("^"). For example:

My Application Security Phrase^XWBHDL977-124367_0^518^19207

The Delphi RPC Broker software encodes the Security Pass Phrase, which is passed to the
Remote VistA M Server XUS SIGNON SETUP RPC for authentication.

For non-Delphi applications (those that do not use the Broker Development Kit), the XUS BSE
TOKEN RPC accepts the application Security Phrase on the authenticating server and creates a
complete encoded extended Security Pass Phrase, which can be passed to the Remote VistA M
Server XUS SIGNON SETUP RPC for authentication for Station-number based callback. This
RPC does not work for Delphi applications, as the encoding is done within the Broker
Development Kit.

In the source code excerpt that follows (see Figure 76), the value of Key (i.e., constant) was
defined earlier by importing an include file that contained the following two lines:

const
 Key = ' My Application Security Phrase';

RPC Broker 1.1
Developer’s Guide 148 February 2017

 NOTE: Key is a constant, which is a type of variable that has a fixed value that cannot
be changed.

Figure 76 shows the code after the RPCBroker login component connection to the Authenticating
VistA M Server has been disconnected:

Figure 76: fBseSample1.pas File—Sample Code Excerpt (#3)
 if not (TokenValue = '') then
 begin
 RPCB.Server := RemoteServer.Text;
 RPCB.ListenerPort := StrToInt(RemotePort.Text);
 RPCB.SecurityPhrase := Key + '^' + TokenValue;
 RPCB.Connected := True;
 if RPCB.Connected then
 begin
 ShowMessage('Signed on to Remote Server');
 RPCB.CreateContext('XWB BROKER EXAMPLE');
 btnDisconnect.Enabled := True;
 btnEcho.Enabled := True;
 btnM2M.Enabled := False;
 btnTCPIP.Enabled := False;
 end
 else
 ShowMessage('Connection to Remote Server failed!');
 end;
 end

5. Set RPCBroker login component properties (required).

The developer must set the following RPCBroker login component properties when calling the
Remote VistA M Server:

• Server—Set to the Domain Name Service (DNS) or Internet Protocol (IP) address of the
Remote VistA M Server.

• ListenerPort—Set to the Listener Port number of the Remote VistA M Server.

• SecurityPhrase property—Set to the unhashed application's Security Phrase concatenated
with the Kernel Authentication Token (See Step 4).

• Connect—Set to True.

6. Process Remote User/Visitor Login on remote server (required).

After connecting to the Remote VistA M Server, software running on the Remote VistA M Server
does the following:

a. Identify the Security Pass Phrase. Kernel identifies the data passed in as a parameter, which
contains the application's Security Phrase and Kernel Authentication Token for the user.

b. Hash the Security Pass Phrase. Kernel hashes the Security Pass Phrase to parse out the
application's Security Phrase and the Kernel Authentication Token.

c. Get Authenticating VistA M Server Connection Mechanism. Kernel uses the Security Phrase
to identify the application's entry in the REMOTE APPLICATION file (#8994.5).

RPC Broker 1.1
Developer’s Guide 149 February 2017

Included in that entry is the mechanisms for contacting the Authenticating VistA M Server:

• Connection type:

o R—RPC Broker TCP/IP connection

o M—M-to-M Broker

o H—HyperText Transport Protocol connection

o S—Station-number callback

• Port number

• Address (IP, DNS, or URL)

 NOTE: The mechanisms for contacting the Authenticating VistA M Server
allows you to use either the IP address or DNS; however, VistA
Infrastructure (VI) recommends that you use a DNS Fully Qualified Domain
Name (FQDN).

d. Connect to Authenticating Server using Kernel Authentication Token. The Remote VistA M
Server uses the appropriate mechanism to identify and connect to the Authenticating VistA M
Server, passing in the BSE Authentication Token that identifies the user.

e. Obtain user demographics. Kernel uses the XUS GET VISITOR RPC to request and obtain
the user demographic information from the Authenticating VistA M Serve.

The user demographic information that is returned is a string containing information that can
be used to identify the visitor
(i.e., ssn^name^station name^station number^DUZ^phone^SecID^network username):

• Social Security Number (SSN)

• Name

• Station Name

• Station Number

• DUZ

• Telephone

• Identity and Access Management (IAM) Security ID (SecID)

• Active Directory Network Username

This user demographic information is used to later establish the user as a remote user/visitor
on the Remote VistA M Server.

f. Disconnect from the Authenticating VistA M Server. The Remote VistA M Server
disconnects from the Authenticating VistA M Server.

RPC Broker 1.1
Developer’s Guide 150 February 2017

g. Set up user as a visitor entry on the remote VistA M Server. Kernel uses the demographic
information obtained from the Authenticating VistA M Server to set up the user as a visitor
entry on the Remote VistA M Server.

Kernel creates or matches an entry in the NEW PERSON file (#200) and provides the visitor
with the context option specified for the application in the REMOTE APPLICATION file
(#8994.5).The matching process uses the following precedence when matching an existing
user:

1. Identity and Access Management (IAM) Security ID (SecID)

2. Social Security Number (SSN)

3. Name (do not use if name has a different SSN)

7. Test your application (recommended). Developers should test their RPC Broker Delphi-based
applications to ensure they have successfully implemented BSE.

BSE Sample Test Applications

The Broker Development Kit (BDK) includes the BrokerSecurityEnhancement Sample1
application (i.e., BseSample1.exe, see Figure 77).

You can use this sample application to help test the sample entries in the REMOTE
APPLICATION file (#8994.5) and to test the different connection types (i.e., TCP/IP, M2M,
HTTP, and Station-number) to verify that the VistA M Server-side is set up correctly to
implement BSE.

 CAUTION: In order to implement BSE and use the RPC-Broker callback type, the
central Authenticating VistA M server must run the RPC Broker as a TCPIP
service.

RPC Broker 1.1
Developer’s Guide 151 February 2017

BrokerSecurityEnhancement Sample1

Figure 77 shows the sample application dialogue provided by the
BrokerSecurityEnhancement Sample1 application (i.e., BseSample1.exe):

Figure 77: BSE Project—BrokerSecurityEnhancement Sample1 Application
(i.e., BseSample1.exe)

The sample application has the following controls:

• Server Edit Fields:

o Authenticating Server IP—IP address for the Authenticating VistA M Server.
This field is empty at initial startup; it is an editable field.

o (Authenticating Server) Port—Port number for the Authenticating VistA M
Server. This field is empty at initial startup; it is an editable field.

o Remote Server IP—IP address for the Remote VistA M Server. This field is
empty at initial startup; it is an editable field.

o (Remote Server) Port—Port number for the Remote VistA M Server. This field
is empty at initial startup; it is an editable field.

• Connection Buttons:

o TCP/IP Connect

o M2M Connect

o HTTP Connect

o Disconnect

RPC Broker 1.1
Developer’s Guide 152 February 2017

• Phrase Echo Controls:

o Phrase to Echo Edit Field—Enter an echo phrase.

o Echo Button—Button used to submit the phrase to be echoed back form the
Remote VistA M Server.

o Echoed Field—Contains the phrase that gets echoed back once the user/visitor is
signed onto the Remote VistA M Server.

To successfully run and test the BrokerSecurityEnhancement Sample1 application
(i.e., BseSample1.exe), do the following:

a. Edit entries for XUSBSE TEST1 and XUSBSE TEST2 in the following fields in the
CALLBACKTYPE Multiple (#1) in the REMOTE APPLICATION file (#8994.5). These
entries are the Authenticating VistA M Servers that are used to authenticate the current user,
and to which a callback is made to obtain information to eventually create the visitor entry in
the Remote VistA M Server:

• CALLBACKPORT (#.02)

• CALLBACKSERVER (#.03)

The Broker Security Enhancement (BSE)-related code is dependent upon the use of
appropriate and valid information for the Authenticating and Remote VistA M Servers.
Therefore, running the BseSample1.exe program requires that you populate these fields on
the Remote VistA M Server.

The Authenticating VistA M Server is the server on which the user already has a valid Kernel
Access and Verify code established (i.e., entry in the NEW PERSON file [#200]). Both the
Authenticating and Remote VistA M Servers must also have RPC Broker Patch XWB*1.1*45
and Kernel Patch XU*8*404 installed.

b. Start the BseSample1.exe program.

c. Enter a valid Authenticating VistA M Server IP address and Port number.

 NOTE: This is the server against which the user first authenticates.

d. Enter a valid Remote VistA M Server IP address and Port number.

 NOTE: This is the server that the user signs onto as a visitor (and already contains
the updated information for the Authenticating VistA M Server in the REMOTE
APPLICATION file ([#8994.5]).

e. Press one of the connection buttons (e.g., TCP/IP Connect button).

f. Enter Access and Verify codes in the VistA Sign-on dialogue box when prompted.

 NOTE: This authenticates the user against the Authenticating VistA M Server.

g. (optional) Choose your Division (i.e., Station Number) to log into, if prompted.

RPC Broker 1.1
Developer’s Guide 153 February 2017

h. Press OK when presented with the dialogue in Figure 78:
Figure 78: Sample Kernel Authentication Token

 NOTE: Figure 78 indicates that the Kernel Authentication Token was created, which
means the user is now authenticated on the Authenticating VistA M Server.

i. After a few moments, you get the dialogue shown in Figure 79 confirming the user is now
also authenticated on the Remote VistA M Server as a visitor. Press OK when presented with
the dialogue in Figure 79:

Figure 79: Sample Confirmation Message Indicating the User is Signed onto the
Remote VistA M Server as a Visitor

j. You can now enter an echo phrase to the Remote VistA M Server and get the string echoed
back.

RPC Broker 1.1
Developer’s Guide 154 February 2017

6 Debugging and Troubleshooting
6.1 Debugging and Troubleshooting Overview
The Broker Development Kit (BDK) provides facilities for debugging and troubleshooting your VistA
Graphical User Interface (GUI) applications.

• How to Debug the Application

• RPC Error Trapping

• Broker Error Messages

• EBrokerError

• Testing the RPC Broker Connection

• Client Timeout and Buffer Clearing

• Memory Leaks

 REF: For commonly asked questions, see the RPC Broker FAQs on the RPC Broker VA Intranet
site.

6.2 How to Debug the Application
Control of debugging has been moved from the client to the server.

To start a debug session, do the following:

1. On the VistA M Server, set initial breakpoints where desired.

2. On the client, follow instructions in the InterSystems Caché documentation on “Debugging with
the Caché Debugger.” Set initial breakpoints where desired.

3. Start the following VistA M Server process:

>D DEBUG^XWBTCPM

4. Enter a unique Listener port number (i.e., a port number not in general use).

5. Connect the client application to the server using the server’s IP address and the port number you
entered in Step 4 and select OK.

6. You can now step through the code on your client, and simultaneously step through the code on
the VistA M Server side for any RPCs that your client calls.

6.3 RPC Error Trapping
M errors on the VistA M Server that occur during RPC execution are trapped by the use of M and Kernel
error handling. In addition, the M error message is sent back to the Delphi client. Delphi raises an
exception EBrokerError and a popup dialogue box displaying the error. At this point RPC execution
terminates and the channel is closed.

In some instances, an application’s RPC could get a memory allocation error on the VistA M Server.
Kernel does not trap these errors. However, these errors are trapped in the operating system’s error trap.
For example, if an RPC receives or generates an abundance of data in local memory, the symbol table

RPC Broker 1.1
Developer’s Guide 155 February 2017

could be depleted resulting in a memory allocation error. To diagnose this problem, users should check
the operating system’s error trap.

6.4 Broker Error Messages
Table 38 list of errors/messages are Broker-specific and are not Winsock related:

Table 38: Broker Error Messages

Error/Message Name Number Description

Insufficient Heap XWB_NO_HEAP 20001 This is a general error condition indicating
insufficient memory. It can occur when an
application allocates memory for a variable.
This error occurs for some of the following
reasons:

• Too many open applications.
• Low physical memory.
• Small virtual memory swap file (if

dynamic, maybe low disk space).
• User selecting too many records.

Resolution: Common solutions to this error
include the following:

• Close some or all other applications.
• Install more memory.
• Increase the swap file size or, if

dynamic, leave more free space on
disk.

• Try working with smaller data sets.
• Reboot the workstation.

M Error - Use
^XTER

XWB_M_REJECT 20002 The VistA M Server side of the application
errored out. The Kernel error trap has
recorded the error.
Resolution: Examine the Kernel error trap
for more information and specific corrective
actions.

Signon was not
completed

XWB_BadSignOn 20004 This error indicates the user did not
successfully signon.
Resolution: Either the Access and Verify
codes were incorrect or the user clicked
Cancel on the VistA Sign-on window.

BrokerConnections
list could not be
created

XWB_BldConnectList 20005 This error is a specific symptom of a low
memory condition.
Resolution: For a detailed explanation and
corrective measures, see the “Insufficient
Heap” error message.

RpcVersion cannot
be empty

XWB_NullRpcVer 20006 This error occurs when an RPC does not
have an associated version number. Each
RPC must have a version number.
Resolution: Contact the developers
responsible for the application software to

RPC Broker 1.1
Developer’s Guide 156 February 2017

Error/Message Name Number Description
take corrective action.

Server unable to
read input data
correctly

XWB_BadReads 20008 This error indicates that the format of the
RPC input data was incorrect.
Resolution: Contact the developers
responsible for the application software to
take corrective action.

System was out of
memory,
executable file was
corrupt, or
relocations were
invalid

XWB_ExeNoMem 20100 This error may indicate a low memory
condition, or may have errors in the
application executable file.
Resolution: Contact the developers
responsible for the application software to
take corrective action.

File was not found XWB_ExeNoFile 20102 This error indicates that the referenced file
could not be found.
Resolution: Contact the developers
responsible for the application software to
take corrective action.

Path was not
found

XWB_ExeNoPath 20103 This error indicates that the referenced
directory could not be found.
Resolution: Contact the developers
responsible for the application software to
take corrective action.

Attempt was made
to dynamically link
to a task or there
was a sharing or
network-protection
error

XWB_ExeShare 20105 This error most likely indicates network
problems.
Resolution: It may resolve itself over time.
If not, contact the developers responsible for
the application software to take corrective
action.

Library required
separate data
segments for each
task

XWB_ExeSepSeg 20106 This error indicates that the format of the
RPC data was incorrect.
Resolution: Contact the developers
responsible for the application software to
take corrective action.

There was
insufficient
memory to start
the application

XWB_ExeLoMem 20108 This error is a specific symptom of a low
memory condition.
Resolution: For a detailed explanation and
corrective measures, see the “Insufficient
Heap” error message.

Windows version
was incorrect

XWB_ExeWinVer 20110 This error indicates that the application was
developed for a specific version of Windows,
and is not compatible with this system.
Resolution: Contact the developers
responsible for the application software to
take corrective action.

Executable file
was invalid. Either
it was not a

XWB_ExeBadExe 20111 This error indicates a problem with the
Windows executable application.
Resolution: Contact the developers

RPC Broker 1.1
Developer’s Guide 157 February 2017

Error/Message Name Number Description
Windows
application or there
was an error in the
EXE

responsible for the application software to
take corrective action.

Application was
designed for a
different operating
system

XWB_ExeDifOS 20112 This error indicates that the application is
not compatible with this operating system.
Resolution: Contact the developers
responsible for the application software to
take corrective action.

Remote procedure
not registered to
application

XWB_RpcNotReg 20201 This error indicates the application
attempted to execute an RPC that was not
entered into the RPC Multiple field in the
REMOTE PROCEDURE File (#8994) for
this application.
Resolution: The developers responsible for
the application should be contacted.
As a “last resort” corrective measure, you
can try to re-index the cross-reference on
the RPC field (#.01) in the REMOTE
PROCEDURE File (#8994) with the RPC
field (#320) of the OPTION file (#19).
Ideally, this should only be attempted during
off or low system usage.

6.5 EBrokerError
6.5.1 Unit
TRPCB Unit

6.5.2 Description
The EBrokerError is an exception raised by the TRPCBroker Component. This exception is raised when
an error is encountered when communicating with the VistA M Server. You should use a try...except
block around all server calls to handle any EbrokerError exceptions that may occur.

For example:
Figure 80: Error Handling—EBrokerError Exception

try
 brkrRPCBroker1.Connected:= True;
except
 on EBrokerError do
 begin
 ShowMessage(‘Connection to server could not be established!’);
 Application.Terminate;
 end;
end;

RPC Broker 1.1
Developer’s Guide 158 February 2017

 REF: For descriptions/resolutions to specific error messages that can be displayed by
EBrokerError, see the “Broker Error Messages” section.

6.6 Testing the RPC Broker Connection
To test the RPC Broker connection from your workstation to the VistA M Server, use the RPC Broker
Diagnostic Program (i.e., RPCTEST.exe, distributed with patch XWB*1.1*47).

 REF: For a complete description of the RPC Broker Diagnostic program, see Section 4,
“Troubleshooting,” in the RPC Broker Systems Management Guide.

 REF: For a demonstration/test using the Broker to connect to a VistA M Server, run the RPC
Broker Example (32-Bit) (i.e., BrokerExample.exe); located in the following directory:

BDK32\Samples\BrokerEx

6.7 Client Timeout and Buffer Clearing
If a remote procedure call (RPC) fails to successfully complete due to a timeout on the client, the buffer
on the VistA M Server contains data from the uncompleted call. Without special handling, this buffer on
the server is returned whenever the next RPC is executed.

The solution to this problem is:

1. The RPCTimeLimit Property on the TRPCBroker Component on the client helps avoid the
problem in the first place.

2. In the event of a cancellation of a Network I/O operation, the Broker state on the client changes
from NO FLUSH to FLUSH. When this state change occurs, the next RPC executed undergoes a
READ operation prior to execution where any leftover incoming buffer is discarded. At the end
of this operation, the Broker state on the client returns to NO FLUSH and the RPC executes
normally. While the FLUSH state exists, users can experience a delay while the corrupted RPC
data is discarded. The delay is proportional to the amount of data in the buffer.

