

VISTALINK

DEVELOPER GUIDE

Version 1.6

December 2010

Department of Veterans Affairs
Office of Information and Technology

Product Development

ii VistALink 1.6 Developer Guide December 2010

Revision History

Date Description Author

12/03/10 VistALink Version 1.6 release. Product Development Services Security
Program VistALink development team.

Albany, NY OIFO:

 Developer—Mike Kilmade

 Developer—Liz Defibaugh

Bay Pines, FL OIFO:

 Development Manager—Charles
Swartz

 Tester—Jason Woodyard

Oakland, CA OIFO:

 Developer—Kyle Clarke

 SQA—Gurbir Singh

 Technical Writer—Susan Strack

05/2006 Initial VistALink Version 1.5 release. Jim Alexander, technical writer

Dawn Clark, project manager

Table i. Revision History

December 2010 VistALink 1.6 Developer Guide iii

Contents

Revision History ... ii

Tables and Figures .. vii

Orientation ... ix

Terminology .. ix

Text Conventions .. ix

1. Introduction ... 1-1

1.1. About this Guide .. 1-1

1.2. WebLogic Updates Project .. 1-1

1.3. About J2EE Connectors ... 1-1

1.4. Public VistALink APIs Documentation ... 1-1

1.5. Sample Applications for J2EE Server .. 1-2

1.6. Deprecated VistALink APIs .. 1-2

2. Developer Workstation Setup .. 2-1

2.1. J2EE Development ... 2-1

2.1.1. IDE ... 2-1

2.1.2. J2EE Runtime ... 2-1

2.2. J2SE Development ... 2-1

2.2.1. IDE ... 2-1

2.2.2. J2SE Runtime ... 2-1

3. How to Use VistALink in J2EE Applications ... 3-1

3.1. Using Station Number and Division .. 3-1

3.1.1. System Locator: Institution-Connector Mapping ... 3-1

3.1.2. Multidivision-Aware Application Code: ConnectionSpec Credentials 3-2

3.1.3. Example .. 3-2

3.2. Request Cycle... 3-2

3.2.1. Retrieving the Connection Factory ... 3-2

3.2.2. Instantiating a Connection Spec for Re-authentication .. 3-3

3.2.3. Getting a Connection (Connection Spec) ... 3-4

3.2.4. Executing a Request ... 3-4

3.2.5. Closing the Connection .. 3-4

3.2.6. Complete Request Cycle .. 3-5

3.2.7. Connectivity Failures and Retry Strategies .. 3-6

Contents

iv VistALink 1.6 Developer Guide December 2010

3.3. More about Re-authentication .. 3-6

3.3.1. Overview .. 3-6

3.3.2. Connection Specification Classes... 3-7

3.3.3. Institution/Division Rules for Re-authentication .. 3-7

3.3.4. Application Proxy User .. 3-8

3.4. Timeouts ... 3-10

3.4.1. Socket-Level Forced Timeout .. 3-10

3.4.2. Graceful (Request-Level) Timeout... 3-11

3.5. Institution Mapping .. 3-13

3.5.1. How to Configure Mappings .. 3-14

3.5.2. How to View the Currently Loaded Mappings .. 3-14

3.5.3. Retrieving Mappings for Applications ... 3-14

3.5.4. Subdivisions ... 3-14

3.6. VistALink Java API Reference .. 3-15

4. Executing Requests .. 4-1

4.1. Remote Procedure Calls ... 4-1

4.1.1. RPC Security (“B”-Type Option) ... 4-1

4.1.2. RPCs for Use by Application Proxy Users ... 4-1

4.2. Request Processing ... 4-1

4.2.1. Get an RpcRequest Object: RpcRequestFactory Class .. 4-2

4.2.2. Set RpcRequest Parameters: “Explicit” Style .. 4-3

4.2.3. Set RpcRequest Parameters: “setParams” Style ... 4-5

4.2.4. Specifying Indices for List-Type RPC Parameters .. 4-6

4.2.5. Other Useful RpcRequest Methods .. 4-7

4.3. Response Processing .. 4-8

4.3.1. RpcResponse Class... 4-9

4.3.2. Request/Response Example ... 4-9

4.3.3. Parsing RPC Results ... 4-10

4.3.4. XML Responses ... 4-10

4.4. How to Write RPCs .. 4-11

4.4.1. Write Stateless RPCs Whenever Possible .. 4-11

4.4.2. When State is Needed ... 4-11

4.4.3. Pitfalls of Using of $JOB in Stateful RPCs .. 4-12

4.4.4. Pitfalls of Global Locking in Stateful RPCs ... 4-12

5. VistALink Exception Reference ... 5-1

 Contents

December 2010 VistALink 1.6 Developer Guide v

5.1. Exception Nesting Changes Since VistALink 1.5.. 5-1

5.2. VistALink Exception Hierarchy... 5-1

5.2.1. Common FoundationsExceptionInterface .. 5-1

5.2.2. VistaLinkResourceException ... 5-3

5.2.3. FoundationsException .. 5-3

5.2.4. VistaLinkFaultException .. 5-3

6. Foundations Library Utilities ... 6-1

6.1. Encryption: gov.va.med.crypto .. 6-1

6.2. J2EE Environment: gov.va.med.environment .. 6-1

6.2.1. Environment.isProduction() ... 6-1

6.2.2. Environment.getServerType() .. 6-2

6.3. Network: gov.va.med.net ... 6-2

6.4. Audit Timer: gov.va.med.monitor.time ... 6-2

6.4.1. Sample Code... 6-3

6.5. Exception: gov.va.med.exception .. 6-4

6.5.1. ExceptionUtils Class .. 6-4

6.6. XML: gov.va.med.xml ... 6-4

6.6.1. XmlUtilities Class .. 6-4

7. How to Use VistALink in J2SE Applications .. 7-1

7.1. Authenticating and Connecting to VistA in Client-Server Mode .. 7-1

7.1.1. JAAS Overview .. 7-1

7.2. VistALink JAAS Implementation .. 7-2

7.2.1. VistaLoginModule.. 7-2

7.2.2. JAAS Login Configuration Overview .. 7-2

7.2.3. VistALink-Specific JAAS Login Configuration .. 7-2

7.2.4. Passing the JAAS Login Configuration(s) to Your JVM ... 7-3

7.2.5. Selecting the JAAS Configuration From an Application ... 7-4

7.2.6. Selecting a VistaLoginModule Callback Handler .. 7-4

7.2.7. Benefits of Passing Parent Application Frame to Callback Handler 7-4

7.3. Putting the Pieces Together: VistALink JAAS Login.. 7-5

7.3.1. Logging in to VistA .. 7-5

7.4. After Successfully Logging In ... 7-6

7.4.1. Retrieving the VistaKernelPrincipal... 7-6

7.4.2. Retrieving the Authenticated Connection From the Principal .. 7-6

7.4.3. Retrieving User Demographic Information .. 7-7

Contents

vi VistALink 1.6 Developer Guide December 2010

7.4.4. Executing RPCs .. 7-8

7.4.5. Timeouts ... 7-8

7.4.6. Logging Out ... 7-8

7.5. Catching Login Exceptions .. 7-9

7.5.1. VistaLoginModule Exception Hierarchy ... 7-9

7.6. CCOW Login Functionality ... 7-11

7.7. Unit Testing and VistALink ... 7-11

Appendix A: Pluggable Institution Rules .. Appendix A-1

Glossary ... Glossary-1

December 2010 VistALink 1.6 Developer Guide vii

Tables and Figures

Table i. Revision History .. ii

Table 3-1. VA Institution Mapping Rules Examples ... 3-1

Table 3-2. Connection Specification Classes ... 3-7

Table 4-1. Mapping RPC Return Types to VistALink Result String Format .. 4-10

Figure 5-1. VistALink Exception Hierarchy .. 5-2

Table 6-1. VistALink Utility Methods ... 6-4

Table 6-2. VistALink Utility Variables ... 6-4

Table 7-1. Demographics Keys and Values ... 7-8

Table 7-2. VistALink Login Exceptions .. 7-10

Tables and Figures

viii VistALink 1.6 Developer Guide December 2010

December 2010 VistALink 1.6 Developer Guide ix

Orientation

This Developer Guide is intended for use in conjunction with the VistALink software. It outlines the

details of VistALink-related software and gives guidelines on how the software is used within

HealtheVet-Veterans Health Information Systems and Technology Architecture (VistA).

The intended audience of this manual is all key stakeholders. The primary stakeholder is the Product

Development Security Program team. Additional stakeholders include:

 HealtheVet-VistA application developers of Web-based applications in the WebLogic 9.2 and

10.x Application Server environments.

 Information Resource Management (IRM) and Information Security Officers (ISOs) at Veterans

Affairs Medical Centers (VAMCs) responsible for computer management and system security.

 Product Support.

 VA facility personnel who will be using HealtheVet-VistA Web-based applications running in the

WebLogic 9.2 and 10.x Application Server environment.

Document Overview

This manual's intended audience includes server administrators and IRM Information Technology (IT)

specialists at VA facilities, as well as developers of Java applications requiring communication with

VistA/M.

Generally, the installation and maintenance instructions presented here assume the use of Windows as the

client operating system. Where appropriate, separate steps are displayed for Linux.

Terminology

The term resource adapter is often shortened in this guide to "adapter," and is also used interchangeably

with the term connector.

Text Conventions

File names and directory names are set off from other text using bold font (e.g., config.xml). Bold is also

used to indicate GUI elements, such as tab, field, and button names (e.g., "press Delete").

All caps are used to indicate M routine and option names (e.g., XMINET). All caps used inside angle

brackets indicate file names to be supplied by the user. Example:

 <JAVA_HOME>\bin\java -Dlog4j.configuration=file:///c:/localConfigs/mylog4j.xml

Orientation

x VistALink 1.6 Developer Guide December 2010

Names for Java objects, methods, and variables are indicated by Courier font. Snapshots of computer

displays also appear in Courier, surrounded by a border:

Select Installation Option: LOAD a Distribution

Enter a Host File: XOB_1_5.KID

In these examples, the response that the user enters at a prompt appears in bold font:

Enter the Device you want to print the Install messages.

You can queue the install by enter a 'Q' at the device prompt.

Enter a '^' to abort the install.

DEVICE: HOME// <Enter> TELNET PORT

Boldface text is also used in code and deployment descriptor samples to indicate lines of particular

interest, discussed in the preceding text:

<?xml version="1.0"?>

<weblogic-connector xmlns="http://www.bea.com/ns/weblogic/90"

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation="http://www.bea.com/ns/weblogic/90

http://www.bea.com/ns/weblogic/90/weblogic-ra.xsd">

 <!-- For new ADAPTER-level jndi-name, recommend using value of

connection instance JNDI name, appended with Adapter -->

 <jndi-name>vlj/testconnectorAdapter</jndi-name>

 <enable-global-access-to-classes>true</enable-global-access-to-classes>

The following symbols appear throughout the documentation to alert the reader to special information or

conditions.

Symbol Description

Used to inform the reader of general information and references to additional reading

material, including online information.

Used to caution the reader to take special notice of critical information.

Additional Resources

VistALink Web Site

The VistALink website summarizes VistALink architecture and functionality and presents status updates:

http://vista.med.va.gov/vistalink/index.asp.

 Orientation

December 2010 VistALink 1.6 Developer Guide xi

VistALink 1.6 Documentation

The full VistALink end-user documentation set consists of:

 VistALink 1.6 Installation Guide: Provides detailed instructions for setting up, installing, and

configuring the VistALink 1.6 listener on VistA/M servers and the VistALink resource adapter on

Java 2 Enterprise Edition (J2EE) application servers. Its intended audience includes server

administrators, IRM IT specialists, and Java application developers.

 VistALink 1.6 System Management Guide: Contains detailed information on J2EE application

server management, institution mapping, the VistALink administration console, M listener

management, and VistALink security, logging, and troubleshooting.

 VistALink 1.6 Developer Guide (this manual): Contains detailed information about workstation

setup, re-authentication, institution mapping, executing requests, VistALink exceptions,

Foundations Library utilities, and other topics pertaining to writing code that uses VistALink.

 VistALink 1.6 Release Notes: Lists all new features included in each VistALink 1.6 release.

VistALink 1.6 end-user documentation can be downloaded from the VA Software Document Library

(VDL) Web site at:

http://www.va.gov/vdl/application.asp?appid=163

VistALink 1.6 end-user documentation and software can be downloaded from any of the

anonymous.software directory on the Office of Information Field Office (OIFO) File Transfer Protocol

(FTP) download sites::

 Albany OIFO ftp.fo-albany.med.va.gov

 Hines OIFO ftp.fo-hines.med.va.gov

 Salt Lake City OIFO ftp.fo-slc.med.va.gov

 Preferred Method download.vista.med.va.gov

The documentation is made available online in Microsoft Word format and Adobe Acrobat Portable

Document Format (PDF). The PDF documents must be read using the Adobe Acrobat Reader

(i.e., ACROREAD.EXE), which is freely distributed by Adobe Systems Incorporated at the following

Web address:

http://www.adobe.com/

SSO/UC Project (CCOW-Enabled Logins)

VistALink implements CCOW-enabled functionality for client/server end-user logins. For more

information on how to use VistALink for CCOW-enabled client/server logins, see the Single Sign-

On/User Context (SSO/UC) documentation, on the VDL:

http://www.va.gov/vdl/application.asp?appid=162

http://www.va.gov/vdl/application.asp?appid=163
ftp://ftp.fo-albany.med.va.gov/
ftp://ftp.fo-hines.med.va.gov/
ftp://ftp.fo-slc.med.va.gov/
http://www.adobe.com/
http://www.va.gov/vdl/application.asp?appid=162

Orientation

xii VistALink 1.6 Developer Guide December 2010

Oracle (formerly known as BEA) Systems

At the current time, VistALink 1.6 has been tested and is supported on Oracle WebLogic Server 9.2 and

10. WebLogic product documentation can be found at the following website:

http://edocs.bea.com/

DISCLAIMER: The appearance of any external hyperlink references in this manual does
not constitute endorsement by the Department of Veterans Affairs (VA) of this Web site
or the information, products, or services contained therein. The VA does not exercise
any editorial control over the information you may find at these locations. Such links
are provided and are consistent with the stated purpose of this VA Intranet Service.

http://edocs.bea.com/

December 2010 VistALink 1.6 Developer Guide 1-1

1. Introduction

1.1. About this Guide

This document is a guide to developing applications that utilize VistALink 1.6. The VistALink 1.6

resource adapter is a transport layer that provides communication between HealtheVet Java applications

and VistA/M servers, in both client-server and n-tier environments. It allows RPCs to execute on the

VistA/M system and return results to the Java enterprise system.

VistALink consists of Java-side adapter libraries and an M-side listener. The adapter libraries use the J2EE

Connector Architecture (J2CA 1.5) specification to integrate Java applications with legacy systems. The M

listener process receives and processes requests from client applications.

The term resource adapter is often shortened in this guide to adapter, and is also used interchangeably

with the term connector.

