

KERNEL

DEVELOPER'S GUIDE

Version 8.0

July 1995

Revised September 2011

Department of Veterans Affairs (VA)
Office of Information & Technology (OIT)

Product Development (PD)

July 1995 Kernel iii
Revised September 2011 Developer's Guide
 Version 8.0

Revision History

Documentation Revisions

The following table displays the revision history for this document. Revisions to the documentation are
based on patches and new versions released to the field.

Table i. Documentation revision history

Date Revision Description Authors

09/15/11 5.2 Updates:

• Made opt parameter optional in
the$$EN^MXMLDOM(): XML—Initial
Processing, Build In-memory Image
API.

• Added Cautionary Note to the
$$CREATE^XUSAP: Create
Application Proxy User API.

• Updated the $$SCH^XLFDT(): Next
Scheduled Runtime API examples,
as per suggestion by developer via
email.

• Updated the $$SCREEN^XTID(): Get
Screening Condition (Term/Concept)
API based on Remedy
#HD0000000391324.

• Made other minor format, style,
grammar, and punctuation updates.

• Updated ^%ZTER: Kernel Standard
Error Recording Routine API to
remove statement about NEWing all
variables. This does not apply for this
API.

• Changed all reference to NEWing
variables from "NEW all variables." to
"NEW all non-namespaced variables"
and removed follow-up explanation
throughout the document.

• Updated $$DELETE^XPDMENU():
Delete Menu Item API. Corrected
documentation to show this as an
extrinsic function.

• Updated $$LKOPT^XPDMENU():
Look Up Option IEN API. Corrected
documentation to show this as an
extrinsic function.

Oakland, CA Office of
Information Field Office
(OIFO):

• Maintenance Project
Manager—Jack Schram

• Developer—Gary
Beuschel & Ron DiMiceli

• Technical Writers—Thom
Blom and Susan Strack

Revision History

iv Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Date Revision Description Authors

• Added the new
$$TYPE^XPDMENU(): Get Option
Type API.

• Added Section 25.5, "Toolkit—HTTP
Client APIs." and the following APIS:

o $$GETURL^XTHC10: Return
URL Data Using HTTP.

o $$ENCODE^XTHCURL:
Encodes a Query String.

o $$MAKEURL^XTHCURL:
Creates a URL from
Components.

o $$PARSEURL^XTHCURL:
Parses a URL.

o $$DECODE^XTHCUTL:
Decodes a String.

• Updates Section 14.2.4.3.2, "Sending
Security Codes to include reference
to VA FileMan FILESEC^DDMOD to
set security access.

• Updated/Clarified Section 14.2.4.3.5,
"Partial DD (Some Fields)," and
added Figure 14-10. KIDS: Partial
DD—Choosing DD levels (top level
and Multiple) to send.

• Added NOTE regarding Class 3 and
FORCED queuing related to Kernel
Patches XU*8.0*546/556 to the top of
Chapter 5, "Device Handler:
Developer Tools."

• Updated the "$$LAST^XPDUTL():
Last Software Patch" API based on
Kernel Patch XU*8.0*559.

• Added the XPDNM("TST") and
XPDNM("SEQ") variables to Table
14-6. KIDS: Key variables during the
environment check and Table 14-10.
KIDS: Key variables during the pre-
and post-install routines, as per
Kernel Patch XU*8.0*559.

03/18/10 5.1 Added the text "Any routine that is
specified will be automatically sent by
KIDS. You do not have to list the routine
in the Build Components section." to the
following sections in this manual:

• 14.3.1, "Environment Check

Oakland, CA OIFO:

• Maintenance Project
Manager—Jack Schram

• Developer—Ron DiMiceli

• Technical Writer—Thom

 Revision History

July 1995 Kernel v
Revised September 2011 Developer's Guide
 Version 8.0

Date Revision Description Authors
Routine."

• 14.3.3, "Pre- and Post-Install
Routines: Special Features."

Blom

11/16/09 5.0 Updates:

• Added the
SUROFOR^XQALSURO(): Return a
Surrogate's List of Users API.

• Deleted SUROLIST^XQALSUR1 API
and added the
SUROLIST^XQALSURO(): List
Surrogates for a User API.

• Updated APIs to change input
parameter to Input Variable for
EN^XQH: Display Help Frames and
EN1^XQH: Display Help Frames
APIs.

• Updated input variable for ^%ZTER:
Kernel Standard Error Recording
Routine API.

• Updated WITNESS^XUVERIFY():
Return IEN of Users with A/V Codes
& Security Keys API.

• Updated Chapter 16, "Miscellaneous:
Developer Tools." Added the
following topics from the Kernel
Systems Management Guide to the
Kernel Developer's Guide, because
the functions documented are more
developer-related than system
management-related:

• Programmer Options Menu

• ^%Z Editor

• Updated Chapter 25, "Toolkit:
Developer Tools." Added the
following topics from the Kernel
Systems Management Guide to the
Kernel Developer's Guide, because
the functions documented are more
developer-related than system
management-related:

• Toolkit—Routine Tools

• Toolkit—Verification Tools

• Updated the introductory content in
Chapter 28, "XGF Function Library:
Developer Tools." Moved the XGF
Function Library content from the

Oakland, CA OIFO:

• Maintenance Project
Manager—Jack Schram

• Developers—Joel Ivey
and Wally Fort

• Technical Writer—Thom
Blom

Revision History

vi Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Date Revision Description Authors
Kernel Systems Management Guide
to the Kernel Developer's Guide,
because the functions documented
are more developer-related than
system management-related.

• Reviewed and updated all chapters
for minor format changes
(e.g., bulleted lists and tables), style
updates, spelling, and grammar fixes.

• Added GSEL node to ^%ZOSF():
Operating System-dependent Logic
Global API.

Kernel 8.0

07/09/09 4.9 Updates:

• After developer re-review, corrected
reference type from "Controlled
Subscription" back to "Supported" for
the $$OS^%ZOSV: Get Operating
System Information API and updated
the IA# to 10097. Updated the
FORUM ICR.

• Added IA# 10097 to the
$$VERSION^%ZOSV(): Get OS
Version Number or Name API.

Kernel 8.0

Oakland, CA OIFO:

• Maintenance Project
Manager—Jack Schram

• Developer—Gary
Beuschel

• Technical Writer—Thom
Blom

07/02/09 4.8 Updates:

• Corrected reference type from
"Supported" to Controlled
Subscription" for the $$OS^%ZOSV:
Get Operating System Information
API.

Kernel 8.0

Oakland, CA OIFO:

• Maintenance Project
Manager—Jack Schram

• Developer—Gary
Beuschel

• Technical Writer—Thom
Blom

06/23/09 4.7 Updates:

• Added new topic, "Long Running
Tasks—Using ^%ZIS" to Chapter 24.

• Renamed "Writing Two-step Tasks"
topic to "Long Running Tasks—
Writing Two-step Tasks" in Chapter
24.

• Reformatted document to add outline
numbering.

Kernel 8.0

Oakland, CA OIFO:

• Maintenance Project
Manager—Jack Schram

• Developer—Gary
Beuschel

• Technical Writer—Thom
Blom

05/04/09 4.6 Updates:

• Patch XT*7.3*111, released FEB 13,

Oakland, CA OIFO:

• Maintenance Project

 Revision History

July 1995 Kernel vii
Revised September 2011 Developer's Guide
 Version 8.0

Date Revision Description Authors
2009. Included new section titled
"Toolkit—Data Standardization APIs"
in the Toolkit: Developer Tools
chapter in this manual.

• Background: Toolkit—Developed
Data Standardization APIs to support
Data Standardization's effort to allow
the mapping of one term to another
term.

Kernel 8.0

Manager—Jack Schram

• Developer—Gary
Beuschel

• Technical Writer—Thom
Blom

04/27/09 4.5 Updates:

• Updated $$SCREEN^XTID(): Get
Screening Condition (Term/Concept)
API (IA# 4631) for Kernel Toolkit
Patch XT*7.3*108.

• Updated ^XUWORKDY: Workday
Calculation (Obsolete) API.

• Added $$EN^XUWORKDY: Number
of Workdays Calculation API.

• Added $$WORKDAY^XUWORKDY:
Workday Validation API.

• Added $$WORKPLUS^XUWORKDY:
Workday Offset Calculation API.

• Updated $$PATCH^XPDUTL():
Verify Patch Installation.

• Updated the "Orientation" section.

• Updated organizational references.

• Minor format updates (e.g., reordered
the document Revision History table
to display latest to earliest).

• Other minor format updates to
correspond with the latest standards
and style guides.

Kernel 8.0

Oakland, CA OIFO:

• Maintenance Project
Manager—Jack Schram

• Developers—Gary
Beuschel, Alan Chan,
Wally Fort, Jose Garcia,
Joel Ivey, Raul Mendoza,
Roger Metcalf, Skip
Ormsby, and Ba Tran.

• Technical Writers—Thom
Blom and Susan Strack

10/28/08 4.4 Updates:

• Table 25-1: Added "DEV" entity and
corrected the OE/RR LIST file
number from "101.21" to the correct
"100.21" file number.

• Updated references to the
CHCKSUM^XTSUMBLD direct mode
utility and added references to
CHECK^XTSUMBLD and
CHECK1^XTSUMBLD routines in

Oakland, CA OIFO:

• Maintenance Project
Manager—Jack Schram

• Developers—Gary
Beuschel, Alan Chan,
Wally Fort, Jose Garcia,
Joel Ivey, Raul Mendoza,
Roger Metcalf, Skip
Ormsby, and Ba Tran.

• Technical Writers—Thom

Revision History

viii Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Date Revision Description Authors
Table 25-3 in Chapter 25, "Toolkit:
Developer Tools."

• Minor format updates.

Kernel 8.0

Blom and Susan Strack

10/01/08 4.3 Updates:

• Minor format updates (e.g., reordered
document Revision History table to
display latest to earliest).

• DE^XUSHSHP: Decrypt Data String
API.

• EN^XUSHSHP: Encrypt Data String
API.

• HASH^XUSHSHP: Hash Electronic
Signature Code.

Kernel 8.0

Oakland, CA OIFO:

• Maintenance Project
Manager—Jack Schram

• Developers—Gary
Beuschel, Alan Chan,
Wally Fort, Jose Garcia,
Joel Ivey, Raul Mendoza,
Roger Metcalf, Skip
Ormsby, and Ba Tran.

• Technical Writers—Thom
Blom and Susan Strack

08/07/08 4.2 Updates:

• Made general formatting and
organizational reference changes
where appropriate.

• Changed references from "%INDEX"
to "XINDEX" where appropriate.

• Updated Table 14-5, last two entries.

• Updated "PRE-TRANSPORTATION
ROUTINE field (#900)" topic to show
use of the XPDGREF variable in Pre-
install, Environment Check, and/or
Post-install routines.

• Removed Appendix A—KIDS Build
Checklists (Obsolete).

• API Updates:

• $$MV^%ZISH(): Rename Host File.

• $$NODEV^XUTMDEVQ(): Force
Queuing—No Device Selection—
Updated input parameters.

• $$INSTALDT^XPDUTL(): Return All
Install Dates/Times.

• UPDATE^XPDID(): Update Install
Progress Bar.

• Moved INIT^XPDID: Progress Bar
Emulator: Initialize Device and Draw
Box Borders API to "Miscellaneous:
Developer Tools" section.

Oakland, CA OIFO:

• Maintenance Project
Manager—Jack Schram

• Developers—Gary
Beuschel, Alan Chan,
Wally Fort, Jose Garcia,
Joel Ivey, Raul Mendoza,
Roger Metcalf, Skip
Ormsby, and Ba Tran.

• Technical Writers—Thom
Blom and Susan Strack

 Revision History

July 1995 Kernel ix
Revised September 2011 Developer's Guide
 Version 8.0

Date Revision Description Authors

• Moved TITLE^XPDID(): Progress Bar
Emulator: Display Title Text API to
"Miscellaneous: Developer Tools"
section.

• Moved EXIT^XPDID(): Progress Bar
Emulator: Restore Screen, Clean Up
Variables, and Display Text API to
"Miscellaneous: Developer Tools"
section.

• OP^XQCHK: Current Option Check.

• ENDR^%ZISS: Set Up Specific
Screen Handling Variables.

• $$ASKSTOP^%ZTLOAD: Stop
TaskMan Task.

Kernel 8.0

01/07/08 4.1 API Updates:

• $$CJ^XLFSTR(): Center Justify
String.

• $$LJ^XLFSTR(): Left Justify String.

• $$RJ^XLFSTR(): Right Justify String.

• DELETE^XQALERT: Clear Obsolete
Alerts.

• DELETEA^XQALERT: Clear
Obsolete Alerts.

• SETUP^XQALERT: Send Alerts.

• $$SETUP1^XQALERT: Send Alerts.

• FORWARD^XQALFWD(): Forward
Alerts

• REMVSURO^XQALSURO():
Remove Surrogates for Alerts.

• SUROLIST^XQALSURO(): List
Surrogates for a User.

• SETSURO1^XQALSURO():
Establish a Surrogate for Alerts.

• GETIREF^XTID(): Get IREF
(Term/Concept).

• $$GETMASTR^XTID(): Get Master
VUID Flag (Term/Concept).

• $$GETSTAT^XTID(): Get Status
Information (Term/Concept).

• $$GETVUID^XTID(): Get VUID

Oakland, CA OIFO:

• Maintenance Project
Manager—Jack Schram

• Developers—Gary
Beuschel, Alan Chan,
Wally Fort, Jose Garcia,
Joel Ivey, Raul Mendoza,
Roger Metcalf, Skip
Ormsby, and Ba Tran.

• Technical Writer—Thom
Blom

Revision History

x Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Date Revision Description Authors
(Term/Concept).

• $$SCREEN^XTID(): Get Screening
Condition (Term/Concept) API (IA#
4631).

• $$SETMASTR^XTID(): Set Master
VUID Flag (Term/Concept).

• $$SETSTAT^XTID(): Set Status
Information (Term/Concept).

• $$SETVUID^XTID(): Set VUID
(Term/Concept).

• $$IEN^XUPS(): Get IEN Using VPID
in File #200—Changed references to
IENS to IEN.