6.8 Memory Leaks
A good indication of a memory leak is when a running program is steadily decreasing the free pool of
memory. As it runs or every time the program is started and stopped, free memory is steadily decreased.

Specifically, a program requests some bytes of memory from the Microsoft® Windows operating system
(OS). When the OS provides it, it marks those bytes as taken. The free pool of memory (i.e., unmarked
bytes) is decreased. When the program is finished with the memory, it should return the memory back to
the OS by calling the FREE or DISPOSE functions. This allows the OS to clear the “taken” status of that
memory; thereby, replenishing its free pool. When a developer forgets to free the memory after use or the
program fails before it has a chance to execute the code that frees the memory, the memory is not
reclaimed.

At all times, the program should keep track of which memory it is using. It does this by storing “Handles”
(i.e., memory addresses of the beginning byte of each memory block). Later, when freeing memory, the
Handle is used to indicate which memory address to free. If the variable that holds such a Handle is
overwritten, there is no way to determine the Handle.

Nine out of ten times, memory leakage can be traced back to the application code that requests memory
and then forgets to return it, or cannot clean up after a crash.

RPC Broker 1.1
Developer’s Guide 159 February 2017

As common with other professional-level languages (e.g., C/C++), Delphi has constructs that applications
can use to:

1. Request memory.

2. Type cast it.

3. Return it.

This requires developers to use their best judgement on how to best work with the system memory.

Avoiding memory leaks (and the often-subtle coding errors that lead to them) is a challenge for Delphi
developers, especially for those whose main experience is working with M.

The insidious effect of these leaks (e.g., gobbling up 1K of memory each time that a certain event occurs)
makes them difficult to detect with normal program testing. “Normal testing” means exercising all the
possible paths through the code once, a difficult enough process in a Microsoft® Windows environment.
Often, these leaks result in a symptom only under peculiar conditions (e.g., several other applications are
running, reducing system resources), or only after extended use of the application (e.g., do you notice that
Microsoft® Windows problems crop up in the afternoon, even though you were doing the same thing that
morning?).

The most common symptom described is the following:

“The computer was working fine until the user installed the XYZ VistA software application on their
PC. Now, it freezes up (gives an error message, says it is out of memory, etc.) all the time, even when
the user is not using the XYZ package. No, the user cannot duplicate it, it just happens!”

One of the reasons that there is an extensive market for automated testing tools for Microsoft® Windows
and client/server applications is that thorough testing is very difficult to do manually.

Fortunately, there are diagnostic products available for detecting code that cause memory leaks. It helps
developers and code reviewers to find these leaks. Its use by people just starting out in Delphi
development helps them identify the situations that cause memory leaks. This can serve as a good
learning experience for new Delphi developers.

No application is immune from memory leaks, careful analysis of previous Broker code revealed some
places where, under certain conditions, memory was not being released after it was used (i.e., memory
leaks). These areas have been identified and corrected with RPC Broker 1.1.

RPC Broker 1.1
Developer’s Guide 160 February 2017

7 Tutorial
7.1 Tutorial: Introduction
The major functions of a TRPCBroker Component in a Delphi-based application are to:

• Connect to an RPC Broker VistA M Server system from a client.

• Execute remote procedure calls (RPCs) on that system.

• Return data results from RPC to the client.

This tutorial guides users through using a TRPCBroker Component to perform each of these tasks by
having you create a Delphi-based application, step-by-step. This application retrieves a list of terminal
types from the VistA M Server, and displays information about each terminal type.

After you have completed this tutorial, you should be able to:

• Include a TRPCBroker Component in a Delphi-based application.

• Retrieve the end-user client workstation’s designated VistA M Server and port to connect.

• Establish a connection through the RPC Broker component to an RPC Broker VistA M Server.

• Create M routines that return data in the formats necessary to be called from RPCs.

• Create RPCs.

• Call RPCs from a Delphi-based application to retrieve data from VistA M database.

• Pass parameters from the Delphi-based application to RPCs.

7.1.1 Tutorial Procedures
• Tutorial: Advanced Preparation

• Tutorial—Step 1: RPC Broker Component

• Tutorial—Step 2: Get Server/Port

• Tutorial—Step 3: Establish Broker Connection

• Tutorial—Step 4: Routine to List Terminal Types

• Tutorial—Step 5: RPC to List Terminal Types

• Tutorial—Step 6: Call ZxxxTT LIST RPC

• Tutorial—Step 7: Associating IENs

• Tutorial—Step 8: Routine to Retrieve Terminal Types

• Tutorial—Step 9: RPC to Retrieve Terminal Types

• Tutorial—Step 10: Call ZxxxTT RETRIEVE RPC

• Tutorial—Step 11: Register RPCs

• Tutorial—Using VA FileMan Delphi Components (FMDC)

• Tutorial—Source Code (Sample)

RPC Broker 1.1
Developer’s Guide 161 February 2017

7.2 Tutorial: Advanced Preparation
7.2.1 Namespacing of Routines and RPCs
Each tutorial user should choose a unique namespace beginning with Z, concatenated with two or three
other letters, for example ZYXU. Use this namespace as the beginning of the names for all routines and
RPCs created during this tutorial. Using the unique namespace protects the system you are using from
having existing routines and RPCs overwritten. This namespace is referred to as Zxxx during the tutorial.

7.2.2 Tutorial Prerequisites
To use this tutorial:

• User should already have M programming skills, and some familiarity with Delphi and Object
Pascal.

• User must have Delphi and the Broker Development Kit (BDK) installed on the workstation.

• The client workstation must have network access to an M account that is running a RPC Broker
server process.

• Users must have programmer access in this M account, and it should be a Test account (not
Production). Also, users need the XUPROGMODE security key assigned to their user account.

7.3 Tutorial—Step 1: RPC Broker Component
The first step of this tutorial is to create a Delphi-based application that includes a TRPCBroker
Component.

To create a Delphi-based application that includes a TRPCBroker Component, do the following:

1. In Delphi, create a new application. Delphi creates a blank form, named Form1.

2. Set Form1’s Caption property to Terminal Type Display.

3. From the Kernel component palette tab, add a TRPCBroker Component to your form. The
instance of the component is automatically named RPCBroker1. It should be renamed to
brkrRPCBroker1.

 NOTE: In general the name of the component can be any meaningful name that begins
with “brkr” to indicate a TRPCBroker Component.

4. Leave the default values for Server and ListenerPort (see Server Property and ListenerPort
Property) as is (they are retrieved from your workstation’s Registry). In Section 7.4 you will add
code to retrieve these values at run-time from the workstation’s Registry.

5. Set the ClearParameters Property and ClearResults Property to True if they are not set to True
already. This ensures that each time a call to an RPC is made, the Results Property is cleared
beforehand, and the Param Property is cleared afterwards.

RPC Broker 1.1
Developer’s Guide 162 February 2017

6. Your form should look like Figure 81:
Figure 81: Tutorial—Step 1: RPC Broker Component: Sample Form Output

The next tasks are to use the TRPCBroker Component to retrieve the client workstation’s RPC
Broker server and port information (Tutorial—Step 2: Get Server/Port), and then to establish a
connection through the TRPCBroker Component to the VistA M Server (Tutorial—Step 3:
Establish Broker Connection).

RPC Broker 1.1
Developer’s Guide 163 February 2017

7.4 Tutorial—Step 2: Get Server/Port
The TRPCBroker Component added to your form is hard-coded to access the Broker server and listener
port that it picks up from the (developer) workstation (by default, BROKERSERVER and 9200).
Naturally, you do not want this to be the only server and port to which your application can connect. To
retrieve the end-user workstation’s designated Broker server and port to connect, as stored in their
Registry, you can use the GetServerInfo Function.

To retrieve the end-user workstation’s designated server and port, do the following:

1. Include the RPCConf1 Unit in the Pascal file’s uses clause. This is the unit of which
GetServerInfo Function is a part.

2. Double-click on a blank region of the form. This creates an event handler procedure,
TForm1.FormCreate, in the Pascal source code.

3. Add code to the FormCreate event handler that retrieves the correct server and port to connect,
using the GetServerInfo Function. If mrCancel is returned, the code should quit. Otherwise, the
code should then set brkrRPCBroker1’s Server Property and ListenerPort Property to the returned
values.

The code should look like Figure 82:
Figure 82: Tutorial—Step 2: Get Server/Port: Example

procedure TForm1.FormCreate(Sender: TObject);
var
 ServerStr: String;
 PortStr: String;
begin
 // Get the correct port and server from the Registry.
 if GetServerInfo(ServerStr,PortStr)<> mrCancel then
 begin
 brkrRPCBroker1.Server:=ServerStr;
 brkrRPCBroker1.ListenerPort:=StrToInt(PortStr);
 {connectOK}
 end
 else
 Application.Terminate;
end;

4. Now that you have code to retrieve the appropriate RPC Broker server and listener port, the next
step of the tutorial (Tutorial—Step 3: Establish Broker Connection) is for the application to use
the TRPCBroker Component to establish a connection to the VistA M Server.

RPC Broker 1.1
Developer’s Guide 164 February 2017

7.5 Tutorial—Step 3: Establish Broker Connection
Now that the application can determine the appropriate RPC Broker server and port to connect
(Tutorial—Step 2: Get Server/Port), add code to establish a connection to the designated RPC Broker
server from the application. The act of establishing a connection leads the user through signon. If signon
succeeds, a connection is established.

To establish a connection from the application to a RPC Broker server, do the following:

1. Add code to Form1’s OnCreate event handler. The code should:

a. Set brkrRPCBroker1’s Connected Property to True (inside of an exception handler
try...except block). This causes an attempt to connect to the RPC Broker server.

b. Check if an EBrokerError exception is raised. If this happens, connection failed, and the code
should inform the user of this and terminate the application.

The OnCreate event handler should now look like Figure 83:
Figure 83: Tutorial—Step 3: Establish Broker Connection: Example

procedure TForm1.FormCreate(Sender: TObject);
var
 ServerStr: String;
 PortStr: String;
begin
 // Get the correct port and server from the Registry.
 if GetServerInfo(ServerStr,PortStr)<> mrCancel then
 {connectOK begin}
 begin
 brkrRPCBroker1.Server:=ServerStr;
 brkrRPCBroker1.ListenerPort:=StrToInt(PortStr);
 // Establish a connection to the RPC Broker server.
 try
 brkrRPCBroker1.Connected:=True;
 except
 On EBrokerError do
 {error begin}
 begin
 ShowMessage(‘Connection to server could not be established!’);
 Application.Terminate;
 {error end}
 end;
 {try end}
 end;
 {connectOK end}
 end
 else
 Application.Terminate;
end;

 NOTE: Every call that invokes an RPC Broker server connection should be done in an
“exception handler” try...except block, so that EBrokerError exceptions can be trapped.

2. Save, compile and run the application. It should connect to the VistA M Server returned by the
GetServerInfo Function. You may be prompted to sign on with 2-factor authentication (2FA) or
Access and Verify codes. If you can connect successfully, the application runs (at this point, it is
just a blank form). Otherwise, troubleshoot the RPC Broker connection until the application
connects.

RPC Broker 1.1
Developer’s Guide 165 February 2017

3. If the server system defined in the Registry is not the development system (the one on which
RPCs are created for this application), update the Registry using the ServerList.exe program so
that the application connects to the proper VistA M Server.

4. Now that the application can establish a connection to the end-user’s server system, you can
retrieve data from the VistA M Server.

The next steps of the tutorial create a custom RPC that retrieves a list of all of the terminal types
on the VistA M Server and calls that RPC from the application.

7.6 Tutorial—Step 4: Routine to List Terminal Types
Now that the application uses an RPC Broker component to connect correctly to an RPC Broker server
(Tutorial—Step 3: Establish Broker Connection), you are ready to create custom RPCs that the
application can call. For the tutorial, you will create an RPC that retrieves the list of all terminal types
from the RPC Broker server.

The first step in creating an RPC is to create the routine that the RPC executes. You must create its input
and output in a defined format that is compatible with being executed as an RPC.

To create the routine that the RPC executes, do the following:

1. Choose the data format that the RPC should return. The type of data needed to return to the client
application determines the format of the routine that the RPC calls. There are five return value
types for RPCs:

• SINGLE VALUE

• ARRAY

• WORD PROCESSING

• GLOBAL ARRAY

• GLOBAL INSTANCE

Since the type of data the tutorial application would like returned is a list of terminal types, and
that list could be quite long, use a return value type GLOBAL ARRAY for the RPC. For the
routine called by the RPC, this means that:

• The routine should return a list of terminal types in a global. Each terminal type should
be on an individual data node, subscripted numerically.

• The return value of the routine (always returned in the routine’s first parameter) should
be the global reference of the data global, in closed root form. The data nodes should be
one level descendant from the global reference.

2. In the M account that the TRPCBroker Component connects to, create a routine that outputs a list
of terminal types in the format determined above. The format for each data node that is returned
for a terminal type could be anything; for the sake of this application, set each data node to
“ien^.01 field” for the terminal type in question. Store each node in ^TMP($J,”ZxxxTT”,#), as
shown in Figure 84.

RPC Broker 1.1
Developer’s Guide 166 February 2017

Figure 84: Tutorial—Step 4: Routine to List Terminal Types: Example
ZxxxTT ;ISC-SF/KC TUTORIAL RTN, BRK 1.1; 7/22/97
 ;;1.0;;
TERMLIST(GLOBREF) ; retrieve list of term types
 ; return list in ^TMP($J,”ZxxxTT”)
 ; format of returned results: ien^.01 field
 N % ; scratch variable
 K ^TMP($J,”ZxxxTT”) ; clear data return area
 D LIST^DIC(3.2) ; retrieve list of termtype entries
 ; now set termtype entries into data global
 I ‘$D(DIERR) D
 .S %=0 F S %=$O(^TMP(“DILIST”,$J,2,%)) Q:%=“” D
 ..S
^TMP($J,”ZxxxTT”,%)=$G(^TMP(“DILIST”,$J,2,%))_“^”_$G(^TMP(“DILIST”,$J,1,%))
 K ^TMP(“DILIST”,$J) ; clean up
 S GLOBREF=$NA(^TMP($J,“ZxxxTT”)) ; set return value
 Q

3. Test the routine. Call it like the Broker would:

> D TERMLIST^ZxxxTT(.RESULT)

a. Confirm that the return value is the correct global reference:

> W RESULT
^TMP(566363396,”ZxxxTT”)

b. Confirm that the data set into the global is in the format shown in Figure 85:
Figure 85: Tutorial—Step 4: Routine to List Terminal Types: Example confirming global

data format
^TMP(566347920,“ZxxxTT”,1) = 1^C-3101
^TMP(566347920,“ZxxxTT”,2) = 2^C-ADDS
^TMP(566347920,“ZxxxTT”,3) = 3^C-ADM3
^TMP(566347920,“ZxxxTT”,4) = 38^C-DATAMEDIA
^TMP(566347920,“ZxxxTT”,5) = 106^C-DATATREE
^TMP(566347920,“ZxxxTT”,6) = 4^C-DEC
^TMP(566347920,“ZxxxTT”,7) = 5^C-DEC132
^TMP(566347920,“ZxxxTT”,8) = 93^C-FALCO
^TMP(566347920,“ZxxxTT”,9) = 6^C-H1500
^TMP(566347920,“ZxxxTT”,10) = 103^C-HINQLINK
^TMP(566347920,“ZxxxTT”,11) = 132^C-HINQLINK
^TMP(566347920,“ZxxxTT”,12) = 63^C-HP110
^TMP(566347920,“ZxxxTT”,13) = 34^C-HP2621

4. Once you have tested the routine, and confirmed that it returns data correctly, the next step
(Tutorial—Step 5: RPC to List Terminal Types) is to create the RPC that calls this routine.

RPC Broker 1.1
Developer’s Guide 167 February 2017

7.7 Tutorial—Step 5: RPC to List Terminal Types
Now that you have created an RPC-compatible routine to list terminal types (Tutorial—Step 4: Routine to
List Terminal Types), you can go ahead and create the RPC itself (the entry in the REMOTE
PROCEDURE File [#8994]) that calls the routine.

To create an RPC that uses the TERMLIST^ZxxxTT routine, do the following:

1. Using VA FileMan, create a new RPC entry in the REMOTE PROCEDURE File (#8994). Set up
the RPC as shown in Figure 86:

Figure 86: Tutorial—Step 5: RPC to List Terminal Types: Example
NAME: ZxxxTT LIST
TAG: TERMLIST
ROUTINE: ZxxxTT
RETURN VALUE TYPE: GLOBAL ARRAY
WORD WRAP ON: TRUE
DESCRIPTION: Used in RPC Broker developer tutorial.

2. The RPC’s RETURN VALUE TYPE is set to GLOBAL ARRAY. This means that the RPC
expects a return value that is a global reference (with data stored at that global reference).

3. Also, the RPC’s WORD WRAP ON is set to TRUE. This means each data node from the VistA
M Server is returned as a single node in the Results Property of the TRPCBroker Component in
Delphi. Otherwise, the data would be returned concatenated into a single node in the Results
Property.

4. The next step of the tutorial (Tutorial—Step 6: Call ZxxxTT LIST RPC) is to call this RPC from
the tutorial application, through its TRPCBroker Component.

7.8 Tutorial—Step 6: Call ZxxxTT LIST RPC
Once you have created and tested the ZxxxTT LIST RPC on the VistA M Server, use the Delphi-based
application’s TRPCBroker Component to call that RPC.

To call the ZxxxTT LIST RPC from the Delphi-based application to populate a list box, do the following:

1. Place a TListBox component on the form. It should be automatically named ListBox1.

Size it so that it uses the full width of the form, and half of the form’s height.

2. Place a button beneath ListBox1:

Set its caption to “Retrieve Terminal Types”.