1.2. WebLogic Updates Project

In support of the Department of Veterans Affairs Information Technology application Modernization

effort, the three applications VistALink, Fat-client Kernel Authentication and Authorization (v), and

Kernel Authentication and Authorization for the Java 2 Enterprise Edition (KAAJEE) have been

developed. Based on the direction of the Technical Review Model (TRM) and in order to support

applications that upgrade to the new WebLogic Server versions 9.2 and 10.x, this project is required. The

scope of the project is to upgrade these three applications to work with the WebLogic Server versions 9.2

and 10.x.

The previous version of VistALink, 1.5, was released in June of 2006, and provided project developers

with J2EE and Java Platform, Standard Edition (J2SE) application connectivity to VistA/M servers. It was

designed specifically for J2EE 1.3 application servers (e.g., WebLogic 8.1).

1.3. About J2EE Connectors

VistALink 1.6 implements a resource adapter that is fully compliant with the J2EE Connector

Architecture Specification 1.5. VistALink is accessed programmatically through the interfaces specified

in the J2EE Connector Architecture specification.

REF: For more information about J2EE Connectors, see the book J2EE Connector

Architecture and Enterprise Application Integration, by Sharma, Stearns, and Ng (Addison-

Wesley Professional). Also see the J2CA 1.5 Connector Specification and the J2EE 1.4

standard.

1.4. Public VistALink APIs Documentation

The VistALink 1.6 distribution zip file supplies full Javadoc Application Program Interface (API)

reference documentation in the /javadoc folder. The VistALink Javadoc describes the various Java

Introduction

1-2 VistALink 1.6 Developer Guide December 2010

classes that make up the public VistALink programming API. These APIs may be used under the

conditions listed in the Javadoc documentation. VistALink classes that are not documented in the

VistALink Javadoc are not part of the supported VistALink API.

REF: For more information about the Javadoc documentation format, please see

http://java.sun.com/j2se/javadoc/.

1.5. Sample Applications for J2EE Server

See the J2EE Developer Samples for examples of how to use VistALink with a J2EE server. The

Developer Samples are supplied in the VistALink 1.6 distribution zip file for both J2EE and J2SE modes.

1.6. Deprecated VistALink APIs

The list of deprecated APIs in VistALink 1.6 is:

 gov.va.med.exception.FoundationsExceptionInterface (and implementers):

- getFullStackTrace() method

- getNestedException() method

 gov.va.med.exception.FoundationsException (and descendants):

- getFullStackTrace() method

- getNestedException() method

 gov.va.med.vistalink.adapter.cci.VistaLinkResourceException (and descendants):

- getFullStackTrace() method

- getNestedException() method

 gov.va.med.vistalink.security.VistaLoginModuleException (and descendants):

- getFullStackTrace() method

- getNestedException() method

 gov.va.med.exception.ExceptionUtils:

- String getFullStackTrace() method

- Throwable getNestedExceptionByClass() method

 gov.va.med.xml.XmlUtilities:

- String convertXmlToStr() method

- Document getDocumentForXmlString() method

- Document getDocumentForXmlInputStream() method

- Attr getAttr() method

- Node getNode() method

- String XML_HEADER field

http://java.sun.com/j2se/javadoc/

December 2010 VistALink 1.6 Developer Guide 2-1

2. Developer Workstation Setup

2.1. J2EE Development

2.1.1. IDE

The following libraries should be on the project classpath of your J2EE project in your integrated

development environment (IDE), when developing modules using VistALink J2EE connectors:

 vljConnector-1.6.0.jar

 vljFoundationsLib-1.6.0.jar

 A J2EE 1.4 library (e.g., j2ee.jar, weblogic.jar, MyEclipseIDE's j2ee library, etc.)

The vlj* library jars are provided in the /app-j2ee/shared-lib folder of the distribution zip file.

2.1.2. J2EE Runtime

At runtime, additional libraries are required for your J2EE environment. See the VistALink 1.6

Installation Guide and the VistALink 1.6 System Management Guide for more information on setting up

VistALink connectors in a J2EE container.

2.2. J2SE Development

2.2.1. IDE

The following libraries need to be on the project classpath of your J2SE project in your IDE, when

developing modules using VistALink client/server connectivity:

 vljConnector-1.6.0.jar

 vljFoundationsLib-1.6.0.jar

 vljSecurity-1.6.0.jar

 A jar containing J2EE 1.4 ResourceException classes (to meet this need,

geronimo-j2ee-connector_1.5_spec-1.0.1.jar is provided in VistALink distribution)

The vlj* library jars and geronimo jar are provided in the /samples-J2SE folder of the VistALink 1.6

distribution file.

2.2.2. J2SE Runtime

At runtime, these additional jar files are required for your J2SE application to launch and run:

 log4j-1.2.x.jar

Developer Workstation Setup

2-2 VistALink 1.6 Developer Guide December 2010

 A jar containing J2EE 1.4 ResourceException classes (to meet this need,

geronimo-j2ee-connector_1.5_spec-1.0.1.jar is provided in VistALink distribution)

These additional jars can also be found in the /samples-J2SE folder of the VistALink 1.6 distribution file.

December 2010 VistALink 1.6 Developer Guide 3-1

3. How to Use VistALink in J2EE Applications

3.1. Using Station Number and Division

VistALink asks application code to provide VHA institution station numbers in two situations, for

different purposes: system location and multi-division awareness. Because these two modes of use are

separate, the meaning of station number (also referred to as institution and division) is “overloaded.” The

two modes are described in the sections below.

3.1.1. System Locator: Institution-Connector Mapping

Application code must provide a station number/division to retrieve a connector JNDI name from

VistALink's institution-mapping API. Lacking anything better, station numbers are used as a location

designator for a particular M system.

Each VistALink connector has a primaryStation attribute, configured by the J2EE administrator.

The configured value should exactly match the DEFAULT INSTITUTION value in corresponding M

system's KERNEL SYSTEM PARAMETERS file (#8989.3). VistALink uses primaryStation to

confirm that a connector is accessing the correct M system: if the two values don't match, connections are

rejected.

The primaryStation attribute is also the mapping source between station numbers and connector

JNDI names. A VA-specific implementation of business rules around station numbers governs how the

institution mapping API – getJndiConnectorNameForInstitution(division) in InstitutionMappingDelegate

– matches a requested division with a given connector's primary station.

The mapping API can be passed either a primary station or a subdivision (a primary station number

appended with a suffix such as 'A' or '9' (9 is a special case, representing a nursing home subdivision).

Some examples of how the VA rules work for matching subdivisions with primary station numbers are as

follows:

Division (Institution Mapping API
argument)

Maps to Primary Station

631 631

631A 631

6319 631

639 639

639A 639

6399 639

Table 3-1. VA Institution Mapping Rules Examples

The primary station for a connector (and for an M system) is almost always all-numeric (e.g., "523"). The

main exception is 200-series station numbers, which are only allocated to Austin Information Technology

Center (AITC) systems.

How to Use VistALink in J2EE Applications

3-2 VistALink 1.6 Developer Guide December 2010

3.1.2. Multidivision-Aware Application Code: ConnectionSpec Credentials

Application code must also use the station number to create a connection spec, which it then uses to

obtain a VistALink connection. When application code executes a remote procedure call (RPC), the

division specified in the connection spec is passed to M to populate the variable DUZ(2) on the M system.

On M systems, setting the proper value for DUZ(2) makes applications multidivision-aware, to give the

right view of the data. On merged systems, for example, an end-user might only see the set of patients

matching the station number specified in their DUZ(2) (e.g., "523B").

Only one value can be set into DUZ(2) at a time. So, if you construct a connection spec (e.g.,

"connSpec = new VistaLinkVpidConnectionSpec(division, vpid)") and pass in

"523B", VistALink sets DUZ(2) on the M side to "523B". RPCs are then executed under that setting (if

it is granted as a permissible subdivision to the end-user.).

3.1.3. Example

In a merged site, where an end-user has access to "631A" but not to "631", the institution mapping lookup

for "631A" will return the connector whose primaryStation attribute is "631". If you create a

connection spec and connection to execute an RPC and specify "631A", this value will be set into DUZ(2)

on the M side. The RPC will execute with multi-division awareness, i.e., that the current institution is

"631A".

3.2. Request Cycle

Using a J2CA connector such as VistALink in a J2EE environment to execute requests (RPCs) involves

the following sequence of steps:

1. Retrieve a particular VistALink connector's connection factory from JNDI

2. Instantiate a ConnectionSpec to use for re-authentication over the connection

3. Get a connection from the connection factory

4. Execute a request over the connection

5. Close the connection.

These steps are discussed in more detail in the sections below.

3.2.1. Retrieving the Connection Factory

To retrieve a connection factory from JNDI, you need to know the JNDI name of the connection factory.

Each VistALink connector going to a different destination will have a different JNDI name. For this

example, assume that the JNDI name of the connection factory is "vlj/testconnector."

 How to Use VistALink in J2EE Applications

December 2010 VistALink 1.6 Developer Guide 3-3

To retrieve the connection factory, make the following calls to JNDI:

String division="523A"; // ordinarily get from KAAJEE, FatKAAT, etc.

Context ic = new InitialContext();

String jndiName = InstitutionMappingDelegate.

 getJndiConnectorNameForInstitution(division);

// cast JNDI object to VistaLinkConnectionFactory

VistaLinkConnectionFactory cf = (VistaLinkConnectionFactory)

ic.lookup(jndiName);

Note that the object retrieved from the JNDI must be cast to the VistaLinkConnectionFactory

class.

If your application hard-codes JNDI connection factory names, you may want to use the J2EE

resource-ref mechanism to loosely couple a hard-coded JNDI name in your application source code

to an administrator-modifiable mapping in your application deployment descriptors.

More likely, however, in a VA environment, your application would retrieve JNDI connection factory

names dynamically, based on VA facility station number. See the “Institution Mapping” section later in

this chapter, which describes how to connect to a particular VA site by getting the JNDI name for a

connector's connection factory.

3.2.2. Instantiating a Connection Spec for Re-authentication

Before retrieving a connection from the connection factory object, you need to instantiate a connection

spec. The connection spec is used to pass re-authentication information to the connection, identifying the

user to run the request under on the target VistA M system. (For a complete discussion of VistALink‟s re-

authentication mechanism, see “More about Re-authentication” below, as well as the titled “Security” in

the VistALink System Management Guide.)

The following connection specs are provided with VistALink for general application use:

 VistaLinkVpidConnectionSpec(division, vpid)

 VistaLinkDuzConnectionSpec(division, duz)

 VistaLinkAppProxyConnectionSpec(division, appProxyName)

To instantiate a VistaLinkVpidConnectionSpec, for example:

String vpid = "0000002987654321V654321000000";

VistaLinkVpidConnectionSpec connSpec = new

 VistaLinkVpidConnectionSpec(division, vpid);

REF: For more information on connection specs, see the section “Connection Specification

Classes” in this document.

How to Use VistALink in J2EE Applications

3-4 VistALink 1.6 Developer Guide December 2010

3.2.3. Getting a Connection (Connection Spec)

The following code retrieves a VistALink connection from a given connection factory:

VistaLinkConnection myConnection = null;

// cast connection factory getConnection to VistaLinkConnection

myConnection = (VistaLinkConnection) cf.getConnection(connSpec);

myConnection.setTimeOut(10000); // set request timeout to 10 seconds

Every connection has a default timeout, which is the time the J2EE side of the connection waits for a

response from the M system when executing an RPC. You can manually increase the timeout if you

expect the RPCs to take a long time (as in the example above).

3.2.4. Executing a Request

Once you have a connection, you can execute a request over the connection. In general the steps to

execute a request are:

1. Create an RpcRequest object

2. Set the RpcRequest name of the RPC to execute (RpcRequest.setRpcName)

3. Set the type of request transmission format to use (we recommend proprietary in all cases, rather

than XML)

4. Assert an RpcRequest authorization context (RpcRequest.setRpcContext)

5. Set request parameters (if the request has any)

6. Execute the request

7. Process the results.

For example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();

vReq.setRpcName("XOBV TEST PING");

vReq.setUseProprietaryMessageFormat(true);

vReq.setRpcContext("XOBV VISTALINK TESTER");

RpcResponse vResp = myConnection.executeRPC(vReq);

String results = vResp.getResults();

More complete information on setting up a request, passing parameters to the request, and processing the

response, is provided in the “Executing Requests” section.

3.2.5. Closing the Connection

The final step in executing a request is to close the connection. Doing this does not close the physical

connection in J2EE; instead, it returns the connection to the connection pool it came from, for possible re-

use on a subsequent request.

 How to Use VistALink in J2EE Applications

December 2010 VistALink 1.6 Developer Guide 3-5

It is strongly recommended that you close the connection in a final block surrounding all of the code,

beginning at getConnection(). Otherwise, errors will result in leaked connections that have not been

returned to the pool, possibly causing the pool to run out of available connections for other callers.

3.2.6. Complete Request Cycle

The following example shows the complete request cycle, including closing the connection.

VistaLinkConnection myConnection = null;

String results = null;

String division="523A"; // ordinarily get from KAAJEE, FatKAAT, etc.

String vpid = "0000002987654321V654321000000"; // ditto

try {

 Context ic = new InitialContext();

String jndiName = InstitutionMappingDelegate.

getJndiConnectorNameForInstitution(division);

 VistaLinkConnectionFactory cf = (VistaLinkConnectionFactory)

ic.lookup(jndiName);

VistaLinkVpidConnectionSpec connSpec = new

VistaLinkVpidConnectionSpec(division, vpid);

 myConnection = (VistaLinkConnection) cf.getConnection(connSpec);

 myConnection.setTimeOut(10000); // set 10 second socket timeout

 RpcRequest vReq = RpcRequestFactory.getRpcRequest();

 vReq.setUseProprietaryMessageFormat(true);

 vReq.setRpcName("XOBV TEST PING");

 vReq.setRpcContext("XOBV VISTALINK TESTER");

 RpcResponse vResp = myConnection.executeRPC(vReq);

 results = vResp.getResults();

} catch (VistaLinkFaultException e) {

 // ...

} catch (NamingException e) {

 // ...

} catch (ResourceException e) {

 // ...

} catch (FoundationsException e) {

 // ...

} finally {

 if (myConnection != null) {

 try {

 myConnection.close();

 } catch (ResourceException e) {

 // ...

 }

 }

}

How to Use VistALink in J2EE Applications

3-6 VistALink 1.6 Developer Guide December 2010

3.2.7. Connectivity Failures and Retry Strategies

During an executeRPC()call, connectivity to the VistA system can fail due a network failure or

anything else that breaks connectivity. The request‟s implementation of the

VistaLinkRequestRetryStrategy interface determines whether VistALink automatically retries

the request or not.

Connectivity can fail at any point while executing the original request. If it does, most or all of the work

of the original request may have been performed already. You should take this into account when

considering what retry strategy to use for your requests -- for example, whether a an RPC retry could

potentially add a second instance of a particular entry to a file.