• $$NNT^XUAF4(): Institution Station
Name, Number, and Type—Output
order was previously incorrect,
should be Name, Number, and type
not Number, Name, and Type.

• $$NODEV^XUTMDEVQ(): Force
Queuing—No Device Selection—
Updated input parameters.

• $$OPTDE^XPDUTL():
Disable/Enable an Option.

• ^%ZIS: Standard Device Call—
Added output parameters.

• ^%ZOSF(): Operating System-
dependent Logic Global.

• General Updates:

• Updated the "Re-Indexing Files" topic
based on Remedy Ticket #63087.

• Updated references to the VDL.

• Updated the "Alpha/Beta Tracking"
topic in Chapter 14. Merged
information from the Kernel Systems
Management Guide into the Kernel
Developer's Guide (this manual) in
order to avoid duplication and
confusion with
instructions/procedures.

• Removed all but one reference to
HSD&D; kept as a placeholder for
now.

• Removed obsolete references to
MSM, PDP, 486, VAX Alpha, etc.
and changed/updated references to

 Revision History

July 1995 Kernel xi
Revised September 2011 Developer's Guide
 Version 8.0

Date Revision Description Authors
DSM for OpenVMS to Caché where
appropriate.

Kernel 8.0

02/08/07 4.0 Currently, we are combining the Kernel
Toolkit documentation set with the Kernel
documentation set. Moving all Kernel
Toolkit content to the appropriate Kernel
manual, section, and chapter.

In the Kernel Developer's Guide, the
following Kernel Toolkit APIs and Direct
Mode Utilities have been added to the
new "Toolkit" Section:

• Toolkit—Alerts APIs

• Toolkit—Duplicate Record Merge
APIs

• Toolkit—KERMIT APIs

• Toolkit—Multi-Term Look-Up (MTLU)
APIs

• Toolkit—Parameter Tools APIs

• Toolkit—VistA XML Parser APIs

• Toolkit—VHA Unique ID (VUID) APIs

 NOTE: Adding Kernel Toolkit APIs
to the Kernel APIs VA Intranet
Website
(http://vaww.vista.med.va.gov/kern
el/apis/index.shtml) in the near
future.

Added new National Provider Identifier
(NPI)-related APIs section. APIs released
with Kernel Patch XU*8.0*410:

• $$CHKDGT^XUSNPI (IA# 4532)

• $$NPI^XUSNPI (IA# 4532)

• $$QI^XUSNPI (IA# 4532)

• $$TAXIND^XUSTAX (IA# 4911)

• $$TAXORG^XUSTAX (IA# 4911

• Added new Common Services-
related APIs section. APIs released
with Kernel Patches XU*8.0*309 and
325:

• $$VPID^XUPS (IA# 4574)

• $$IEN^XUPS (IA# 4574)

Oakland, CA OIFO:

• Maintenance Project
Manager—Jack Schram

• Developers—Alan Chan,
Wally Fort, Jose Garcia,
Joel Ivey, Mike Meighan,
Raul Mendoza, Roger
Metcalf, Skip Ormsby and
Ba Tran.

• Technical Writer—Thom
Blom

Revision History

xii Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Date Revision Description Authors

• EN1^XUPSQRY (IA# 4575)

Also Changed Kernel document title
references to:

• Kernel Developer's Guide (previously
known as the Kernel Programmer
Manual).

• Kernel Systems Management Guide
(previously known as the Kernel
Systems Manual).

Kernel 8.0

06/20/06 3.1 Updates:

• Corrected output array subscript in
the F4^XUAF4 API from "STATION
NUMER" to "STATION NUMBER
(Remedy #HD0000000147298).

• Updated document format to follow
latest Guidelines and SOP.

Kernel 8.0

Oakland, CA OIFO:

• Maintenance Project
Manager—Jack Schram

• Developer—Roger
Metcalf

• Technical Writer—Thom
Blom

01/23/06 3.0 API Updates:

• $$QQ^XUTMDEVQ, updated
description (XU*8.0*389).

• Changed REQQ^XUTMDEVQ to
$$REQQ^XUTMDEVQ; updated
description (XU*8.0*389).

• Updated REQ^%ZTLOAD and
^%ZTLOAD APIs.

• Changed $$SENTCASE^XLFSTR to
$$SENTENCE^XLFSTR
(XU*8.0*400).

Kernel 8.0

Oakland, CA OIFO:

• Maintenance Project
Manager—Jack Schram

• Developer—Gary
Beuschel and Wally Fort

• Technical Writer—Thom
Blom

12/15/05 2.9 Added the following APIs (via patches
currently not yet released):

• $$CREATE^XUSAP (XU*8.0*361)

• $$SENTCASE^XLFSTR
(XU*8.0*400)

• $$TITLE^XLFSTR (XU*8.0*400)

• Changed Job^%ZTLOAD to
$$JOB^%ZTLOAD

Kernel 8.0

Oakland, CA OIFO:

• Maintenance Project
Manager—Jack Schram

• Developer—Wally Fort

• Technical Writer—Thom
Blom

10/19/05 2.8 Updated the SETUP^XQALERT API
based on feedback from the user
community and developers.

Oakland, CA OIFO:

• Maintenance Project

 Revision History

July 1995 Kernel xiii
Revised September 2011 Developer's Guide
 Version 8.0

Date Revision Description Authors

Kernel 8.0 Manager—Jack Schram

• Developers—Wally Fort
and Joel Ivey

• Technical Writer—Thom
Blom

09/28/05 2.7 Added the $$HANDLE^XUSRB4 and
REQQ^XUTMDEVQ APIs.

Kernel 8.0

Oakland, CA OIFO:

• Maintenance Project
Manager—Jack Schram

• Developer—Wally Fort

• Technical Writer—Thom
Blom

09/22/05 2.6 Updated APIs:

• SETUP^XQALERT

• SETUP^XUSRB

• OWNSKEY^XUSRB

• DQ^%ZTLOAD

• ISQED^%ZTLOAD

• KILL^%ZTLOAD

• PCLEAR^%ZTLOAD

• STAT^%ZTLOAD

• Added APIs:

• ASKSTOP^%ZTLOAD

• DESC^%ZTLOAD

• JOB^%ZTLOAD

• OPTION^%ZTLOAD

• $$PSET^%ZTLOAD

• RTN^%ZTLOAD

• $$S^%ZTLOAD

• ZTSAVE^%ZTLOAD

Kernel 8.0

Oakland, CA OIFO:

• Maintenance Project
Manager—Jack Schram

• Developer—Wally Fort
and Joel Ivey

• Technical Writer—Thom
Blom

04/14/05 2.5 Recategorized CRC XLF functions into a
new category (i.e., "CRC" vs. "Other").

Kernel 8.0

Oakland, CA OIFO:

• Maintenance Project
Manager—Jack Schram

• Technical Writer—Thom
Blom

03/02/05 2.4 Corrected various APIs. Reordered all
APIs under each category: 1) by routine

Oakland, CA OIFO:

Maintenance Project

Revision History

xiv Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Date Revision Description Authors
name and 2) by tag name.

Kernel 8.0

Manager—Jack Schram

Technical Writer—Thom
Blom

02/10/05 2.3 Updates:

• ^%ZTLOAD: Queue a Task

• REQ^%ZTLOAD: Requeue a Task

• Added three new XUTMDEVQ APIs
(Kernel Patch XU*8.0*275).

Kernel 8.0

Oakland, CA OIFO:

• Maintenance Project
Manager—Jack Schram

• Developers—Gary
Beuschel and Wally Fort

• Technical Writer—Thom
Blom

12/20/04 2.2 Reviewed document and edited for the
"Data Scrubbing" and the "PDF 508
Compliance" projects.

Data Scrubbing—Changed all
patient/user TEST data to conform to OIT
standards and conventions as indicated
below:

The first three digits (prefix) of any Social
Security Numbers (SSN) start with "000"
or "666."

Format patient or user names as follows:
XUPATIENT,[N] or XUUSER,[N]
respectively, where the N is a number
written out and incremented with each
new entry (e.g., XUPATIENT, ONE,
XUPATIENT, TWO, etc.).

Changed other personal demographic-
related data (e.g., addresses, phones, IP
addresses, etc.) to be generic.

PDF 508 Compliance—The final PDF
document was recreated and now
supports the minimum requirements to
be 508 compliant (i.e., accessibility tags,
language selection, alternate text for all
images/icons, fully functional Web links,
successfully passed Adobe Acrobat
Quick Check).

Kernel 8.0

Oakland, CA OIFO:

• Maintenance Project
Manager—Jack Schram

• Technical Writer—Thom
Blom

12/09/04 2.1 Updated various APIs based on
developer feedback. Also making minor
edits as I begin populating the HTML
versions of the APIs.

Kernel 8.0

Oakland, CA OIFO:

• Maintenance Project
Manager—Jack Schram

• Developer—Wally Fort

• Technical Writer—Thom
Blom

 Revision History

July 1995 Kernel xv
Revised September 2011 Developer's Guide
 Version 8.0

Date Revision Description Authors

12/24/03 2.0 Kernel 8.0 documentation
reformatting/revision.

This is the initial Kernel Developer's
Guide. Created this manual by extracting
all developer-specific content from the
Kernel Systems Management Guide
(original release date of July 1995).

The Kernel Developer's Guide Includes
added/updated Direct Mode Utilities and
Application Program Interface (API)
information (e.g., Reference Type,
Category, Integration Agreement
number. etc.). It also includes APIs for
previous Kernel APIs never before
documented (i.e., includes APIs that
were previously only documented in
patch descriptions, Integration
Agreements, or separate supplemental
documentation).

 NOTE: This manual also includes
the Kernel Toolkit APIs.

Due to time constraints, not all released
Kernel patches with developer-related
content changes have been added at this
time. Also, there is known missing
information that will be added/updated at
a future date. We wanted to get a new
baseline document published so that in
the future we can more easily update the
Kernel Developer's Guide.

As time allows, we will be updating this
manual with all released patch
information that affects its content.

Kernel 8.0

Oakland, CA OIFO:

• Maintenance Project
Manager—Jack Schram

• Developers—Kernel
Development Team

• Technical Writer—Thom
Blom

07/95 1.0 Initial Kernel 8.0 software and
documentation release.

Kernel 8.0

San Francisco, CA OIFO:

• Project Manager—Hans
Von Blanckensee

• Developers—Kernel
Development Team

• Technical Writer—Kyle
Clarke

Patch Revisions

For the current patch history related to this software, see the Patch Module on FORUM.

Revision History

xvi Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

July 1995 Kernel xvii
Revised September 2011 Developer's Guide
 Version 8.0

Contents

Revision History .. iii

Figures and Tables .. xxxvii

Orientation .. xliii

1 Introduction ... 1

2 Address Hygiene: Developer Tools .. 3

2.1 Application Program Interface (API) ... 3

2.1.1 CCODE^XIPUTIL(): FIPS Code Data .. 3

2.1.2 $$FIPS^XIPUTIL(): FIPS Code for ZIP Code .. 5

2.1.3 $$FIPSCHK^XIPUTIL(): Check for FIPS Code ... 5

2.1.4 POSTAL^XIPUTIL(): ZIP Code Information ... 6

2.1.5 POSTALB^XIPUTIL(): Active ZIP Codes ... 8

3 Alerts: Developer Tools .. 11

3.1 Package Identifier vs. Alert Identifier .. 12

3.1.1 Package Identifier .. 12

3.1.2 Alert Identifier ... 12

3.2 Package Identifier Conventions ... 12

3.3 Glossary of Terms for Alerts .. 13

3.4 Application Program Interface (API) ... 14

3.4.1 AHISTORY^XQALBUTL(): Get Alert Tracking File Information.................... 14

3.4.2 ALERTDAT^XQALBUTL(): Get Alert Tracking File Information 16

3.4.3 DELSTAT^XQALBUTL(): Get User Information and Status for Recent
Alert ... 18

3.4.4 NOTIPURG^XQALBUTL(): Purge Alerts Based on Code 19

3.4.5 $$PENDING^XQALBUTL(): Pending Alerts for a User 19

3.4.6 $$PKGPEND^XQALBUTL(): Pending Alerts for a User in Specified
Software ... 20