Size the button so that it is larger than its caption.

3. Double-click on the button. This creates an event handler procedure, TForm1.Button1Click, in
the Pascal source code.

RPC Broker 1.1
Developer’s Guide 168 February 2017

4. In the TForm1.Button1Click event handler, add code to call the ZxxxTT LIST RPC and
populate the list box with the retrieved list of terminal type entries. This code should:

a. Set RCPBroker1’s RemoteProcedure Property to ZxxxTT LIST.

b. Call brkrRPCBroker1’s Call Method (in a try...except exception handler block) to invoke
that RPC.

c. Retrieve results from brkrRPCBroker1’s Results Property, setting them one-by-one into the
list box’s Items property.

This code should look like the code in Figure 87:
Figure 87: Tutorial—Step 6: Call ZxxxTT LIST RPC: Example

Procedure TForm1.Button1Click(Sender: TObject);
var
 i: integer;
begin
 brkrRPCBroker1.RemoteProcedure:=‘ZxxxTT LIST’;
 try
 {call begin}
 begin
 brkrRPCBroker1.Call;
 ListBox1.Clear;
 for i:=0 to (brkrRPCBroker1.Results.Count-1) do
 ListBox1.Items.Add(piece(brkrRPCBroker1.Results[i],‘^’,2));
 {call end}
 end;
 except
 On EBrokerError do
 ShowMessage(‘A problem was encountered communicating with the
server.’);
 {try end}
 end;
end;

5. Include the mfunstr unit in the Uses clause of the project’s Pascal source file. This enables the
application to use the piece function included in mfunstr (see the “XWB IM HERE” section).

6. The user account must have XUPROGMODE security key assigned. This allows the application
to execute any RPC, without the RPC being registered. Later in the tutorial you will register your
RPCs.

RPC Broker 1.1
Developer’s Guide 169 February 2017

7. Run the application, and click Retrieve Terminal Types. It should retrieve and display
terminal type entries, and appear as shown in Figure 88:

Figure 88: Tutorial—Step 6: Call ZxxxTT LIST RPC: Sample Output Form

8. Now that you can retrieve a list of terminal type entries, the next logical task is to retrieve a
particular entry when a user selects that entry in the list box.

7.9 Tutorial—Step 7: Associating IENs
When a user selects a terminal type entry in the list box, a typical action is to retrieve the corresponding
record and display its fields. The key to retrieving any VA FileMan record is knowing the IEN of the
record. Thus, when a user selects an entry in the list box, you need to know the IEN of the corresponding
VA FileMan entry. However, the list box items themselves only contain the name of each entry, not the
IEN.

The subscripting of items in the list box still matches the original subscripting of items returned in
brkrRPCBroker1’s Results Property, as performed by the following code in Button1Click event handler:

for i:=0 to (brkrRPCBroker1.Results.Count-1) do
 ListBox1.Items.Add(piece(brkrRPCBroker1.Results[i],’^’,2));

If no further calls to brkrRPCBroker1 were made, you could simply refer back to brkrRPCBroker1’s
Results[x] item to obtain the matching IEN of a list boxes’ Items[x] item. But, since brkrRPCBroker1 is
used again, the Results Property is cleared. So, the results must be saved off in another location, if you
want to be able to refer to them after other Broker calls are made.

RPC Broker 1.1
Developer’s Guide 170 February 2017

To save off the Results to another location, do the following:

1. Create a variable named TermTypeList, of type TStrings. This is where
brkrRPCBroker1.Results is saved. Create the variable in the section of code where TForm1 is
defined as a class:

Figure 89: Tutorial—Step 7: Associating IENs: Example of Creating a Variable to Save
Results

type
 TForm1 = class(TForm)
 brkrRPCBroker1: TRPCBroker;
 ListBox1: TListBox;
 Button1: TButton;
 procedure FormCreate(Sender: TObject);
 procedure Button1Click(Sender: TObject);
 private
 {Private declarations}
 public
 {Public declarations}
// Added declaration of TermTypeList.
 TermTypeList: TStringList;
end;

2. In Form1’s OnCreate event handler, call the Create method to initialize the TermTypeList. Do
this in the first line of code of the event handler:

TermTypeList:=TStringList.Create;

3. Create an event handler for Form1’s OnDestroy event (select Form1, go to the Events tab of the
Object Inspector, and double-click on the right-hand column for the OnDestroy event). In that
event handler, add one line of code to call the Free method for TermTypeList. This frees the
memory used by the list:

Figure 90: Tutorial—Step 7: Associating IENs: Example of Creating an Event Handler to
Free Memory

procedure TForm1.FormDestroy(Sender: TObject);
begin
 TermTypeList.Free;
end;

RPC Broker 1.1
Developer’s Guide 171 February 2017

4. In Button1’s OnClick event handler, add a line of code to populate TermTypeList with the list of
terminal types returned in brkrRPCBroker1’s Results Property. This code uses the Add method of
TStrings sequentially so that the subscripting of TermTypeList matches the subscripting of
Results. The code for that event handler should then look like Figure 91:

Figure 91: Tutorial—Step 7: Associating IENs: Example of Creating an Event Handler to
Populate a List of Terminal Types

procedure TForm1.Button1Click(Sender: TObject);
var
 i: integer;
begin
 brkrRPCBroker1.RemoteProcedure:=‘Zxxx LIST’;
 try
 {call begin}
 begin
 brkrRPCBroker1.Call;
 for i:=0 (brkrRPCBroker1.Results.Count-1) do begin {copy begin}
 ListBox1.Items.Add(piece(brkrRPCBroker1.Results[i],‘^’,2));
 // Added line.
 TermTypeList.Add(brkrRPCBroker1.Results[i]);
 {copy end}
 end;
 {call end}
 end;
 except
 On EBrokerError do
 ShowMessage(‘A problem was encountered communicating with the
server.’);
 {try end}
 end;
end;

5. Determine (and display) the IEN of the corresponding terminal type when a user selects an item
in the list box:

a. Create an OnClick event handler for ListBox1 by double-clicking on the list box.

b. Add code to the new event handler that checks if an item is selected. If an item is selected in
the list box, display the first piece of the corresponding item saved off in the TermTypeList
array (the index subscripts of TermTypeList and of the list box match each other). This is the
IEN of the corresponding VA FileMan entry.
Figure 92: Tutorial—Step 7: Associating IENs: Example of Creating an Event Handler to

Check if an Item is Selected
procedure TForm1.ListBox1Click(Sender: TObject);
var
 ien: String;
begin
 if (ListBox1.ItemIndex <> -1) then
 {displayitem begin}
 begin
 ien:=piece(TermTypeList[ListBox1.ItemIndex],’^’,1);
 ShowMessage(ien);
 {displayitem end}
 end;
end;

RPC Broker 1.1
Developer’s Guide 172 February 2017

6. Compile and run the application. When you click on an item in the list box, the IEN
corresponding to that item should be displayed in a popup message window.

7. Now that you can determine the IEN of any entry the user selects in the list box, you can retrieve
and display the corresponding VA FileMan record for any selected list box entry.

7.10 Tutorial—Step 8: Routine to Retrieve Terminal Types
Now that you have associated an IEN for each record displayed in the list box (Tutorial—Step 7:
Associating IENs), you can use that IEN to display fields from any terminal type entry in the list box that
a user selects. To retrieve the fields for any selected terminal type entry, create a second custom RPC.
This RPC needs to take an input parameter, the record IEN, to know which record to retrieve.

To create an RPC routine to retrieve individual terminal type records, do the following:

1. Choose the data format that the RPC should return. The type of data needed to return to the client
application determines the format of the routine that the RPC calls. In this case, the RPC should,
given an IEN, return fields .01, 1, 2, 3, 4, 6, and 7 (Name, Right Margin, Form Feed, Page
Length, Back Space, Open Execute, and Close Execute).

Since this information is constrained and small, a return type of ARRAY would be suitable for
this RPC. The return format of the array is arbitrary; for the sake of this application, the routine
should return fields .01, 1, 2, 3, and 4 in node 0; field 6 (a 245-character field) in node 1; and field
7 (also a 245-character field) in node 2. This array must be returned in the first parameter to the
routine.

2. The routine for this RPC also needs to be able to take an IEN as an input parameter. Any
additional input parameters, such as one for the IEN, must follow the required input parameter in
which results are returned.

3. Add a second subroutine to the ZxxxTT routine for the second RPC, similar to Figure 93. This
subroutine uses an IEN to retrieve fields for a particular terminal type. It then sets three result
nodes, each containing a specified set of fields for the record corresponding to the IEN parameter.
Figure 93: Tutorial—Step 8: Routine to Retrieve Terminal Types: Example of a Subroutine

to Retrieve Fields for a Particular Terminal Type and Set Result Nodes
TERMENT(RESULT,IEN) ; retrieve a string of fields for a termtype
 ; format of results (by field number):
 ; RESULT(0)=.01^1^2^3^4
 ; RESULT(1)=6
 ; RESULT(2)=7
 ;
 N I,ARRAY S IEN=IEN_“,”,RESULT(1)=“”
 D GETS^DIQ(3.2,IEN,“.01;1;2;3;4;6;7”,“”,“ARRAY”)
 S RESULT(0)=“”
I ‘$D(DIERR) D
 .F I=.01,1,2,3,4 D
 ..S RESULT(0)=RESULT(0)_ARRAY(3.2,IEN,I)_“^”
 .S RESULT(1)=ARRAY(3.2,IEN,6)
 .S RESULT(2)=ARRAY(3.2,IEN,7)
 Q

4. Test the routine. Call it like the Broker would:

>D TERMENT^ZxxxTT(.ARRAY,103)

RPC Broker 1.1
Developer’s Guide 173 February 2017

5. Confirm that the return array contains the specified fields in the nodes shown in Figure 94:
Figure 94: Tutorial—Step 8: Routine to Retrieve Terminal Types: Example Confirming

Returned Array Contains the Specified Fields
ARRAY(0)=C-HINQLINK^80^#,$C(27,91,50,74,27,91,72)^24^$C(8)^
ARRAY(1)=U $I:(0:255::255:512)
ARRAY(2)=U $I:(:::::512) C $I

6. Once you have tested the routine, and confirmed that it returns data correctly, the next step
(Tutorial—Step 9: RPC to Retrieve Terminal Types) is to create the RPC that calls this routine.

7.11 Tutorial—Step 9: RPC to Retrieve Terminal Types
Now that you have created an RPC-compatible routine to retrieve fields from a terminal type record
(Tutorial—Step 8: Routine to Retrieve Terminal Types), create the RPC itself.

To create an RPC that uses the TERMENT^ZxxxTT routine, do the following:

1. Using VA FileMan, create a new RPC entry in the REMOTE PROCEDURE File (#8994). Set up
the RPC as shown in Figure 95:

Figure 95: Tutorial—Step 9: RPC to Retrieve Terminal Types: Example of an RPC Setup
NAME: ZxxxTT RETRIEVE
TAG: TERMENT
ROUTINE: ZxxxTT
RETURN VALUE TYPE: ARRAY
DESCRIPTION: Used in RPC Broker tutorial.
INPUT PARAMETER: IEN PARAMETER TYPE: LITERAL

2. The RPC’s RETURN VALUE TYPE is set to ARRAY. This means that the RPC expects a return
value that contains results nodes, each subscripted only at the first subscript level.

3. The WORD WRAP ON setting does not affect RPCs whose RETURN VALUE TYPE is
ARRAY.

4. The additional input parameter needed to pass in a record IEN is documented in the INPUT
PARAMETER Multiple. Its parameter type is LITERAL, which is appropriate when being
passed the numeric value of an IEN.

5. This RPC can now be called from a Delphi-based application, through the TRPCBroker
Component.

RPC Broker 1.1
Developer’s Guide 174 February 2017

7.12 Tutorial—Step 10: Call ZxxxTT RETRIEVE RPC
When a user selects a terminal type entry in the list box, the OnClick event is triggered. The ZxxxTT
RETRIEVE RPC can be called from that OnClick event, as a replacement for the code there that simply
displays the IEN of any selected record.

To use the ZxxxTT RETRIEVE RPC to display fields from a selected terminal type, do the following:

1. Create labels and edit boxes for each of the fields the RPC returns from the Terminal type file:
Table 39: Tutorial—Step 10: Call ZxxxTT RETRIEVE RPC: Sample RPC Fields Returned and

Label Information

Terminal Type Field: Add a TEdit component named: Add a Label with the Caption:

.01 Name Name

1 RightMargin Right Margin:

2 FormFeed Form Feed:

3 PageLength Page Length:

4 BackSpace Back Space:

6 OpenExecute Open Execute:

7 CloseExecute Close Execute:

2. Update ListBox1’s OnClick event handler. Add code so that when the user clicks on an entry in
the list box, the application calls the ZxxxTT RETRIEVE RPC to retrieve fields for the
corresponding terminal type, and displays those fields in the set of TEdit controls on the form.
This code should:

a. Set RCPBroker1’s RemoteProcedure Property to ZxxxTT RETRIEVE.

b. Pass the IEN of the selected terminal type to the RPC, using the TRPCBroker Component’s
runtime Param Property. Pass the IEN in the Value Property
(i.e., brkrRPCBroker1.Param[0].Value).

c. Pass the PType for the IEN parameter in the brkrRPCBroker1.Param[0].PType. Possible
types are literal, reference, and list. In this case, to pass in an IEN, the appropriate PType is
literal.

d. Call brkrRPCBroker1’s Call Method (in a try...except exception handler block) to invoke the
ZxxxTT RETRIEVE RPC.

e. Set the appropriate pieces from each of the three Results nodes into each of the TEdit boxes
corresponding to each returned field.

RPC Broker 1.1
Developer’s Guide 175 February 2017

The code for the OnClick event handler should look like Figure 96:
Figure 96: Tutorial—Step 10: Call ZxxxTT RETRIEVE RPC: Sample of an OnClick Event

Handler
procedure TForm1.ListBox1Click(Sender: TObject);
var
 ien: String;
begin
 if (ListBox1.ItemIndex <> -1) then
 {displayitem begin}
 begin
 ien:=piece(TermTypeList[ListBox1.ItemIndex],‘^’,1);
 brkrRPCBroker1.RemoteProcedure:=‘ZxxxTT RETRIEVE’;
 brkrRPCBroker1.Param[0].Value := ien;
 brkrRPCBroker1.Param[0].PType := literal;
 try
 {call code begin}
 begin
 brkrRPCBroker1.Call;
 Name.Text:=piece(brkrRPCBroker1.Results[0],‘^’,1);
 RightMargin.Text:=piece(brkrRPCBroker1.Results[0],‘^’,2);
 FormFeed.Text:=piece(brkrRPCBroker1.Results[0],‘^’,3);
 PageLength.Text:=piece(brkrRPCBroker1.Results[0],‘^’,4);
 BackSpace.Text:=piece(brkrRPCBroker1.Results[0],‘^’,5);
 OpenExecute.Text:=brkrRPCBroker1.Results[1];
 CloseExecute.Text:=brkrRPCBroker1.Results[2];
 {call code end}
 end;
 except
 On EBrokerError do
 ShowMessage(‘A problem was encountered communicating with the
server.’);
 {try end}
 end;
 {displayitem end}
 end;
end;

RPC Broker 1.1
Developer’s Guide 176 February 2017

3. Compile and run the application. When you click on an entry in the list box now, the
corresponding fields should be retrieved and displayed in the set of edit boxes on your form, as
shown in Figure 97.

Figure 97: Tutorial—Step 10: Call ZxxxTT RETRIEVE RPC: Testing the Application

7.13 Tutorial—Step 11: Register RPCs
Up until now, it has been assumed that the only user of the application is you, and that you have
programmer access and the XUPROGMODE security key in the account where the RPCs are accessed.

Under any other circumstance, any RPCs that the application uses must be registered for use by the
application on the host system. Registration authorizes the RPCs for use by the client based on user
privileges.

To register the RPCs used by the tutorial application, do the following:

1. Create an option of type “B” (Broker). For example, create an option called ZxxxTT
TERMTYPE for the tutorial application.

2. In the “B”-type option’s RPC multiple, make one entry for each RPC the application calls. In the
case of this tutorial, there should be two entries:

ZxxxTT LIST

ZxxxTT RETRIEVE

RPC Broker 1.1
Developer’s Guide 177 February 2017

3. Follow the steps in the “RPC Security: How to Register an RPC” section to create an application
context, using the ZxxxTT TERMTYPE option.

Essentially, add a line of code that calls the CreateContext Method, and terminates the application
if False is returned. The code for Form1’s OnCreate event should now look like Figure 98:

Figure 98: Tutorial—Step 11: Register RPCs: Example
procedure TForm1.FormCreate(Sender: TObject);
var
 ServerStr: String;
 PortStr: String;
begin
 TermTypeList:=TStringList.Create;
 // Get the correct port and server from Registry.
 if GetServerInfo(ServerStr,PortStr)<> mrCancel then
 {connectOK begin}
 begin
 brkrRPCBroker1.Server:=ServerStr;
 brkrRPCBroker1.ListenerPort:=StrToInt(PortStr);
 // Establish a connection to the RPC Broker server.
 try
 brkrRPCBroker1.Connected:=True;
 // Check security.
 if not brkrRPCBroker1.CreateContext(‘ZxxxTT TERMTYPE’) then
 Application.Terminate;
 except
 On EBrokerError do
 {error begin}
 begin
 ShowMessage(‘Connection to server could not be established!’);
 Application.Terminate;
 {error end}
 end;
 {try end}
 end;
 {connectOK end}
 end
 else
 Application.Terminate;
end;

4. Compile and run the application. Try running it both with and without the XUPROGMODE
security key assigned to you. Without the XUPROGMODE security key, you are not able to run
the application unless the ZxxxTT TERMTYPE option is assigned to your menu tree.