By default, the implementation class VistaLinkRequestRetryStrategyAllow is set as the

retry strategy for a request. Its single method, execute(), returns “true,” causing VistALink to attempt

to obtain a new connection and retry the request, exactly once.

In addition to VistaLinkRequestRetryStrategyAllow, an additional implementation class,

VistaLinkRequestRetryStrategyDeny, is supplied. Its single method, execute(), returns

“false.” You can use this class in cases where you never want the request to be retried.

You can also supply your own implementation class for the VistaLinkRequestRetryStrategy

interface that uses its own logic to determine whether to return “true” or “false” to allow or deny the retry

attempt.

For example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();

vReq.setRpcName("XOBV TEST PING");

vReq.setRpcContext("XOBV VISTALINK TESTER");

vReq.setRetryStrategy(new VistaLinkRequestRetryStrategyDeny());

RpcResponse vResp = myConnection.executeRPC(vReq);

String results = vResp.getResults();

3.3. More about Re-authentication

3.3.1. Overview

When a connection is used by an application, VistALink uses re-authentication for the following reasons:

 The connection proxy user used by the adapter to connect to M should not have privileges

 Most RPCs need to run in the context of specific end-users.

Re-authentication is a lightweight security context switch from the application server adapter‟s user

identity to the actual end-user identity.

The architecture of VistALink makes the assumption that the identity of the end-user has already been

authenticated (verified) by the calling application. Therefore VistALink does not attempt to authenticate

the end-user‟s identity. Instead, the re-authentication process matches the end-user identity already

established by the calling application with a matching VistA New Person file entry.

 How to Use VistALink in J2EE Applications

December 2010 VistALink 1.6 Developer Guide 3-7

When retrieving a VistALink connection from a connection factory, the application supplies end-user

credentials as part of the connection specification. These credentials are used to switch security context on

the M side, to re-authenticate the connection. This re-authentication process establishes the correct end-

user environment on the M server (VPID, DUZ, etc) for the duration of the connection‟s use.

3.3.2. Connection Specification Classes

To link identities, the application selects one of the following connection specifications to retrieve a

connection:

Connection Specification class Required Credentials

VistaLinkDuzConnectionSpec Division; known DUZ value of a specific end-user (to
be deprecated in favor of VPID)

VistaLinkVpidConnectionSpec Division; known VPID value of a specific end-user

VistaLinkAppProxyConnectionSpec Division; name of a user of the special user type
"Application Proxy"

Table 3-2. Connection Specification Classes

VPID is the connection specification expected to be used in most production scenarios. Whatever end-

user authentication mechanism is used by a HealtheVet-VistA application, the application should be able

to obtain the VPID for a given end-user as an output from the authentication process. During RPC

execution, when the end-user is authenticated, the J2EE application can use the VPID as a way to identify

the end-user to any VistA M system.

NOTE: Kernel patch XU*8.0*309 is required to support the VPID connection specification on

M-VistA systems.

DUZ (DuzConnectionSpec) is the primary re-authentication mechanism until the VPID

infrastructure is fully rolled out. At that point DuzConnectionSpec will be deprecated, and

VpidConnectionSpec will be the primary mechanism. In both cases, it is expected that the login will

have been performed already through a VHA-approved authentication mechanism, and that the

authentication mechanism will make the DUZ or VPID available for use by the application.

The Application Proxy connection specification is designed to be used in cases where the RPC should run

on the Kernel/M system under the identity of an application, rather than an end-user.

3.3.3. Institution/Division Rules for Re-authentication

For every connection spec, a division must be passed: the division parameter is mandatory. This

requirement ensures that the division requested for a connection on behalf of a user matches the division

under which the user's request is executed on the M system. It also helps to ensure that RPCs are not

executed on the wrong M system.

How to Use VistALink in J2EE Applications

3-8 VistALink 1.6 Developer Guide December 2010

All applications should already be multidivision-aware, so the VistALink requirement that an application

know the end-user‟s division should be no additional burden to applications. This value is set by Kernel

into DUZ(2) for the re-authenticated end-user.

The value to pass for the division parameter for any connection specification is the division station

number, e.g., "523" or "523BZ". This is the value found in field 99 (Station Number) of the

corresponding entry in the Institution File on the M system.

The following applies to user-based connection specs (VistaLinkVpidConnectionSpec and

VistaLinkDuzConnectionSpec) on the M side:

 If the end-user's DIVISION (#200.02) multiple of their New Person file entry is empty, the

division passed in with the connection spec must be the station number of the division set into the

DEFAULT INSTITUTION (#217) field of the KERNEL SYSTEM PARAMETERS (#8989.3)

file entry for the site.

 If an end-user has one or more divisions specified in the DIVISION (#200.02) multiple of their

New Person file entry, the division passed in with the connection spec must be the station number

for one of the divisions present in that multiple.

For the VistaLinkApplicationProxyConnectionSpec, the division must be a division

supported on the computing system being connected to. In both cases, if the division passed does not meet

the conditions above, re-authentication fails, and a

SecurityDivisionDeterminationFaultException is returned to the calling application.

3.3.4. Application Proxy User

Kernel patch XU*8.0*361 provides the following public API for application proxy user support:

 CREATE(NAME,FMAC,OPT) ;Create an APPLICATION PROXY user

For a description of this API, see the Kernel Programmer Manual on the Kernel API Web site

(http://vista.med.va.gov/kernel/apis/index.shtml) or the VistA Document Library

(http://www.va.gov/vdl/application.asp?appid=10).

VistALink uses patch 361 functionality to implement a new re-authentication connection spec,

VistaLinkAppProxyConnectionSpec. With this, re-authentication can be performed using an application

proxy account on the M system, rather than under an end-user account.

The Application Proxy connection specification is expected to be used in either of the following special

situations:

 The J2EE end-user does not have a user account on the M system on which an RPC is to be

executed – i.e., when a service uses VistALink from an EJB (when an end-user is not practical)

 It is not appropriate for the RPC to execute under the identity of a particular end-user

To use the Application Proxy connection, you should understand the following:

 VistaLinkAppProxyConnectionSpec(String division, String

appProxyName) is the constructor for the new connection spec.

 Kernel patch XU*8*361 supports the new functionality.

http://www.va.gov/vdl/application.asp?appid=10

 How to Use VistALink in J2EE Applications

December 2010 VistALink 1.6 Developer Guide 3-9

 SecurityIdentityDeterminationFaultException is thrown if re-authentication

fails.

 For the division, you can specify any division that is valid for the site. Division checking is done

against what is a valid division for the site, not against user-specific division settings.

If your functionality is not multi-divisional, you can use "primary station" for the M system. This

is the station number in the DEFAULT INSTITUTION field (#217) of the KERNEL SYSTEM

PARAMETERS file (#8989.3) in the M account in question.

NOTE: According to Infrastructure & Security Services, a valid division for a

Kernel/M site is currently any division whose numeric M value (e.g., when “plussed”)

(1) equals the DEFAULT INSTITUTION station number, and (2) is not marked

inactive in the Institution file at the site.

 A "tester" application proxy user is distributed with VistALink, and added to the New Person file

during the installation post-init. The proxy user is named XOBVTESTER,APPLICATION

PROXY.

 The VistALink sample Web application demonstrates the use of all connection specs, including

VistaLinkAppProxyConnectionSpec. The sample application makes use of the

XOBVTESTER,APPLICATION PROXY user created during the VistALink installation post-

init.

The M example of adding an application proxy user is shown below. In this case, the proxy name is

passed into the function; no FileMan access code is added to the user; and the [XOBV VISTALINK

TESTER] B-type option is added to the secondary menu of the proxy user:

ADDPROXY(XOBANAME) ; add application proxy if not present

 ; depends on XU*8*361

 NEW XOBID

 ;

 SET XOBID=$$CREATE^XUSAP(XOBANAME,"","XOBV VISTALINK TESTER","")

 IF (+XOBID)>0 DO

 . ; actions if successfully added

 IF (+XOBID)=0 DO

 . ; actions if proxy user was already present

 IF (+XOBID)<0 DO

 . ; actions if error – could not add user for some reason

 QUIT

How to Use VistALink in J2EE Applications

3-10 VistALink 1.6 Developer Guide December 2010

3.3.4.1. J2EE Application Proxy Usage Example

StringBuffer results = new StringBuffer();

String appProxyName = "XOBVTESTER,APPLICATION PROXY";

String division="11000"; // ordinarily get from KAAJEE, FatKAAT, etc.

try {

 VistaLinkConnectionSpec connSpec = new

VistaLinkAppProxyConnectionSpec(division, appProxyName);

 String jndiName = InstitutionMappingDelegate.

getJndiConnectorNameForInstitution(division);

 Context ic = new InitialContext();

 VistaLinkConnectionFactory cf = (VistaLinkConnectionFactory)

 ic.lookup(jndiName);

 VistaLinkConnection myConnection = (VistaLinkConnection)

 cf.getConnection(connSpec);

 RpcRequest vReq = RpcRequestFactory.getRpcRequest();

 vReq.setUseProprietaryMessageFormat(true);

 vReq.setRpcContext("XOBV VISTALINK TESTER");

 vReq.setRpcName("XOBV TEST PING");

 RpcResponse vResp = myConnection.executeRPC(vReq);

 results.append("<p>" + rpcName + " Results: " +

 vResp.getResults() + "");

} catch (Exception e) {

 // ...

} finally {

 if (myConnection != null) {

 try {

 myConnection.close();

 } catch (ResourceException e) {

 //...

 }

 }

}

3.4. Timeouts

3.4.1. Socket-Level Forced Timeout

A simple socket timeout capability is provided so that the Java side of the connection can simply time out

the M side of the connection if an RPC is taking too long to execute. If the timeout is reached, the socket

will drop the connection to M. On the M side, the RPC will terminate ungracefully.

For RPCs that are known to be long-running, you may want to use the socket timeout in conjunction with

a graceful RPC timeout. Set the socket timeout slightly longer than you set the graceful RPC-based

request-level timeout. (See the “Graceful (Request-Level) Timeout” section below for more information

about how to implement graceful timeouts.)

 How to Use VistALink in J2EE Applications

December 2010 VistALink 1.6 Developer Guide 3-11

3.4.1.1. Setting Socket-Level Timeouts

The socket-level timeout can be set in two ways:

 On the connection object, the setTimeOut() method will set a socket timeout, in milliseconds,

that will be used for all RPCs executed over the connection. For example:

// set timeout for all requests sent over this connection to 10 seconds

myConnection.setTimeOut(10000);

 On the RPC request, the socket timeout can be set for a single request:

// set request timeout to 10 seconds, for this request only

myRpcRequest.setTimeOut(10000);

3.4.1.2. Default Socket-Level Timeout

All connectors are configured with a default socket timeout, so that if a request takes infinitely long to

complete, a socket timeout will eventually always be triggered.

Administrators can selectively configure (tune) the default socket timeout for each connector, depending

on the WAN performance and system performance for reaching any given M system. The default timeout

is set in the gov.va.med.vistalink.connectorConfig.xml file. (See the section “Connector Settings,” in

the VistALink 1.6 System Management Guide.)

3.4.1.3. Changing Socket Timeout as a Multiple of Default Timeout

If you are going to programmatically adjust the timeout, you may want to obtain the current timeout for

the connector first, multiply it by a factor, and then set the new timeout. This takes advantage of any

tuning the administrators may have done for a particular connector.

Example:

// increase timeout by a factor of two

int timeout = myConnection.getTimeOut();

myConnection.setTimeOut(timeout*2);

3.4.2. Graceful (Request-Level) Timeout

In addition to using a socket timeout, the calling Java application can also pass a graceful timeout value to

the RPC it is going to execute. To implement a graceful timeout, the RPC code that is executing must

check whether it has timed out against this timeout value. A set of M APIs is provided for applications to

check whether their RPC has timed out, based on the value passed by the calling application with the

request.

Implementing a graceful timeout requires a delicate synchronization process between the graceful

timeout, the socket timeout, and the RPC execution on the M side. Therefore, the graceful timeout is only

recommended if your application needs more than what the socket timeout provides.

How to Use VistALink in J2EE Applications

3-12 VistALink 1.6 Developer Guide December 2010

To implement a graceful timeout:

1. Java-side: The calling application sets the request level RpcClientTimeout property, with

RpcRequest.setRpcClientTimeOut(numberOfSeconds).

2. Java-side: Make sure the current connection-level socket timeout (in milliseconds) evaluates to a

longer period than the graceful timeout (in seconds). Otherwise the socket may timeout anyway

before the graceful timeout is reached. For example, if you set

RpcRequest.setRpcClientTimeOut(10), you could do

myConnection.setTimeOut(15000), i.e., 15 seconds.

3. M-side RPC: The RPC code should periodically check (e.g., if code is executing an iterative loop)

if the RPC has exceeded the client timeout by calling $$STOP^XOBVLIB(). Return values from

$$STOP^XOBVLIB are: “1” (application should stop processing, timeout has been exceeded) or

“0” (continue processing).

4. Java-side: The calling application can catch the RpcTimeOutFaultException in the

try/catch code surrounding its RPC execute call. If the calling application catches this exception

when executing an RPC, it means the M-side RPC checked STOP^XOBVLIB, was notified that a

timeout had occurred, and did not reset the timeout value.

NOTE: If the RPC continues processing without resetting the timeout after receiving a

timeout indicator from $$STOP^XOBVLIB, the RPC may complete, but VistALink will

return an RpcTimeOutFaultException to the client.

3.4.2.1. STOP^XOBVLIB()

Used by the application to determine if processing should stop.

Input variables: (none)

Output variables: Return value. “1” is an indicator to stop processing; “0” is an indicator to

continue processing. I “1” is returned, and internal “timed out” indicator is also set.

NOTE: If you call STOP^XOBVLIB and it returns 1, a fault will be returned to the calling

Java application. This will happen even if your RPC code completes, unless you call

SETTO^XOBVLIB to increase the timeout and then call STOP^XOBVLIB to clear the

"timed out" indicator based on the higher timeout value.

3.4.2.2. $$GETTO^XOBVLIB()

Get the current timeout value (default = 300 seconds). An application would call this to obtain the current

timeout value.

Output Variable: Return value, which is the timeout value, if it exists (in seconds), or the default of 300

seconds.

 How to Use VistALink in J2EE Applications

December 2010 VistALink 1.6 Developer Guide 3-13

3.4.2.3. $$SETTO^XOBVLIB()

Override the current "graceful" timeout setting received from the client via

RpcRequest.setRpcClientTimeout(int) or the default.

It is suggested that you call STOP^XOBVLIB immediately after resetting the timeout value, in order to

reset the current timeout indicator based on the new timeout value.

Input Variable: TO. TO is the RPC timeout value in seconds. This is always the total number of seconds

since the RPC began; it is not an increment from the current time.

Output Variable: Return value. The function sets the RPC timeout value (in seconds) and returns a “1”

to indicate value successfully reset or 0 if not successful.