3.4.7 PTPURG^XQALBUTL(): Purge Alerts Based on Patient 21

3.4.8 RECIPURG^XQALBUTL(): Purge User Alerts ... 22

3.4.9 USERDATA^XQALBUTL(): Get User Information for an Alert 22

3.4.10 USERLIST^XQALBUTL(): Get Recipient Information for an Alert 24

3.4.11 ACTION^XQALERT(): Process an Alert ... 25

3.4.12 DELETE^XQALERT: Clear Obsolete Alerts ... 25

3.4.13 DELETEA^XQALERT: Clear Obsolete Alerts .. 27

Contents

xviii Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

3.4.14 GETACT^XQALERT(): Return Alert Variables .. 28

3.4.15 PATIENT^XQALERT(): Get Alerts for a Patient... 29

3.4.16 SETUP^XQALERT: Send Alerts .. 30

3.4.17 $$SETUP1^XQALERT: Send Alerts .. 35

3.4.18 USER^XQALERT(): Get Alerts for a User .. 40

3.4.19 FORWARD^XQALFWD(): Forward Alerts ... 42

3.4.20 $$CURRSURO^XQALSURO(): Get Current Surrogate for Alerts 43

3.4.21 $$GETSURO^XQALSURO(): Get Current Surrogate Information 44

3.4.22 REMVSURO^XQALSURO(): Remove Surrogates for Alerts 46

3.4.23 SETSURO1^XQALSURO(): Establish a Surrogate for Alerts 47

3.4.24 SUROFOR^XQALSURO(): Return a Surrogate's List of Users 48

3.4.25 SUROLIST^XQALSURO(): List Surrogates for a User 49

4 Common Services: Developer Tools .. 51

4.1 Application Program Interface (API) ... 51

4.1.1 $$IEN^XUPS(): Get IEN Using VPID in File #200 ... 51

4.1.2 $$VPID^XUPS(): Get VPID Using IEN in File #200 ... 51

4.1.3 EN1^XUPSQRY(): Query New Person File ... 52

5 Device Handler: Developer Tools .. 55

5.1 Application Program Interface (API) ... 55

5.1.1 DEVICE^XUDHGUI(): GUI Device Lookup ... 55

5.1.2 $$RES^XUDHSET(): Set Up Resource Device .. 58

5.1.3 ^%ZIS: Standard Device Call .. 59

5.1.4 HLP1^%ZIS: Display Brief Device Help .. 72

5.1.5 HLP2^%ZIS: Display Device Help Frames .. 72

5.1.6 HOME^%ZIS: Reset Home Device IO Variables ... 73

5.1.7 $$REWIND^%ZIS(): Rewind Devices ... 74

5.1.8 ^%ZISC: Close Device .. 75

5.1.9 PKILL^%ZISP: Kill Special Printer Variables ... 75

5.1.10 PSET^%ZISP: Set Up Special Printer Variables ... 76

5.1.11 ENDR^%ZISS: Set Up Specific Screen Handling Variables 77

5.1.12 ENS^%ZISS: Set Up Screen-handling Variables .. 78

5.1.13 GKILL^%ZISS: KILL Graphic Variables ... 83

5.1.14 GSET^%ZISS: Set Up Graphic Variables ... 83

5.1.15 KILL^%ZISS: KILL Screen Handling Variables .. 85

5.1.16 CALL^%ZISTCP: Make TCP/IP Connection (Remote System) 85

5.1.17 CLOSE^%ZISTCP: Close TCP/IP Connection (Remote System) 86

 Contents

July 1995 Kernel xix
Revised September 2011 Developer's Guide
 Version 8.0

5.1.18 CLOSE^%ZISUTL(): Close Device with Handle ... 87

5.1.19 OPEN^%ZISUTL(): Open Device with Handle .. 87

5.1.20 RMDEV^%ZISUTL(): Delete Data Given a Handle .. 90

5.1.21 SAVDEV^%ZISUTL(): Save Data Given a Handle ... 90

5.1.22 USE^%ZISUTL(): Use Device Given a Handle .. 91

5.2 Special Device Issues ... 92

5.2.1 Form Feeds .. 92

5.2.1.1 How to Check if Current Device is a CRT 92

5.2.1.2 Guidelines for Form Issuing Form Feeds ... 92

5.2.2 Resources ... 95

5.2.2.1 Queuing to a Resource ... 95

6 Domain Name Service (DNS): Developer Tools ... 97

6.1 Application Program Interface (API) ... 97

6.1.1 $$ADDRESS^XLFNSLK(): Convert Domain Name to IP Addresses 97

6.1.2 MAIL^XLFNSLK(): Get IP Addresses for a Domain Name 98

7 Electronic Signatures: Developer Tools .. 99

7.1 Application Program Interface (API) ... 99

7.1.1 ^XUSESIG: Set Up Electronic Signature Code .. 99

7.1.2 SIG^XUSESIG(): Verify Electronic Signature Code .. 99

7.1.3 $$CHKSUM^XUSESIG1(): Build Checksum for Global Root 100

7.1.4 $$CMP^XUSESIG1(): Compare Checksum to $Name_Value 100

7.1.5 $$DE^XUSESIG1(): Decode String .. 101

7.1.6 $$EN^XUSESIG1(): Encode Esblock ... 101

7.1.7 $$ESBLOCK^XUSESIG1(): E-Sig Fields Required for Hash 102

7.1.8 DE^XUSHSHP: Decrypt Data String .. 102

7.1.9 EN^XUSHSHP: Encrypt Data String .. 103

7.1.10 HASH^XUSHSHP: Hash Electronic Signature Code 104

8 Error Processing: Developer Tools .. 105

8.1 Direct Mode Utilities.. 105

8.1.1 >D ^XTER ... 105

8.1.2 >D ^XTERPUR ... 105

8.2 Application Program Interface (API) ... 105

8.2.1 $$EC^%ZOSV: Get Error Code .. 105

8.2.2 ^%ZTER: Kernel Standard Error Recording Routine 106

Contents

xx Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

8.2.3 $$NEWERR^%ZTER: Verify Support of Standard Error Trapping
(Obsolete) .. 108