RPC Broker 1.1
Developer’s Guide 178 February 2017

7.14 Tutorial—Using VA FileMan Delphi Components (FMDC)
Congratulations! You have created a sample application that performs entry lookup, and retrieves fields
from any record selected by the end-user. You are now ready to create Delphi-based applications using
the RPC Broker.

If the application needs to perform database tasks with VA FileMan on a VistA M Server, consider using
the FileMan Delphi Components (FMDC). These components automate the major tasks of working with
database records through Delphi. Among the functions they provide are:

• Automated entry retrieval into a set of controls.

• Automated online help for database fields.

• Automated validation of user data entry.

• Automated filing of changed data.

• IEN tracking in all controls.

• Automated DBS error tracking on the Delphi client.

• Generic lookup dialogue.

• Record locking.

• Record deletion.

If you need to do more than the most simple database tasks in your Delphi-based applications, the
FileMan Delphi Components (FMDC) encapsulate most of the coding needed to retrieve, validate, and
file VA FileMan data.

 REF: For more information on the VA FileMan Delphi Components (FMDC), see the FMDC
VA Intranet website.

RPC Broker 1.1
Developer’s Guide 179 February 2017

7.15 Tutorial—Source Code (Sample)
Figure 99: Tutorial Source Code

unit tut1;

interface

Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, Trpcb,
RPCConf1, StdCtrls, MFunStr;

type
 TForm1 = class(TForm)
 brkrRPCBroker1: TRPCBroker;
 ListBox1: TListBox;
 Button1: TButton;
 Name: TEdit;
 RightMargin: TEdit;
 FormFeed: TEdit;
 OpenExecute: TEdit;
 CloseExecute: TEdit;
 PageLength: TEdit;
 BackSpace: TEdit;
 Label1: TLabel;
 Label2: TLabel;
 Label3: TLabel;
 Label4: TLabel;
 Label5: TLabel;
 Label6: TLabel;
 Label7: TLabel;
 procedure FormCreate(Sender: TObject);
 procedure Button1Click(Sender: TObject);
 procedure ListBox1Click(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 private
 {Private declarations}
 public
 {Public declarations}
 // Added declaration of TermTypeList.
 TermTypeList: TStrings;
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
var
 ServerStr: String;
 PortStr: String;
begin
 TermTypeList:=TStringList.Create;
 // Get the correct port and server from the Registry.
 if GetServerInfo(ServerStr,PortStr)<> mrCancel then
 {connectOK begin}
 begin
 brkrRPCBroker1.Server:=ServerStr;
 brkrRPCBroker1.ListenerPort:=StrToInt(PortStr);
 // Establish a connection to the RPC Broker server.
 try

RPC Broker 1.1
Developer’s Guide 180 February 2017

 brkrRPCBroker1.Connected:=True;
 if not brkrRPCBroker1.CreateContext(‘ZxxxTT TERMTYPE’) then
 Application.Terminate;
 except
 On EBrokerError do
 {error begin}
 begin
 ShowMessage(‘Connection to server could not be established!’);
 Application.Terminate;
 {error end}
 end;
 {try end}
 end;
 {connectOK end}
 end
 else
 Application.Terminate;
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 i: integer
 brkrRPCBroker1.RemoteProcedure:=‘ZxxxTT LIST’;
 try
 {call begin}
 begin
 brkrRPCBroker1.Call;
 for i:=0 to (brkrRPCBroker1.Results.Count-1) do begin {copy begin}
 ListBox1.Items.Add(piece(brkrRPCBroker1.Results[i],‘^’,2));
 // Added line.
 TermTypeList.Add(brkrRPCBroker1.Results[i]);
 {copy end}
 end;
 {call end}
 end;
 except
 On EBrokerError do
 ShowMessage(‘A problem was encountered communicating with the server.’);
 {try end}
begin
 end;
end;

procedure TForm1.ListBox1Click(Sender: TObject);
var
 ien: String;
begin
 if (ListBox1.ItemIndex <> -1) then
 {displayitem begin}
 begin
 ien:=piece(TermTypeList[ListBox1.ItemIndex],‘^’,1);
 brkrRPCBroker1.RemoteProcedure:=‘ZxxxTT RETRIEVE’;
 brkrRPCBroker1.Param[0].Value := ien;
 brkrRPCBroker1.Param[0].PType := literal;
 try
 {call code begin}
 begin
 brkrRPCBroker1.Call;
 Name.Text:=piece(brkrRPCBroker1.Results[0],‘^’,1);
 RightMargin.Text:=piece(brkrRPCBroker1.Results[0],‘^’,2);
 FormFeed.Text:=piece(brkrRPCBroker1.Results[0],‘^’,3);
 PageLength.Text:=piece(brkrRPCBroker1.Results[0],‘^’,4);
 BackSpace.Text:=piece(brkrRPCBroker1.Results[0],‘^’,5);

RPC Broker 1.1
Developer’s Guide 181 February 2017

 CloseExecute.Text:=brkrRPCBroker1.Results[2];
 {call code end}
 end;
 except
 On EBrokerError do
 ShowMessage(‘A problem was encountered communicating with the server.’);
 {try end}
 end;
 {displayitem end}
 end;
end;

procedure TForm1.FormDestroy(Sender: TObject);
begin
 TermTypeList.Free;
end;

end.

7.16 Silent Login
The RPC Broker provides “Silent Login” capability. Silent Login is a way to log in a user with known
login information. Silent Login skips the step of asking the user for login information. It provides
functionality associated with the ability to make logins to a VistA M Server without the RPC Broker
asking for Access and Verify code information.

 REF: For some examples, see the “Silent Login Examples” section.

There are three types of Silent Login provided with the RPC Broker 1.1 BDK:

• Access/Verify Code—Type of Silent Login that uses Access and Verify codes provided by the
application. This type of Silent Login may be necessary for an application that runs as a
background task and repeatedly signs on for short periods. Another case would be for
applications that are interactive with the user, but are running under conditions where they cannot
provide a standard dialogue window, such as that used by the Broker to request Access and
Verify codes. Examples might be applications running on handheld devices or within a browser
window.

• CCOW Token—Type of Silent Login that uses a CCOW “User Context” token that is passed for
authentication.

• Auto Sign-On (ASO) Token—Type of Silent Login that uses an ASO token obtained by one
application that is passed along with other information as a command line argument to a second
application that it is starting. The token is obtained from the VistA server and remains valid for
about twenty (20) seconds. When the newly started application sends this token during login the
server identifies the same user and completes the login.

Due to the various conditions under which Silent Logins might be used, it was also necessary to provide
options to the applications on error handling and processing. Applications that run as system services
crash if they attempt to show a dialogue box. Similarly, applications running within Web browsers are not
permitted to show a dialogue box or to accept Windows messages. Properties have been provided to
permit the application to handle errors in a number of ways.

As a part of the Silent Login functionality, the TVistaUser Class providing basic user information was
added. This class is used as a property by the TRPCBroker class and is filled with data following

RPC Broker 1.1
Developer’s Guide 182 February 2017

completion of the login process. This property and its associated data are available to all applications,
whether or not they are using a Silent Login.

 REF: For more information on handling divisions during Silent Login, see the “Handling
Divisions during Silent Login” section.

7.16.1 Handling Divisions during Silent Login
A login may be successful, but if the user has multiple divisions from which to choose and fails to select
one, the connection is terminated and a failed login message is generated. This becomes a potential
problem in that a Silent Login can have problems if the user has multiple divisions from which to choose
and the PromptDivision Property is not set to True.

If the application wishes to handle the user specification of the division, it can attempt to set the
TRPCBroker Component Connected Property to True. If upon return, the Connected Property is still
False, it can check the Login. MultiDivision Property. If the MultiDivision Property is True, the user has
multiple divisions from which to choose. The application finds the possible values for selection in the
Login. DivList Property (read-only) (i.e., Tstrings). The values that are present in the DivList Property
(read-only) are similar to Figure 100:

Figure 100: DivList Property—Sample List of Divisions
3
1^SAN FRANCISCO^66235
2^NEW YORK^630
3^SAN DIEGO^664^1

The first (index = 0) entry is the total number of divisions that can be selected (e.g., 3 in this example).
This is followed by the different divisions comprised of the following pieces:

• The second ^-piece of each entry is the division name.

• The third ^-piece of each entry is the division number.

• The fourth ^-piece with the value of 1, if present in one of the entries, is the user’s default
division.

The safest value to set as the Login.Division property might be the third ^-piece of the selected division.

If the desired division is known ahead of time, it can be set into the Login.Division property for the
TRPCBroker Component prior to attempting the connection.

RPC Broker 1.1
Developer’s Guide 183 February 2017

7.16.2 Silent Login Examples
7.16.2.1 Example 1: lmAVCodes
Figure 101 is an example of how to use Silent Login by passing the Access and Verify codes to the
TVistaLogin Class.

Figure 101: Silent Login—Example of Passing the Access and Verify Codes
brkrRPCBroker1.KernelLogIn := False;
brkrRPCBroker1.LogIn.Mode := lmAVCodes;
brkrRPCBroker1.LogIn.AccessCode := ********;
brkrRPCBroker1.LogIn.VerifyCodeCode := ********;
brkrRPCBroker1.LogIn.PromptDivison := True;
brkrRPCBroker1.LogIn.OnFailedLogin := myevent;
Try
 brkrRPCBroker1.Connected := True;
except
 exit
end;

If brkrRPCBroker1.Connected is True, then Silent Login has worked.

7.16.2.2 Example 2: lmAppHandle
Figure 102 is an example of how to use Silent Login by passing an Application Handle to the
TVistaLogin Class.

The lmAppHandle mode of the Silent Login is used when an application starts up a second application. If
the second application tests for arguments on the command line, it is possible for this application to be
started and make a connection to the VistA M Server without user interaction.

An example of a procedure for starting a second application with data on the command line to permit a
Silent Login using the LoginHandle provided by the first application is shown in Figure 102. This is
followed by a procedure that can be called in the processing related to FormCreate to use this command
line data to initialize the TRPCBroker Component for Silent Login (Figure 103).

 CAUTION: The procedures shown here are included within the RpcSLogin unit, and can
be used directly from there.

If the value for ConnectedBroker is nil, the application specified in ProgLine is started and any command
line included in ProgLine is passed to the application.

In the second application, a call to the Broker should be made shortly after starting, since the
LoginHandle passed in has a finite lifetime (approximately 20 seconds) during which it is valid for the
Silent Login.

RPC Broker 1.1
Developer’s Guide 184 February 2017

Figure 102: Silent Login—Example of Passing in an Application Handle
procedure StartProgSLogin(const ProgLine: String ; ConnectedBroker: TRPCBroker);
var
 StartupInfo: TStartupInfo;
 ProcessInfo: TProcessInformation;
 AppHandle: String;
 CmndLine: String;
begin
 FillChar(StartupInfo, SizeOf(TStartupInfo), 0);
 with StartupInfo do
 begin
 cb := SizeOf(TStartupInfo);
 dwFlags := STARTF_USESHOWWINDOW;
 wShowWindow := SW_SHOWNORMAL;
 end;
 CmndLine := ProgLine;
 if ConnectedBroker <> nil then
 begin
 AppHandle := GetAppHandle(ConnectedBroker);
 CmndLine := CmndLine + ‘ s=’+ConnectedBroker.Server + ‘ p=’
 + IntToStr(ConnectedBroker.ListenerPort) + ‘ h=’
 + AppHandle + ‘ d=’ +
ConnectedBroker.User.Division;
 end;
 CreateProcess(nil, Pchar(CmndLine), nil, nil, False,
 NORMAL_PRIORITY_CLASS, nil, nil, StartupInfo, ProcessInfo);
end;

{btnStart is clicked to start the second application Test2.exe}
procedure TForm1.btnStartClick(Sender: TObject);
var
 CurDir: string;
begin
 {Use Test2.exe and expecting it to be in the startup directory for the current
application}
 CurDir := ExtractFilePath(ParamStr(0)) + ‘Test2.exe’;
 {Now start application with Silent Login}
 StartProgSLogin(CurDir, brkrRPCB1);
end;

The following procedure (CheckCmdLine) would be called in the FormCreate code of the application
being started to check for command line input, and if relevant to the Broker connection, to set it up.

This code assumes that the following commands are used in conjunction with the values shown:

• s= Server

• p= ListenerPort

• d= User.Division

• h= LoginHandle

The command line might look like:

ProgramName.exe s=DHCPSERVER p=9200 d=692 h=~1XM34XYYZZQQ_X

RPC Broker 1.1
Developer’s Guide 185 February 2017

The TRPCB Unit and RpcSLogin Unit would need to be included in the USES clause.
Figure 103: Silent Login—Calling the CheckCmdLine Procedure

procedure CheckCmdLine(brkrRPCB: TRPCBroker);
var
 j: integer;
begin
 // Iterate through possible command line arguments
 for j := 0 to 15 do
 begin
 if ParamStr(j) <> ‘’ then
 Form1.Memo1.Lines.Add(IntToStr(j) + ‘ ’ + ParamStr(j));
 if Pos(‘p=’,ParamStr(j)) > 0 then
 brkrRPCB.ListenerPort := StrToInt(Copy(ParamStr(j),
 (Pos(‘=’,ParamStr(j))+1),length(ParamStr(j))));
 if Pos(‘s=’,ParamStr(j)) > 0 then
 brkrRPCB.Server := Copy(ParamStr(j),
 (Pos(‘=’,ParamStr(j))+1),length(ParamStr(j)));
 if Pos(‘h=’,ParamStr(j)) > 0 then
 begin
 brkrRPCB.Login.LoginHandle := Copy(ParamStr(j),
 (Pos(‘=’,ParamStr(j))+1),length(ParamStr(j)));
 if brkrRPCB.Login.LoginHandle <> ‘’ then
 begin
 brkrRPCB.KernelLogIn := False;
 brkrRPCB.Login.Mode := lmAppHandle;
 end;
 end;
 if Pos(‘d=’,ParamStr(j)) > 0 then
 brkrRPCB.Login.Division := Copy(ParamStr(j),
 (Pos(‘=’,ParamStr(j))+1),length(ParamStr(j)));
 // for end
 end;
end;

7.17 Microsoft Windows Registry
Applications built with RPC Broker 1.1 use the Microsoft® Windows Registry to store the available
servers and ports accessed via the Broker.

The Windows Registry replaces the [RPCBroker_Servers] section of the VISTA.INI file. The
VISTA.INI file is no longer used by applications built with Broker 1.1. However, this file continues to be
used by applications built using RPC Broker 1.0. During the installation of the Broker, relevant data from
the VISTA.INI file is moved to the Windows Registry. Subsequent reads and writes are done via the
Registry.

 CAUTION: The VISTA.INI file created with RPC Broker 1.0 must not be removed from the
Windows directory on the client workstation. It is still required for 16-bit Broker-based
applications created using RPC Broker 1.0.

RPC Broker 1.1
Developer’s Guide 186 February 2017

8 DLL Interfaces (C, C++, Visual Basic)
8.1 DLL Interface Introduction
RPC Broker 1.1 provides Dynamic Link Library (DLL) functions that allow applications written in any
Microsoft® Windows-based development environment (e.g., Embarcadero’s® Delphi, Embarcadero C++,
Microsoft® Visual Basic, and other COTS products), to take advantage of all the features offered by the
RPC Broker component. This reflects VistA’s continued movement toward open systems that support
multiple GUI and client front-ends.

The Dynamic Link Library (DLL) functions act like a “shell” around the Delphi TRPCBroker component
and provide developers with an easy function-based access to the Broker component. These functions
allow GUI and client front-end applications written in Embarcadero’s Delphi and other COTS products to
take advantage of all the features that the Broker offers. All of the communication to the server is handled
by the TRPCBroker component accessed via the DLL interface.

The functionality of the TRPCBroker Component for Delphi is provided in a 32-bit Dynamic Link
Library (DLL) interface, in BAPI32.DLL. This enables the use of any development product that can
access Windows 32-bit DLLs to create applications that communicate with VistA M Servers through the
RPC Broker.

 NOTE: The BAPI32.DLL contains all of the 32-bit Broker DLL functions. It provides an
interface to the Broker component.

In Delphi, you have direct access to the TRPCBroker Component itself, and its properties and methods. In
other development environments, you can only access the properties and methods of the TRPCBroker
Component through DLL functions. To understand the DLL interface, you should understand how the
TRPCBroker Component is used in its native environment (Delphi).

The following special issues should be considered when accessing RPC Broker functionality through its
DLL:

• RPC Results from DLL Calls

• GetServerInfo Function and the DLL

 REF: For a list of DLL Exported Functions, see the “DLL Exported Functions” section.

8.1.1 Header Files
Header files for using the DLL are provided for C (BAPI32.H), C++ (BAPI32.HPP), and Visual Basic
(BAPI32.BAS).

• C: Guidelines Overview

• C++: Guidelines Overview

• Visual Basic: Guidelines Overview

8.1.2 Sample DLL Application
The VB5EGCHO sample application, distributed with an earlier Broker Development Kit (BDK),
demonstrates use of the RPC Broker 32-bit DLL from Microsoft Visual Basic. The source code was
located in the following directory:

BDK32\Samples\Vb5Egcho

RPC Broker 1.1
Developer’s Guide 187 February 2017

8.2 DLL Exported Functions
Table 40 lists the TRPCBroker Component functions that are exported in BAPI32.DLL:

Table 40: DLL Exported Functions

Function Description

MySsoToken Function Get a Secure Token Service (STS) token from Identity and
Access Management (IAM) using 2-factor authentication (2FA).

RPCBCall Function Execute an RPC.

RPCBCreate Function Create a TRPCBroker Component.

RPCBCreateContext Function Create context.

RPCBFree Function Destroy a TRPCBroker Component.

RPCBMultItemGet Function Get value of a Mult item in a Param.

RPCBMultPropGet Function Get value of a Mult Property in a Param.

RPCBMultSet Function Set a Mult item in a Param to a value.

RPCBMultSortedSet Function Sorts a Mult Param Property.