For example, if the M-side RPC wants “more time” after getting a “1” from $$STOP^XOBVLIB, it can

use the $$SETTTO call to do so. However, this is risky, because the socket-level timeout may time out

the connection anyway, particularly if the calling application set the socket-level timeout just higher than

it set the graceful RPC timeout.

To add “more time” (though it risks running into a socket-level timeout), an RPC could get the current

timeout value ($$GETTO^XOBVLIB), increase it, and then reset the higher value with

$$SETTO^XOBVLIB. It should also call $$STOP^XOBVLIB immediately after calling $$SETTO, in

order to reset the "timed out" indicator based on the new value. $$STOP needs to be called again because

the new $SETTO value may not have been large enough. The timeout check is always calculated from the

start of the RPC, not the reset.

3.4.2.4. Java and M Code RPC Timeout Call Examples

Java-side example:

// increase socket timeout by a factor of two and

// use the original socket timeout as RPC client timeout

int timeout = myConnection.getTimeOut();

myConnection.setTimeOut(timeout*5);

myConnection.setRpcClientTimeOut(timeout/1000);

M/VistA-side example:

...

F S IEN=$O(ARR(IEN)) Q:IEN="" DO I $$STOP^XOBVLIB() DO CLEANUP QUIT

 . DO PROCESS(IEN)

...

3.5. Institution Mapping

HealtheVet-VistA applications need to be able to dynamically retrieve connectors to various VistA

systems. The connecting systems to will change over time, so hard-coding of connector references is out

of the question.

How to Use VistALink in J2EE Applications

3-14 VistALink 1.6 Developer Guide December 2010

VistALink provides an Institution Mapping facility so that administrators deploying VistALink

connectors can map each connector to a specific VHA institution, using that institution's station number.

HealtheVet-VistA applications can then retrieve the JNDI name for a connector to a particular institution,

using the institution mapping facility. This utility is in the gov.va.med.vistalink.institution package.

There is no requirement to use this utility to use VistALink. The utility merely provides a way for

administrators to associate station numbers with JNDI names, and for runtime code to retrieve the

mapping.

3.5.1. How to Configure Mappings

Each connector is configured in a file named gov.va.med.vistalink.connectorConfig.xml. Each

connector's settings are stored in a unique <connector> element in that file. The station number and JNDI

name it maps to are both XML attributes of the <connector> element.

Refer to the VistALink 1.6 Installation Guide and the VistALink System Management Guide for a

complete description of how to configure VistALink's institution mappings for each VistALink connector.

3.5.2. How to View the Currently Loaded Mappings

You can view the currently loaded institution mappings for a given server using the VistALink

administration console. Refer to the VistALink 1.6 System Management Guide for a complete description

of the VistALink administration console.

3.5.3. Retrieving Mappings for Applications

A static method, getJndiConnectorNameForInstitution, is provided in the class

gov.va.med.vistalink.institution.InstitutionMappingDelegate. This class provides application access to

the institution mappings. For example:

String stationNumber = 500;

String jndiConnectorName = null;

try {

 jndiConnectorName =

 InstitutionMappingDelegate.getJndiConnectorNameForInstitution(

 stationNumber);

} catch (InstitutionMappingNotFoundException e) {

// take some action

} catch (InstitutionMapNotInitializedException e) {

// take some action

}

3.5.4. Subdivisions

When retrieving the JNDI name for a particular station number, you should pass the exact subdivision

you are working with to the getJndiConnectorNameForInstitution() call (e.g., "523A",

 How to Use VistALink in J2EE Applications

December 2010 VistALink 1.6 Developer Guide 3-15

"523B", or "523"). This API determines the correct connector associated with a given station number,

even if the station number parameter passed to it is a subdivision (usually but not always signified by the

presence of alpha characters after the numeric portion of the station number).

3.6. VistALink Java API Reference

For a complete reference to all of the Java-side VistALink interfaces, classes, methods and exceptions,

please see the Javadoc API documentation provided in the VistALink 1.6 distribution file.

How to Use VistALink in J2EE Applications

3-16 VistALink 1.6 Developer Guide December 2010

December 2010 VistALink 1.6 Developer Guide 4-1

4. Executing Requests

4.1. Remote Procedure Calls

A remote procedure call (RPC) is a defined call to M code that runs on an M server. Through the RPC

Broker, a client application can make a call to the M server and execute an RPC on the M server. This is

the mechanism through which a client application can:

 Send data to an M server

 Execute code on an M server

 Retrieve data from an M server

An RPC can take optional parameters to do a task and then return either a single value or an array to the

client application.

REF: For detailed information on RPCs, please refer to Getting Started With the Broker

Development Kit (BDK) and/or the RPC Broker Technical Manual. You can find both

publications at http://www.va.gov/vdl/.

4.1.1. RPC Security (“B”-Type Option)

All RPCs are secured with an RPC context (a "B"-type option). The end-user on whose behalf an RPC is

executed must have the “B”-type option associated with the RPC in their menu tree. Otherwise an

exception is thrown.

REF: For more information on RPC security, see Getting Started with the BDK, Chapter 3

(Extract): RPC Overview, which is bundled in the /rpc-doc folder of the VistALink

distribution, as the file xwb1_1p13dg-rpc_extract.pdf.

4.1.2. RPCs for Use by Application Proxy Users

RPCs must be explicitly marked as supporting execution by an application proxy user, in order to be used

by one. The new field APP PROXY ALLOWED (#.11) in the REMOTE PROCEDURE file (#8994)

must be marked “YES.” RPCs should only be marked for application proxy use if:

 The business logic behind the RPC is valid when the DUZ represents an application proxy user

(rather than end-user)

 The application expects to be executed by an application proxy user.

4.2. Request Processing

During interactions with M from Java, developers use the RpcRequest object. The RpcRequest

object encapsulates the data that will be sent to M to execute an interaction, i.e. the RPC name, RPC

parameters, and RPC context. The RpcRequest object is constructed using the

http://www.va.gov/vdl/

Executing Requests

4-2 VistALink 1.6 Developer Guide December 2010

RpcRequestFactory object. The RPC parameters are accessed through the RpcRequest objects

via the clearParams(), getParams() and setParams() methods.

4.2.1. Get an RpcRequest Object: RpcRequestFactory Class

The RpcRequest class represents a request from Java to M. As the transport format, it permits the use

of either XML or a proprietary format. The proprietary format is the default and is recommended because

it is faster. This class also exposes methods for specifying Rpc Name, Rpc Context and the

parameters used by M to execute the RPC.

The RpcRequestFactory class is responsible for creating instances of RpcRequest. In order to

create an RpcRequest, the developer must call the static getRpcRequest method on this class. In

the example shown below, getRpcRequest is overloaded with three declarations:

public static RpcRequest getRpcRequest() throws FoundationsException

This method is used to create a default RpcRequest with no specified Rpc Name or Rpc Context.

You must specify the Rpc Context and the Rpc Name on the RpcRequest object before you can

use this object in an interaction. Refer to javadoc on RpcRequest for more information:

public static RpcRequest getRpcRequest(String rpcContext) throws

FoundationsException

This method is used to create a RpcRequest with the specified Rpc Context. You must specify the

Rpc Name on the RpcRequest object before you can use this object in an interaction.

public static RpcRequest getRpcRequest(String rpcContext, String rpcName)

throws FoundationsException

Refer to the Javadocs on RpcRequest for more information.

This method is used to create a RpcRequest with the specified Rpc Context and the Rpc Name.

You may still specify another Rpc Context and Rpc Name on this object. Refer to the JavaDocs on

RpcRequest for more information.

 Executing Requests

December 2010 VistALink 1.6 Developer Guide 4-3

4.2.1.1. getRpcRequest() Example

RpcRequest vReq = null;

//The Rpc Context

String rpcContext = "XOBV VISTALINK TESTER";

//The Rpc to call

String rpcName = "XWB GET VARIABLE VALUE";

// Construct the request object

try{

 vReq = RpcRequestFactory.getRpcRequest(rpcContext, rpcName);

} catch(FoundationsException e) {

 // process exception as needed

}

4.2.2. Set RpcRequest Parameters: “Explicit” Style

There are two ways of passing RPC parameters to an RpcRequest object. For convenience, the first

method is referred to as “explicit” style, the second method as “setParams” style.

In explicit style, the method of passing RPC parameters corresponds very closely to the underlying RPC

parameters. The RPC Broker has three input parameter types for RPC calls. These map to VistALink

RpcRequestParam parameter types as follows:

RPC parameter
type

VistALink
RpcRequestParam type

Java value type

Literal "string" String

Reference "ref" String

List "array" List (Specify array indices yourself; supports
non-integer, negative, or multi-level indices)

Map or Set (index automatically generated as a
single-level, integer, sequence)

To pass parameters into an RpcRequest, you should retrieve the RpcRequest's mutable

RpcRequestParam object, accessible by RpcRequest.getParams(). Then, call setParam()

on that object to define each RPC parameter:

void setParam(int position, String type, Object value)

The parameters to this call are:

 position: the expected RPC parameter list position where the RPC expects to see the RPC

parameter

 type: can be "string", "ref" or "array" (to match the expected RPC parameter type)

Executing Requests

4-4 VistALink 1.6 Developer Guide December 2010

 value: an object that is the value of the RPC parameter. For "string" or "ref" types, the object

should be a string. For "array" types, the object should implement the Map, List or Set interface.

4.2.2.1. Literal RPC Parameter Example

RpcRequest vReq = RpcRequestFactory.getRpcRequest();

vReq.getParams().setParam(1, "string", "I am a string");

4.2.2.2. Reference RPC Parameter Example

RpcRequest vReq = RpcRequestFactory.getRpcRequest();

vReq.getParams().setParam(1, "ref", "DTIME");

4.2.2.3. List RPC Parameter Example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();

ArrayList nums = new ArrayList();

nums.add("3");

nums.add("5");

nums.add("4");

nums.add("1");

nums.add("7");

nums.add("8");

nums.add("2");

nums.add("6");

nums.add("9");
vReq.getParams().setParam(1, "array", nums);

4.2.2.4. Combination RPC Parameter Example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();

ArrayList nums = new ArrayList();

nums.add("3");

nums.add("5");

nums.add("4");

nums.add("1");

nums.add("7");

nums.add("8");

nums.add("2");

nums.add("6");

nums.add("9");

vReq.getParams().setParam(1, "array", nums);

vReq.getParams().setParam(2, "string", "I am a string");

vReq.getParams().setParam(3, "ref", "DTIME");

 Executing Requests

December 2010 VistALink 1.6 Developer Guide 4-5

4.2.3. Set RpcRequest Parameters: “setParams” Style

A second style of passing RPC parameters for an RPC into an RpcRequest object is called the

“setParams” style. This method offers a small amount of abstraction from the underlying RPC, although

parameters still must correspond directly to what is expected by the RPC being invoked.

With the setParams style, you create an object that implements the List interface and holds each of the

parameters as an object entry in the list. Add each parameter to the List as an object value, and then use

RpcRequest.setParams(List) to pass the RPC parameters to the request..

The RpcRequest object processes the List internally extracting the RPC parameter characteristics for

the request as follows:

 position: Determined by the order each object was added to the List. The first object added

becomes the first RPC parameter, the second becomes the second, and so forth.

 type:

o If an object found in the List is a String, it is passed as an RPC literal parameter.

o If an object found in the List implements the Map, List, or Set interfaces, it is passed as

an RPC List parameter.

o If an object found in the List is an instance of the special RpcReferenceType class, it

is passed as an RPC reference parameter.

 value: The value for the RPC parameter is simply the object added to the List for each parameter.

4.2.3.1. Literal RPC Parameter Example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();

ArrayList params = new ArrayList();

params.add("I am a string");

vReq.setParams(params);

4.2.3.2. Reference RPC Parameter Example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();

ArrayList params = new ArrayList();

params.add(new RpcReferenceType("DTIME"));

vReq.setParams(params);

Executing Requests

4-6 VistALink 1.6 Developer Guide December 2010

4.2.3.3. List RPC Parameter Example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();

ArrayList params = new ArrayList();

ArrayList nums = new ArrayList();

nums.add("3");

nums.add("5");

nums.add("4");

nums.add("1");

nums.add("7");

nums.add("8");

nums.add("2");

nums.add("6");

nums.add("9");

params.add(nums);

vReq.setParams(params);

4.2.3.4. Combination RPC Parameter Example:

RpcRequest vReq = RpcRequestFactory.getRpcRequest();

ArrayList params = new ArrayList();

ArrayList nums = new ArrayList();

nums.add("3");

nums.add("5");

nums.add("4");

nums.add("1");

nums.add("7");

nums.add("8");

nums.add("2");

nums.add("6");

nums.add("9");

params.add(nums);

params.add("I am a string");

params.add(new RpcReferenceType("DTIME"));

vReq.setParams(params);

4.2.4. Specifying Indices for List-Type RPC Parameters

List-type RPC parameter values can be passed to VistALink in Java objects that implement the List,

Set, or Map interfaces.

If you pass List-type parameter values in an object that implements List or Set (but not Map), the array

index is automatically generated for you, as a single-level, integer, sequential index starting at “1.” (The

array becomes the array subscript level in M for the data.) This can be convenient if the array index is not

significant for your RPC.

However, if you need any of the following features in your array when it is passed to M, use an object

that implements Map (such as HashMap) instead:

 Negative index values

 Non-sequential index values

 Executing Requests

December 2010 VistALink 1.6 Developer Guide 4-7

 Control over the index start point

 Non-integer index values

 Multi-level indices (>1 subscript level in M)

For each entry added to the Map object, the key becomes the M subscript, and the value becomes the M

value.

To pass a multi-level subscript, use the RpcRequest.buildMultipleMSubscriptKey() method

to generated the HashMap key.

4.2.4.1. List RPC Parameter Example (Explicit Index)

RpcRequest vReq = RpcRequestFactory.getRpcRequest();

ArrayList params = new ArrayList();

HashMap hm = new HashMap();

hm.add(".11", "0");

hm.add("1202", "23");

hm.add("1205", "595");

hm.add("time", "NOW");

params.add(hm);

vReq.setParams(params);

4.2.4.2. List RPC Parameter Example (Explicit Multi-Level Index)

RpcRequest vReq = RpcRequestFactory.getRpcRequest();

ArrayList params = new ArrayList();

HashMap hm = new HashMap();

hm.put(RpcRequest.buildMultipleMSubscriptKey("\"FRUIT\",1"), "Apple");

hm.put(RpcRequest.buildMultipleMSubscriptKey("\"FRUIT\",2"), "Orange");

hm.put(RpcRequest.buildMultipleMSubscriptKey("\"FRUIT\",3"), "Pear");

hm.put(RpcRequest.buildMultipleMSubscriptKey("\"FRUIT\",4"), "'nana");

params.add(hm);

vReq.setParams(params);

4.2.5. Other Useful RpcRequest Methods

For a complete list of other available RpcRequest methods, please see the Javadoc for RpcRequest.