8.2.4 UNWIND^%ZTER: Quit Back to Calling Routine ... 108

9 Field Monitoring: Developer Tools .. 111

9.1 Application Program Interface (API) ... 111

9.1.1 OPKG^XUHUI(): Monitor New Style Cross-referenced Fields 111

10 File Access Security: Developer Tools ... 115

10.1 Field Level Protection .. 115

10.2 File Navigation ... 115

10.3 Use of DLAYGO When Navigating to Files ... 116

10.4 Use of DLAYGO in ^DIC Calls .. 116

10.5 Use of DIDEL in ^DIE Calls ... 117

11 Help Processor: Developer Tools ... 119

11.1 Entry and Exit Execute Statements .. 119

11.2 Link to the OBJECT File ... 119

11.3 Application Program Interface (API) ... 120

11.3.1 EN^XQH: Display Help Frames.. 120

11.3.2 EN1^XQH: Display Help Frames.. 120

11.3.3 ACTION^XQH4(): Print Help Frame Tree ... 121

12 Host Files: Developer Tools .. 123

12.1 Application Program Interface (API) ... 123

12.1.1 CLOSE^%ZISH(): Close Host File ... 124

12.1.2 $$DEFDIR^%ZISH(): Get Default Host File Directory 125

12.1.3 $$DEL^%ZISH(): Delete Host File ... 126

12.1.4 $$FTG^%ZISH(): Load Host File into Global .. 127

12.1.5 $$GATF^%ZISH(): Copy Global to Host File .. 128

12.1.6 $$GTF^%ZISH(): Copy Global to Host File ... 129

12.1.7 $$LIST^%ZISH(): List Directory .. 130

12.1.8 $$MV^%ZISH(): Rename Host File ... 131

12.1.9 OPEN^%ZISH(): Open Host File .. 132

12.1.10 $$PWD^%ZISH: Get Current Directory ... 133

12.1.11 $$STATUS^%ZISH: Return End-of-File Status ... 133

13 Institution File: Developer Tools ... 135

13.1 Application Program Interface (API) ... 135

 Contents

July 1995 Kernel xxi
Revised September 2011 Developer's Guide
 Version 8.0

13.1.1 $$ACTIVE^XUAF4(): Institution Active Facility (True/False) 135

13.1.2 CDSYS^XUAF4(): Coding System Name .. 135

13.1.3 CHILDREN^XUAF4(): List of Child Institutions for a Parent 136

13.1.4 $$CIRN^XUAF4(): Institution CIRN-enabled Field Value 137

13.1.5 F4^XUAF4(): Institution Data for a Station Number .. 137

13.1.6 $$ID^XUAF4(): Institution Identifier ... 139

13.1.7 $$IDX^XUAF4(): Institution IEN (Using Coding System & ID) 139

13.1.8 $$IEN^XUAF4(): IEN for Station Number ... 140

13.1.9 $$LEGACY^XUAF4(): Institution Realigned/Legacy (True/False) 140

13.1.10 $$LKUP^XUAF4(): Institution Lookup .. 141

13.1.11 LOOKUP^XUAF4(): Look Up Institution Identifier .. 142

13.1.12 $$MADD^XUAF4(): Institution Mailing Address .. 142

13.1.13 $$NAME^XUAF4(): Institution Official Name .. 143

13.1.14 $$NNT^XUAF4(): Institution Station Name, Number, and Type 143

13.1.15 $$NS^XUAF4(): Institution Name and Station Number 144

13.1.16 $$O99^XUAF4(): IEN of Merged Station Number .. 144

13.1.17 $$PADD^XUAF4(): Institution Physical Address .. 145

13.1.18 PARENT^XUAF4(): Parent Institution Lookup ... 146

13.1.19 $$PRNT^XUAF4(): Institution Parent Facility ... 147

13.1.20 $$RF^XUAF4(): Realigned From Institution Information 147

13.1.21 $$RT^XUAF4(): Realigned To Institution Information 148

13.1.22 SIBLING^XUAF4(): Sibling Institution Lookup .. 149

13.1.23 $$STA^XUAF4(): Station Number for IEN .. 150

13.1.24 $$TF^XUAF4(): Treating Facility (True/False) .. 150

13.1.25 $$WHAT^XUAF4(): Institution Single Field Information 151

13.1.26 $$IEN^XUMF(): Institution IEN (Using IFN, Coding System, & ID) 151

13.1.27 MAIN^XUMFI(): HL7 Master File Message Builder 152

13.1.28 MAIN^XUMFP(): Master File Parameters ... 153

14 Kernel Installation and Distribution System (KIDS): Developer Tools 159

14.1 KIDS Build-related Options ... 159

14.2 Creating Builds .. 160

14.2.1 Build Entries .. 160

14.2.2 Create a Build Using Namespace .. 161

14.2.3 Copy Build to Build ... 162

14.2.4 Edit a Build .. 162

14.2.4.2 Edit a Build: Name & Version, Build Information 164

Contents

xxii Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

14.2.4.3 Edit a Build: Files ... 165

14.2.4.4 Edit a Build: Components .. 174

14.2.4.5 Edit a Build: Options and Protocols ... 175

14.2.4.6 Edit a Build: Routines .. 176

14.2.4.7 Edit a Build: Dialog Entries (DIALOG File [#.84]) 177

14.2.4.8 Edit a Build: Forms .. 178

14.2.4.9 Edit a Build: Templates .. 178

14.2.5 Transporting a Distribution .. 179

14.2.5.1 When to Transport More than One Transport Global in a
Distribution .. 181

14.2.5.2 Multi-Package Builds ... 181

14.2.5.3 Exporting Globals with KIDS .. 182

14.2.6 Creating Transport Globals that Install Efficiently .. 182

14.3 Advanced Build Techniques .. 184

14.3.1 Environment Check Routine .. 184

14.3.1.1 Self-Contained Routine .. 184

14.3.1.2 Environment Check is Run Twice.. 185

14.3.1.3 Key Variables during Environment Check 185

14.3.1.4 Package Version vs. Installing Version .. 186

14.3.1.5 Telling KIDS to Skip Installing or Delete a Routine 186

14.3.1.6 Verifying Patch Installation ... 186

14.3.1.7 Aborting Installations During the Environment Check 186

14.3.1.8 Controlling the Queuing of the Install Prompt 187

14.3.1.9 Controlling the Disable Options/Protocols Prompt 188

14.3.1.10 Controlling the Move Routines to Other CPUs Prompt 188

14.3.2 PRE-TRANSPORTATION ROUTINE field (#900) ... 190

14.3.3 Pre- and Post-Install Routines: Special Features ... 191

14.3.3.1 Aborting an Installation During the Pre-Install Routine 191

14.3.3.2 Setting a File's Package Revision Data Node (Post-Install) 191

14.3.3.3 Key Variables during Pre- and Post-Install Routines 192

14.3.3.4 NEW the DIFROM Variable When Calling MailMan................... 192

14.3.3.5 Update the Status Bar During Pre- and Post-Install Routines 193

14.3.4 Edit a Build—Screen 4 .. 194

14.3.5 How to Ask Installation Questions .. 194

14.3.5.1 Question Subscripts .. 195

 Contents

July 1995 Kernel xxiii
Revised September 2011 Developer's Guide
 Version 8.0

14.3.5.2 M Code in Questions .. 195

14.3.5.3 Skipping Installation Questions ... 196

14.3.5.4 Accessing Questions and Answers ... 196

14.3.5.5 Where Questions Are Asked During Installations 197

14.3.6 Using Checkpoints (Pre- and Post-Install Routines) ... 198

14.3.6.1 Checkpoints with Callbacks ... 198

14.3.6.2 Checkpoint Parameter Node ... 199

14.3.6.3 Checkpoints without Callbacks (Data Storage) 201

14.3.7 Required Builds ... 202

14.3.8 Package File Link .. 203

14.3.9 Track Package Nationally .. 205

14.3.10 Alpha/Beta Tracking .. 206

14.3.10.1 Initiating Alpha/Beta Tracking ... 207

14.3.10.2 Error Tracking—Alpha/Beta Software Releases 208

14.3.10.3 Monitoring Alpha/Beta Tracking ... 209

14.3.10.4 Terminating Alpha/Beta Tracking.. 211

14.4 Application Program Interface (API) ... 213

14.4.1 UPDATE^XPDID(): Update Install Progress Bar ... 213

14.4.2 EN^XPDIJ(): Task Off KIDS Install ... 214

14.4.3 $$PKGPAT^XPDIP(): Update Patch History ... 214

14.4.4 BMES^XPDUTL(): Output a Message with Blank Line 215

14.4.5 $$COMCP^XPDUTL(): Complete Checkpoint .. 215

14.4.6 $$CURCP^XPDUTL(): Get Current Checkpoint Name/IEN 216

14.4.7 $$INSTALDT^XPDUTL(): Return All Install Dates/Times 216

14.4.8 $$LAST^XPDUTL(): Last Software Patch ... 217

14.4.9 MES^XPDUTL(): Output a Message .. 219

14.4.10 $$NEWCP^XPDUTL(): Create Checkpoint ... 220

14.4.11 $$OPTDE^XPDUTL(): Disable/Enable an Option ... 221

14.4.12 $$PARCP^XPDUTL(): Get Checkpoint Parameter .. 222

14.4.13 $$PATCH^XPDUTL(): Verify Patch Installation ... 222

14.4.14 $$PKG^XPDUTL(): Parse Software Name from Build Name 223

14.4.15 $$PRODE^XPDUTL(): Disable/Enable a Protocol .. 223

14.4.16 $$RTNUP^XPDUTL(): Update Routine Action ... 224

14.4.17 $$UPCP^XPDUTL(): Update Checkpoint .. 225

14.4.18 $$VER^XPDUTL(): Parse Version from Build Name 225

14.4.19 $$VERCP^XPDUTL(): Verify Checkpoint .. 226

Contents

xxiv Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

14.4.20 $$VERSION^XPDUTL(): Package File Current Version 226

15 Menu Manager: Developer Tools .. 229

15.1 Creating Options .. 229

15.1.1 Option Types ... 229

15.1.2 Creating Options (Edit Options) .. 230

15.2 Variables for Developer Use .. 230

15.3 Direct Mode Utilities.. 232

15.3.1 ^XQ1: Test an Option .. 232

15.4 Application Program Interface (API) ... 233

15.4.1 $$ADD^XPDMENU(): Add Option to Menu ... 233

15.4.2 $$DELETE^XPDMENU(): Delete Menu Item ... 233

15.4.3 $$LKOPT^XPDMENU(): Look Up Option IEN .. 234

15.4.4 OUT^XPDMENU(): Edit Option's Out of Order Message 234

15.4.5 RENAME^XPDMENU(): Rename Option ... 235

15.4.6 $$TYPE^XPDMENU(): Get Option Type .. 235

15.4.7 NEXT^XQ92(): Restricted Times Check .. 236

15.4.8 $$ACCESS^XQCHK(): User Option Access Test .. 237

15.4.9 OP^XQCHK(): Current Option Check .. 239

16 Miscellaneous: Developer Tools ... 241

16.1 Direct Mode Utilities.. 241

16.2 Programmer Options Menu .. 241

16.2.1 Delete Unreferenced Options ... 241

16.2.2 Global Block Count Option ... 241

16.2.3 Listing Globals Option ... 242

16.2.4 Test an option not in your menu Option .. 242

16.3 ^%Z Editor ... 243

16.3.1 User Interface ... 243

16.4 Application Program Interface (API) ... 246

16.4.1 Progress Bar Emulator ... 246

16.4.1.1 INIT^XPDID: Progress Bar Emulator: Initialize Device and Draw
Box Borders ... 246

16.4.1.2 TITLE^XPDID(): Progress Bar Emulator: Display Title Text 246

16.4.1.3 EXIT^XPDID(): Progress Bar Emulator: Restore Screen, Clean Up
Variables, and Display Text ... 247

16.4.2 Lookup Utility.. 247

16.4.2.1 $$EN^XUA4A71(): Convert String to Soundex 247

 Contents

July 1995 Kernel xxv
Revised September 2011 Developer's Guide
 Version 8.0

16.4.3 Date Conversions and Calculations ... 248

16.4.3.1 ^XQDATE: Convert $H to VA FileMan Format (Obsolete) 248

16.4.3.2 ^XUWORKDY: Workday Calculation (Obsolete) 249

16.4.3.3 $$EN^XUWORKDY: Number of Workdays Calculation 250

16.4.3.4 $$WORKDAY^XUWORKDY: Workday Validation 251

16.4.3.5 $$WORKPLUS^XUWORKDY: Workday Offset Calculation 252

17 Name Standardization: Developer Tools .. 255

17.1 Application Program Interface (API) ... 255

17.1.1 $$BLDNAME^XLFNAME(): Build Name from Component Parts 255

17.1.2 $$CLEANC^XLFNAME(): Name Component Standardization Routine 258

17.1.3 $$FMNAME^XLFNAME(): Convert HL7 Formatted Name to Name 260

17.1.4 $$HLNAME^XLFNAME(): Convert Name to HL7 Formatted Name 262

17.1.5 NAMECOMP^XLFNAME(): Component Parts from Standard Name 266

17.1.6 $$NAMEFMT^XLFNAME(): Formatted Name from Name Components 267

17.1.7 STDNAME^XLFNAME(): Name Standardization Routine 271

17.1.8 DELCOMP^XLFNAME2(): Delete Name Components Entry 276

17.1.9 UPDCOMP^XLFNAME2(): Update Name Components Entry 278

18 National Provider Identifier (NPI): Developer Tools .. 281

18.1 Application Program Interface (API) ... 281

18.1.1 $$CHKDGT^XUSNPI(): Validate NPI Format .. 281

18.1.2 $$NPI^XUSNPI(): Get NPI from Files #200 or #4 ... 282

18.1.3 $$QI^XUSNPI(): Get Provider Entities .. 283

18.1.4 $$TAXIND^XUSTAX(): Get Taxonomy Code from File #200 284

18.1.5 $$TAXORG^XUSTAX(): Get Taxonomy Code from File #4 285

19 Operating System (OS) Interface: Developer Tools ... 287

19.1 Direct Mode Utilities.. 287

19.1.1.1 >D ^%ZTBKC: Global Block Count ... 287

19.1.1.2 >D ^ZTMGRSET: Update ^%ZOSF Nodes 287

19.2 Application Program Interface (API) ... 288

19.2.1 ^%ZOSF(): Operating System-dependent Logic Global 288

19.2.2 $$ACTJ^%ZOSV: Number of Active Jobs ... 291

19.2.3 $$AVJ^%ZOSV: Number of Available Jobs .. 291

19.2.4 DOLRO^%ZOSV: Display Local Variables ... 291

19.2.5 GETENV^%ZOSV: Current System Information ... 292

19.2.6 $$LGR^%ZOSV: Last Global Reference .. 293

Contents

xxvi Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

19.2.7 LOGRSRC^%ZOSV(): Record Resource Usage (RUM).................................. 293

19.2.8 $$OS^%ZOSV: Get Operating System Information ... 294

19.2.9 SETENV^%ZOSV: Set VMS Process Name (Caché/OpenVMS Systems) 294

19.2.10 SETNM^%ZOSV(): Set VMS Process Name (Caché/OpenVMS Systems) 295

19.2.11 T0^%ZOSV: Start RT Measure (Obsolete) ... 296

19.2.12 T1^%ZOSV: Stop RT Measure (Obsolete) ... 297

19.2.13 $$VERSION^%ZOSV(): Get OS Version Number or Name 297

20 Security Keys: Developer Tools ... 299

20.1 Key Lookup .. 299

20.2 Person Lookup ... 299

20.3 Application Program Interface (API) ... 300

20.3.1 DEL^XPDKEY(): Delete Security Key .. 300

20.3.2 $$LKUP^XPDKEY(): Look Up Security Key Value 300

20.3.3 $$RENAME^XPDKEY(): Rename Security Key ... 301

20.3.4 OWNSKEY^XUSRB(): Verify Security Keys Assigned to a User 302

21 Server Options: Developer Tools ... 305

21.1 Tools for Processing Server Requests .. 305

21.2 Key Variables When a Server Option is Running .. 305

21.3 Appending Text to a Server Request Bulletin or Mailman Reply 306

21.4 Customizing a Server Request Bulletin ... 306

22 Signon/Security: Developer Tools .. 309

22.1 Direct Mode Utilities.. 309

22.1.1 ^XUP: Programmer Signon ... 309

22.1.2 ^XUS: User Signon: No Error Trapping .. 309

22.1.3 H^XUS: Programmer Halt ... 310

22.1.4 ^XUSCLEAN: Programmer Halt .. 310

22.1.5 ^ZU: User Signon .. 310

22.2 XU USER SIGN-ON Option ... 311

22.2.1 XU USER SIGN-ON: Package-specific Signon Actions 311

22.3 XU USER TERMINATE Option ... 312

22.3.1 Discontinuation of USER TERMINATE ROUTINE .. 312

22.3.2 Creating a Package-specific User Termination Action 312

22.4 Application Program Interface (API) ... 314

22.4.1 $$GET^XUPARAM(): Get Parameters ... 314

22.4.2 $$KSP^XUPARAM(): Return Kernel Site Parameter 314

 Contents

July 1995 Kernel xxvii
Revised September 2011 Developer's Guide
 Version 8.0

22.4.3 $$LKUP^XUPARAM(): Look Up Parameters ... 315

22.4.4 SET^XUPARAM(): Set Parameters .. 316

22.4.5 $$PROD^XUPROD(): Production Vs. Test Account 317

22.4.6 H^XUS: Programmer Halt ... 317

22.4.7 SET^XUS1A(): Output Message During Signon .. 318

22.4.8 AVHLPTXT^XUS2: Get Help Text.. 319

22.4.9 $$CREATE^XUSAP: Create Application Proxy User...................................... 320

22.4.10 KILL^XUSCLEAN: Clear all but Kernel Variables ... 322

22.4.11 $$ADD^XUSERNEW(): Add New Users .. 323

22.4.12 $$CHECKAV^XUSRB(): Check Access/Verify Codes 325

22.4.13 CVC^XUSRB: VistALink—Change User's Verify Code 325

22.4.14 $$INHIBIT^XUSRB: Check if Logons Inhibited ... 326

22.4.15 INTRO^XUSRB: VistALink—Get Introductory Text 326

22.4.16 LOGOUT^XUSRB: VistALink—Log Out User from M 327

22.4.17 SETUP^XUSRB(): VistALink—Set Up User's Partition in M 327

22.4.18 VALIDAV^XUSRB(): VistALink—Validate User Credentials 328

22.4.19 $$DECRYP^XUSRB1(): Decrypt String .. 329

22.4.20 $$ENCRYP^XUSRB1(): Encrypt String .. 329

22.4.21 $$HANDLE^XUSRB4(): Return Unique Session ID String 330

22.4.22 ^XUVERIFY: Verify Access and Verify Codes ... 331

22.4.23 $$CHECKAV^XUVERIFY(): Check Access/Verify Codes 332

22.4.24 WITNESS^XUVERIFY(): Return IEN of Users with A/V Codes & Security
Keys ... 332

22.4.25 GETPEER^%ZOSV: VistALink—Get IP Address for Current Session 333

23 Spooling: Developer Tools .. 335

23.1 Application Program Interface (API) ... 336

23.1.1 DSD^ZISPL: Delete Spool Data File Entry .. 336

23.1.2 DSDOC^ZISPL: Delete Spool Document File Entry .. 336

24 TaskMan: Developer Tools .. 337

24.1 How to Write Code to Queue Tasks... 337

24.1.1 Queuers .. 337

24.1.2 Tasks .. 339

24.2 Direct Mode Utilities.. 349

24.2.1 >D ^ZTMB: Start TaskMan ... 349

24.2.2 >D RESTART^ZTMB: Restart TaskMan ... 349

24.2.3 >D ^ZTMCHK: Check TaskMan's Environment .. 349

Contents

xxviii Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

24.2.4 >D RUN^ZTMKU: Remove Taskman from WAIT State Option..................... 349

24.2.5 >D STOP^ZTMKU: Stop Task Manager Option .. 349

24.2.6 >D WAIT^ZTMKU: Place Taskman in a WAIT State Option 349

24.2.7 >D ^ZTMON: Monitor TaskMan Option .. 349

24.3 Application Program Interface (API) ... 350

24.3.1 $$DEV^XUTMDEVQ(): Force Queuing—Ask for Device 350

24.3.2 EN^XUTMDEVQ(): Run a Task (Directly or Queued) 352

24.3.3 $$NODEV^XUTMDEVQ(): Force Queuing—No Device Selection 354

24.3.4 $$QQ^XUTMDEVQ(): Double Queue—Direct Queuing in a Single Call 356

24.3.5 $$REQQ^XUTMDEVQ(): Schedule Second Part of a Task 360

24.3.6 DISP^XUTMOPT(): Display Option Schedule ... 361

24.3.7 EDIT^XUTMOPT(): Edit an Option's Scheduling .. 362

24.3.8 OPTSTAT^XUTMOPT(): Obtain Option Schedule ... 362

24.3.9 RESCH^XUTMOPT(): Set Up Option Schedule .. 363

24.3.10 EN^XUTMTP(): Display HL7 Task Information ... 364

24.3.11 ^%ZTLOAD: Queue a Task .. 365

24.3.11.1 Interactive Use of ^%ZTLOAD ... 368

24.3.11.2 Non-interactive Use of ^%ZTLOAD ... 369

24.3.11.3 Queuing Tasks without an I/O Device ... 369

24.3.11.4 Code Execution .. 372

24.3.11.5 Output ... 372

24.3.12 $$ASKSTOP^%ZTLOAD: Stop TaskMan Task .. 373

24.3.13 DESC^%ZTLOAD(): Find Tasks with a Description 374

24.3.14 DQ^%ZTLOAD: Unschedule a Task .. 374

24.3.15 ISQED^%ZTLOAD: Return Task Status .. 375

24.3.16 $$JOB^%ZTLOAD(): Return a Job Number for a Task 376

24.3.17 KILL^%ZTLOAD: Delete a Task ... 377

24.3.18 OPTION^%ZTLOAD(): Find Tasks for an Option ... 377

24.3.19 PCLEAR^%ZTLOAD(): Clear Persistent Flag for a Task 378

24.3.20 $$PSET^%ZTLOAD(): Set Task as Persistent ... 378

24.3.21 REQ^%ZTLOAD: Requeue a Task ... 379

24.3.21.1 Example .. 382

24.3.21.2 Code Execution .. 384

24.3.21.3 Output ... 384

24.3.22 RTN^%ZTLOAD(): Find Tasks that Call a Routine ... 385

24.3.23 $$S^%ZTLOAD(): Check for Task Stop Request... 385

24.3.24 STAT^%ZTLOAD: Task Status .. 386

 Contents

July 1995 Kernel xxix
Revised September 2011 Developer's Guide
 Version 8.0

24.3.25 $$TM^%ZTLOAD: Check if TaskMan is Running .. 387

24.3.26 ZTSAVE^%ZTLOAD(): Build ZTSAVE Array ... 388

25 Toolkit: Developer Tools .. 389

25.1 Toolkit—Application Program Interface (API) ... 389

25.2 Toolkit—Alerts APIs ... 389

25.2.1 DELSTAT^XQALBUTL(): Get Alert Status and Recipient Information 389

25.3 Toolkit—Data Standardization APIs ... 391

25.3.1 Replacement Relationships .. 392

25.3.2 $$GETRPLC^XTIDTRM(): Get Mapped Terms (Term/Concept) 393

25.3.3 $$RPLCLST^XTIDTRM(): Get List of Replacement Terms, w/Optional Status
Date and History (Term/Concept) ... 394

25.3.4 $$RPLCMNT^XTIDTRM(): Map One Term to Another (Term/Concept) 396

25.3.5 $$RPLCTRL^XTIDTRM(): Get Replacement Trail for Term, with Replaced
“BY” and Replacement "FOR" Terms (Term/Concept) 397

25.3.6 $$RPLCVALS^XTIDTRM(): Get Field Values of Final Replacement Term
(Term/Concept) .. 398