RPCBParamGet Function Get the value of a Param.

RPCBParamSet Function Set the value of a Param.

RPCBPropGet Function Get the value of a TRPCBroker Component property.

RPCBPropSet Function Set the value of a TRPCBroker Component property.

8.3 DLL Special Issues
8.3.1 RPC Results from DLL Calls
When executing an RPC on a VistA M Server, results from the RPC are returned as a text stream. This
text stream may or may not have embedded <CR><LF> character combinations.

In Delphi, when you call an RPC using the TRPCBroker Component directly, the text stream returned
from an RPC is automatically parsed and returned in the TRPCBroker Component’s Results Property,
either in Results[0] or in multiple Results nodes. If there are no embedded <CR><LF> character
combinations in the text stream, only Results[0] is used. If there are embedded <CR><LF> character
combinations, results are placed into separate Results nodes based on the <CR><LF> delimiters.

When using the DLL interface, the return value is a text stream, but no processing of the text stream is
performed for you. It is up to you to parse out what would have been individual Results nodes in Delphi,
based on the presence of any <CR><LF> character combinations in the text stream.

 NOTE: You must create a character buffer large enough to receive the entire return value of an
RPC.

RPC Broker 1.1
Developer’s Guide 188 February 2017

8.3.2 GetServerInfo Function and the DLL
When you use the TRPCBroker Component for Delphi, you are able to call the GetServerInfo Function to
retrieve the end-user workstation’s server and port settings.

The functionality provided by GetServerInfo Function is not currently available through the RPC Broker
32-bit DLL interface. To work around this limitation when using the RPC Broker 32-bit DLL, you should
prompt the user directly for the server and port to connect.

RPC Broker 1.1
Developer’s Guide 189 February 2017

8.4 C DLL Interface
8.4.1 C: Guidelines Overview
The BAPI32.H header file defines the function prototypes for all functions exported in the RPC Broker
32-bit DLL.

 REF: For a list of DLL Exported Functions, see the “DLL Exported Functions” section.

To use the DLL Broker functions, using C, exported in BAPI32.DLL, do the following:

1. C: Initialize—LoadLibrary and GetProcAddress

2. C: Create Broker Components

3. C: Connect to the Server

4. C: Execute RPCs

5. C: Destroy Broker Components

8.4.2 C: Initialize—LoadLibrary and GetProcAddress
The first step to using the RPC Broker 32-bit DLL in a C program is to load the DLL and get the process
addresses for the exported functions.

To initialize access to the Broker DLL functions, do the following:

1. Use the Windows API LoadLibrary function to load the DLL.
Figure 104: C: Initialize—LoadLibrary and GetProcAddress: Using the Windows API

LoadLibrary Function to Load the DLL
HINSTANCE hLib = LoadLibrary(“bapi32.dll”);
if((unsigned)hLib<=HINSTANCE_ERROR)
{
 /* Add your error handler for case where library fails to load. */
 return 1;
}

RPC Broker 1.1
Developer’s Guide 190 February 2017

2. If you successfully load the DLL, map function pointers to the addresses of the functions in the
DLL that you need for your application:
Figure 105: C: Initialize—LoadLibrary and GetProcAddress: Mapping Function Pointers to

the Addresses of the Functions in the DLL
MySsoToken = (voic *(__stdcall*)()) GetProcAddress(hLib, “MySsoToken”);
RPCBCreate = (void *(__stdcall*)()) GetProcAddress(hLib, “RPCBCreate”);
RPCBFree = (void (__stdcall*)(void *)) GetProcAddress(hLib, “RPCBFree”);
RPCBCall = (char *(__stdcall*)(void *, char *)) GetProcAddress(hLib,
“RPCBCall”);
RPCBCreateContext = (bool (__stdcall*)(void *, char *)) GetProcAddress(hLib,
“RPCBCreateContext”);
RPCBMultSet = (void (__stdcall*)(void *, int, char *, char *))
GetProcAddress(hLib, “RPCBMultSet”);
RPCBParamGet = (void (__stdcall*)(void *, int, int, char *))
GetProcAddress(hLib, “RPCBParamGet”);
RPCBParamSet = (void (__stdcall*)(void *, int, int, char *))
GetProcAddress(hLib, “RPCBParamSet”);
RPCBPropGet = (void (__stdcall*)(void *, char *, char *)) GetProcAddress(hLib,
“RPCBPropGet”);RPCBPropGet = (void (__stdcall*)(void *, char *, char *))
GetProcAddress(hLib, “RPCBPropGet”);
RPCBPropSet =(void (__stdcall*)(void *, char *, char *)) GetProcAddress(hLib,
“RPCBPropSet”);
//
// GetProcAddress, returns null on failure.
//
if(RPCBCreate == NULL || RPCBFree == NULL || RPCBCall == NULL ||
RPCBCreateContext == NULL
 || RPCBMultSet == NULL || RPCBParamGet == NULL || RPCBParamSet == NULL ||
RPCBPropGet == NULL
 || RPCBPropSet == NULL)
{
/* Add your error handler for cases where functions are not found. */
return 1;
}

Now you can use functions exported in the DLL.

8.4.3 C: Create Broker Components
To create TRPCBroker Components in your C program, do the following:

1. Create a pointer for the TRPCBroker Component:

// Generic pointer for the TRPCBroker component instance.
void * RPCBroker;

2. Call the RPCBCreate Function to create a TRPCBroker Component and return its address into the
pointer you created:

// Create the TRPCBroker component instance.
RPCBroker = RPCBCreate();

Now you can use the pointer to the created Broker component to call its methods.

RPC Broker 1.1
Developer’s Guide 191 February 2017

8.4.4 C: Connect to the Server
To connect to the VistA M Server from the C program, do the following:

1. Set the server and port to connect:

// Set the Server and Port properties to determine where to connect.
RPCBPropSet(RPCBroker,“Server”, “BROKERSERVER”);
RPCBPropSet(RPCBroker, “ListenerPort”, “9200”);

2. Set the Connected Property to true; this attempts a connection to the VistA M Server:

// Set the Connected property to True, to connect.
RPCBPropSet(RPCBroker, “Connected”, “1”);

3. Check if you are still connected. If so, continue because the connection was made. If not, quit or
branch accordingly:

// If still connected, can continue.
RPCBPropGet(RPCBroker, “Connected”, Value);
if (atoi(Value) != 1) return false;

4. Attempt to create context for your application’s “B”-type option. If you cannot create context,
you should quit or branch accordingly. If RPCBCreateContext Function returns True, then you
are ready to call all RPCs registered to your application’s “B”-type option:

// Create Context for your application’s option (in this case, XWB EGCHO).
result = RPCBCreateContext(RPCBroker, “XWB EGCHO”);
return result;

8.4.5 C: Execute RPCs
If you can make a successful connection to the RPC Broker VistA M Server, and create an application
context, you can execute any RPCs registered to your context.

To execute RPCs from your C program, do the following:

1. Create a character buffer large enough to hold your RPC’s return value:

static char Value [1024];

2. Set the RemoteProcedure Property of the TRPCBroker Component to the RPC to execute:

RPCBPropSet(RPCBroker, “RemoteProcedure”,“XWB GET VARIABLE VALUE”);

RPC Broker 1.1
Developer’s Guide 192 February 2017

3. Set the Param values for any parameters needed by the RPC. In the following example, one
TRPCBroker Param node is set (the equivalent of Param[0]):

a. A value of 0 for parameter 2 denotes the integer index of the Param node being set
(Param[0]).

b. A value of reference for parameter 3 denotes the setting for the equivalent of
Param[0].PType. This uses the enumerated values for PType (see Table 11) declared in the
header file.

c. A value of “DUZ” for parameter 4 denotes that the equivalent of Param[0].Value is “DUZ”:

RPCBParamSet(RPCBroker, 0, reference, “DUZ”);

4. Use the RPCBCall Function to execute the RPC:

RPCBCall(RPCBroker, Value);

The return value from the RPC is returned in the second parameter (in this case, the Value character
buffer).

8.4.6 C: Destroy Broker Components
When you are done using any TRPCBroker Component, you should call its destroy method to free it from
memory.

To destroy TRPCBroker Components from your C program, do the following:

1. Make sure the TRPCBroker Component is not connected:

RPCBPropSet(RPCBroker, “Connected”, “0”);

2. Call the RPCBFree method to destroy the object:

// Destroy the RPCBroker component instance.
RPCBFree(RPCBroker);

3. When you have destroyed all TRPCBroker Components, but before your application terminates,
you should call the Windows API FreeLibrary function to unload the DLL:

FreeLibrary(hLib);

RPC Broker 1.1
Developer’s Guide 193 February 2017

8.5 C++ DLL Interface
8.5.1 C++: Guidelines Overview
The BAPI32.HPP header file defines a class “wrapper” around the RPC Broker 32-bit DLL, defining a
TRPCBroker C++ class. Objects of this class include all functions exported in the DLL, as methods of the
TRPCBroker C++ class.

 REF: For a list of C++ class methods, see the “C++: TRPCBroker C++ Class Methods” section.

One feature of wrapping a class around the RPC Broker 32-bit DLL is that all the ordinary details of
working with a DLL (loading the DLL, getting the addresses of the functions in the DLL, and freeing the
DLL) are done within the class definition. When you initialize the class, all of the details of loading and
unloading the detail (LoadLibrary, GetProcAddress, and FreeLibrary) are done for you.

To use objects of the class, simply initialize the class, and then create and destroy objects of the class.

To use the TRPCBroker C++ class that encapsulates BAPI32.DLL, do the following:

1. C++: Initialize the Class

2. C++: Create Broker Instances

3. C++: Connect to the Server

4. C++: Execute RPCs

5. C++: Destroy Broker Instances

8.5.2 C++: Initialize the Class
The first step to using the RPC Broker 32-bit DLL in a C++ program is to load the DLL and get the
process addresses for the exported functions.

To initialize access to the Broker DLL functions, do the following:

1. Include bapi32.hpp in the program:

#include bapi32.hpp

This includes the TRPCBroker C++ class definition in the program.

2. Later, when you create a TRPCBroker C++ class object in the program, the class definition takes
care of the following:

• Loading the DLL if not already loaded.

• Mapping the DLL functions if not already mapped.

• Creating the instance of the TRPCBroker Component.

RPC Broker 1.1
Developer’s Guide 194 February 2017

8.5.3 C++: Create Broker Instances
To create instances of TRPCBroker C++ class objects in a C++ program, do the following:

1. Create a variable of type TRPCBroker. This does the following:

• Initializes the TRPCBroker class.

• Creates a TRPCBroker C++ class object instance.

• Creates a TRPCBroker Component.

// Initialize the TRPCBroker class.
TRPCBroker RPCInst;

2. Access the properties and methods of the created TRPCBroker Component through the
TRPCBroker C++ class object.

8.5.4 C++: Connect to the Server
To connect to the VistA M Server from the C++ program, do the following:

1. Set the server and port to connect:

// Set the Server and Port properties to determine where to connect.
RPCInst.RPCBPropSet(“Server”, server);
RPCInst.RPCBPropSet(“ListenerPort”, “9999”);

2. Set the Connected Property to True; this attempts a connection to the VistA M Server:

// Set the Connected property to True, to connect.
RPCInst.RPCBPropSet(“Connected”, “1”);

3. Check if you are still connected. If so, continue because the connection was made. If not, quit or
branch accordingly:

// If still connected, can continue.
RPCInst.RPCBPropGet(“Connected”, Value);
if (atoi(Value) != 1) return false;

4. Attempt to create context for the application’s “B”-type option. If you cannot create context, quit
or branch accordingly. If RPCBCreateContext Function returns True, then you are ready to call
all RPCs registered to the application’s “B”-type option:

// Create Context for your application’s option (in this case, XWB EGCHO).
result = RPCInst.RPCBCreateContext(“XWB EGCHO”);
return result;

RPC Broker 1.1
Developer’s Guide 195 February 2017

8.5.5 C++: Execute RPCs
If you can make a successful connection to the RPC Broker VistA M Server, and create an application
context, you can execute any RPCs registered to your context.

To execute RPCs from a C++ program, do the following:

1. Create a character buffer large enough to hold your RPC’s return value:

char Value [1024];

2. Set the RemoteProcedure Property of the TRPCBroker Component to the RPC to execute:

RPCInst.RPCBPropSet(“RemoteProcedure”,“XWB GET VARIABLE VALUE”);

3. Set the Param values for any parameters needed by the RPC. In the following example, one
TRPCBroker Param node is set (the equivalent of Param[0]):

a. A value of 0 for parameter 1 denotes the integer index of the Param node being set
(Param[0]).

b. A value of reference for parameter 2 denotes the setting for the equivalent of
Param[0].PType. This uses the enumerated values for PType (see Table 11) declared in the
header file.

c. A value of “DUZ” for parameter 3 denotes that the equivalent of Param[0].Value is “DUZ”:

RPCInst.RPCBParamSet(0, reference, “DUZ”);

4. Use the RPCBCall Function to execute the RPC:

RPCInst.RPCBCall(Value);

The return value from the RPC is returned in the first parameter (in this case, the Value character buffer).

8.5.6 C++: Destroy Broker Instances
You do not need to do anything special to free up memory used by the TRPCBroker Component instances
and their companion TRPCBroker C++ class objects. They are automatically destroyed when your
program terminates, just as normal variables are automatically destroyed.

Also, when your program terminates, the FreeLibrary Windows API call is automatically executed to
unload the RPC Broker 32-bit DLL, so there is no need to do this manually.

RPC Broker 1.1
Developer’s Guide 196 February 2017

8.5.7 C++: TRPCBroker C++ Class Methods
The functions in the RPC Broker 32-bit DLL are encapsulated in the TRPCBroker C++ class methods
shown in Table 41:

Table 41: C++: TRPCBroker C++ Class Methods

DLL Function TRPCBroker C++ Class Method

MySsoToken Function char * MySSOToken();

RPCBCall Function char * RPCBCall(char * s);

RPCBCreateContext Function bool RPCBCreateContext (char * s);

RPCBMultItemGet Function void RPCBMultItemGet (int i, char * s, char * t);

RPCBMultPropGet Function void RPCBMultPropGet (void * ptr, int i , char * s, char * t);

RPCBMultSet Function void RPCBMultSet (int i, char * s, char * t);

RPCBMultSortedSet Function void RPCBMultSortedSet (void * ptr, int i, bool v);

RPCBParamGet Function void RPCBParamGet (int i, int j, char * s);

RPCBParamSet Function void RPCBParamSet (int i, int j, char * s);

RPCBPropGet Function void RPCBPropGet (char * s, char * t);

RPCBPropSet Function void RPCBPropSet (char * s, char * t);

8.6 Visual Basic DLL Interface
8.6.1 Visual Basic: Guidelines Overview
The BAPI32.BAS header file defines the function prototypes for all functions exported in the RPC Broker
32-bit DLL.

 REF: For a list of DLL exported functions, see the “DLL Exported Functions” section.

To use the DLL Broker functions, using Visual Basic, exported in BAPI32.DLL, do the following:

1. Visual Basic: Initialize

2. Visual Basic: Create Broker Components

3. Visual Basic: Connect to the Server

4. Visual Basic: Execute RPCs

5. Visual Basic: Destroy Broker Components

8.6.1.1 Sample DLL Application
The VB5EGCHO sample application, distributed with an earlier Broker Development Kit (BDK),
demonstrates use of the RPC Broker 32-bit DLL from Microsoft Visual Basic. The source code was
located in the following directory:

BDK32\Samples\Vb5Egcho

RPC Broker 1.1
Developer’s Guide 197 February 2017

8.6.2 Visual Basic: Initialize
The first step to using the RPC Broker 32-bit DLL in a Visual Basic program is to load the DLL and get
the process addresses for the exported functions.

To initialize access to the Broker DLL functions, do the following:

1. Include BAPI32.BAS as a module in your Visual Basic program.

2. Visual Basic takes care of loading the DLL and mapping its functions.

8.6.3 Visual Basic: Create Broker Components
To create TRPCBroker Components in your Visual Basic program, do the following:

1. Create a variable to be a handle for the TRPCBroker Component:

Public intRPCBHandle As Long

2. Call the RPCBCreate Function to create a TRPCBroker Component and return its address into the
variable you created:

intRPCBHandle = RPCBCreate()

Now, you can use the handle to the created Broker component to call its methods.

8.6.4 Visual Basic: Connect to the Server
To connect to the VistA M Server from the Visual Basic program, do the following:

1. Set the server and port to connect:

Call RPCBPropSet(intRPCBHandle, “Server”, “BROKERSERVER”)
Call RPCBPropSet(intRPCBHandle, “ListenerPort”, “9999”)

2. Set the Connected Property to true; this attempts a connection to the VistA M Server:

Call RPCBPropSet(intRPCBHandle, “Connected”, “1”)

3. Check if you are still connected. If so, continue because the connection was made. If not, quit or
branch accordingly:

RPCBPropGet(intRPCBHandle, “Connected”, strResult)

4. Attempt to create context for your application’s “B”-type option. If you cannot create context,
quit or branch accordingly. If RPCBCreateContext Function returns True, then you are ready to
call all RPCs registered to the application’s “B”-type option:

intResult = RPCBCreateContext(intRPCBHandle, “MY APPLICATION”)

RPC Broker 1.1
Developer’s Guide 198 February 2017

8.6.5 Visual Basic: Execute RPCs
If you can make a successful connection to the RPC Broker VistA M Server, and create an application
context, you can execute any RPCs registered to your context.