4.2.5.1. Clear Previous Request Parameters

If you are re-using a request object for additional requests, the RpcRequest.clearParams method

is provided so that you can clear any existing parameters. You should call this method before attempting

to set RPC parameters for subsequent requests:

//clear the params

vReq.clearParams();

Executing Requests

4-8 VistALink 1.6 Developer Guide December 2010

4.2.5.2. Set the Message Format (Proprietary or XML)

VistALink's XML message format is based on the XML standard. As the transport format, it permits the

use of either XML or a proprietary format. RpcRequest defaults to the proprietary format because it is

faster.

//Set the request to use the propietary message format

vReq.setUseProprietaryMessageFormat(true);

//Set the request to use the XML message format

vReq.setUseProprietaryMessageFormat(false);

4.2.5.3. Set the RPC Context

If you are re-using a request object for additional requests, you can change the RPC Context with this

method:

private static final String RPCCONTEXT = "XOBV VISTALINK TESTER";

vReq.setRpcContext(RPCCONTEXT);

4.2.5.4. Set the RPC Name

If you are re-using a request object for additional requests, you can change the RPC Name with this

method:

vReq.setRpcName("XOBV TEST NOT IN CONTEXT");

4.2.5.5. Set the RPC Client Timeout

This method sets a “graceful” timeout period that is made available to the RPC code on the M system. It

is up to the M code to honor the timeout period, however. The value sent defaults to 600 seconds. You

can change this value by calling the setRpcClientTimeOut method:

private static final int TIMEOUT = 300;

vReq.setRpcClientTimeOut(TIMEOUT);

REF: For more information on the different kinds of timeouts, see the "Timeouts" section.

4.3. Response Processing

Once you have set up RpcRequest, you can execute an RPC interaction on the

VistALinkConnection object, using the RpcRequest object. Doing this returns an

RpcResponse object. RpcResponse is a value object that provides information about the response

returned from M.

 Executing Requests

December 2010 VistALink 1.6 Developer Guide 4-9

4.3.1. RpcResponse Class

The RpcResponse class is a value object that provides information about the response returned from

M. The RpcResponse object exposes methods to retrieve the results, results type, and an

org.w3c.dom.document object that contains the results, if the results are in XML format.

4.3.2. Request/Response Example

//request and response objects

RpcRequest vReq = null;

RpcResponse vResp = null;

//The Rpc Context

String rpcContext = "XOBV VISTALINK TESTER";

//The Rpc to call

String rpcName = "XOBV TEST STRING";

//Construct the request object

try {

 vReq = RpcRequestFactory.getRpcRequest(rpcContext, rpcName);

} catch(FoundationsException e) {

 // process exception as needed

}

//clear the params

vReq.clearParams();

//Set the params

vReq.getParams(). setParam(1, "string", "This is a test string!");

//Set the request to use the proprietary message format

vReq.setUseProprietaryMessageFormat(true);

//Execute the Rpc and construct the response with the

//RpcResponseFactory

try {

 vResp = vistaLinkConnection.executeRPC(vReq);

} catch(VistaLinkFaultException e) {

 // process exception as needed

} catch(FoundationsException e) {

 // process exception as needed

}

//Display the response

System.out.println(vResp.getResults());

Executing Requests

4-10 VistALink 1.6 Developer Guide December 2010

4.3.3. Parsing RPC Results

All results from RPCs are returned as a single string from RpcResponse.getResults().

The RPC Broker defines five return types for RPCs (at the time of the current VistALink release). The

mapping between these return types and the single string returned through VistALink are as follows:

RPC Return Type VistALink Result String Format

Single Value As-is

Global Instance As-is

Array All array nodes concatenated sequentially, with each delimited by
linefeed (ASCII 10) character

Global Array All array nodes concatenated sequentially, with each delimited by
linefeed (ASCII 10) character

Word Processing Each word processing "line" concatenated sequentially, separated by
a linefeed (ASCII 10) character

Table 4-1. Mapping RPC Return Types to VistALink Result String Format

One easy way to parse array-type results concatenated with line feeds is with the Java string tokenizer.

For example:

StringTokenizer st = new StringTokenizer(vResp.getResults(), "\n");

int cnt = st.countTokens();

for (int i = 0; i < cnt; i++) {

 system.out.println("Result node " + i + ": " + st.nextToken());

}

In JDK 1.5 and forward, Sun deprecates StringTokenizer in favor of the split() function

in java.lang.String.

4.3.4. XML Responses

Some newer RPCs may choose to return their results as an XML document. The RpcResponse class

provides two helper methods to turn the normal results string into an XML document. If you expect the

results from an RPC to be an XML document, you can call RpcResponse.isXmlResponse to

confirm if the response is in XML format, and RpcResponse.getResultsDocument to convert the

result string into an XML document:

 Executing Requests

December 2010 VistALink 1.6 Developer Guide 4-11

//Get a org.w3c.dom.document object that contains the results if set

if (vReq.isXmlResponse()) {

org.w3c.dom.document xmlDoc = null;

try{

xmlDoc = vResp.getResultsDocument());

}catch(RpcResponseTypeIsNotXmlException e){

// process exception as needed

}catch(FoundationsException e){

// process exception as needed

}

}

4.4. How to Write RPCs

For guidelines on how to write RPC Broker RPCs, please refer to the extract Getting Started With The

BDK Chapter 3 (Extract): RPC Overview from the RPC Broker manual, bundled in the /rpc-doc folder of

the VistALink distribution. Some special considerations apply to writing RPCs in the new modes

supported by VistALink, including n-tier. These are discussed in the sections below.

4.4.1. Write Stateless RPCs Whenever Possible

When writing new RPCs to execute in an n-tier environment, we recommend making them stateless

whenever possible. “Stateless” means that each RPC execution is standalone: when a sequence of RPCs is

executed, there is no state maintained on the M system between RPC executions. This way, if you need to

use an RPC from one sequence of RPCs in another sequence, your code will be more flexible.

The two main M-side state mechanisms traditionally used in RPCs -- $J (as a temporary storage index)

and global locking -- are both problematic in an n-tier environment. In the n-tier model, there is no

guarantee that your requests will execute in the same M job partition. Middle-tier code will be retrieving

and returning VistALink connections to a connection pool across a number of client-tier accesses, and

because connections are not “dedicated” to a single user session, the underlying M partition may be a

different one each time, with a different $J.

4.4.2. When State is Needed

When you do need to maintain state on the M system between RPC invocations, the two approaches

discussed in the sections below are recommended. They are more compatible with the n-tier model.

4.4.2.1. Session ID as Temporary Storage Index

Rather than using $J for a temporary storage index, we recommend that you implement a session ID,

guaranteed to be unique on the M system, to index storage on the M system, and that you maintain the

session ID state on the middle tier. You can then use the session ID between middle-tier invocations on a

variety of connections with different underlying $Js and still be able to consistently retrieve your indexed

temporary data from the M system.

Executing Requests

4-12 VistALink 1.6 Developer Guide December 2010

NOTE: Kernel may provide a new API for middle tiers to obtain a guaranteed unique M

system session identifier to index temporary storage locations.

4.4.2.2. FileMan-Based Lock File

An alternative to the M LOCK command is to implement a FileMan-based lock file mechanism to

synchronize locking across requests, connections, and middle-tier accesses. Note that a lock file needs to

be used in all application code that needs to honor the lock – whether “roll & scroll,” client-server, or n-

tier.

You will probably also need APIs for locking and unlocking. Locks should probably be unlocked

automatically after a period of time (e.g., lost connection) or based on some state change or event in the

application session.

4.4.3. Pitfalls of Using of $JOB in Stateful RPCs

When running RPCs in an n-tier model, there is no guarantee that all your requests will execute in the

same M job partition. Your middle tier will be retrieving and returning VistALink connections to a

connection pool across client-tier accesses, and each connection retrieved from the connection pool may

have a different $J.

If you have an RPC sequence that shares data across RPCs using temporary M storage indexed by $J, the

RPC sequence must be performed over the same connection (or else $J will change). In n-tier mode, this

means the RPC sequence must be executed over one connection before closing it (returning it to the

connection pool).

Another $J-related issue can occur even if you execute an RPC sequence over a single connection. The

default VistaLinkRequestRetryStrategy implementation allows a request to be retried. If you

use it and connectivity fails, the request will be retried on a new connection, and therefore using a new $J.

So if your RPCs communicate by leaving values on the M system indexed by $J, you should consider

using VistaLinkRequestRetryStrategyDeny for those requests.

4.4.4. Pitfalls of Global Locking in Stateful RPCs

When running RPCs in an n-tier model, locking global nodes across RPCs presents the same issues as

when using $J across RPCs. In particular, you cannot lock data in an RPC over one connection and

unlock data in a different connection. Also, if the M partition that sets a lock exits, the M operating

system automatically clears the lock. Therefore locking can only be used safely within a single RPC, or

within an RPC sequence that will be executed over a single connection.

As with $J, another locking-related issue can occur if network connectivity fails and your request is

retried (which would be over a different connection). Therefore you should consider using

VistaLinkRequestRetryStrategyDeny for requests that depend on locking across RPCs: if

connectivity fails and a request is retried, the request will be retried over a new connection that does not

own the lock. (The lock may be released anyway, since the previous partition will probably exit as a

consequence of the network connectivity failure).

December 2010 VistALink 1.6 Developer Guide 5-1

5. VistALink Exception Reference

VistALink, like any other Java application, uses exceptions to indicate various error conditions that can

occur during execution. VistALink throws only checked exceptions.

5.1. Exception Nesting Changes Since VistALink 1.5

Previous versions of VistALink were designed to work with Java version 1.3, which did not support

nested exceptions. As a result, nested exception capability was built into all VistALink exception classes.

Now that Java version 1.4 and above support nested exceptions "out of the box", VistaLink's nested

exception facilities are deprecated, the classes themselves have been internally redirected to store nested

exceptions using Java's nested exception functionality instead.

Any code that is using VistALink's deprecated nested exception facilities should switch to the standard

Java nested exception facilities. In particular:

 Any code using the getNestedException() method of any VistALink-provided exception (defined,

and now deprecated, in FoundationsExceptionInterface) should switch to the JRE-provided

Throwable.getCause() method instead.

 Any code using the getFullStackTrace() method of any VistALink-provided exception should

switch to the JRE-provided Throwable.getStackTrace() instead.

5.2. VistALink Exception Hierarchy

VistALink security modules and the VistALink resource adapter modules often throw more exceptions

more specific than what is declared to be thrown.

Because VistALink implements various Java specifications (e.g., Java Authentication and Authorization

Service (JAAS) and J2EE Connectors), each Java specification dictates usage of a specific base exception

class. To be able to work with all types of exceptions, VistALink also defines one unifying exception

interface: gov.va.med.exception.FoundationsExceptionInterface.

For example, where the JAAS specification requires a LoginException to be thrown, methods in the

VistaLinkLoginModule may throw VistaLoginModuleException (which subclasses LoginException and

implements FoundationsExceptionInterface) or an even more specific exception like

VistaLoginModuleNoJobSlotsAvailableException.

5.2.1. Common FoundationsExceptionInterface

gov.va.med.exception.FoundationsExceptionInterface is defined to be able to have

common interface for all types of VistALink exceptions. Implementation of this interface allows

gov.va.med.exception.ExceptionUtils to work exceptions, no matter what they inherit

from.

VistALink Exception Reference

5-2 VistALink 1.6 Developer Guide December 2010

FoundationsExceptionInterface

 │

 ├ FoundationsException (extends java.lang.Exception)

 │ │

 │ ├ InstitutionMapNotInitializedException

 │ ├ InstitutionMappingNotFoundException

 │ ├ RpcResponseTypeIsNotXmlException

 │ ├ VistaKernelHashCountLimitExceededException

 │ │

 │ ├ VistaLinkFaultException

 │ │ │

 │ │ ├ LoginsDisabledFaultException

 │ │ ├ NoJobSlotsAvailableFaultException

 │ │ ├ RpcFaultException

 │ │ │ ├ NoRpcContextFaultException

 │ │ │ ├ RpcNotInContextFaultException

 │ │ │ └ RpcTimeOutFaultException

 │ │ │ └ RpcNotOkForProxyUseException

 │ │ │

 │ │ └ SecurityFaultException

 │ │ ├ SecurityAccessVerifyCodePairInvalidException

 │ │ ├ SecurityConnectionProxyException

 │ │ ├ SecurityDivisionDeterminationFaultException

 │ │ ├ SecurityIdentityDeterminationFaultException

 │ │ ├ SecurityIPLockedFaultException

 │ │ ├ SecurityPrimaryStationMismatchException

 │ │ ├ SecurityProductionMismatchException

 │ │ ├ SecurityTooManyInvalidLoginAttemptsFaultException

 │ │ ├ SecurityUserAuthorizationException

 │ │ └ SecurityUserVerifyCodeException

 │ │

 │ └ VistaSocketException

 │ │

 │ ├ VistaLinkSocketAlreadyClosedException

 │ └ VistaSocketTimeOutException

 │

 ├ VistaLinkResourceException (extends

 │ │ javax.resource.ResourceException)

 │ ├ ConnectionHandlesExceededException

 │ ├ HeartBeatFailedException

 │ │ └ HeartBeatInitializationFailedException

 │ └ VistaLinkSocketClosedException

 │

 └ VistaLoginModuleException (extends

 │ javax.security.auth.login.LoginException)

 ├ VistaLoginModuleIPLockedException

 ├ VistaLoginModuleLoginsDisabledException

 ├ VistaLoginModuleNoJobSlotsAvailableException

 ├ VistaLoginModuleNoPathToListenerException

 ├ VistaLoginModuleTooManyInvalidAttemptsException

 ├ VistaLoginModuleUserCancelledException

 └ VistaLoginModuleUserTimedOutException

Figure 5-1. VistALink Exception Hierarchy

 VistALink Exception Reference

December 2010 VistALink 1.6 Developer Guide 5-3

5.2.2. VistaLinkResourceException

J2EE Connectors requires adapter methods to throw javax.resource.ResourceException.

VistALink implements gov.va.med.vistalink.adapter.cci.VistaLinkResourceException

that extends javax.resource.ResourceException. VistaLinkResourceException is thrown

from all J2EE Connectors required methods as well as any custom method in VistALink that implements

connection management interfaces.

VistaLinkResourceException more specific exception subclasses include (see Figure 5-1.

VistALink Exception Hierarchy):

 ConnectionHandlesExceededException

 VistaLinkSocketClosedException

 HeartBeatFailedException

 HeartBeatInteractionFailedException.

5.2.3. FoundationsException

The J2EE Connector Architecture specification defines optional record and interaction management

interfaces that are not implemented in VistALink. Instead, VistALink uses

VistaLinkConnection::executeRPC(),

VistaLinkConnection::executeInteration() and classes in

gov.va.med.vistalink.adapter.record package to implement interaction and record

management. These methods are not governed by the J2EE Connector Architecture specification. Hence

VistALink uses gov.va.med.exception.FoundationsException and its subclasses in these

methods.