25.3.7 $$SETRPLC^XTIDTRM(): Set Replacement Terms (Term/Concept) 399

25.4 Toolkit—Duplicate Record Merge APIs.. 401

25.4.1 EN^XDRMERG(): Merge File Entries .. 402

25.4.2 RESTART^XDRMERG(): Merge File Entries ... 404

25.4.3 SAVEMERG^XDRMERGB(): Save Image of Existing and Merged Data 405

25.5 Toolkit—HTTP Client APIs .. 406

25.5.1 $$GETURL^XTHC10: Return URL Data Using HTTP 406

25.5.2 $$ENCODE^XTHCURL: Encodes a Query String .. 408

25.5.3 $$MAKEURL^XTHCURL: Creates a URL from Components 409

25.5.4 $$PARSEURL^XTHCURL: Parses a URL .. 410

25.5.5 $$DECODE^XTHCUTL: Decodes a String ... 410

25.6 Toolkit—KERMIT APIs .. 412

25.6.1 RECEIVE^XTKERMIT: Load a File into the Host .. 412

25.6.2 RFILE^XTKERM4: Add Entries to Kermit Holding File 413

25.6.3 SEND^XTKERMIT: Send Data from Host ... 413

25.7 Toolkit—Multi-Term Look-Up (MTLU) APIs.. 415

25.7.1 How to Override .. 415

25.7.2 Application Program Interfaces ... 415

25.7.2.1 MTLU and VA FileMan Supported Calls 415

25.7.2.2 Kernel Toolkit Enhanced APIs .. 416

25.7.3 XTLKKWL^XTLKKWL: Perform Supported VA FileMan Calls on Files
Configured for MTLU ... 416

Contents

xxx Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

25.7.4 DK^XTLKMGR(): Delete Keywords from the Local Keyword File 417

25.7.5 DLL^XTLKMGR(): Delete an Entry from the Local Lookup File 418

25.7.6 DSH^XTLKMGR(): Delete Shortcuts from the Local Shortcut File 418

25.7.7 DSY^XTLKMGR(): Delete Synonyms from the Local Synonym File 419

25.7.8 K^XTLKMGR(): Add Keywords to the Local Keyword File 419

25.7.9 L^XTLKMGR(): Define a File in the Local Lookup File 420

25.7.10 LKUP^XTLKMGR(): General Lookup Facility for MTLU 421

25.7.11 SH^XTLKMGR(): Add Shortcuts to the Local Shortcut File 426

25.7.12 SY^XTLKMGR(): Add Terms and Synonyms to the Local Synonym File 426

25.8 Toolkit—Parameter Tools APIs ... 428

25.8.1 Definitions ... 428

25.8.1.1 Entity .. 428

25.8.1.2 Parameter .. 429

25.8.1.3 Value .. 429

25.8.1.4 Instance .. 429

25.8.1.5 Parameter Template.. 429

25.8.2 ADD^XPAR(): Add Parameter Value ... 429

25.8.3 CHG^XPAR(): Change Parameter Value .. 430

25.8.4 DEL^XPAR(): Delete Parameter Value .. 431

25.8.5 EN^XPAR(): Add, Change, Delete Parameters ... 431

25.8.6 ENVAL^XPAR(): Return All Parameter Instances ... 433

25.8.7 $$GET^XPAR(): Return an Instance of a Parameter .. 434

25.8.8 GETLST^XPAR(): Return All Instances of a Parameter 435

25.8.9 GETWP^XPAR(): Return Word-processing Text ... 436

25.8.10 NDEL^XPAR(): Delete All Instances of a Parameter 437

25.8.11 PUT^XPAR(): Add/Update Parameter Instance .. 437

25.8.12 REP^XPAR(): Replace Instance Value ... 438

25.8.13 BLDLST^XPAREDIT(): Return All Entities of a Parameter 439

25.8.14 EDIT^XPAREDIT(): Edit Instance and Value of a Parameter 439

25.8.15 EDITPAR^XPAREDIT(): Edit Single Parameter ... 440

25.8.16 EN^XPAREDIT(): Parameter Edit Prompt ... 440

25.8.17 GETENT^XPAREDIT(): Prompt for Entity Based on Parameter 441

25.8.18 GETPAR^XPAREDIT(): Select Parameter Definition File 441

25.8.19 TED^XPAREDIT(): Edit Template Parameters (No Dash Dividers) 442

25.8.20 TEDH^XPAREDIT(): Edit Template Parameters (with Dash Dividers) 443

25.9 Toolkit—Routine Tools.. 444

25.9.1 Direct Mode Utilities ... 444

 Contents

July 1995 Kernel xxxi
Revised September 2011 Developer's Guide
 Version 8.0

25.9.2 Routine Tools Menu ... 445

25.9.2.1 Analyzing Routines .. 445

25.9.2.2 Editing Routines ... 449

25.9.2.3 Printing Routines .. 450

25.9.2.4 Comparing Routines ... 450

25.9.2.5 Deleting Routines ... 452

25.9.2.6 Load and Save Routines ... 452

25.10 Toolkit—Verification Tools... 453

25.10.1 Direct Mode Utilities ... 453

25.10.2 Verifier Tools Menu .. 454

25.10.2.1 Update with Current Routines Option .. 455

25.10.2.2 Routine Compare - Current with Previous Option 455

25.10.3 Programmer Options Menu ... 456

25.10.3.1 Calculate and Show Checksum Values Option 456

25.10.3.2 Error Processing—Kernel Error Trapping and Reporting 457

25.11 Toolkit—VistA XML Parser APIs ... 458

25.11.1 $$ATTRIB^MXMLDOM(): Retrieve First or Next Node Attribute 458

25.11.2 $$CHILD^MXMLDOM(): Return Parent Node's First or Next Child 459

25.11.3 $$CMNT^MXMLDOM(): Extract Comment Text ... 460

25.11.4 CMNT^MXMLDOM(): Extract Comment Text ... 461

25.11.5 DELETE^MXMLDOM(): Delete Specified Document Instance 461

25.11.6 $$EN^MXMLDOM(): Perform Initial Processing of XML Document 462

25.11.7 $$NAME^MXMLDOM(): Return Element Name at Specified Node in
Document Parse Tree ... 463

25.11.8 $$PARENT^MXMLDOM(): Return Parent Node .. 464

25.11.9 $$SIBLING^MXMLDOM(): Return Sibling Node .. 465

25.11.10 $$TEXT^MXMLDOM(): Extract Non-markup Text .. 466

25.11.11 TEXT^MXMLDOM(): Extract Non-markup Text .. 467

25.11.12 $$VALUE^MXMLDOM(): Retrieve Value Associated with Attribute 467

25.11.13 EN^MXMLPRSE(): Event-Driven API Based on SAX Interface 468

25.11.14 $$SYMENC^MXMLUTL(): Replace XML Symbols with XML Encoding 471

25.11.15 $$XMLHDR^MXMLUTL: Return a Standard XML Message Headers 472

25.12 Toolkit—VHA Unique ID (VUID) APIs ... 473

25.12.1 GETIREF^XTID(): Get IREF (Term/Concept) ... 473

25.12.2 $$GETMASTR^XTID(): Get Master VUID Flag (Term/Concept) 475

25.12.3 $$GETSTAT^XTID(): Get Status Information (Term/Concept) 476

25.12.4 $$GETVUID^XTID(): Get VUID (Term/Concept) .. 478

Contents

xxxii Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

25.12.5 $$SCREEN^XTID(): Get Screening Condition (Term/Concept) 479

25.12.6 $$SETMASTR^XTID(): Set Master VUID Flag (Term/Concept) 481

25.12.7 $$SETSTAT^XTID(): Set Status Information (Term/Concept) 483

25.12.8 $$SETVUID^XTID(): Set VUID (Term/Concept) ... 484

26 Unwinder: Developer Tools .. 487

26.1 Application Program Interface (API) ... 487

26.1.1 EN^XQOR(): Navigating Protocols .. 487

26.1.2 EN1^XQOR(): Navigating Protocols .. 488

26.1.3 MSG^XQOR(): Enable HL7 Messaging ... 488

26.1.4 EN^XQORM(): Menu Item Display and Selection ... 489

26.1.5 XREF^XQORM(): Force Menu Recompile .. 490

26.1.6 DISP^XQORM1(): Display Menu Selections From Help Code 490

27 User: Developer Tools ... 491

27.1 Application Program Interface (API) ... 491

27.1.1 $$CODE2TXT^XUA4A72(): Get HCFA Text ... 491

27.1.2 $$GET^XUA4A72(): Get Specialty and Subspecialty for a User 491

27.1.3 $$IEN2CODE^XUA4A72(): Get VA Code .. 492

27.1.4 $$DTIME^XUP(): Reset DTIME for USER ... 493

27.1.5 $$ACTIVE^XUSER(): Status Indicator .. 495

27.1.6 $$DEA^XUSER(): Get DEA Number .. 496

27.1.7 DIV4^XUSER(): Get User Divisions .. 499

27.1.8 $$LOOKUP^XUSER(): New Person File Lookup.. 500

27.1.9 $$NAME^XUSER(): Get Name of User ... 502

27.1.10 $$PROVIDER^XUSER(): Providers in New Person File 503

27.1.11 $$KCHK^XUSRB(): Check If User Holds Security Key 504

27.1.12 DIVGET^XUSRB2(): Get Divisions for Current User 505

27.1.13 DIVSET^XUSRB2(): Set Division for Current User .. 506

27.1.14 USERINFO^XUSRB2(): Get Demographics for Current User 506

28 XGF Function Library: Developer Tools .. 509

28.1 Direct Mode Utilities.. 510

28.1.1 ^XGFDEMO: Demo Program ... 510

28.2 Application Program Interface (API) ... 511

28.2.1 CHGA^XGF(): Screen Change Attributes .. 511

28.2.2 CLEAN^XGF: Screen/Keyboard Exit and Cleanup .. 513

28.2.3 CLEAR^XGF(): Screen Clear Region ... 514

 Contents

July 1995 Kernel xxxiii
Revised September 2011 Developer's Guide
 Version 8.0

28.2.4 FRAME^XGF(): Screen Frame ... 515

28.2.5 INITKB^XGF(): Keyboard Setup Only .. 516

28.2.6 IOXY^XGF(): Screen Cursor Placement .. 517

28.2.7 PREP^XGF(): Screen/Keyboard Setup ... 518

28.2.8 $$READ^XGF(): Read Using Escape Processing ... 519

28.2.9 RESETKB^XGF: Exit XGF Keyboard ... 521

28.2.10 RESTORE^XGF(): Screen Restore ... 522

28.2.11 SAVE^XGF(): Screen Save ... 523

28.2.12 SAY^XGF(): Screen String ... 524

28.2.13 SAYU^XGF(): Screen String with Attributes ... 526

28.2.14 SETA^XGF(): Screen Video Attributes .. 527

28.2.15 WIN^XGF(): Screen Text Window ... 528

29 XLF Function Library: Developer Tools .. 531

29.1 Application Program Interface (API) ... 531

29.2 CRC Functions—XLFCRC ... 531

29.2.1 $$CRC16^XLFCRC(): Cyclic Redundancy Code 16.. 531

29.2.2 $$CRC32^XLFCRC(): Cyclic Redundancy Code 32.. 533

29.3 Date Functions—XLFDT... 534

29.3.1 $$%H^XLFDT(): Convert Seconds to $H ... 534

29.3.2 $$DOW^XLFDT(): Day of Week ... 535

29.3.3 $$DT^XLFDT: Current Date (VA FileMan Date Format)................................ 535

29.3.4 $$FMADD^XLFDT(): VA FileMan Date Add ... 536

29.3.5 $$FMDIFF^XLFDT(): VA FileMan Date Difference 537

29.3.6 $$FMTE^XLFDT(): Convert VA FileMan Date to External Format................ 538