To execute RPCs from your Visual Basic program, do the following:

1. Create a character buffer large enough to hold your RPC’s return value:

Public strBuffer As String * 40000

2. Set the RemoteProcedure Property of the TRPCBroker Component to the RPC to execute:

Call RPCBPropSet(intRPCBHandle, “RemoteProcedure”, “XWB GET VARIABLE VALUE”)

3. Set the Param values for any parameters needed by the RPC. In the following example, one
TRPCBroker Param node is set (the equivalent of Param[0]):

a. A value of 0 for parameter 2 denotes the integer index of the Param node being set
(Param[0]).

b. A value of reference for parameter 3 denotes the setting for the equivalent of
Param[0].PType. This uses the enumerated values for PType (see Table 11) declared in the
header file.

c. A value of “DUZ” for parameter 4 denotes that the equivalent of Param[0].Value is “DUZ”:

Call RPCBParamSet(intRPCBHandle, 0, reference, “DUZ”);

4. Use the RPCBCall Function to execute the RPC:

Call RPCBCall(intRPCBHandle, strBuffer

The return value from the RPC is returned in the second parameter (in this case, the Value character
buffer).

RPC Broker 1.1
Developer’s Guide 199 February 2017

8.6.6 Visual Basic: Destroy Broker Components
When you are done using any TRPCBroker Component, you should call its destroy method to free it from
memory (see the “Memory Leaks“).

To destroy TRPCBroker Components from your Visual Basic program, do the following:

1. Make sure the TRPCBroker Component is not connected:

Call RPCBPropSet(intRPCBHandle, “Connected”, “0”)

2. Call the RPCBFree Function to destroy the object:

RPCBFree(intRPCBHandle)

Visual Basic takes care of the details of unloading the DLL.

8.7 MySsoToken Function
Get a Secure Token Service (STS) token from Identity and Access Management (IAM) using 2-factor
authentication. This encapsulates the following Broker Development Kit methods:

• TXWBSSOiToken Create

• SSOiToken

• Free

8.7.1 Declarations
Table 42: MySsoToken Function—Declarations

Software Declaration

Delphi function MySsoToken: PChar; stdcall;

C void *(__stdcall *MySsoToken) (void);

C++ void * MySsoToken(void);

VB Function MySsoToken () As String

RPC Broker 1.1
Developer’s Guide 200 February 2017

8.7.2 Return Value
• String—Digitally signed XML (SAML) token containing authenticated user identity.

• Null string—If authentication failed or token could not be obtained.

8.7.3 Examples
8.7.3.1 C

result = MySsoToken();

8.7.3.2 C++

Result = MySsoToken();

8.7.3.3 Visual Basic

StrResult = MySsoToken()

8.8 RPCBCall Function
Executes a remote procedure call, and fills the passed buffer with the data resulting from the call. This is
equivalent to the TRPCBroker Component’s Call Method.

8.8.1 Declarations
Table 43: RPCBCall Function—Declarations

Software Declaration

Delphi procedure RPCBCall(const RPCBroker: TRPCBroker; CallResult: PChar);

C char *(__stdcall *RPCBCall) (void *, char *);

C++ char * RPCBCall(char * s);

VB Sub RPCBCall (ByVal intRPCBHandle As Long, ByVal strCallResult As String)

8.8.2 Parameter Description
Table 44: RPCBCall Function—Parameters

Parameter Description

RPCBroker Handle of the Broker component that contains the name of the remote procedure and
all of the required parameters.

CallResult An empty character buffer that the calling application must create (allocate memory for)
before making this call. This buffer is filled with the result of the call.

RPC Broker 1.1
Developer’s Guide 201 February 2017

 REF: For information about the size of parameters and results that can be passed to and returned
from the TRPCBroker Component, see the “RPC Limits” section.

8.8.3 Examples
8.8.3.1 C

RPCBCall(RPCBroker, Value);

8.8.3.2 C++

// MyInstance is defined as an instance of the TRPCBroker.
MyInstance.RPCBCall(strbuffer);

8.8.3.3 Visual Basic

Call RPCBCall(intRPCBHandle, strBuffer)

8.9 RPCBCreate Function
The RPCBCreate Function creates a new RPC Broker component for the application, which can then be
used to connect to the VistA M Server and call remote procedures.

8.9.1 Declarations
Table 45: RPCBCreate Function—Declarations

Software Declarations

Delphi function RPCBCreate: TRPCBroker;

C void * (__stdcall *RPCBCreate)(void);

C++ N/A (encapsulated in TRPCBroker class definition)

VB Function RPCBCreate () As Long

8.9.2 Return Value
A handle for the TRPCBroker Component created.

RPC Broker 1.1
Developer’s Guide 202 February 2017

8.9.3 Examples
8.9.3.1 C

// Create the TRPCBroker component instance.
RPCBroker = RPCBCreate();

8.9.3.2 Visual Basic

intRPCBHandle = RPCBCreate()

8.10 RPCBCreateContext Function
The RPCBCreateContext function calls the TRPCBroker Component’s CreateContext Method to set up
the environment on the VistA M Server for subsequent RPCs.

8.10.1 Declarations
Table 46: RPCBCreateContext Function—Declarations

Software Declarations

Delphi function RPCBCreateContext(const RPCBroker: TRPCBroker; const Context:
PChar): boolean;

C bool (__stdcall *RPCBCreateContext) (void *, char *);

C++ bool RPCBCreateContext (char * s);

VB Function RPCBCreateContext (ByVal intRPCBHandle As Long, ByVal strContext
As String) As Integer

8.10.2 Return Value
• True/1—If context could be created.

• False/0—If context could not be created.

8.10.3 Parameter Description
Table 47: RPCBCreateContext Function—Parameters

Parameter Description

RPCBroker Handle of the TRPCBroker Component.

Context Null-terminated string identifying the option on the VistA M Server for which
subsequent RPCs are registered.

RPC Broker 1.1
Developer’s Guide 203 February 2017

8.10.4 Examples
8.10.4.1 C

// XWB EGCHO is a “B” (Broker) type option in the OPTION file.
result = RPCBCreateContext(RPCBroker, “XWB EGCHO”);

8.10.4.2 C++

// XWB EGCHO is a “B” (Broker) type option in the OPTION file.
MyInstance.RPCBCreateContext(“XWB EGCHO”)

8.10.4.3 Visual Basic

intResult = RPCBCreateContext(intRPCBHandle, “MY APPLICATION”)
‘where MY APPLICATION is a “B” (Broker) type option in the Option file.

8.11 RPCBFree Function
The RPCBFree function destroys the RPC Broker component and releases associated memory (see
“Memory Leaks” section).

8.11.1 Declarations
Table 48: RPCBFree Function—Declarations

Software Declaration

Delphi procedure RPCBFree(RPCBroker: TRPCBroker);

C void (__stdcall *RPCBFree)(void *);

C++ N/A (encapsulated in TRPCBroker class definition)

VB Sub RPCBFree (ByVal intRPCBHandle As Long)

8.11.2 Parameter Description
Table 49: RPCBFree Function—Parameter

Parameter Description

RPCBroker Handle of the TRPCBroker Component to destroy.

RPC Broker 1.1
Developer’s Guide 204 February 2017

8.11.3 Examples
8.11.3.1 C

// Destroy the TRPCBroker component instance.
RPCBFree(RPCBroker);

8.11.3.2 Visual Basic

RPCBFree (intRPCBHandle)

8.12 RPCBMultItemGet Function
The RPCBMultItemGet function returns a requested item in a TRPCBroker Component Param Property’s
Mult Property.

8.12.1 Declarations
Table 50: RPCBMultItemGet Function—Declarations

Software Declaration

Delphi procedure RPCBMultItemGet (const RPCBroker: TRPCBroker; ParamIndex:
integer; Subscript, Value: PChar);

C void (__stdcall *RPCBMultItemGet) (void *, int, char *, char *);

C++ void RPCBMultItemGet (int i, char * s, char * t);

VB Sub RPCBMultItemGet (ByVal intRPCBHandle As Long, ByVal intParIdx As
Integer, ByVal strSubscript As String, ByVal strValue As String)

8.12.2 Parameter Description
Table 51: RPCBMultItemGet Function—Parameters

Parameter Description

RPCBroker Handle of the TRPCBroker Component.

ParamIndex Integer index of the parameter that contains the Mult Property.

Subscript Null-terminated string identifying the Mult element to get.

Value An empty buffer that the calling application must create (allocate memory for) before
making this call. This buffer is filled with the value of the Mult Property item.

 REF: For information about the size of parameters and results that can be passed to and returned
from the TRPCBroker Component, see the “RPC Limits” section.

RPC Broker 1.1
Developer’s Guide 205 February 2017

8.12.3 Examples
8.12.3.1 C

// The following corresponds to getting the value of PARAM[0].Mult[“0”]
RPCBMultItemGet(RPCBroker, 0 , “0”, Value);

8.12.3.2 C++

MyInstance.RPCBMultItemGet(0 , “0”, Value);

8.12.3.3 Visual Basic

Call RPCBMultItemGet(intRPCBHandle, 0, “0”, strResult)

8.13 RPCBMultPropGet Function
The RPCBMultPropGet function returns a selected property value of a TRPCBroker Component Param
Property’s Mult Property.

8.13.1 Declarations
Table 52: RPCBMultPropGet—Declarations

Software Declaration

Delphi procedure RPCBMultPropGet(const RPCBroker: TRPCBroker; ParamIndex:
integer; Prop,Value: PChar);

C void (__stdcall *RPCBMultPropGet) (void *, int, char *, char *);

C++ void RPCBMultPropGet (int i , char * s, char * t);

VB Sub RPCBMultPropGet (ByVal intRPCBHandle As Long, ByVal intParIdx As
Integer, ByVal strProp As String, ByRef strValue As String)

8.13.2 Parameter Description
Table 53: RPCBMultPropGet—Parameters

Parameter Description

RPCBroker Handle of the TRPCBroker Component.

ParamIndex Integer index of the parameter that contains the Mult Property.

Prop Null-terminated string identifying the name of the TMult property to get.

Value An empty buffer that the calling application must create (allocate memory for) before
making this call. This buffer is filled with value of the Mult Property that is in the Prop.

RPC Broker 1.1
Developer’s Guide 206 February 2017

 REF: For information about the size of parameters and results that can be passed to and returned
from the TRPCBroker Component, see the “RPC Limits” section.

8.13.3 Examples
8.13.3.1 C

RPCBMultPropGet(RPCBroker, 0, “Count”, Value);

8.13.3.2 C++

MyInstance.RPCBMultPropGet(0, “Count”, Value);

8.13.3.3 Visual Basic

Call RPCBMultPropGet(intRPCBHandle, 0, “Count”, strResult)

8.14 RPCBMultSet Function
The RPCBMultSet function sets an item in a TRPCBroker Component Param Property’s Mult Property to
a value.

8.14.1 Declarations
Table 54: RPCBMultSet Function—Declarations

Software Declaration

Delphi procedure RPCBMultSet(const RPCBroker: TRPCBroker; ParamIndex: integer;
Subscript, Value: PChar);

C void (__stdcall *RPCBMultSet) (void *, int, char *, char *);

C++ void RPCBMultSet (int i, char * s, char * t);

VB Sub RPCBMultSet (ByVal intRPCBHandle As Long, ByVal intParIdx As Integer,
ByVal strSubscript As String, ByVal strValue As String)

8.14.2 Parameter Description
Table 55: RPCBMultSet Function—Parameters

Parameter Description

RPCBroker Handle of the TRPCBroker Component.

ParamIndex Integer index of the parameter that contains the Mult Property.

Subscript Null-terminated string of the Mult item to set.

Value Null-terminated string containing the value that the Mult item should be set to.

RPC Broker 1.1
Developer’s Guide 207 February 2017

 REF: For information about the size of parameters and results that can be passed to and returned
from the TRPCBroker Component, see the “RPC Limits” section.

8.14.3 Examples
8.14.3.1 C

RPCBMultSet(RPCBroker, 0, “1”, “12/19/97”);

8.14.3.2 C++

MyInstance.RPCBMultSet(0, “1”, “12/19/97”);

8.14.3.3 Visual Basic

Call RPCBMultSet(intRPCBHandle, 0, “1”, “12/19/97”)

8.15 RPCBMultSortedSet Function
The RPCBMultSortedSet function sets the Sorted Property of a Mult Property. In essence, sorts and keeps
the Mult Property sorted or just leaves it in the order it is populated.

8.15.1 Declarations
Table 56: RPCBMultSortedSet Function—Declarations

Software Declaration

Delphi procedure RPCBMultSortedSet(const RPCBroker: TRPCBroker; ParamIndex:
integer; Value: boolean);

C void (__stdcall *RPCBMultSortedSet) (void *, int, bool);

C++ void RPCBMultSortedSet (int i, bool v);

VB Sub RPCBMultSortedSet (ByVal intRPCBHandle As Long, ByVal intParIdx As
Integer, ByVal intValue As Integer)

RPC Broker 1.1
Developer’s Guide 208 February 2017

8.15.2 Parameter Description
Table 57: RPCBMultSortedSet Function—Parameters

Parameter Description

RPCBroker Handle of the TRPCBroker Component.

ParamIndex Integer index of the parameter that contains the Mult Property.

Value Can be either a Boolean or, if the calling application language does not support
Boolean type, can be an integer:

• True or 1—Sorts the Mult and keeps it sorted thereafter when other elements
are added.

• False or 0—Does not sort the Mult and the elements are stored in the order
they are added.

8.15.3 Examples
8.15.3.1 C

RPCBMultSortedSet(RPCBroker, 0, 1);

8.15.3.2 C++

MyInstance.RPCBMultSortedSet(0, 1);

8.15.3.3 Visual Basic

Call RPCBMultPropGet(intRPCBHandle, 0, 1)

8.16 RPCBParamGet Function
The RPCBParamGet function returns two values in two parameters: the value and the parameter type of a
Param item.

You can compare the returned parameter type to the following enumerated values:

• literal

• reference

• list

RPC Broker 1.1
Developer’s Guide 209 February 2017

8.16.1 Declarations
Table 58: RPCBParamGet Function—Declarations

Software Declaration

Delphi procedure RPCBParamGet(const RPCBroker: TRPCBroker; ParamIndex: integer;
var ParamType: TParamType; var ParamValue: PChar);

C void (__stdcall *RPCBParamGet) (void *, int, int, char *);

C++ void RPCBParamGet (int i, int j, char * s);

VB Sub RPCBParamGet (ByVal intRPCBHandle As Long, ByVal intParIdx As Integer,
ByVal intParTyp As Integer, ByVal intParVal As String)

8.16.2 Parameter Description
Table 59: RPCBParamGet Function—Parameters

Parameter Description

RPCBroker Handle of the TRPCBroker Component.

ParamIndex Integer index of the parameter to get the value.

ParamType This variable, after making the RPCBParamGet call, is filled with PType Property of a
Param[ParamIndex].

ParamValue An empty buffer that you must create (allocate memory for) before making this call.
This buffer, after making the RPCBParamGet call, is filled with Value of a
Param[ParamIndex].

 REF: For information about the size of parameters and results that can be passed to and returned
from the TRPCBroker Component, see the “RPC Limits” section.

RPC Broker 1.1
Developer’s Guide 210 February 2017

8.16.3 Examples
8.16.3.1 C

// PType and Value are variables to retrieve values into.
RPCBParamGet(RPCBroker, 0, PType, Value);

8.16.3.2 C++

// PType and Value are variables to retrieve values into.
MyInstance.RPCBParamGet(0, PType, Value);

8.16.3.3 Visual Basic

Call RPCBParamGet(intRPCBHandle, 0, PType, strResult)
‘ where PType and strResult are variables to retrieve values into

8.17 RPCBParamSet Function
The RPCBParamSet function sets one Param item’s Value Property and PType Property, in a single call.

8.17.1 Declarations
Table 60: RPCBParamSet Function—Declarations

Software Declaration

Delphi procedure RPCBParamSet(const RPCBroker: TRPCBroker; const ParamIndex:
integer; const ParamType: TParamType; const ParamValue: PChar);

C void (__stdcall *RPCBParamSet) (void *, int, int, char *);

C++ void RPCBParamSet (int i, int j, char * s);

VB Sub RPCBParamSet (ByVal intRPCBHandle As Long, ByVal intParIdx As Integer,
ByVal intParTyp As Integer, ByVal intParVal As String)

RPC Broker 1.1
Developer’s Guide 211 February 2017

8.17.2 Parameter Description
Table 61: RPCBParamSet Function—Parameters

Parameter Description

RPCBroker Handle of the TRPCBroker Component.

ParamIndex Integer index of the parameter.

ParamType Set to the parameter type for the parameter you are setting. The value should be one of
the integer values that are valid as a PType:

• 0 (literal)
• 1 (reference)
• 2 (list)

You can use the enumerated values literal, reference and list, as declared in the C,
C++, or Visual Basic header file.

 CAUTION: The use of a reference-type input parameter represents a
significant security risk. The M entry point should include code to screen
the input value for M code injection (e.g., function calls, M commands, or
direct global reads).

ParamValue Null-terminated string containing the Value to set.

 REF: For information about the size of parameters and results that can be passed to and returned
from the TRPCBroker Component, see the “RPC Limits” section.

8.17.3 Examples
8.17.3.1 C

RPCBParamSet(RPCBroker, 0, reference, “DUZ”);

8.17.3.2 C++

MyInstance.RPCBParamSet(0, reference, “DUZ”);

8.17.3.3 Visual Basic

Call RPCBParamSet(intRPCBHandle, 0, literal, Text3.Text)

RPC Broker 1.1
Developer’s Guide 212 February 2017

8.18 RPCBPropGet Function
The RPCBPropGet function returns a requested property of a TRPCBroker Component.

8.18.1 Declarations
Table 62: RPCBPropGet Function—Declarations

Software Declaration

Delphi procedure RPCBPropGet(const RPCBroker: TRPCBroker; const Prop: PChar;
{var} Value: PChar);

C void (__stdcall *RPCBPropGet) (void *, char *, char *);

C++ void RPCBPropGet (char * s, char * t);

VB Sub RPCBPropGet (ByVal intRPCBHandle As Long, ByVal strProp As String,
ByVal strValue As String)

Table 63: RPCBPropGet Function—Parameters

Parameter Description

RPCBroker Handle of the TRPCBroker Component.