5.2.4. VistaLinkFaultException

VistALink communications with M can produce exceptions that originate from the Java code side. In that

case, VistaLinkResourceException and FoundationsException will be thrown (described

above).

VistALink communications with M can also produce exceptions that originate from the M side. In those

cases a Fault message is sent back to VistALink from M. Fault messages are parsed and

gov.va.med.vistalink.adapter.record.VistaLinkFaultException that extends

FoundationsException are constructed to be thrown in those cases.

VistaLinkFaultException will have all the information that is sent back from the M side to Java,

including: faultCode, faultString, faultActor, errorCode, errorType and

errorMessage.

VistALink Exception Reference

5-4 VistALink 1.6 Developer Guide December 2010

VistaLinkFaultException more specific exception subclasses include (see Figure 5-1.

VistALink Exception Hierarchy):

 NoJobSlotsAvailableFaultException

 LoginsDisabledFaultException

 SecurityFaultException (contain more specific subclasses)

 RpcFaultException (contain more specific subclasses)

December 2010 VistALink 1.6 Developer Guide 6-1

6. Foundations Library Utilities

The Java APIs discussed in this chapter are the Foundations Library utilities. They are provided in

vljFoundationsLib-1.6.0.jar.

6.1. Encryption: gov.va.med.crypto

The VistaKernelHash utility class implements a two-way hash via two static methods, encrypt

and decrypt. These provide the encoding and obfuscation algorithms used by the RPC Broker and

Kernel to encode and decode data strings.

Using these algorithms makes it harder to sniff the contents of text sent over the network. This is not,

however, encryption-class encoding, nor does it protect against replay attacks of un-decoded strings. As a

two-way hash, this algorithm should not be considered an implication or achievement of any particular

security level beyond obfuscation.

Example (encoding):

String encodedString =

 VistaKernelHash.encrypt("some text to encode", true);

The second parameter is useful if the text is to be passed in a CDATA section of an XML message. If this

parameter is set to true, the returned encoded strings will contain neither "]]>" nor "<![CDATA[".

Otherwise, it is possible a returned encoding may contain those character sequences. If, in a reasonable

number of tries, an encoded string cannot be created without these CDATA boundaries, an exception is

thrown of type VistaKernelHashCountLimitExceededException.

Example (decoding):

String decodedString =

 VistaKernelHash.decrypt(encodedString);

6.2. J2EE Environment: gov.va.med.environment

6.2.1. Environment.isProduction()

Returns whether or not the administrator has configured the J2EE server to be "production" in a VA-

medical-center sense, i.e., the system is operating on production VA data. The source of the setting is the

gov.va.med.environment.production JVM argument passed to the J2EE server upon startup.

A setting of “true” designates the server as a production server; any other value (including not passing the

JVM argument at all) marks the server as a non-VA production server.

Returns: true if the server is a VA production server, false if not.

Foundations Library Utilities

6-2 VistALink 1.6 Developer Guide December 2010

6.2.2. Environment.getServerType()

Returns the J2EE server type. The source of the setting is the

gov.va.med.environment.servertype JVM argument passed to the J2EE server upon startup.

If the JVM argument is not present, auto-detects for WebLogic only, and otherwise defaults to return

UNKNOWN if auto-detection fails.

Returns: ServerType: JBOSS | ORACLE | SUN_RI_13 | UNKNOWN | WEBLOGIC | WEBSPHERE |

TOMCAT | J2SE

Example:

if (Environment.getServerType().equals(ServerType.WEBLOGIC)) {

 // execute weblogic-specific code

}

6.3. Network: gov.va.med.net

The following classes provide basic socket-based network functionality:

 SocketManager: Represents a socket that can be used to communicate with IP end points.

 VistaSocketException: Represents an exception thrown during read/write operations on a

socket

 VistaSocketTimeOutException: Represents an exception identifying a timeout has

occurred during read/write operations.

REF: For more information on gov.va.med.net classes, see the Javadoc documentation

provided in the VistALink distribution file.

6.4. Audit Timer: gov.va.med.monitor.time

VistALink uses gov.va.med.monitor.time.AuditTimer to capture and log information on the

length of execution for VistALink interactions using lo4j-logging capabilities. Special logger

gov.va.med.vistalink.adapter.spi.VistaSocketConnection.AuditLog is used to

output this information. Applications can use AuditTimer independently if they want to report timer

information for various processing requests.

Two types of constructors can be used to construct the AuditTimer instance:

 For public AuditTimer(), default logger

gov.va.med.monitor.time.AuditTimer is used.

 For public AuditTimer(Logger logger), an application-specific logger is used.

AuditTimer logs milliseconds elapsed between start() and stop() calls. The number of

elapsed milliseconds can be retrieved using getTimeElapsedMillis().

 Foundations Library Utilities

December 2010 VistALink 1.6 Developer Guide 6-3

Logging can be done using either log() method:

 public void log()

 public void log(String message): Since the logger can be passed into the

constructor and the output pattern for a specific logger can be configured using the log4j

configuration file, there should be no need to pass info message. Instead, different loggers should

be used.

6.4.1. Sample Code

import gov.va.med.monitor.time.AuditTimer;

public class AuditTimerTest {

 private static AuditTimer timer = null;

 private static Logger auditLogger =

Logger.getLogger(AuditTimerTest.class.getName() + ".AuditLog");

 public static void main(String[] args) {

 // Initialize Log4j configuration

 DOMConfigurator.configureAndWatch("props/log4jConfig.xml",10000);

 timer = new AuditTimer(auditLogger);

 // Start timer

 timer.start();

 // ... perform your operations

 // Stop timer

 timer.stop();

 // Log elapsed time information

 timer.log();

 // Get time elapsed if not for logging purposes

 long timeElapsed = timer.getTimeElapsedMillis();

 }

}

The following is a snippet from the log4j configuration file:

 <appender name="auditTimerTestConsoleAppender"

class="org.apache.log4j.ConsoleAppender">

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="Audit time - %m%n"/>

 </layout>

 </appender>

 <logger

name="gov.va.med.vistalink.utilities.test.AuditTimerTest.AuditLog" >

 <level value="debug" />

 <appender-ref ref="auditTimerTestConsoleAppender"/>

 </logger

Foundations Library Utilities

6-4 VistALink 1.6 Developer Guide December 2010

6.5. Exception: gov.va.med.exception

6.5.1. ExceptionUtils Class

NOTE: Use of this class (ExceptionUtils) has been deprecated, due to inclusion of nested

exceptions in Java 1.4 and greater.

All APIs in the gov.va.med.exception.ExceptionUtils class have been deprecated:

 String getFullStackTrace() method

 Throwable getNestedExceptionByClass() method

6.6. XML: gov.va.med.xml

6.6.1. XmlUtilities Class

NOTE: Use of this class (XmlUtilities) has been deprecated, due to the high level of XML

support in Java 1.4 and greater. However, documentation has been left in place for reference.

This class contains a number of static utility methods to help developers work with XML documents,

nodes, attributes and strings. These utilities are XML-parser independent.

The tables below describe the VistALink utility methods and variables.

Static Method Signature Description

String convertXmlToStr(Document doc) Converts a DOM document to a string

Document getDocumentForXmlString(

 String xml)

Returns an XML DOM Document for the
specified String

Document getDocumentForXmlInputStream(

 InputStream xml)

Returns an XML DOM Document for the
specified InputStream

Attr getAttr(Node node, String attrName) Returns the Attribute with the given
attrName at node

Node getNode(String xpathStr, Node node) Returns the first node at the specified
XPath location

Table 6-1. VistALink Utility Methods

Static Final Variables Description

String XML_HEADER Represents the default header used for all xml documents that
communicate with an M server via VistALink. It is important to use
this header as this keeps the client and M server in sync.

Table 6-2. VistALink Utility Variables

December 2010 VistALink 1.6 Developer Guide 7-1

7. How to Use VistALink in J2SE Applications

Using VistALink to build J2SE client/M server applications is very similar to using VistALink in J2EE.

The main differences are in the areas of authentication and obtaining a connection. Sample J2SE

applications are provided in the VistALink distribution file, in the samples-J2SE folder.

7.1. Authenticating and Connecting to VistA in Client-Server Mode

In J2EE, applications retrieve and return VistALink connections to a connection pool. In J2SE mode,

however, VistALink establishes a direct, persistent connection on behalf of the J2SE application to the M

server. Unless the server is shut down, this connection remains open until closed by the client.

The high-level steps to establish a VistALink connection to M in J2SE mode are:

1. Provide server configuration information to VistALink (IP address and port of the M VistALink

listener to connect to)

2. Authenticate the end-user over the connection

3. Execute RPCs

4. Close the connection (log out)

VistALink uses the Java Authentication and Authorization Service (JAAS) framework for steps 1, 2 and 4

above.

REF: For information on step 3, see the section “Executing Requests.”

7.1.1. JAAS Overview

JAAS is a Java pluggable framework for user authentication and authorization. “Pluggability” means that

different security modules (e.g., authentication modules) can be added or “plugged in” to an application

without recompiling the application. VistALink uses the JAAS framework to authenticate end-users to an

M/Kernel system, via the users' customary Kernel access and verify codes.

A JAAS-compliant login module contains all of the logic required to authenticate a user to a given

system. The login module class does not itself, however, include the user interface to gather

authentication credentials (e.g., access and verify codes) from the end-user. Instead, a set of JAAS-

compliant callbacks, along with a JAAS-compliant callback handler, are used to de-couple the user

interface from the login module. VistALink provides a JAAS-compatible login module and JAAS-

compliant callbacks and callback handlers to perform a VistA login.

Although the JAAS framework also provides authorization capabilities, VistALink uses JAAS for

authentication only. VistALink does not make any use of the permission/authorization portions of the

JAAS specification at this time.

How to Use VistALink in J2SE Applications

7-2 VistALink 1.6 Developer Guide December 2010

7.2. VistALink JAAS Implementation

7.2.1. VistaLoginModule

VistALink provides a single JAAS-compliant login module class, VistaLoginModule. As a

developer, you do not use this class directly because your application does the following:

 Specifies which login module to use, via a JAAS configuration file

 Creates a LoginContext instance, and passes it a supported callback handler instance to

collect user input

1. Invokes the login method of the LoginContext class to initiate the login process for the

configured login module

7.2.1.1. Section 508 Considerations

The VistaLoginModule UI has undergone section 508 testing and been approved. A button on the main

login screen, "Section 508 Information", documents this.

The login module inherits color and font settings from the parent application. For that reason, we suggest

that your code invoke the login module's login() method after first:

1. Setting the Swing look-and-feel to the System look-and-feel classname, and

2. Calling the Swing updateComponentTreeUI method

7.2.2. JAAS Login Configuration Overview

By default, VistALink uses the default JAAS configuration reader to load login configurations. The

default JAAS configuration reader class loads login configurations from a JAAS configuration file, which

it expects to be in a predefined format.

One or more configuration entries are defined in the JAAS configuration file. The configuration file itself

can have any name, and can be located anywhere. Each entry in the JAAS configuration file defines a

particular login configuration. Generically, the format of this file is as follows:

ConfigurationName {

 ModuleClass Flag ModuleOptions;

 };

 ConfigurationName {

 ModuleClass Flag ModuleOptions;

 };

7.2.3. VistALink-Specific JAAS Login Configuration

The following is an example of the JAAS configuration file format needed specifically for VistALink:

 How to Use VistALink in J2SE Applications

December 2010 VistALink 1.6 Developer Guide 7-3

Test {

 gov.va.med.vistalink.security.VistaLoginModule requisite

 gov.va.med.vistalink.security.ServerAddressKey="10.21.1.185"

 gov.va.med.vistalink.security.ServerPortKey="18000";

};

Production {

 gov.va.med.vistalink.security.VistaLoginModule requisite

 gov.va.med.vistalink.security.ServerAddressKey="10.21.1.85"

 gov.va.med.vistalink.security.ServerPortKey="8000";

};

This example defines two login configurations, one named "Test" and one named "Production." An

application uses this name (Test or Production) as the index to retrieve a particular configuration from the

JAAS configuration file.

To configure a VistALink login to a VistA system, configure a single login module per login

configuration entry, within each entry's {braces}, as follows:

1. Name the VistALink login module class, including package name:

 gov.va.med.vistalink.security.vistalink.VistaLoginModule

2. Follow with a flag indicating what action to take if login fails. For VistALink, use requisite.

3. Follow with options for the VistALink login module. There are two options that must be set, in

"name=value" format:

 gov.va.med.vistalink.security.vistalink.ServerAddressKey

 gov.va.med.vistalink.security.vistalink.ServerPortKey

 Use quotes around the server address and server port values.

4. Before the closing brace, end with a semicolon.

5. Follow the closing brace with a semicolon.

REF: For more information about the JAAS configuration file format expected by the

default JAAS configuration file reader class, see:

http://java.sun.com/j2se/1.4.1/docs/guide/security/jgss/tutorials/LoginConfigFile.html

NOTE: It is possible to define your own JAAS configuration reader class, instead of using

the default class. If you do this, you are still responsible for providing the package/name of

the VistaLoginModule class, the JAAS requisite flag, and the two options required by the

VistaLoginModule.

7.2.4. Passing the JAAS Login Configuration(s) to Your JVM

The JAAS Login Configuration needs to be passed to the JVM (and hence to your application). The

JAAS configuration can be passed in two ways:

http://java.sun.com/j2se/1.4.1/docs/guide/security/jgss/tutorials/LoginConfigFile.html

How to Use VistALink in J2SE Applications

7-4 VistALink 1.6 Developer Guide December 2010

 With the javax.security.auth.login.Configuration Java virtual machine (JVM)

argument when launching your application, e.g.:

 java -Djava.security.auth.login.config=jaas.config MyApp

 In the Java security properties file.

In most cases it is preferable to use the JVM argument, since it allows the setting to be application-

specific rather than machine-wide.

7.2.5. Selecting the JAAS Configuration From an Application

Once your application is running, it should select a specific configuration. In order to allow local

administration of JAAS configuration files, you should, in most cases, provide a command-line parameter

to allow local administrators to pass a particular JAAS configuration into your application. For example:

 java -Djava.security.auth.login.config=jaas.conf MyApp Production

7.2.6. Selecting a VistaLoginModule Callback Handler

In order to decouple the user interface for logon from the login module, the JAAS standard allows login

modules such as VistaLoginModule to supply different callback handlers. VistALink supplies two

callback handler classes, one for an interactive logon, and one for non-interactive unit testing:

 CallbackHandlerSwingCCOW: for production application use. Performs single-signon if

credentials are already present in CCOW user context. Otherwise, collects access code, verify

code, division and "change verify code" input via a set of Swing dialogs; stores single sign-on

credentials in CCOW user context for subsequent application use.

 CallbackHandlerSwing: for production application use. Collects access code, verify code,

division and "change verify code" input via a set of Swing dialogs.