29.3.7 $$FMTH^XLFDT(): Convert VA FileMan Date to $H 543

29.3.8 $$FMTHL7^XLFDT(): Convert VA FileMan Date to HL7 Date 544

29.3.9 $$HADD^XLFDT(): $H Add .. 544

29.3.10 $$HDIFF^XLFDT(): $H Difference ... 545

29.3.11 $$HL7TFM^XLFDT(): Convert HL7 Date to VA FileMan Date 546

29.3.12 $$HTE^XLFDT(): Convert $H to External Format .. 548

29.3.13 $$HTFM^XLFDT(): Convert $H to VA FileMan Date Format 550

29.3.14 $$NOW^XLFDT: Current Date and Time (VA FileMan Format) 551

29.3.15 $$SCH^XLFDT(): Next Scheduled Runtime .. 551

29.3.16 $$SEC^XLFDT(): Convert $H/VA FileMan date to Seconds 554

29.3.17 $$TZ^XLFDT: Time Zone Offset (GMT) ... 555

29.3.18 $$WITHIN^XLFDT(): Checks Dates/Times within Schedule 556

Contents

xxxiv Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

29.4 Hyperbolic Trigonometric Functions—XLFHYPER .. 557

29.4.1 $$ACOSH^XLFHYPER(): Hyperbolic Arc-cosine .. 557

29.4.2 $$ACOTH^XLFHYPER(): Hyperbolic Arc-cotangent 557

29.4.3 $$ACSCH^XLFHYPER(): Hyperbolic Arc-cosecant 558

29.4.4 $$ASECH^XLFHYPER(): Hyperbolic Arc-secant ... 559

29.4.5 $$ASINH^XLFHYPER(): Hyperbolic Arc-sine ... 559

29.4.6 $$ATANH^XLFHYPER(): Hyperbolic Arc-tangent .. 560

29.4.7 $$COSH^XLFHYPER(): Hyperbolic Cosine ... 560

29.4.8 $$COTH^XLFHYPER(): Hyperbolic Cotangent .. 561

29.4.9 $$CSCH^XLFHYPER(): Hyperbolic Cosecant .. 562

29.4.10 $$SECH^XLFHYPER(): Hyperbolic Secant .. 562

29.4.11 $$SINH^XLFHYPER(): Hyperbolic Sine ... 563

29.4.12 $$TANH^XLFHYPER(): Hyperbolic Tangent ... 564

29.5 Mathematical Functions—XLFMTH ... 565

29.5.1 $$ABS^XLFMTH(): Absolute Value .. 565

29.5.2 $$ACOS^XLFMTH(): Arc-cosine (Radians) .. 565

29.5.3 $$ACOSDEG^XLFMTH(): Arc-cosine (Degrees) ... 566

29.5.4 $$ACOT^XLFMTH(): Arc-cotangent (Radians) .. 567

29.5.5 $$ACOTDEG^XLFMTH(): Arc-cotangent (Degrees) 567

29.5.6 $$ACSC^XLFMTH(): Arc-cosecant (Radians) .. 568

29.5.7 $$ACSCDEG^XLFMTH(): Arc-cosecant (Degrees) .. 568

29.5.8 $$ASEC^XLFMTH(): Arc-secant (Radians) .. 569

29.5.9 $$ASECDEG^XLFMTH(): Arc-secant (Degrees) .. 570

29.5.10 $$ASIN^XLFMTH(): Arc-sine (Radians) ... 570

29.5.11 $$ASINDEG^XLFMTH(): Arc-sine (Degrees) .. 571

29.5.12 $$ATAN^XLFMTH(): Arc-tangent (Radians) .. 571

29.5.13 $$ATANDEG^XLFMTH(): Arc-tangent (Degrees) ... 572

29.5.14 $$COS^XLFMTH(): Cosine (Radians) ... 573

29.5.15 $$COSDEG^XLFMTH(): Cosine (Degrees) ... 573

29.5.16 $$COT^XLFMTH(): Cotangent (Radians) ... 574

29.5.17 $$COTDEG^XLFMTH(): Cotangent (Degrees) ... 574

29.5.18 $$CSC^XLFMTH(): Cosecant (Radians) .. 575

29.5.19 $$CSCDEG^XLFMTH(): Cosecant (Degrees) ... 576

29.5.20 $$DECDMS^XLFMTH(): Convert Decimals to Degrees:Minutes:Seconds 576

29.5.21 $$DMSDEC^XLFMTH(): Convert Degrees:Minutes:Seconds to Decimal 577

29.5.22 $$DTR^XLFMTH(): Convert Degrees to Radians.. 578

29.5.23 $$E^XLFMTH(): e—Natural Logarithm .. 578

 Contents

July 1995 Kernel xxxv
Revised September 2011 Developer's Guide
 Version 8.0

29.5.24 $$EXP^XLFMTH(): e—Natural Logarithm to the Nth Power 579

29.5.25 $$LN^XLFMTH(): Natural Log (Base e) ... 579

29.5.26 $$LOG^XLFMTH(): Logarithm (Base 10) ... 580

29.5.27 $$MAX^XLFMTH(): Maximum of Two Numbers .. 581

29.5.28 $$MIN^XLFMTH(): Minimum of Two Numbers .. 581

29.5.29 $$PI^XLFMTH(): PI ... 582

29.5.30 $$PWR^XLFMTH(): X to the Y Power .. 582

29.5.31 $$RTD^XLFMTH(): Convert Radians to Degrees.. 583

29.5.32 $$SD^XLFMTH(): Standard Deviation .. 584

29.5.33 $$SEC^XLFMTH(): Secant (Radians) .. 584

29.5.34 $$SECDEG^XLFMTH(): Secant (Degrees) ... 585

29.5.35 $$SIN^XLFMTH(): Sine (Radians) .. 586

29.5.36 $$SINDEG^XLFMTH(): Sine (Degrees) .. 586

29.5.37 $$SQRT^XLFMTH(): Square Root .. 587

29.5.38 $$TAN^XLFMTH(): Tangent (Radians) ... 587

29.5.39 $$TANDEG^XLFMTH(): Tangent (Degrees) .. 588

29.6 Measurement Functions—XLFMSMT .. 589

29.6.1 $$BSA^XLFMSMT(): Body Surface Area Measurement 589

29.6.2 $$LENGTH^XLFMSMT(): Convert Length Measurement 590

29.6.3 $$TEMP^XLFMSMT(): Convert Temperature Measurement 591

29.6.4 $$VOLUME^XLFMSMT(): Convert Volume Measurement 592

29.6.5 $$WEIGHT^XLFMSMT(): Convert Weight Measurement 593

29.7 String Functions—XLFSTR .. 595

29.7.1 $$CJ^XLFSTR(): Center Justify String ... 595

29.7.2 $$INVERT^XLFSTR(): Invert String ... 596

29.7.3 $$LJ^XLFSTR(): Left Justify String ... 596

29.7.4 $$LOW^XLFSTR(): Convert String to Lowercase ... 597

29.7.5 $$REPEAT^XLFSTR(): Repeat String ... 598

29.7.6 $$REPLACE^XLFSTR(): Replace Strings ... 598

29.7.7 $$RJ^XLFSTR(): Right Justify String .. 599

29.7.8 $$SENTENCE^XLFSTR(): Convert String to Sentence Case 600

29.7.9 $$STRIP^XLFSTR(): Strip a String .. 601

29.7.10 $$TITLE^XLFSTR(): Convert String to Title Case .. 602

29.7.11 $$TRIM^XLFSTR(): Trim String ... 602

29.7.12 $$UP^XLFSTR(): Convert String to Uppercase ... 604

29.8 Utility Functions—XLFUTL ... 605

29.8.1 $$BASE^XLFUTL(): Convert Between Two Bases ... 605

Contents

xxxvi Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

29.8.2 $$CCD^XLFUTL(): Append Check Digit .. 606

29.8.3 $$CNV^XLFUTL(): Convert Base 10 to Another Base.................................... 606

29.8.4 $$DEC^XLFUTL(): Convert Another Base to Base 10 607

29.8.5 $$VCD^XLFUTL(): Verify Integrity .. 608

30 XML: Developer Tools ... 609

30.1 Application Program Interface (API) ... 609

30.1.1 $$ATTRIB^MXMLDOM(): XML—Get Attribute Name 609

30.1.2 $$CHILD^MXMLDOM(): XML—Get Child Node ... 610

30.1.3 $$CMNT^MXMLDOM(): XML—Extract Comment Text (True/False) 610

30.1.4 CMNT^MXMLDOM(): XML—Extract Comment Text (True/False) 611

30.1.5 DELETE^MXMLDOM(): XML—Delete Document Instance 612

30.1.6 $$EN^MXMLDOM(): XML—Initial Processing, Build In-memory Image 612

30.1.7 $$NAME^MXMLDOM(): XML—Get Element Name 614

30.1.8 $$PARENT^MXMLDOM(): XML—Get Parent Node 614

30.1.9 $$SIBLING^MXMLDOM(): XML—Get Sibling Node................................... 615

30.1.10 $$TEXT^MXMLDOM(): XML—Get Text (True/False) 615

30.1.11 TEXT^MXMLDOM(): XML—Get Text (True/False) 616

30.1.12 $$VALUE^MXMLDOM(): XML—Get Attribute Value 617

30.1.13 EN^MXMLPRSE(): XML—Event Driven API .. 617

30.1.14 $$SYMENC^MXMLUTL(): XML—Encoded Strings in Messages 621

30.1.15 $$XMLHDR^MXMLUTL: XML—Message Headers 622

Glossary .. 623

Index ... 631

July 1995 Kernel xxxvii
Revised September 2011 Developer's Guide
 Version 8.0

Figures and Tables

Figures

Figure 1. Alerts: Creating an alert for User #14 ... 11

Figure 2. Alerts: Checking that the alert was sent .. 11

Figure 3. Alerts: Call to send an alert sample ... 34

Figure 4. Alerts: Resulting alert, from View Alerts option... 34

Figure 5. Alerts: Call to send an alert sample ... 39

Figure 6. Alerts: Resulting alert, from View Alerts option... 39

Figure 7. FORWARD^XQALFWD: Example ... 43

Figure 8. ^%ZIS: Example .. 69

Figure 9. GSET^%ZISS: Example ... 84

Figure 10. OPEN^%ZISUTL: Example ... 89

Figure 11. Device Handler: Issuing form feeds following current guidelines .. 94

Figure 12. Device Handler: Alternate approach following current guidelines ... 94

Figure 13. Error Trap: Example .. 107

Figure 14. UNWIND^%ZTER: Main code example .. 109

Figure 15. UNWIND^%ZTER: Usage ... 109

Figure 16. OPKG^XUHUI: Example of creating New Style Cross-references .. 112

Figure 17. OPKG^XUHUI API: Sample scenario .. 113

Figure 18. OPKG^XUHUI: Example of internal results .. 114

Figure 19. File Access Security: Setting DLAYGO in a template.. 116

Figure 20. Host Files: Opening a Host file using the ^%ZIS API .. 123

Figure 21. CLOSE^%ZISH: Example .. 125

Figure 22. Host Files: Overflow lines in a Host file sample ... 127

Figure 23. OPEN^%ZISH: Example .. 133

Figure 24. $$STATUS^%ZISH: Example .. 134

Figure 25. KIDS Edits and Distribution menu options ... 159

Figure 26. KIDS: Choosing a build type sample .. 161

Figure 27. KIDS: Populating a build entry by namespace .. 162

Figure 28. KIDS: Copying a build entry ... 162

Figure 29. KIDS: Screen 1 of Edit a Build sample ... 165

Figure 30. KIDS: Screen 2 of Edit a Build: Selecting files .. 166

Figures and Tables

xxxviii Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Figure 31. KIDS: Data dictionary and data settings ... 167

Figure 32. KIDS: Data dictionary settings screen—DD Export Options ... 169

Figure 33. KIDS: Partial DD—Choosing DD levels (top level and Multiple) to send: Data Dictionary
Number level ... 169

Figure 34. KIDS: Partial DD—Choosing DD levels (top level and Multiple) to send: Field Number
level ... 170

Figure 35. KIDS: Settings for sending data .. 171

Figure 36. KIDS: Screen 3 of Edit a Build: Components ... 175

Figure 37. KIDS: Choosing routines... 177

Figure 38. KIDS: Selecting templates ... 178

Figure 39. KIDS: Transport a Distribution option—Creating a distribution sample user dialogue 179

Figure 40. KIDS: Transport a Distribution option—Sending via network (PackMan message) sample user
dialogue ... 180

Figure 41. KIDS: Multi-package builds sample ... 181

Figure 42. KIDS: Exporting global distributions sample.. 182

Figure 43. KIDS: Dialog when the XPDNOQUE variable is set to disable queuing 187

Figure 44. KIDS: "DISABLE" default prompt during installations ... 188

Figure 45. KIDS :"MOVE routines" default prompt during installations ... 188

Figure 46. KIDS: Environment Check routine sample ... 189

Figure 47. KIDS: PRE-TRANSPORTATION ROUTINE field sample .. 190

Figure 48. KIDS: Screen 4 of Edit a Build sample ... 194

Figure 49. KIDS: Pre-install question (setting up) sample ... 197

Figure 50. KIDS: Appearance of question during installation .. 197

Figure 51. KIDS: Using checkpoints with callbacks: combined pre- and post-install routine 200

Figure 52. KIDS: Required builds sample .. 202

Figure 53. KIDS: Patch application history sample .. 205

Figure 54. KIDS: Errors Logged in Alpha/Beta Test (QUEUED) option .. 208

Figure 55. Alpha/Beta Test Option Usage Menu options ... 209

Figure 56. Actual Usage of Alpha/Beta Test Options option—Sample Option Usage report 210

Figure 57. Enter/Edit Kernel Site Parameters—Sample user dialogue ... 212

Figure 58. Menu Manager: Edit options [XUEDITOPT] ... 230

Figure 59. Programmer Options menu options: Toolkit miscellaneous tools ... 241

Figure 60. Calling the ^%Z Editor—Sample user entries ... 243

Figure 61. ^%Z Editor—Displaying a routine using the ZP command .. 243

Figure 62. ^%Z Editor—Listing edit commands .. 244

Figure 63. ^%Z Editor—Line mode help information .. 244

 Figures and Tables

July 1995 Kernel xxxix
Revised September 2011 Developer's Guide
 Version 8.0

Figure 64. ^%Z Editor—Replace mode editing help information .. 245

Figure 65. ACTION menu—Sample user entries ... 245

Figure 66. XQSERVER: Default bulletin ... 306

Figure 67. ZZTALK: Protocol .. 312

Figure 68. $$ADD^XUSERNEW: Example of adding a new user .. 324

Figure 69. Spooling: Sending output to the spooler (and pre-defining ZTIO) ... 335

Figure 70. Spooling: Allowing output to go the spooler (without pre-defining ZTIO) 335

Figure 71. Sample code allowing users to select whether a job is queued or not and the output device to
use ... 346

Figure 72. Sample code printing to a device using saved variables .. 347

Figure 73. $$DEV^XUTMDEVQ example—Sample code ... 351

Figure 74. EN^XUTMDEVQ: Sample report... 353

Figure 75. $$NODEV^XUTMDEVQ example—Sample code ... 355

Figure 76. $$QQ^XUTMDEVQ example—Sample code .. 359

Figure 77. $$REQQ^XUTMDEVQ example—Sample code ... 361

Figure 78. TaskMan: Print queuer sample code ... 368

Figure 79. ^%ZTLOAD example—Sample code ... 370

Figure 80. ^%ZTLOAD example—Sample code execution .. 372

Figure 81. ^%ZTLOAD example—Sample output .. 372

Figure 82. REQ^%ZTLOAD example—Sample code ... 382

Figure 83. ^%ZTLOAD example—Sample code execution .. 384

Figure 84. ^%ZTLOAD example—Sample output .. 384

Figure 85. Data standardization replacement relationships .. 392

Figure 86. Standard Lookup—Single term entered .. 423

Figure 87. Standard Lookup—Multiple terms entered ... 424

Figure 88. Display minimized by setting the 3rd parameter = 0 ... 425

Figure 89. MTLU with screen display turned off ... 425

Figure 90. Routine Tools menu options .. 445

Figure 91. XINDEX—%Index of Routines option; direct mode utilities sample user entries 447

Figure 92. XINDEX—List of the error conditions that the XINDEX utility flags 448

Figure 93. Verifier Tools Menu options ... 455

Figure 94. Programmer Options menu options: Toolkit verification tools ... 456

Figure 95: VistA XML Parser Use Example—Create XML file .. 470

Figure 96. VistA XML Parser Use Example—Simple API for XML (SAX) interface 470

Figure 97. VistA XML Parser Use Example—Check Document Object Model (DOM) interface 470