Prop Null-terminated string of the property to get. Not case-sensitive. Valid properties to get
are:

• ClearParameters Property
• ClearResults Property
• Connected Property
• DebugMode Property
• ListenerPort Property
• RemoteProcedure Property
• RPCTimeLimit Property
• RPCVersion Property
• Server Property

Value An empty buffer that you must create (allocate memory for) before making this call. After
this call, the buffer is filled with value of the property that is in the Prop. This procedure
takes care of all the necessary type conversions. Boolean property values are returned
as either of the following:

• 1 (True)
• 0 (False)

RPC Broker 1.1
Developer’s Guide 213 February 2017

8.18.2 Examples
8.18.2.1 C

RPCBPropGet(RPCBroker, “Connected”, Value);

8.18.2.2 C++

MyInstance.RPCBPropGet(“Connected”, Value);

8.18.2.3 Visual Basic

Call RPCBPropGet(intRPCBHandle, “Server”, strResult)

8.19 RPCBPropSet Function
The RPCBPropSet function sets a TRPCBroker Component property to some value.

8.19.1 Declarations
Table 64: RPCBPropSet Function—Declarations

Software Declaration

Delphi procedure RPCBPropSet(const RPCBroker: TRPCBroker; Prop,Value: PChar);

C void (__stdcall *RPCBPropSet) (void *, char *, char *);

C++ void RPCBPropSet (char * s, char * t);

VB Sub RPCBPropSet (ByVal intRPCBHandle As Long, ByVal strProp As String,
ByVal strValue As String)

RPC Broker 1.1
Developer’s Guide 214 February 2017

Table 65: RPCBPropSet Function—Parameters

Parameter Description

RPCBroker Handle of the TRPCBroker Component.

Prop Null-terminated string of the property to set; not case-sensitive. Valid properties to set
are:

• ClearParameters Property
• ClearResults Property
• Connected Property
• DebugMode Property
• ListenerPort Property
• RemoteProcedure Property
• RPCTimeLimit Property
• RPCVersion Property
• Server Property

Value Null-terminated string of the value to which the Prop property should be set. This
procedure takes care of converting the passed in value to whatever type the property
expects. For Boolean properties, pass in either of the following:

• 1 (True)
• 0 (False)

8.19.2 Examples
8.19.2.1 C

RPCBPropSet(RPCBroker, “ListenerPort”, “9999”);

8.19.2.2 C++

MyInstance.RPCBPropSet(“ListenerPort”, “9999”);

8.19.2.3 Visual Basic

Call RPCBPropSet(intRPCBHandle, “Server”, cboServer.Text)

RPC Broker 1.1
Developer’s Guide 215 February 2017

Glossary

Table 66: Glossary of Terms and Acronyms

Term Description

Client A single term used interchangeably to refer to the user, the workstation,
and the portion of the program that runs on the workstation. In an object-
oriented environment, a client is a member of a group that uses the
services of an unrelated group. If the client is on a local area network
(LAN), it can share resources with another computer (server).

Component An object-oriented term used to describe the building blocks of GUI
applications. A software object that contains data and code. A component
may or may not be visible. These components interact with other
components on a form to create the GUI user application interface.

DHCP Dynamic Host Configuration Protocol.

DLL Dynamic Link Library. A DLL allows executable routines to be stored
separately as files with a DLL extension. These routines are only loaded
when a program calls for them. DLLs provide several advantages:

1. DLLs help save on computer memory, since memory is only
consumed when a DLL is loaded. They also save disk space. With
static libraries, your application absorbs all the library code into
your application so the size of your application is greater. Other
applications using the same library also carry this code around.
With the DLL, you do not carry the code itself; you have a pointer
to the common library. All applications using it then share one
image.

2. DLLs ease maintenance tasks. Because the DLL is a separate file,
any modifications made to the DLL do not affect the operation of
the calling program or any other DLL.

3. DLLs help avoid redundant routines. They provide generic
functions that can be used by a variety of programs.

DNS The Domain Name Service (DNS) is a distributed database that maps
names to their Internet Protocol (IP) addresses or IP addresses to their
names. A query to this database is used to resolve names and IP
addresses.

GUI Graphical User Interface. A type of display format that enables users to
choose commands, initiate programs, and other options by selecting
pictorial representations (icons) via a mouse or a keyboard.

HANDLE A HANDLE is a string returned by XWB REMOTE RPC or XWB
DEFERRED RPC. The application should store the HANDLE and use it to:

1. Check for the return of the data.
2. Retrieve the data.
3. Clear the data from the VistA M Server.

RPC Broker 1.1
Developer’s Guide 216 February 2017

Term Description

HOSTS File The HOSTS file is an ASCII text file that contains a list of the servers and
their Internet Protocol (IP) addresses. It is recommended that you put in a
“DHCPSERVER” entry that points to the main server you intend using with
the Broker the majority of the time. In your applications, you are able to
specify any server you wish; however, if the Server property = “ (i.e., null),
you get an error.

Icon A picture or symbol that graphically represents an object or a concept.

IP Address The Internet Protocol (IP) address is the network interface address for a
client workstation, server, or device.

$JOB Contains your operating system job number on the VistA M Server.

$ORDER M code:
$ORDER(variable name{,integer code})

Returns the subscript of the previous or next sibling in collating sequence
of a specified array node.
To obtain the first subscript of a level, specify a null subscript in the
argument.

Remote Procedure Call A remote procedure call (RPC) is essentially M code that may take
optional parameters to do some work and then return either a single value
or an array back to the client application.

SAML Security Assertion Markup Language. An XML-based industry standard for
communicating identities over the Internet.

Server The computer where the data and the Business Rules reside. It makes
resources available to client workstations on the network. In VistA, it is an
entry in the OPTION file (#19). An automated mail protocol that is
activated by sending a message to a server at another location with the
“S.server” syntax. A server’s activity is specified in the OPTION file (#19)
and can be the running of a routine or the placement of data into a file.

User Access This term is used to refer to a limited level of access to a computer system
that is sufficient for using/operating software, but does not allow
programming, modification to data dictionaries, or other operations that
require programmer access. Any of VistA’s options can be locked with a
security key (e.g., XUPROGMODE, which means that invoking that option
requires programmer access).
The user’s access level determines the degree of computer use and the
types of computer programs available. The Systems Manager assigns the
user an access level.

User Interface The way the software is presented to the user, such as Graphical User
Interfaces that display option prompts, help messages, and menu choices.
A standard user interface can be achieved by using Embarcadero’s Delphi
Graphical User Interface to display the various menu option choices,
commands, etc.

Window An object on the screen (dialogue) that presents information such as a
document or message.

XML eXtensible Markup Language.

RPC Broker 1.1
Developer’s Guide 217 February 2017

Term Description

XUPROGMODE A security key distributed by Kernel as part of its Menu Manager
(MenuMan). This security key enables access to a number of developer-
oriented options in Kernel.

 REF: For a list of commonly used terms and definitions, see the OI&T Master Glossary VA
Intranet Website.

For a list of commonly used acronyms, see the VA Acronym Lookup Intranet Website.

	Title Page
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Orientation
	1 Introduction
	1.1 Broker Overview
	1.1.1 Broker Security Enhancement (BSE) Overview
	1.1.2 Broker Call Steps

	1.2 Definitions
	1.2.1 Units
	1.2.2 Classes
	1.2.3 Objects
	1.2.4 Components
	1.2.5 Types
	1.2.6 Methods
	1.2.7 Routines: Functions and Procedures

	1.3 About this Version of the RPC Broker
	1.4 What’s New in the BDK
	1.4.1 XWB*1.1*65
	1.4.2 XWB*1.1*60
	1.4.3 XWB*1.1*50
	1.4.4 XWB*1.1*40
	1.4.5 XWB*1.1*35
	1.4.6 XWB*1.1*26
	1.4.7 XWB*1.1*23
	1.4.8 XWB*1.1*14
	1.4.9 XWB*1.1*13

	1.5 Developer Considerations
	1.5.1 Source Code
	1.5.2 Design-time and Run-time Packages
	1.5.3 Resource Reuse
	1.5.4 Component Connect-Disconnect Behavior
	1.5.4.1 Connect
	1.5.4.2 Disconnect

	1.6 Application Considerations
	1.6.1 Application Version Numbers
	1.6.2 Deferred RPCs
	1.6.3 Remote RPCs
	1.6.4 Blocking RPCs
	1.6.5 Silent Login

	1.7 Online Help

	2 RPC Broker Components, Classes, Units, Methods, Types, and Properties
	2.1 Components
	2.1.1 TCCOWRPCBroker Component
	2.1.1.1 Parent Class
	2.1.1.2 Unit
	2.1.1.3 Description
	2.1.1.4 Properties (All)
	2.1.1.5 Properties (Unique)
	2.1.1.6 Methods
	2.1.1.7 Example

	2.1.2 TContextorControl Component
	2.1.2.1 Parent Class
	2.1.2.2 Unit
	2.1.2.3 Description

	2.1.3 TRPCBroker Component
	2.1.3.1 Parent Class
	2.1.3.2 Unit
	2.1.3.3 Description
	2.1.3.4 Support for Secure Shell (SSH) Tunneling
	2.1.3.5 Support for Broker Security Enhancement (BSE)
	2.1.3.6 CCOW User Context Wrapped into the Primary TRPCBroker Component
	2.1.3.7 Properties (All)
	2.1.3.8 Methods
	2.1.3.9 Example

	2.1.4 TXWBRichEdit Component
	2.1.4.1 Parent Class
	2.1.4.2 Unit
	2.1.4.3 Description
	2.1.4.4 Property

	2.1.5 TXWBSSOiToken Component
	2.1.5.1 Parent Class
	2.1.5.2 Unit
	2.1.5.3 Description
	2.1.5.4 Properties (All)
	2.1.5.5 Example

	2.2 Classes
	2.2.1 TMult Class
	2.2.1.1 Unit
	2.2.1.2 Description
	2.2.1.3 Properties
	2.2.1.4 Methods
	2.2.1.5 Example

	2.2.2 TParamRecord Class
	2.2.2.1 Unit
	2.2.2.2 Description
	2.2.2.3 Properties
	2.2.2.4 Example

	2.2.3 TParams Class
	2.2.3.1 Unit
	2.2.3.2 Description
	2.2.3.3 Properties
	2.2.3.4 Methods
	2.2.3.5 Example

	2.2.4 TVistaLogin Class
	2.2.4.1 Unit
	2.2.4.2 Description
	2.2.4.3 Properties

	2.2.5 TVistaUser Class
	2.2.5.1 Unit
	2.2.5.2 Description
	2.2.5.3 Properties

	2.2.6 TXWBWinsock Class
	2.2.6.1 Unit
	2.2.6.2 Description

	2.3 Units
	2.3.1 CCOWRPCBroker Unit
	2.3.1.1 Library Method

	2.3.2 LoginFrm Unit
	2.3.3 MFunStr Unit
	2.3.3.1 Library Methods

	2.3.4 RPCConf1 Unit
	2.3.4.1 Library Methods

	2.3.5 RpcSLogin Unit
	2.3.5.1 Library Methods

	2.3.6 SplVista Unit
	2.3.6.1 Library Methods

	2.3.7 TRPCB Unit
	2.3.7.1 Classes
	2.3.7.2 Component
	2.3.7.3 Library Methods
	2.3.7.4 Types

	2.3.8 VCEdit Unit
	2.3.8.1 Library Methods

	2.3.9 Wsockc Unit
	2.3.9.1 Component

	2.3.10 XWBHash Unit
	2.3.10.1 Library Methods

	2.3.11 XWBSSOi Unit
	2.3.11.1 Component

	2.4 Methods
	2.4.1 Assign Method (TMult Class)
	2.4.1.1 Applies to
	2.4.1.2 Declaration
	2.4.1.3 Description
	2.4.1.4 Example
	2.4.1.4.1 TMult Assign Method—Assigning listbox Items to a TMULT
	2.4.1.4.2 TMult Assign Method—Assigning One TMULT to Another

	2.4.2 Assign Method (TParams Class)
	2.4.2.1 Applies to
	2.4.2.2 Declaration
	2.4.2.3 Description
	2.4.2.4 Example

	2.4.3 Call Method
	2.4.3.1 Declaration
	2.4.3.2 Description
	2.4.3.3 Example

	2.4.4 CreateContext Method
	2.4.4.1 Declaration
	2.4.4.2 Example

	2.4.5 GetCCOWtoken Method
	2.4.5.1 Declaration

	2.4.6 IsUserCleared Method
	2.4.6.1 Declaration
	2.4.6.2 Example

	2.4.7 IsUserContextPending Method
	2.4.7.1 Declaration

	2.4.8 lstCall Method
	2.4.8.1 Declaration
	2.4.8.2 Example

	2.4.9 pchCall Method
	2.4.9.1 Declaration

	2.4.10 Order Method
	2.4.10.1 Applies to
	2.4.10.2 Declaration
	2.4.10.3 Description
	2.4.10.4 Example

	2.4.11 Position Method
	2.4.11.1 Applies to
	2.4.11.2 Declaration
	2.4.11.3 Description
	2.4.11.4 Example

	2.4.12 strCall Method
	2.4.12.1 Example

	2.4.13 Subscript Method
	2.4.13.1 Applies to
	2.4.13.2 Declaration
	2.4.13.3 Description
	2.4.13.4 Example

	2.4.14 WasUserDefined Method
	2.4.14.1 Example

	2.5 Types
	2.5.1 TLoginMode Type
	2.5.1.1 Unit
	2.5.1.2 Description

	2.5.2 TParamType
	2.5.2.1 Unit
	2.5.2.2 Declaration
	2.5.2.3 Description

	2.6 Properties
	2.6.1 AccessCode Property
	2.6.1.1 Applies to
	2.6.1.2 Declaration
	2.6.1.3 Description

	2.6.2 BrokerVersion Property (read-only)
	2.6.2.1 Applies to
	2.6.2.2 Declaration
	2.6.2.3 Description

	2.6.3 CCOWLogonIDName Property (read-only)
	2.6.3.1 Applies to
	2.6.3.2 Declaration
	2.6.3.3 Description

	2.6.4 CCOWLogonIDValue Property (read-only)
	2.6.4.1 Applies to
	2.6.4.2 Declaration
	2.6.4.3 Description

	2.6.5 CCOWLogonName Property (read-only)
	2.6.5.1 Applies to
	2.6.5.2 Declaration
	2.6.5.3 Description

	2.6.6 CCOWLogonNameValue Property (read-only)
	2.6.6.1 Applies to
	2.6.6.2 Declaration
	2.6.6.3 Description

	2.6.7 CCOWLogonVpid Property (read-only)
	2.6.7.1 Applies to
	2.6.7.2 Declaration
	2.6.7.3 Description

	2.6.8 CCOWLogonVpidValue Property (read-only)
	2.6.8.1 Applies to
	2.6.8.2 Declaration
	2.6.8.3 Description

	2.6.9 ClearParameters Property
	2.6.9.1 Applies to
	2.6.9.2 Declaration
	2.6.9.3 Description
	2.6.9.4 Example

	2.6.10 ClearResults Property
	2.6.10.1 Applies to
	2.6.10.2 Declaration
	2.6.10.3 Description
	2.6.10.4 Example

	2.6.11 Connected Property
	2.6.11.1 Applies to
	2.6.11.2 Description
	2.6.11.3 Example

	2.6.12 Contextor Property
	2.6.12.1 Applies to
	2.6.12.2 Declaration
	2.6.12.3 Description

	2.6.13 Count Property (TMult Class)
	2.6.13.1 Applies to
	2.6.13.2 Declaration
	2.6.13.3 Description
	2.6.13.4 Example

	2.6.14 Count Property (TParams Class)
	2.6.14.1 Applies to
	2.6.14.2 Declaration
	2.6.14.3 Description
	2.6.14.4 Example

	2.6.15 CurrentContext Property (read-only)
	2.6.15.1 Applies to
	2.6.15.2 Declaration
	2.6.15.3 Description
	2.6.15.4 Example