 CallbackHandlerUnitTest: for unit testing only (not production use). Access code, verify

code, division are passed as parameters to the class constructor, resulting in a "silent" login

suitable for (non-interactive) unit testing. The "change verify code" functionality is not supported.

Your code will need to instantiate one of these callback handlers as part of the JAAS VistALink login.

Your code will then need to pass the instantiated callback handler as a parameter to create a JAAS login

context (see “Putting the Pieces Together: VistALink JAAS Login,” below.

7.2.7. Benefits of Passing Parent Application Frame to Callback Handler

When constructing/instantiating a VistALink callback handler, one of the arguments is a reference to the

(java.awt.)Frame of the parent application. We recommend that the calling application have created a

Frame or descendant for itself prior to invoking login. Benefits to passing the calling application's defined

Frame to the VistALink callback handler's constructor include:

 If, during a login to your application, the user temporarily grants focus to another application, and

then returns (either by choosing the application in Alt-Tab, or by clicking the application icon in

 How to Use VistALink in J2SE Applications

December 2010 VistALink 1.6 Developer Guide 7-5

the taskbar), the application window and login dialog are made visible with the login on top, and

the login dialog is granted focus.

 If the login dialog has focus but the app window is visible beneath it on the screen, and the user

attempts to switch focus to the app window (from the login dialog), the login dialog flashes and

keeps focus

 If the login dialog has focus and the user clicks on the application's taskbar icon, the login dialog

keeps focus

If the parent application's Frame is not passed, focus issues do not work as above which is problematic

given that the login is a modal dialog.

7.3. Putting the Pieces Together: VistALink JAAS Login

7.3.1. Logging in to VistA

The following is an example login. If application execution succeeds through the try block, the user has

successfully logged in to the specified VistA listener.

// variable holding LoginContext should have application scope

// since it will be needed to log out, later on

private LoginContext loginContext = null;

try {

 // create the callback handler to use to collect user input

 // pass current Frame as parameter

 CallbackHandlerSwing cbhSwing = new CallbackHandlerSwing(myFrame);

// create the LoginContext to control the login process;

 // pass the JAAS configuration to connect to, and the callback

 // handler (jaasConfigName value could be passed in from command

 // line)

 loginContext = new LoginContext(jaasConfigName, cbhSwing);

 // login to server through the LoginContext

 loginContext.login();

} catch (VistaLoginModuleException e) {

 JOptionPane.showMessageDialog(null, e.getMessage(), "Login error",

 JOptionPane.ERROR_MESSAGE);

} catch (LoginException e) {

 JOptionPane.showMessageDialog(null, e.getMessage(), "Login error",

 JOptionPane.ERROR_MESSAGE);

}

How to Use VistALink in J2SE Applications

7-6 VistALink 1.6 Developer Guide December 2010

7.4. After Successfully Logging In

7.4.1. Retrieving the VistaKernelPrincipal

The JAAS subject is available from the JAAS LoginContext class after a successful login.

It contains a JAAS principal (user entity), which holds:

 Demographic information about the logged-in user

 The authenticated VistALink connection object

The following code shows how to retrieve the Kernel principal after a successful login:

// variable holding Kernel principal may need application scope

// since it will be needed for RPC execution

private VistaKernelPrincipalImpl userPrincipal = null;

// . . . login code

// get the Kernel principal after logon

try {

 userPrincipal = VistaKernelPrincipalImpl.getKernelPrincipal(

 loginContext.getSubject());

} catch (FoundationsException e) {

 JOptionPane.showMessageDialog(null, e.getMessage(), "Login error",

 JOptionPane.ERROR_MESSAGE);

}

In the future, it is conceivable that more than one principal could be contained in the JAAS subject after

login, if multiple login modules are used. This might happen when a compound login has been

configured, requiring several logins to complete, e.g., one for a Kernel M system and one for a separate

health data repository.

Only one *Kernel* principal should ever be returned, however. Use the getKernelPrincipal

helper method in the VistaKernelPrincipalImpl class to retrieve the single Kernel principal.

7.4.2. Retrieving the Authenticated Connection From the Principal

To execute RPCs, you need to retrieve the authenticated connection. The authenticated connection object

over which you make requests is stored in the Kernel principal, and can be retrieved with the

getAuthenticatedConnection method.

Once a successful login has been completed, you should retrieve the associated authenticated connection

from the Kernel principal. This connection is "logged in" to the M system under the end-user's identity.

You can then use it to execute requests such as RPCs on behalf of the end-user.

REF: For more information on executing requests, see the chapter of this manual titled

“Executing Requests.” An example of successful login appears below.

 How to Use VistALink in J2SE Applications

December 2010 VistALink 1.6 Developer Guide 7-7

VistaLinkConnection myConnection =

 userPrincipal.getAuthenticatedConnection();

// . . . now you can execute requests

REF: For information on how to use the VistaLinkConnection object to execute

requests, see the section “Executing RPCs,” below.

7.4.3. Retrieving User Demographic Information

Use the following predefined static KEY* strings to retrieve user demographic values via the Kernel

principal's getUserDemographicValue method. For example:

// get the DUZ

String duz = this.userPrincipal.getUserDemographicValue(

 VistaKernelPrincipalImpl.KEY_DUZ);

// get the name

String name = userPrincipal.getUserDemographicValue(

 VistaKernelPrincipalImpl.KEY_NAME_DISPLAY);

The table below shows a complete set of returned demographics information and keys.

Key Value

KEY_DIVISION_IEN Login division station IEN

KEY_DIVISION_STATION_NAME Login division station name

KEY_DIVISION_STATION_NUMBER Login division station number

KEY_DTIME User timeout value

KEY_DUZ DUZ

KEY_LANGUAGE User language

KEY_NAME_DEGREE User degree

KEY_NAME_FAMILYLAST Name component family-last

KEY_NAME_GIVENFIRST Name component given-first

KEY_NAME_MIDDLE Name component middle

KEY_NAME_NEWPERSON01 New Person .01 Field name

How to Use VistALink in J2SE Applications

7-8 VistALink 1.6 Developer Guide December 2010

Key Value

KEY_NAME_PREFIX Name component prefix

KEY_NAME_SUFFIX Name component suffix

KEY_SERVICE_SECTION User service/section

KEY_NAME_DISPLAY Concatenated standard name

KEY_TITLE User title

Table 7-1. Demographics Keys and Values

7.4.4. Executing RPCs

Once you have a VistaLinkConnection connection object to work with, you can execute requests

in exactly the same fashion as for VistALink's J2EE mode.

REF: For more information, see chapter 4 of this document, “Executing Requests.” The

entire chapter is valid for J2SE mode.

7.4.5. Timeouts

For information on timeouts for RPC execution, see the "Timeouts" section of this document titled "Using

VistALink in J2EE." Most of the information there on timeouts is also valid for the J2SE mode.

There is one significant difference to be aware of when a timeout occurs for a J2SE VistALink

connection, however. Once a timeout occurs, the single authenticated connection to the M system is now

rendered unusable. In order to perform any more actions on the M system, the client application will need

to re-invoke the entire login process, in order to log in the end user again and get to the point where a

validated, authenticated connection is once again available over which to execute RPC requests.

As such, for client/server applications, it is best to set the longest timeout value that can be tolerated

within the context of the RPC itself as well as the specific end-user functionality being executed.

7.4.6. Logging Out

Your application should always call the logout method of the JAAS LoginContext class to log out of

VistA before exiting. This ensures that proper Kernel cleanup (e.g., of the ^TMP global) occurs on the M

server to which the user was connected.

 How to Use VistALink in J2SE Applications

December 2010 VistALink 1.6 Developer Guide 7-9

7.4.6.1. Logging Out of Swing Applications

In a Swing application, the application should always call the LoginContext's logout method when the

application is shut down. There are a number of ways an application can be shut down: The user closes

the application window, the application is terminated from the Windows control panel, etc.

A good way to catch all of these shutdown cases is to implement a WindowAdapter as a window

listener in the application, and provide an implementation of its windowClosing method that calls the

LoginContext's logout method.

For example:

// loginContext has been defined earlier, with application scope

// add event listener to log out when window closes

frame.addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e) {

 mylogout();

 System.exit(0);

 }

});

// Method called from event handler to perform logout

private void mylogout() {

 // Kernel logout

 if (this.userPrincipal != null) {

 try {

 loginContext.logout();

 } catch (LoginException e) {

 JOptionPane.showMessageDialog(null, e.getMessage(),

 "Logout error", JOptionPane.ERROR_MESSAGE);

 }

 }

}

7.5. Catching Login Exceptions

The LoginContext login() and logout() methods only throw exceptions that derive from

LoginException. So at a minimum, when executing the login or logout methods of a

LoginContext object, your application needs a try/catch block to catch LoginException.

7.5.1. VistaLoginModule Exception Hierarchy

JAAS requires LoginModules to throw javax.security.auth.login.LoginException

from JAAS classes implementation methods. So the VistALink login module throws exceptions of type

gov.va.med.vistalink.security.vistalink.VistaLoginModuleException, which

extends javax.security.auth.login.LoginException.

How to Use VistALink in J2SE Applications

7-10 VistALink 1.6 Developer Guide December 2010

The VistaLink login module provides more granular exceptions from

VistaLoginModuleException, so that your application can optionally filter exceptions at a finer

level of granularity. This means that your application can detect and implement specific processing for

login exception types that might be of interest.

Exception Description

VistaLoginModuleException Like a LoginException, but may contain
nested exception(s) that were the cause for
the LoginException.

VistaLoginModuleLoginsDisabledException Logins are disabled on the M server.

VistaLoginModuleNoJobSlotsAvailableException Job slot maximum has been exceeded on
M server.

VistaLoginModuleNoPathToListenerException No reachable listener was found on the
path represented by the specified IP
address and Port.

VistaLoginModuleTooManyInvalidAttemptsException The user tried to login too many times with
invalid credentials.

VistaLoginModuleUserCancelledException The user cancelled the login.

VistaLoginModuleUserTimedOutException The user timed out of the login.

Table 7-2. VistALink Login Exceptions

For example, if your application is interested in whether the IP and port specified were "bad" (at least at

the time the login was attempted), you can trap for the VistaLoginModuleNoPathToListener

exception, in addition to the standard LoginException. Example:

try {

 // create the callback handler to use to collect user input

 CallbackHandlerSwing cbhSwing = new CallbackHandlerSwing(myFrame);

 // create the LoginContext to control the login process.

 loginContext = new LoginContext(serverAlias, cbhSwing);

 // login to server through the LoginContext

 loginContext.login();

} catch (VistaLoginModuleLoginsDisabledException e) {

JOptionPane.showMessageDialog(

 null,

 "Logins are disabled; try later.",

 "Login error",

 JOptionPane.ERROR_MESSAGE);

} catch (LoginException e) {

 How to Use VistALink in J2SE Applications

December 2010 VistALink 1.6 Developer Guide 7-11

 JOptionPane.showMessageDialog(null, e.getMessage(), "Login error",

 JOptionPane.ERROR_MESSAGE);

}

7.6. CCOW Login Functionality

VistALink's client/server logins support CCOW-based single sign-on, based on the work in the Single

Sign-On/User Context (SSO/UC) Project. For more information on CCOW-enabling the logins of

client/server applications, please the documentation for the SSO/UC project (available on the VDL).

7.7. Unit Testing and VistALink

The login user interface collects end-user information, including the access and verify code and division

number. It is separate from the logic that implements login, because of the pluggable JAAS architecture.

The user interface is contained in a JAAS-compliant set of callbacks, and the login logic is contained in a

JAAS-compliant login module. Therefore, the JAAS framework makes it straightforward to implement

alternative user interfaces for login.

VistALink provides an alternative callback handler that implements a "silent" (non-interactive) login

suitable for unit testing purposes. This silent login is not suitable for any production environment.

Your application passes the access and verify code, and (optionally) division to silently log in your

application. Changing the verify code is not supported with this callback handler.

For example:

// Connection info

String cfgName = "Production";

// signon credentials for unit test callback handler

String accessCode = "asdf.123";

String verifyCode = "asdf.456";

String division = "";

try {

 // create the "unit test" callbackhandler for JAAS login

 CallbackHandlerUnitTest cbhUnitTest =

 new CallbackHandlerUnitTest(accessCode, verifyCode, division);

 // create the JAAS LoginContext for login

 lc = new LoginContext(cfgName, cbhUnitTest);

 // login to server

 lc.login();

} catch (VistaLoginModuleException e) {

JOptionPane.showMessageDialog(null, e.getMessage(), "Login error",

 JOptionPane.ERROR_MESSAGE);

How to Use VistALink in J2SE Applications

7-12 VistALink 1.6 Developer Guide December 2010

} catch (LoginException e) {

JOptionPane.showMessageDialog(null, e.getMessage(), "Login error",

JOptionPane.ERROR_MESSAGE);

}

December 2010 VistALink 1.6 Developer Guide Appendix A -1

Appendix A: Pluggable Institution Rules

NOTE: This section is of interest primarily to non-VA users of VistALink.

J2EE Applications using VistALink need the ability to select the resource adapter (connector) to execute

a remote procedure call (RPC) on a given M system. To retrieve the appropriate VistALink adapter, the

application needs to know what JNDI name the adapter they're interested in is registered under.

VistALink's institution mapping provides a way for J2EE applications to obtain the JNDI name of a

VistALink adapter based on station number (the institution, station, and division number are the pieces of

information an application is likely to have to identify an M system it wants to connect to.)

With VistALink's institution mapping, J2EE applications should not have to hard-code connector JNDI

names; in most cases they should get the appropriate connector using a station number.

The VA-specific implementation of institution mapping rules

(gov.va.med.vistalink.institution.PrimaryStationRulesVHA) makes several VA-specific assumptions, in

particular:

 Legal station numbers in VA can be 3 digits or 5+ digits with one exception (see nursing homes

below).

 For station numbers assigned to the Austin Information Technology Center (AITC) only: If a

station number has an alpha suffix, e.g. "200A", the numeric portion must be "200"

 For nursing homes: If a numeric station number is 4 digits, the 4th digit must be a "9"

To replace these rules with a different rule implementation, you can provide a new implementation of the

rules interface (gov.va.med.vistalink.institution.IPrimaryStationRules). To do that:

 A new implementation of the IPrimaryStationRules interface must be provided, and

 The package/classname of the new implementation must be passed in a -D JVM argument,

"gov.va.med.vistalink.primary-station-rules-class". E.g., -Dgov.va.med.vistalink.primary-station-

rules-class=org.test.PrimaryStationRulesTest

For an example of an implementation of institution mapping rules, you can examine the source code for

the PrimaryStationRulesVHA class. Also, documentation for the interface is provided in the javadoc

distributed with VistALink.

REF: For more information on activating a non-VA-specific institution rules class, see the

System Management Guide.

Appendix A: Pluggable Institution Rules

Appendix A -2 VistALink 1.6 Developer Guide December 2010

December 2010 VistALink 1.6 Developer Guide Glossary-1

Glossary

AAC Formerly the Austin Automation Center. Renamed to the Austin Information

Technology Center (AITC)

Access Code A password used by the Kernel system to identify the user. It is used with the

verify code.