Figures and Tables

xl Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Figure 98. VistA XML Parser Use Example—List all sibling nodes ... 470

Figure 99. $$LOOKUP^XUSER: Example showing confirmation prompt ... 501

Figure 100. $$LOOKUP^XUSER: Example suppressing confirmation prompt 501

Figure 101. $$LOOKUP^XUSER: Example of a terminated user ... 501

Figure 102. SAY^XGF: Example to READ a name ... 520

Figure 103. $$READ^XGF: Example to accept only Up-Arrow ("↑") and Down-Arrow ("↓") keys 520

Tables

Table 1. Alerts: Related terms and definitions .. 13

Table 2. KIDS: Options supporting software application builds and exports ... 160

Table 3. KIDS: Kernel 8.0 component types (listed alphabetically) .. 161

Table 4. KIDS: Functional layout, Edit a Build .. 163

Table 5. KIDS: Data installation actions .. 171

Table 6. KIDS: Option and protocol installation actions .. 176

Table 7. KIDS: Key variables during the environment check .. 185

Table 8. KIDS: Actions based on environment check conclusions .. 187

Table 9. KIDS: Installation—XPDDIQ array sample... 188

Table 10. KIDS: Environment Check—XPDDIQ array sample .. 189

Table 11. KIDS: Key variables during the pre- and post-install routines ... 192

Table 12. KIDS: DIR input values for KIDS install questions ... 195

Table 13. KIDS: Functions using checkpoints with callbacks .. 199

Table 14. KIDS: Functions using checkpoints without callbacks ... 201

Table 15. KIDS: Required builds installation actions ... 203

Table 16. KIDS: National PACKAGE file field updates .. 204

Table 17. Alpha/Beta Tracking—KERNEL SYSTEM PARAMETERS file (#8989.3) field setup for
KIDS ... 206

Table 18. Alpha/Beta Tracking—BUILD file (#9.6) field setup for KIDS .. 207

Table 19. Miscellaneous Tools: Direct Mode Utilities ... 241

Table 20. ^%ZOSF: Global nodes .. 288

Table 21 Key variable setup—Server options .. 305

Table 22. TaskMan: ZTREQ piece and equivalent REQ^ZTLOAD variable .. 343

Table 23. Parameter Tool—Parameter entity levels ... 428

Table 24. Routine Tools: Direct Mode Utilities ... 444

Table 25. Verification Tools: Direct Mode Utilities ... 454

 Figures and Tables

July 1995 Kernel xli
Revised September 2011 Developer's Guide
 Version 8.0

Table 26. Minimum M implementation features required for the XGF Function Library 509

Table 27. XGF Function Library: Demo functional division ... 510

Table 28. XGF Function Library: Mnemonics for keys that terminate READs 519

Table 29. $$LENGTH^XLFMSMT: Valid units .. 590

Table 30. $$TEMP^XLFMSMT: Valid units ... 591

Table 31. $$VOLUME^XLFMSMT: Valid units... 592

Table 32. $$WEIGHT^XLFMSMT: Valid units .. 594

Table 33. XML Parser even types ... 619

Figures and Tables

xlii Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

July 1995 Kernel xliii
Revised September 2011 Developer's Guide
 Version 8.0

Orientation

How to Use this Manual

This manual provides advice and instruction about Kernel Application Program Interfaces (APIs), Direct
Mode Utilities, and other developer-related information that Kernel 8.0 provides for overall Veterans
Health Information Systems and Technology Architecture (VistA) application developers.

Intended Audience

The intended audience of this manual is all key stakeholders. The stakeholders include the following:

• Product Development (PD)—VistA legacy development teams.

• Information Resource Management (IRM)—System administrators at Department of Veterans
Affairs (VA) sites who are responsible for computer management and system security on the
VistA M Servers.

• Information Security Officers (ISOs)—Personnel at VA sites responsible for system security.

• Product Support (PS).

Legal Requirements

CAUTION: To protect the security of VistA systems, distribution of this software for use
on any other computer system by VistA sites is prohibited. All requests for copies of
Kernel for non-VistA use should be referred to the VistA site's local Office of
Information Field Office (OIFO).

Otherwise, there are no special legal requirements involved in the use of Kernel.

Disclaimers

This manual provides an overall explanation of the Kernel software; however, no attempt is made to
explain how the overall VistA programming system is integrated and maintained. Such methods and
procedures are documented elsewhere. We suggest you look at the various VA Websites on the Internet
and VA Intranet for a general orientation to VistA. For example, visit the Office of Information and
Technology (OIT) VistA Development Intranet Website:

http://vista.med.va.gov

DISCLAIMER: The appearance of any external hyperlink references in this manual does
not constitute endorsement by the Department of Veterans Affairs (VA) of this Website
or the information, products, or services contained therein. The VA does not exercise
any editorial control over the information you may find at these locations. Such links
are provided and are consistent with the stated purpose of this VA Intranet Service.

Orientation

xliv Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Documentation Conventions

This manual uses several methods to highlight different aspects of the material:

• Various symbols are used throughout the documentation to alert the reader to special information.
The following table gives a description of each of these symbols:

Table ii. Documentation symbol descriptions

Symbol Description

NOTE/REF: Used to inform the reader of general information including
references to additional reading material.

CAUTION/DISCLAIMER: Used to caution the reader to take special notice of
critical information.

• Descriptive text is presented in a proportional font (as represented by this font).

• Conventions for displaying TEST data in this document are as follows:

o The first three digits (prefix) of any Social Security Numbers (SSN) will begin with either
"000" or "666".

o Patient and user names will be formatted as follows: [Application Namespace]PATIENT,[N]
and [Application Namespace]USER,[N] respectively, where "Application Namespace" is
defined in the Approved Application Abbreviations document and "N" represents the first
name as a number spelled out and incremented with each new entry. For example, in Kernel
(XU) test patient and user names would be documented as follows: XUPATIENT,ONE;
XUPATIENT,TWO; XUPATIENT,THREE; etc.

• Sample HL7 messages, "snapshots" of computer online displays (i.e., character-based screen
captures/dialogues) and computer source code are shown in a non-proportional font and enclosed
within a box. Also included are Graphical User Interface (GUI) Microsoft Windows images
(i.e., dialogues or forms).

o User's responses to online prompts will be boldface.

o References to "<Enter>" within these snapshots indicate that the user should press the Enter
key on the keyboard. Other special keys are represented within < > angle brackets. For
example, pressing the PF1 key can be represented as pressing <PF1>.

o Author's comments are displayed in italics or as "callout" boxes.

NOTE: Callout boxes refer to labels or descriptions usually enclosed within a box,
which point to specific areas of a displayed image.

• This manual refers to the M programming language. Under the 1995 American National
Standards Institute (ANSI) standard, M is the primary name of the MUMPS programming
language, and MUMPS will be considered an alternate name. This manual uses the name M.

 Orientation

July 1995 Kernel xlv
Revised September 2011 Developer's Guide
 Version 8.0

• Descriptions of direct mode utilities are prefaced with the standard M ">" prompt to emphasize
that the call is to be used only in direct mode. They also include the M command used to invoke
the utility. The following is an example:

>D ^XUP

• The following conventions will be used with regards to APIs:

o Headings for developer API descriptions (e.g., supported for use in applications and on the
Database Integration Committee [DBIC] list) include the routine tag (if any), the caret ("^")
used when calling the routine, and the routine name. The following is an example:

EN1^XQH

o For APIs that take input parameter, the input parameter will be labeled "required" when it is a
required input parameter and labeled "optional" when it is an optional input parameter.

o For APIs that take parameters, parameters are shown in lowercase and variables are shown in
uppercase. This is to convey that the parameter name is merely a placeholder; M allows you
to pass a variable of any name as the parameter or even a string literal (if the parameter is not
being passed by reference). The following is an example of the formatting for input
parameters:

XGLMSG^XGLMSG(msg_type,[.]var[,timeout])

o Rectangular brackets [] around a parameter are used to indicate that passing the parameter is
optional. Rectangular brackets around a leading period [.] in front of a parameter indicate that
you can optionally pass that parameter by reference.

o All APIs are categorized by function. This categorization is subjective and subject to change
based on feedback from the development community. In addition, some APIs could fall under
multiple categories; however, they are only listed once under a chosen category.

APIs within a category are first sorted alphabetically by Routine name and then within
routine name are sorted alphabetically by Tag reference. The "$$", "^", or "^%" prefixes on
APIs is ignored when alphabetizing.

• All uppercase is reserved for the representation of M code, variable names, or the formal name of
options, field/file names, and security keys (e.g., the XUPROGMODE security key).

How to Obtain Technical Information Online

Exported VistA M Server-based software file, routine, and global documentation can be generated using
Kernel, MailMan, and VA FileMan utilities.

NOTE: Methods of obtaining specific technical information online will be indicated where
applicable under the appropriate topic.

REF: See the Kernel Technical Manual for further information.

Help at Prompts

VistA M Server-based software provides online help and commonly used system default prompts. Users
are encouraged to enter question marks at any response prompt. At the end of the help display, you are

Orientation

xlvi Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

immediately returned to the point from which you started. This is an easy way to learn about any aspect of
VistA M Server-based software.

Obtaining Data Dictionary Listings

Technical information about VistA M Server-based files and the fields in files is stored in data
dictionaries (DD). You can use the List File Attributes option on the Data Dictionary Utilities submenu in
VA FileMan to print formatted data dictionaries.

REF: For details about obtaining data dictionaries and about the formats available, see the "List
File Attributes" chapter in the "File Management" section of the VA FileMan Advanced User
Manual.

Assumptions about the Reader

This manual is written with the assumption that the reader is familiar with the following:

• VistA computing environment:

o Kernel—VistA M Server software

o VA FileMan data structures and terminology—VistA M Server software

• Microsoft Windows environment

• M programming language

Reference Materials

Readers who wish to learn more about Kernel should consult the following:

• Kernel Release Notes

• Kernel Installation Guide

• Kernel Systems Management Guide

• Kernel Developer's Guide (this manual)

• Kernel Technical Manual

• Kernel Security Tools Manual

• Kernel VA Intranet Website:

http://vista.med.va.gov/kernel/index.asp

This site contains other information and provides links to additional documentation.

 Orientation

July 1995 Kernel xlvii
Revised September 2011 Developer's Guide
 Version 8.0

VistA documentation is made available online in Microsoft Word format and in Adobe Acrobat Portable
Document Format (PDF). The PDF documents must be read using the Adobe Acrobat Reader, which is
freely distributed by Adobe Systems Incorporated at the following Website:

http://www.adobe.com/

VistA documentation can be downloaded from the VHA Software Document Library (VDL) Website:

http://www.va.gov/vdl/

VistA documentation and software can also be downloaded from the Product Support (PS) anonymous
directories:

• Preferred Method download.vista.med.va.gov

NOTE: This method transmits the files from the first available FTP server.

• Albany OIFO ftp.fo-albany.med.va.gov

• Hines OIFO ftp.fo-hines.med.va.gov

• Salt Lake City OIFO ftp.fo-slc.med.va.gov

http://www.adobe.com/
http://www.va.gov/vdl/

Orientation

xlviii Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

July 1995 Kernel 1
Revised September 2011 Developer's Guide
 Version 8.0

1 Introduction

This manual provides descriptive information about Kernel for use by application developers. Kernel
provides developers with a number of tools. These tools include Application Program Interfaces (APIs)
and direct-mode utilities. These tools let you create applications that are fully integrated with Kernel and
that take advantage of Kernel's features.

This manual assumes that the reader is familiar with the computing environment of the VA's Veterans
Health Information Systems and Technology Architecture (VistA), and understands VA FileMan data
structures and terminology. Understanding of the M programming language is required for this manual.
No attempt is made to explain how the overall VistA programming system is integrated and maintained;
such methods and procedures are documented elsewhere.

REF: For a chapter breakdown of the API and Direct Mode Utility categories, see the "How to
Use this Manual" topic in the "Orientation" section of this manual.

You can find developer information in the chapters and sub-chapters of this manual that contain
"Developer Tools" in their titles. You might want to concentrate on those chapters in this manual that
could affect your project. For example, if you are working on a project requiring tasking a job, you should
familiarize yourself with the information in the "TaskMan: Developer Tools" chapter in this manual.

Kernel provides developers with a number of tools. These tools include Application Program Interfaces
(APIs), and direct-mode utilities. These tools let you create applications that are fully integrated with
Kernel and that take advantage of Kernel's features.

The Kernel Developer's Guide is divided into chapters, based on the following functional API/Direct
Mode Utility categories within Kernel (listed alphabetically):

• Address Hygiene: Developer Tools

• Alerts: Developer Tools

• Common Services: Developer Tools

• Device Handler: Developer Tools

• Domain Name Service (DNS): Developer Tools

• Electronic Signatures: Developer Tools

• Error Processing: Developer Tools

• Field Monitoring: Developer Tools

• File Access Security: Developer Tools

• Help Processor: Developer Tools

• Host Files: Developer Tools

• Institution File: Developer Tools

• Kernel Installation and Distribution System (KIDS): Developer Tools

• Menu Manager: Developer Tools

Introduction

2 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

• Miscellaneous: Developer Tools

• Name Standardization: Developer Tools

• National Provider Identifier (NPI): Developer Tools

• Operating System (OS) Interface: Developer Tools

• Security Keys: Developer Tools

• Server Options: Developer Tools

• Signon/Security: Developer Tools

• Spooling: Developer Tools

• TaskMan: Developer Tools

• Toolkit: Developer Tools

• Unwinder: Developer Tools

• User: Developer Tools

• XGF Function Library: Developer Tools

• XLF Function Library: Developer Tools

o Date Functions—XLFDT

o Hyperbolic Trigonometric Functions—XLFHYPER

o Mathematical Functions—XLFMTH

o Measurement Functions—XLFMSMT

o String Functions—XLFSTR

o Utility Functions—XLFUTL

• XML: Developer Tools

REF: For general user information and system manager information, see the Kernel Systems
Management Guide.

Instructions for installing Kernel are provided in the Kernel Installation Guide. This guide also
includes information about software application management (e.g., recommended settings for
site parameters and scheduling time frames for tasked options).