	2.6.16 DebugMode Property
	2.6.16.1 Applies to
	2.6.16.2 Declaration
	2.6.16.3 Description

	2.6.17 Division Property (TVistaLogin Class)
	2.6.17.1 Applies to
	2.6.17.2 Declaration
	2.6.17.3 Description

	2.6.18 Division Property (TVistaUser Class)
	2.6.18.1 Applies to
	2.6.18.2 Description

	2.6.19 DivList Property (read-only)
	2.6.19.1 Applies to
	2.6.19.2 Declaration
	2.6.19.3 Description

	2.6.20 DomainName Property
	2.6.20.1 Applies to
	2.6.20.2 Declaration
	2.6.20.3 Description

	2.6.21 DTime Property
	2.6.21.1 Applies to
	2.6.21.2 Declaration
	2.6.21.3 Description

	2.6.22 DUZ Property (TVistaLogin Class)
	2.6.22.1 Applies to
	2.6.22.2 Declaration
	2.6.22.3 Description

	2.6.23 DUZ Property (TVistaUser Class)
	2.6.23.1 Applies to
	2.6.23.2 Declaration
	2.6.23.3 Description

	2.6.24 ErrorText Property
	2.6.24.1 Applies to
	2.6.24.2 Declaration
	2.6.24.3 Description

	2.6.25 First Property
	2.6.25.1 Applies to
	2.6.25.2 Declaration
	2.6.25.3 Description
	2.6.25.4 Example

	2.6.26 IsProductionAccount Property
	2.6.26.1 Applies to
	2.6.26.2 Declaration
	2.6.26.3 Description

	2.6.27 KernelLogIn Property
	2.6.27.1 Applies to
	2.6.27.2 Declaration
	2.6.27.3 Description

	2.6.28 Language Property
	2.6.28.1 Applies to
	2.6.28.2 Declaration
	2.6.28.3 Description

	2.6.29 Last Property
	2.6.29.1 Applies to
	2.6.29.2 Declaration
	2.6.29.3 Description
	2.6.29.4 Example

	2.6.30 ListenerPort Property
	2.6.30.1 Applies to
	2.6.30.2 Declaration
	2.6.30.3 Description
	2.6.30.4 Example

	2.6.31 LogIn Property
	2.6.31.1 Applies to
	2.6.31.2 Declaration
	2.6.31.3 Description

	2.6.32 LoginHandle Property
	2.6.32.1 Applies to
	2.6.32.2 Declaration
	2.6.32.3 Description

	2.6.33 Mode Property
	2.6.33.1 Applies to
	2.6.33.2 Declaration
	2.6.33.3 Description

	2.6.34 Mult Property
	2.6.34.1 Applies to
	2.6.34.2 Declaration
	2.6.34.3 Description
	2.6.34.4 Example

	2.6.35 MultiDivision Property
	2.6.35.1 Applies to
	2.6.35.2 Declaration
	2.6.35.3 Description

	2.6.36 Name Property
	2.6.36.1 Applies to
	2.6.36.2 Declaration
	2.6.36.3 Description

	2.6.37 OnFailedLogin Property
	2.6.37.1 Applies to
	2.6.37.2 Declaration
	2.6.37.3 Description

	2.6.38 OnRPCBFailure Property
	2.6.38.1 Applies to
	2.6.38.2 Declaration
	2.6.38.3 Description
	2.6.38.4 Example

	2.6.39 Param Property
	2.6.39.1 Applies to
	2.6.39.2 Declaration
	2.6.39.3 Description
	2.6.39.4 Example

	2.6.40 PromptDivision Property
	2.6.40.1 Applies to
	2.6.40.2 Declaration
	2.6.40.3 Description

	2.6.41 PType Property
	2.6.41.1 Applies to
	2.6.41.2 Declaration
	2.6.41.3 Description
	2.6.41.4 Example

	2.6.42 RemoteProcedure Property
	2.6.42.1 Applies to
	2.6.42.2 Declaration
	2.6.42.3 Description
	2.6.42.4 Example

	2.6.43 Results Property
	2.6.43.1 Applies to
	2.6.43.2 Declaration
	2.6.43.3 Description
	2.6.43.4 Example

	2.6.44 RPCBError Property (read-only)
	2.6.44.1 Applies to
	2.6.44.2 Declaration
	2.6.44.3 Description

	2.6.45 RPCTimeLimit Property
	2.6.45.1 Applies to
	2.6.45.2 Declaration
	2.6.45.3 Description
	2.6.45.4 Example

	2.6.46 RPCVersion Property
	2.6.46.1 Applies to
	2.6.46.2 Declaration
	2.6.46.3 Description
	2.6.46.4 Example
	2.6.46.4.1 On the Client
	2.6.46.4.2 On the Server

	2.6.47 SecurityPhrase Property
	2.6.47.1 Applies to
	2.6.47.2 Declaration
	2.6.47.3 Description

	2.6.48 Server Property
	2.6.48.1 Applies to
	2.6.48.2 Declaration
	2.6.48.3 Description
	2.6.48.4 Example

	2.6.49 ServiceSection Property
	2.6.49.1 Applies to
	2.6.49.2 Declaration
	2.6.49.3 Description

	2.6.50 ShowErrorMsgs Property
	2.6.50.1 Applies to
	2.6.50.2 Declaration
	2.6.50.3 Description

	2.6.51 Socket Property (read-only)
	2.6.51.1 Applies to
	2.6.51.2 Declaration
	2.6.51.3 Description
	2.6.51.4 Example

	2.6.52 Sorted Property
	2.6.52.1 Applies to
	2.6.52.2 Declaration
	2.6.52.3 Description
	2.6.52.4 Example

	2.6.53 SSHHide Property
	2.6.53.1 Applies to
	2.6.53.2 Declaration
	2.6.53.3 Description

	2.6.54 SSHport Property
	2.6.54.1 Applies to
	2.6.54.2 Declaration
	2.6.54.3 Description

	2.6.55 SSHpw Property
	2.6.55.1 Applies to
	2.6.55.2 Declaration
	2.6.55.3 Description

	2.6.56 SSHUser Property
	2.6.56.1 Applies to
	2.6.56.2 Declaration
	2.6.56.3 Description

	2.6.57 SSOiADUPN Property (TRPCBroker Component)
	2.6.57.1 Applies to
	2.6.57.2 Declaration
	2.6.57.3 Description

	2.6.58 SSOiADUPN Property (TXWBSSOiToken Component)
	2.6.58.1 Applies to
	2.6.58.2 Declaration
	2.6.58.3 Description

	2.6.59 SSOiLogonName Property (TRPCBroker Component)
	2.6.59.1 Applies to
	2.6.59.2 Declaration
	2.6.59.3 Description

	2.6.60 SSOiLogonName Property (TXWBSSOiToken Component)
	2.6.60.1 Applies to
	2.6.60.2 Declaration
	2.6.60.3 Description

	2.6.61 SSOiSECID (TRPCBroker Component)
	2.6.61.1 Applies to
	2.6.61.2 Declaration
	2.6.61.3 Description

	2.6.62 SSOiSECID Property (TXWBSSOiToken Component)
	2.6.62.1 Applies to
	2.6.62.2 Declaration
	2.6.62.3 Description

	2.6.63 SSOiToken Property (TRPCBroker Component)
	2.6.63.1 Applies to
	2.6.63.2 Declaration
	2.6.63.3 Description

	2.6.64 SSOiToken Property (TXWBSSOiToken Component)
	2.6.64.1 Applies to
	2.6.64.2 Declaration
	2.6.64.3 Description

	2.6.65 StandardName Property
	2.6.65.1 Applies to
	2.6.65.2 Declaration
	2.6.65.3 Description

	2.6.66 Title Property
	2.6.66.1 Applies to
	2.6.66.2 Declaration
	2.6.66.3 Description

	2.6.67 URLDetect Property
	2.6.67.1 Applies to TXWBRichEdit Component
	2.6.67.2 Declaration
	2.6.67.3 Description

	2.6.68 User Property
	2.6.68.1 Applies to
	2.6.68.2 Declaration
	2.6.68.3 Description

	2.6.69 UseSecureConnection Property
	2.6.69.1 Applies to
	2.6.69.2 Declaration
	2.6.69.3 Description

	2.6.70 Value Property
	2.6.70.1 Applies to
	2.6.70.2 Declaration
	2.6.70.3 Description
	2.6.70.4 Example

	2.6.71 VerifyCode Property
	2.6.71.1 Applies to
	2.6.71.2 Declaration
	2.6.71.3 Description

	2.6.72 VerifyCodeChngd Property
	2.6.72.1 Applies to
	2.6.72.2 Declaration
	2.6.72.3 Description

	2.6.73 Vpid Property
	2.6.73.1 Applies to
	2.6.73.2 Declaration
	2.6.73.3 Description

	3 Remote Procedure Calls (RPCs)
	3.1 RPC Overview
	3.2 What Makes a Good RPC?
	3.3 Using an Existing M API
	3.4 Creating RPCs
	3.5 M Entry Point for an RPC
	3.5.1 Relationship between an M Entry Point and an RPC
	3.5.2 First Input Parameter (Required)
	3.5.3 Return Value Types
	3.5.4 Input Parameters (Optional)
	3.5.5 Examples

	3.6 RPC Entry in the Remote Procedure File
	3.6.1 REMOTE PROCEDURE File
	3.6.2 Key Fields for RPC Operation
	3.6.3 RPC Version
	3.6.4 Blocking an RPC
	3.6.4.1 Value in INACTIVE field

	3.6.5 Cleanup after RPC Execution
	3.6.6 Documenting RPCs
	3.6.6.1 Delphi Component Library and Sample RPCs

	3.7 Executing RPCs from Clients
	3.7.1 How to Execute an RPC from a Client
	3.7.2 RPC Security: How to Register an RPC
	3.7.3 RPC Limits
	3.7.4 RPC Time Limits
	3.7.5 Maximum Size of Data
	3.7.6 Maximum Number of Parameters
	3.7.7 Maximum Size of Array
	3.7.8 RPC Broker Example (32-Bit)

	4 RPC Broker: Developer Tools
	4.1 Application Programming Interface (API)
	4.1.1 Overview
	4.1.2 $$BROKER^XWBLIB: Test for Broker Context
	4.1.2.1 Example

	4.1.3 $$RTRNFMT^XWBLIB(): Change RPC Return Type
	4.1.3.1 Example

	4.1.4 CHKPRMIT^XWBSEC(): Check Permissions
	4.1.5 CRCONTXT^XWBSEC(): Create Context
	4.1.6 SET^XWBSEC(): Set the State Variable

	4.2 Functions, Methods, and Procedures
	4.2.1 Overview
	4.2.2 XWB CREATE CONTEXT
	4.2.3 XWB GET BROKER INFO
	4.2.4 XWB GET VARIABLE VALUE
	4.2.4.1 Example

	4.2.5 XWB IM HERE
	4.2.6 M Emulation Functions
	4.2.6.1 Piece Function
	4.2.6.2 Translate Function
	4.2.6.3 Examples
	4.2.6.3.1 Piece Function
	4.2.6.3.2 Translate Function

	4.2.7 Encryption Functions
	4.2.7.1 In Delphi
	4.2.7.2 On the VistA M Server
	4.2.7.2.1 Encrypt Function
	4.2.7.2.2 Decrypt Function

	4.2.8 CheckCmdLine Function
	4.2.8.1 Argument
	4.2.8.2 Result

	4.2.9 GetServerInfo Function
	4.2.9.1 Syntax
	4.2.9.2 Example

	4.2.10 GetServerIP Function
	4.2.10.1 Example

	4.2.11 ChangeVerify Function
	4.2.11.1 Argument
	4.2.11.2 Result

	4.2.12 SilentChangeVerify Function
	4.2.12.1 Arguments
	4.2.12.2 Result

	4.2.13 StartProgSLogin Method
	4.2.13.1 Arguments
	4.2.13.2 Example 1
	4.2.13.3 Example 2

	4.2.14 VistA Splash Screen Procedures
	4.2.14.1 Using a Splash Screen in an Application
	4.2.14.2 Example

	4.3 Running RPCs on a Remote Server
	4.3.1 Overview
	4.3.1.1 Using Direct RPCs
	4.3.1.2 Using Remote RPCs

	4.3.2 Checking RPC Availability on a Remote Server
	4.3.3 XWB ARE RPCS AVAILABLE
	4.3.3.1 Example

	4.3.4 XWB IS RPC AVAILABLE
	4.3.4.1 Example

	4.3.5 XWB DIRECT RPC
	4.3.5.1 Example

	4.3.6 XWB REMOTE RPC
	4.3.6.1 Example

	4.3.7 XWB REMOTE STATUS CHECK
	4.3.7.1 Example

	4.3.8 XWB REMOTE GETDATA
	4.3.8.1 Example

	4.3.9 XWB REMOTE CLEAR
	4.3.9.1 Example

	4.4 Deferred RPCs
	4.4.1 Overview
	4.4.1.1 Using Deferred RPCs

	4.4.2 XWB DEFERRED RPC
	4.4.2.1 Example

	4.4.3 XWB DEFERRED STATUS
	4.4.3.1 Example

	4.4.4 XWB DEFERRED GETDATA
	4.4.4.1 Example

	4.4.5 XWB DEFERRED CLEAR
	4.4.5.1 Example

	4.4.6 XWB DEFERRED CLEARALL
	4.4.6.1 Example

	5 Broker Security Enhancement (BSE)
	5.1 Overview: Implementing Broker Security Enhancement (BSE)
	5.1.1 Assumptions When Implementing BSE
	5.1.2 Step-By-Step Procedures to Implement BSE

	6 Debugging and Troubleshooting
	6.1 Debugging and Troubleshooting Overview
	6.2 How to Debug the Application
	6.3 RPC Error Trapping
	6.4 Broker Error Messages
	6.5 EBrokerError
	6.5.1 Unit
	6.5.2 Description

	6.6 Testing the RPC Broker Connection
	6.7 Client Timeout and Buffer Clearing
	6.8 Memory Leaks

	7 Tutorial
	7.1 Tutorial: Introduction
	7.1.1 Tutorial Procedures

	7.2 Tutorial: Advanced Preparation
	7.2.1 Namespacing of Routines and RPCs
	7.2.2 Tutorial Prerequisites

	7.3 Tutorial—Step 1: RPC Broker Component
	7.4 Tutorial—Step 2: Get Server/Port
	7.5 Tutorial—Step 3: Establish Broker Connection
	7.6 Tutorial—Step 4: Routine to List Terminal Types
	7.7 Tutorial—Step 5: RPC to List Terminal Types
	7.8 Tutorial—Step 6: Call ZxxxTT LIST RPC
	7.9 Tutorial—Step 7: Associating IENs
	7.10 Tutorial—Step 8: Routine to Retrieve Terminal Types
	7.11 Tutorial—Step 9: RPC to Retrieve Terminal Types
	7.12 Tutorial—Step 10: Call ZxxxTT RETRIEVE RPC
	7.13 Tutorial—Step 11: Register RPCs
	7.14 Tutorial—Using VA FileMan Delphi Components (FMDC)
	7.15 Tutorial—Source Code (Sample)
	7.16 Silent Login
	7.16.1 Handling Divisions during Silent Login
	7.16.2 Silent Login Examples
	7.16.2.1 Example 1: lmAVCodes
	7.16.2.2 Example 2: lmAppHandle

	7.17 Microsoft Windows Registry

	8 DLL Interfaces (C, C++, Visual Basic)
	8.1 DLL Interface Introduction
	8.1.1 Header Files
	8.1.2 Sample DLL Application

	8.2 DLL Exported Functions
	8.3 DLL Special Issues
	8.3.1 RPC Results from DLL Calls
	8.3.2 GetServerInfo Function and the DLL

	8.4 C DLL Interface
	8.4.1 C: Guidelines Overview
	8.4.2 C: Initialize—LoadLibrary and GetProcAddress
	8.4.3 C: Create Broker Components
	8.4.4 C: Connect to the Server
	8.4.5 C: Execute RPCs
	8.4.6 C: Destroy Broker Components

	8.5 C++ DLL Interface
	8.5.1 C++: Guidelines Overview
	8.5.2 C++: Initialize the Class
	8.5.3 C++: Create Broker Instances
	8.5.4 C++: Connect to the Server
	8.5.5 C++: Execute RPCs
	8.5.6 C++: Destroy Broker Instances
	8.5.7 C++: TRPCBroker C++ Class Methods

	8.6 Visual Basic DLL Interface
	8.6.1 Visual Basic: Guidelines Overview
	8.6.1.1 Sample DLL Application

	8.6.2 Visual Basic: Initialize
	8.6.3 Visual Basic: Create Broker Components
	8.6.4 Visual Basic: Connect to the Server
	8.6.5 Visual Basic: Execute RPCs
	8.6.6 Visual Basic: Destroy Broker Components

	8.7 MySsoToken Function
	8.7.1 Declarations
	8.7.2 Return Value
	8.7.3 Examples
	8.7.3.1 C
	8.7.3.2 C++
	8.7.3.3 Visual Basic

	8.8 RPCBCall Function
	8.8.1 Declarations
	8.8.2 Parameter Description
	8.8.3 Examples
	8.8.3.1 C
	8.8.3.2 C++
	8.8.3.3 Visual Basic

	8.9 RPCBCreate Function
	8.9.1 Declarations
	8.9.2 Return Value
	8.9.3 Examples
	8.9.3.1 C
	8.9.3.2 Visual Basic

	8.10 RPCBCreateContext Function
	8.10.1 Declarations
	8.10.2 Return Value
	8.10.3 Parameter Description
	8.10.4 Examples
	8.10.4.1 C
	8.10.4.2 C++
	8.10.4.3 Visual Basic

	8.11 RPCBFree Function
	8.11.1 Declarations
	8.11.2 Parameter Description
	8.11.3 Examples
	8.11.3.1 C
	8.11.3.2 Visual Basic

	8.12 RPCBMultItemGet Function
	8.12.1 Declarations
	8.12.2 Parameter Description
	8.12.3 Examples
	8.12.3.1 C
	8.12.3.2 C++
	8.12.3.3 Visual Basic

	8.13 RPCBMultPropGet Function
	8.13.1 Declarations
	8.13.2 Parameter Description
	8.13.3 Examples
	8.13.3.1 C
	8.13.3.2 C++
	8.13.3.3 Visual Basic

	8.14 RPCBMultSet Function
	8.14.1 Declarations
	8.14.2 Parameter Description
	8.14.3 Examples
	8.14.3.1 C
	8.14.3.2 C++
	8.14.3.3 Visual Basic

	8.15 RPCBMultSortedSet Function
	8.15.1 Declarations
	8.15.2 Parameter Description
	8.15.3 Examples
	8.15.3.1 C
	8.15.3.2 C++
	8.15.3.3 Visual Basic

	8.16 RPCBParamGet Function
	8.16.1 Declarations
	8.16.2 Parameter Description
	8.16.3 Examples
	8.16.3.1 C
	8.16.3.2 C++
	8.16.3.3 Visual Basic

	8.17 RPCBParamSet Function
	8.17.1 Declarations
	8.17.2 Parameter Description
	8.17.3 Examples
	8.17.3.1 C
	8.17.3.2 C++
	8.17.3.3 Visual Basic

	8.18 RPCBPropGet Function
	8.18.1 Declarations
	8.18.2 Examples
	8.18.2.1 C
	8.18.2.2 C++
	8.18.2.3 Visual Basic

	8.19 RPCBPropSet Function
	8.19.1 Declarations
	8.19.2 Examples
	8.19.2.1 C
	8.19.2.2 C++
	8.19.2.3 Visual Basic

	Glossary