Adapter Another term for resource adapter or connector.

Administration

Server

Each WebLogic server domain must have one server instance that acts as the

administration server. This server is used to configure all other server instances

in the domain.

AITC Austin Information Technology Center

Alias An alternative filename.

Alpha/VMS Alpha: Hewlett Packard computer system

VMS: Virtual Memory System

Anonymous

Software Directories

M directories where VHA application and patch zip files are placed for

distribution.

API Application Program Interface

Application Proxy

User

A Kernel user account designed for use by an application rather than an end-

user.

Application Server Software/hardware for handling complex interactions between users, business

logic, and databases in transaction-based, multi-tier applications. Application

servers, also known as app servers, provide increased availability and higher

performance.

ASTM American Society for Testing and Materials

Authentication Verifying the identity of the end-user.

Authorization Granting or denying user access or permission to perform a function.

Base Adapter Version 8.1 of WebLogic introduced a "link-ref" mechanism enabling the

resources of a single "base" adapter to be shared by one or more "linked"

adapters. The base adapter is a standalone adapter that is completely set up. Its

resources (classes, jars, etc.) can be linked to and reused by other resource

adapters (linked adapters). The deployer only needs to modify a subset of the

linked adapters‟ deployment descriptor settings.

BEA WebLogic BEA WebLogic is a J2EE Platform application server. Oracle has acquired BEA

Glossary

Glossary-2 VistALink 1.6 Developer Guide December 2010

Systems, Inc. From here forward it will be referred to as Oracle.

Caché Caché is an M environment, a product of InterSystems Corp.

Cache/VMS Cache: InterSystems Caché object database that runs SQL

VMS: Virtual Memory System

CCI Common Client Interface

CCOW A standard defining the use of a technique called "context management,"

providing the clinician with a unified view on information held in separate and

disparate healthcare applications that refer to the same patient, encounter or

user.

Classpath The path searched by the JVM for class definitions. The class path may be set by

a command-line argument to the JVM or via an environment variable.

Client Can refer to both the client workstation and the client portion of the program

running on the workstation.

Connection Factory A J2CA class for creating connections on request.

Connection Pool A cached store of connection objects that can be available on demand and

reused, increasing performance and scalability. VistALink 1.6 uses connection

pooling.

Connector A system-level driver that integrates J2EE application servers with Enterprise

Information Systems (EIS). VistALink is a J2EE connector module designed to

connect to Java applications with VistA/M systems. The term is used

interchangeably with connector module, adapter, adapter module, and resource

adapter.

Connector Proxy

User

For security purposes, each instance of a J2EE connector must be granted access

to the M server it connects to. This is done via a Kernel user account set up on

the M system. This provides initial authentication for the app server and

establishes a trusted connection. The M system manager must set up the

connector user account and communicate the access code, verify code and

listener IP address and port to the J2EE system manager.

COTS Commercial, Off-The-Shelf

CSV Comma-Separated Values format

DBF Database file format underlying many database applications (originally dBase)

DCL Digital Command Language. An interactive command and scripting language for

VMS.

Division VHA sites are also called institutions. Each institution has a station number

associated with it. Occasionally a single institution is made up of multiple sites,

known as divisions. To make a connection, VistALink needs a station number

 Glossary

December 2010 VistALink 1.6 Developer Guide Glossary-3

from the end-user‟s New Person entry in the Kernel Site Parameters file. It looks

first for a division station number and if it can‟t find one, uses the station number

associated with default institution.

DSM Digital Standard MUMPS. An M environment, a product of InterSystems Corp.

DUZ A local variable holding a number that identifies the signed-on user. The number

is the Internal Entry Number (IEN) of the user‟s record in the NEW PERSON

file (file #200)

EAR file Enterprise archive file. An enterprise application archive file that contains a

J2EE application.

EIS Enterprise Information System

EPHI Electronic Protected Health Information

FatKAAT Fat-Client (i.e. Rich client) Kernel Authentication and Authorization

FDA FileMan Data Array

File #18 System file #18 was the precursor to the KERNEL SYSTEMS PARAMETERS

file, and is now obsolete. It uses the same number space that is now assigned to

VistALink. Therefore, file #18 must be deleted before VistALink can be

installed.

Global A multi-dimensional data storage structure -- the mechanism for persistent data

storage in a MUMPS database.

HealtheVet-VistA The VHA is converting its MUMPS-based VistA healthcare system to a new

J2EE-based platform and application suite. The new system is known as

HealtheVet-VistA.

HIPAA Health Insurance Portability and Accountability Act

IDE Integrated development environment. A suite of software tools to support writing

software.

Institution VHA sites are also called institutions. Each institution has a station number

associated with it. Occasionally a single institution is made up of multiple sites,

known as divisions. To make a connection, VistALink needs a station number

from the end-user‟s New Person entry in the KERNEL SYSTEM

PARAMETERS file (#8989.3). It looks first for a division station number and if

it can‟t find one, uses the station number associated with default institution.

Institution Mapping The VistALink 1.6 release includes a small utility that administrators can use to

associate station numbers with JNDI names, and which allows runtime code to

retrieve the a VistALink connection factory based on station number.

ISO Information Security Officer

Glossary

Glossary-4 VistALink 1.6 Developer Guide December 2010

J2CA J2EE Connector Architecture. J2CA is a framework for integrating J2EE-

compliant application servers with Enterprise Information Systems, such as the

VHA‟s VistA/M systems. It is the framework for J2EE connector modules that

plug into J2EE application servers, such as the VistALink adapter.

J2EE The Java 2 Platform, Enterprise Edition (J2EE) is an environment for

developing and deploying enterprise applications. The J2EE platform consists of

a set of services, APIs, and protocols that provide the functionality for

developing multi-tiered, Web-based applications. A J2EE Connector

Architecture specification for building adapters to connect J2EE systems to non-

J2EE enterprise information systems.

JAAS Java Authentication and Authorization Service. JAAS is a pluggable Java

framework for user authentication and authorization, enabling services to

authenticate and enforce access controls upon users.

JAR file Java archive file. It is a file format based on the ZIP file format, used to

aggregate many files into one.

Java Library A library of Java classes usually distributed in JAR format.

Javadoc Javadoc is a tool for generating API documentation in HTML format from doc

comments in source code. Documentation produced with this tool is typically

called Javadoc.

JBoss JBoss is a free software / open source Java EE-based application server.

JCA CCI J2EE Connector Architecture Common Client Interface

JDK Java Development Kit. A set of programming tools for developing Java

applications.

JMX Java Management eXtensions. A java specification for building manageability

into java applications, including J2EE-based ones.

JNDI Java Naming and Directory Interface. A protocol to a set of APIs for multiple

naming and directory services.

JRE The Java Runtime Environment consists of the Java virtual machine, the Java

platform core classes, and supporting files. JRE is bundled with the JDK but also

available packaged separately.

JSP Java Server Pages. A language for building web interfaces for interacting with

web applications.

JVM Java Virtual Machine. The JVM interprets compiled Java binary code (byte

code) for specific computer hardware.

KAAJEE Kernel Authentication and Authorization for Java 2 Enterprise Edition

Kernel Kernel functions as an intermediary between the host M operating system and

 Glossary

December 2010 VistALink 1.6 Developer Guide Glossary-5

VistA M applications. It consists of a standard user and program interface and a

set of utilities for performing basic VA computer system tasks, e.g., Menu

Manager, Task Manager, Device Handler, and security.

KIDS Kernel Installation and Distribution System. The VistA/M module for exporting

new VistA software packages.

LDAP Acronym for Lightweight Directory Access Protocol. LDAP is an open protocol

that permits applications running on various platforms to access information

from directories hosted by any type of server.

Linked Adapter Version 8.1 of WebLogic introduced a "link-ref" mechanism enabling the

resources of a single "base" adapter to be shared by one or more "linked"

adapters. The base adapter is a standalone adapter that is completely set up. Its

resources (classes, jars, etc.) can be linked to and reused by other resource

adapters (linked adapters). The deployer only needs to modify a subset of linked

adapters‟ deployment descriptor settings.

Linux An open-source operating system that runs on various types of hardware

platforms. HealtheVet-VistA servers use both Linux and Windows operating

systems.

Listener A socket routine that runs continuously at a specified port to field incoming

requests. It sends requests to a front controller for processing. The controller

returns its response to the client through the same port. The listener creates a

separate thread for each request, so it can accept and forward requests from

multiple clients concurrently.

log4J Utility An open-source logging package distributed under the Apache Software license.

Reviewing log files produced at runtime can be helpful in debugging and

troubleshooting.

logger In log4j, a logger is a named entry in a hierarchy of loggers. The names in the

hierarchy typically follow Java package naming conventions. Application code

can select a particular logger by name to write output to, and administrators can

configure where a particular named logger‟s output is sent.

M (MUMPS) Massachusetts General Hospital Utility Multi-programming System, abbreviated

M. M is a high-level procedural programming computer language, especially

helpful for manipulating textual data.

Managed Server A server instance in a WebLogic domain that is not an administration server, i.e.,

not used to configure all other server instances in the domain.

MBeans In the Java programming language, an MBean (managed bean) is a Java object

that represents a manageable resource, such as an application, a service, a

component, or a device. MBeans must be concrete Java classes.

Messaging A framework for one application to asynchronously deliver data to another

application, typically using a queuing mechanism.

http://www.webopedia.com/TERM/L/open_source.html
http://www.webopedia.com/TERM/L/operating_system.html
http://www.webopedia.com/TERM/L/platform.html

Glossary

Glossary-6 VistALink 1.6 Developer Guide December 2010

Multiple A VA FileMan data type that allows more than one value for a single entry.

Namespace A unique 2-4 character prefix for each VistA package. The DBA assigns this

character string for developers to use in naming a package‟s routines, options,

and other elements. The namespace includes a number space, a pre-defined

range of numbers that package files must stay within.

New Person File The New Person file contains information for all valid users on an M system.

NIST National Institute for Standards and Technology

OI Office of Information

Oracle WebLogic Oracle WebLogic is a J2EE Platform application server. Oracle has acquired

BEA Systems, Inc.

OS Operating System

Patch An update to a VistA software package that contains an enhancement or bug fix.

Patches can include code updates, documentation updates, and information

updates. Patches are applied to the programs on M systems by IRM services.

PHI Protected Health Information

Plug-in A component that can interact with or be added to an application without

recompiling the application.

ra.xml ra.xml is the standard J2EE deployment descriptor for J2CA connectors. It

describes connector-related attributes and its deployment properties using a

standard DTD (Document Type Definition) from Sun.

Re-authentication When using a J2CA connector, the process of switching the security context of

the connector from the original application connector "user" to the actual end-

user. This is done by the calling application supplying a proper set of user

credentials.

Resource Adapter J2EE resource adapter modules are system-level drivers that integrate J2EE

application servers with Enterprise Information Systems (EIS). This term is used

interchangeably with resource adapter and connector.

RM Requirements Management

Routine A program or sequence of computer instructions that may have some general or

frequent use. M routines are groups of program lines that are saved, loaded, and

called as a single unit with a specific name.

RPC Remote Procedure Call. A defined call to M code that runs on an M server. A

client application, through the RPC Broker, can make a call to the M server and

execute an RPC on the M server. Through this mechanism a client application

can send data to an M server, execute code on an M server, or retrieve data from

an M server

 Glossary

December 2010 VistALink 1.6 Developer Guide Glossary-7

RPC Broker The RPC Broker is a client/server system within VistA. It establishes a common

and consistent framework for client-server applications to communicate and

exchange data with VistA/M servers.

RPC Security All RPCs are secured with an RPC context (a "B"-type option). An end-user

executing an RPC must have the "B"-type option associated with the RPC in the

user‟s menu tree. Otherwise an exception is thrown.

SAD Software Architecture Document

SE&I Software Engineering & Integration

Servlet A Java program that resides on a server and executes requests from client web

pages.

Socket An operating system object that connects application requests to network

protocols.

SPI J2CA service provider interface Service-Level Contract

SRS Software Requirements Specification

SSH
1
Secure Shell or SSH is a network protocol that allows data to be exchanged

using a secure channel between two networked devices. Used primarily on Linux

and Unix based systems to access shell accounts, SSH was designed as a

replacement for Telnet and other insecure remote shells, which send information,

notably passwords, in plaintext, leaving them open for interception. The

encryption used by SSH provides confidentiality and integrity of data over an

insecure network, such as the Internet.

TCP/IP Transmission Control Protocol (TCP) and the Internet Protocol (IP)

Term Definition

TXT Text file format

UML Unified Modeling Language is a standardized specification language for object

modeling.

VA Department of Veterans Affairs

VACO Veterans Affairs Central Office

Verify Code A password used in tandem with the access code to provide secure user access.

The Kernel‟s Sign-on/Security system uses the verify code to validate the user's

identity.

VistA Veterans Health Information Systems and Technology Architecture. The VHA‟s

portfolio of M-based application software used by all VA medical centers and

1
 http://en.wikipedia.org/wiki/Secure_Shell

Glossary

Glossary-8 VistALink 1.6 Developer Guide December 2010

associated facilities.

VistALink Libraries Classes written specifically for VistALink.

VL VistaLink is a runtime and development tool providing connection and data

conversion between Java and M applications in client-server and n-tier

architectures, to which this document describes the architecture and design.

VMS Virtual Memory System. An operating system, originally designed by DEC (now

owned by Hewlett-Packard), that operates on the VAX and Alpha architectures.

VPID VA Person Identifier. A new enterprise-level identifier uniquely identifying VA

„persons‟ across the entire VA domain.

WAR file Web archive file. Contains the class files for servlets and JSPs.

WebLogic WebLogic is a J2EE Platform application server.

WebLogic Server A J2EE application server manufactured by Oracle Systems.

WebSphere WebSphere Application Server (WAS) is a J2EE application server

manufactured by IBM Corp.

XLS Microsoft Office XL worksheet and workbook file format

XML Extensible Markup Language

XmlBeans XMLBeans is a Java-to-XML binding framework which is part of the Apache

Software Foundation XML project.

XOB Namespace The VistALink namespace. All VistALink programs and their elements begin

with the characters "XOB."

REF: For a comprehensive list of commonly used infrastructure- and security-related terms and

definitions, please visit the Security and Other Common Services Glossary Web page at the

following Web address:

http://vaww.vista.med.va.gov/iss/glossary.asp

For a comprehensive list of acronyms, please visit the Security and Other Common Services

Acronyms Web site at the following Web address:

http://vaww.vista.med.va.gov/iss/acronyms/index.asp

	Revision History
	Contents
	Tables and Figures
	Orientation
	1. Introduction
	2. Developer Workstation Setup
	3. How to Use VistALink in J2EE Applications
	4. Executing Requests
	5. VistALink Exception Reference
	6. Foundations Library Utilities
	7. How to Use VistALink in J2SE Applications
	Appendix A: Pluggable Institution Rules
	Glossary