Information on recommended system configuration and setting Kernel's site parameters, as well
as lists of files, routines, options, and other components are documented in the Kernel Technical
Manual.

Information about managing computer security, which includes a detailed description of
techniques that can be used to monitor and audit computing activity, is presented in the Kernel
Security Tools Manual.

July 1995 Kernel 3
Revised September 2011 Developer's Guide
 Version 8.0

2 Address Hygiene: Developer Tools

2.1 Application Program Interface (API)

Several APIs are available for developers to work with address hygiene. These APIs are described below.

2.1.1 CCODE^XIPUTIL(): FIPS Code Data

Reference Type Supported

Category Address Hygiene

IA # 3618

Description This API returns all the data associated for a FIPS code.

Format CCODE^XIPUTIL(fips,.xipc)

Input Parameters fips: (required) FIPS Code.

Output Parameters xipc: An array containing the following:

XIPC("COUNTY")—County associated with this FIPS code
XIPC("FIPS CODE")—5-digit FIPS county code
XIPC("INACTIVE DATE")—Date the FIPS code was

inactivated
XIPC("LATITUDE")—Estimated Latitude of the county
XIPC("LONGITUDE")—Estimated Longitude of the county
XIPC("STATE")—State associated with this FIPS code
XIPC("STATE POINTER")—Pointer to the state in the

STATE file (#5)
XIPC("ERROR")—Errors encountered during lookup

Address Hygiene: Developer Tools

4 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example

>S ZFIPS=54041

>S ZTMP=""

>D CCODE^XIPUTIL(ZFIPS,.ZTMP)

>ZW ZTMP,ZFIPS
ZFIPS=54041
ZTMP=
ZTMP("COUNTY")=LEWIS
ZTMP("FIPS CODE")=54041
ZTMP("INACTIVE DATE")=
ZTMP("LATITUDE")=39:00N
ZTMP("LONGITUDE")=80:28W
ZTMP("STATE")=WEST VIRGINIA
ZTMP("STATE POINTER")=54

 Address Hygiene: Developer Tools

July 1995 Kernel 5
Revised September 2011 Developer's Guide
 Version 8.0

2.1.2 $$FIPS^XIPUTIL(): FIPS Code for ZIP Code

Reference Type Supported

Category Address Hygiene

IA # 3618

Description This extrinsic function returns the Federal Information Processing Standard (FIPS)
Code associated with the Postal Code.

Format $$FIPS^XIPUTIL(pcode)

Input Parameters pcode: (required) Postal Code for which the FIPS Code is returned.

Output returns: Returns the FIPS Code.

Example

>S X=$$FIPS^XIPUTIL("26452")

>W X
54041

2.1.3 $$FIPSCHK^XIPUTIL(): Check for FIPS Code

Reference Type Supported

Category Address Hygiene

IA # 3618

Description This extrinsic function answers the question as to whether or not a Federal
Information Processing Standard (FIPS) code exists. It returns the following:

• IEN—Internal Entry Number, if the FIPS code exists.

• Zero (0)—FIPS Code does not exist.

Format $$FIPSCHK^XIPUTIL(fips)

Input Parameters fips: (required) FIPS Code.

Output returns: Returns:

IEN—Internal Entry Number, if the FIPS code exists.

Zero (0)—FIPS Code does not exist.

Address Hygiene: Developer Tools

6 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 1

>S X=$$FIPSCHK^XIPUTIL("54041")

>W X
335

Example 2

>S X=$$FIPSCHK^XIPUTIL("54999")

>W X
0

2.1.4 POSTAL^XIPUTIL(): ZIP Code Information

Reference Type Supported

Category Address Hygiene

IA # 3618

Description This API returns United States Postal Service (USPS)-related data/information in
an output array (see Output) for the preferred (default) ZIP Code.

Format POSTAL^XIPUTIL(pcode,.xip)

Input Parameters pcode: (required) Postal Code for which data is returned.

 Address Hygiene: Developer Tools

July 1995 Kernel 7
Revised September 2011 Developer's Guide
 Version 8.0

Output Parameters .xip: An array containing the following:

XIP("CITY")—City that the USPS assigned to this PCODE.
XIP("CITY ABBREVIATION")—USPS's assigned

abbreviation.
XIP("CITY KEY")—USPS's assigned city key.
XIP("COUNTY")—County associated with this PCODE.
XIP("COUNTY POINTER")—Pointer to the county in the

COUNTY CODE file
(#5.13).

XIP("FIPS CODE")—5-digit FIPS code associated with the
county.

XIP("INACTIVE DATE")—Date FIPS Code inactive.
XIP("LATITUDE")—Latitude.
XIP("LONGITUDE")—Longitude.
XIP("POSTAL CODE")—Value used to look up postal data.
XIP("PREFERRED CITY KEY")—USPS preferred

(DEFAULT) city key.
XIP("STATE")—State associated with this PCODE.
XIP("STATE POINTER")—Pointer to the state in the

STATE file (#5).
XIP("UNIQUE KEY")—Unique lookup value.

XIP("ERROR")—Errors encountered during lookup.

Example 1

>S ZCODE=94114

>S ZTMP=""

>D POSTAL^XIPUTIL(ZCODE,.ZTMP)

>ZW ZTMP,ZCODE
ZCODE=94114
ZTMP=
ZTMP("CITY")=SAN FRANCISCO
ZTMP("CITY ABBREVIATION")=
ZTMP("CITY KEY")=Z22802
ZTMP("COUNTY")=SAN FRANCISCO
ZTMP("COUNTY POINTER")=2910
ZTMP("FIPS CODE")=06075
ZTMP("INACTIVE DATE")=
ZTMP("LATITUDE")=39:00N
ZTMP("LONGITUDE")=80:28W
ZTMP("POSTAL CODE")=94114
ZTMP("PREFERRED CITY KEY")=Z22802
ZTMP("STATE")=CALIFORNIA
ZTMP("STATE POINTER")=6
ZTMP("UNIQUE KEY")=94114Z22802

Address Hygiene: Developer Tools

8 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 2

>S ZCODE=94612

>S ZTMP=""

>D POSTAL^XIPUTIL(ZCODE,.ZTMP)

>ZW ZTMP,ZCODE
ZCODE=94612
ZTMP=
ZTMP("CITY")=OAKLAND
ZTMP("CITY ABBREVIATION")=
ZTMP("CITY KEY")=Z22296
ZTMP("COUNTY")=ALAMEDA
ZTMP("COUNTY POINTER")=2912
ZTMP("FIPS CODE")=06001
ZTMP("INACTIVE DATE")=
ZTMP("POSTAL CODE")=94612
ZTMP("PREFERRED CITY KEY")=Z22296
ZTMP("STATE")=CALIFORNIA
ZTMP("STATE POINTER")=6
ZTMP("UNIQUE KEY")=94612Z22296

2.1.5 POSTALB^XIPUTIL(): Active ZIP Codes

Reference Type Supported

Category Address Hygiene

IA # 3618

Description This API returns all of the active ZIP Codes for a single ZIP Code.

Format POSTALB^XIPUTIL(pcode,.xip)

Input Parameters pcode: (required) Postal Code for which the data is being requested.

 Address Hygiene: Developer Tools

July 1995 Kernel 9
Revised September 2011 Developer's Guide
 Version 8.0

Output Parameters .xip(n): The number of primary subscripts in an array:

XIP(n,"CITY")—City that the USPS assigned to this PCODE.
An asterisk "*" indicates which city is
PREFERRED (DEFAULT).

XIP(n"CITY KEY")—USPS's assigned city key.
XIP(n,"CITY ABBREVIATION")—USPS's assigned

abbreviation.
XIP(n,"COUNTY")—County associated with this PCODE.
XIP(n,"COUNTY POINTER")—Pointer to the county in

COUNTY CODE file
(#5.13).

XIP(n,"FIPS CODE")—5-digit FIPS code associated with the
county

XIP(n,"POSTAL CODE")—Value used to look up postal data
XIP(n,"PREFERRED CITY KEY")—USPS preferred

(DEFAULT) city key.
XIP(n,"STATE")—State associated with this PCODE.
XIP(n,"STATE POINTER")—Pointer to the state in the

STATE file (#5).
XIP(n,"UNIQUE KEY")—Unique lookup value.

XIP("ERROR")—Errors encountered during lookup.

Address Hygiene: Developer Tools

10 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example

>S ZCODE=26452

>S ZTMP=""

>D POSTALB^XIPUTIL(ZCODE,.ZTMP)

>ZW ZTMP,ZCODE
ZCODE=26452
ZTMP=2
ZTMP(1,"CITY")=WESTON*
ZTMP(1,"CITY ABBREVIATION")=
ZTMP(1,"CITY KEY")=X29362
ZTMP(1,"COUNTY")=LEWIS
ZTMP(1,"COUNTY POINTER")=335
ZTMP(1,"FIPS CODE")=54041
ZTMP(1,"POSTAL CODE")=26452
ZTMP(1,"PREFERRED CITY KEY")=X29362
ZTMP(1,"STATE")=WEST VIRGINIA
ZTMP(1,"STATE POINTER")=54
ZTMP(1,"UNIQUE KEY")=26452X29362
ZTMP(2,"CITY")=VALLEY CHAPEL
ZTMP(2,"CITY ABBREVIATION")=
ZTMP(2,"CITY KEY")=X2A444
ZTMP(2,"COUNTY")=LEWIS
ZTMP(2,"COUNTY POINTER")=335
ZTMP(2,"FIPS CODE")=54041
ZTMP(2,"POSTAL CODE")=26452
ZTMP(2,"PREFERRED CITY KEY")=X29362
ZTMP(2,"STATE")=WEST VIRGINIA
ZTMP(2,"STATE POINTER")=54
ZTMP(2,"UNIQUE KEY")=26452X2A444

July 1995 Kernel 11
Revised September 2011 Developer's Guide
 Version 8.0

3 Alerts: Developer Tools

An application might want to issue an alert to one or more users when certain conditions are met, such as
depleted stock levels or abnormal lab test results.

Alerts are usually generated through APIs. The SETUP^XQALERT API is used to create an alert.

You may want to send alerts from within an application program or as part of a trigger in a VA FileMan
file. Developers and IRM staff are invited to discover imaginative ways to integrate alerts within local
and national programming. Remember, however, not to overwhelm the user with alerts.

Once you have sent an alert, one way you can confirm that the alert was sent is to use the VA FileMan
Inquire option, and examine the entry in the ALERT file (#8992) for the users to whom you sent the alert.

Figure 1. Alerts: Creating an alert for User #14

; send alert
S XQA(14)="",XQAMSG="Enter progress note",XQAOPT="ZZNOTES"
D SETUP^XQALERT

Figure 2. Alerts: Checking that the alert was sent

>D Q^DI

Select OPTION: INQUIRE TO FILE ENTRIES

OUTPUT FROM WHAT FILE: ALERT
Select ALERT RECIPIENT: `14 <Enter> EXAMPLE,PERSON
ANOTHER ONE: <Enter>
STANDARD CAPTIONED OUTPUT? YES// <Enter>
Include COMPUTED fields: (N/Y/R/B): NO// <Enter> - No record number (IEN), no
Computed Fields

RECIPIENT: EXAMPLE,USER
ALERT DATE/TIME: DEC 01, 1994@08:02:21
ALERT ID: NO-ID;161;2941201.080221
 MESSAGE TEXT: Enter Progress Note NEW ALERT FLAG: NEW
 ACTION FLAG: RUN ROUTINE ENTRY POINT: ZZOPT

Alerts: Developer Tools

12 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

3.1 Package Identifier vs. Alert Identifier

3.1.1 Package Identifier

The software application identifier for an alert is defined as the original value of the XQAID input
variable when the alert is created via the SETUP^XQALERT: Send Alerts API. Typically, the software
application identifier should begin with the software application namespace.

3.1.2 Alert Identifier

The alert identifier consists of three semicolon pieces:

pkgid_";"_duz_";"_time

Where pkgid is the original software application identifier, duz is the DUZ of the user who created the
alert, and time is the time the alert was created (in VA FileMan format). The alert identifier uniquely
identifies a particular alert (it is used as the value of the .01 field in the ALERT TRACKING file
[#8992.1]).

The distinction between software application identifier and alert identifier is important. More than one
alert can share the same software application identifier, but the alert identifier is unique. Some Alert
Handler APIs ask for a software application identifier (and act on multiple alerts), while other APIs ask
for an alert identifier (and act on a single alert).

3.2 Package Identifier Conventions

The Computerized Patient Record System (CPRS) software uses a convention for the format of the
software application identifier consisting of three comma-delimited pieces:

namespace_","_dfn_","_notificationcode

Where namespace is the software application namespace, DFN is the internal entry number of the patient
whom the alert concerns in the PATIENT file (#2), and notification code is a code maintained by the
CPRS software describing the type of alert.

NOTE: This three-comma-piece software application identifier is still only the first semicolon
piece of an alert identifier.

Several Alert Handler APIs make use of these software application identifier conventions:

• PATIENT^XQALERT returns an array of alerts for a particular patient, based on the second
comma-piece of alerts' software application identifiers.

• PTPURG^XQALBUTL purges alerts for a particular patient, based on the second comma-piece
of alerts' software application identifiers.

• NOTIPURG^XQALBUTL purges alerts with a particular notification code, based on the third
comma-piece of alerts' software application identifiers.

 Alerts: Developer Tools

July 1995 Kernel 13
Revised September 2011 Developer's Guide
 Version 8.0

3.3 Glossary of Terms for Alerts

Table 1. Alerts: Related terms and definitions

Term Definition

ALERTS An alert notifies one or more users of a matter requiring immediate attention.
Alerts function as brief notices that are distinct from mail messages or
triggered bulletins.

Alerts are designed to provide interactive notification of pending computing
activities (e.g., the need to reorder supplies or review a patient's clinical test
results). Along with the alert message is an indication that the View Alerts
common option should be chosen to take further action.

An alert includes any specifications made by the developer when designing the
alert. This minimally includes the alert message and the list of recipients (an
information-only alert). It can also include an alert action, software application
identifier, alert flag, and alert data. Alerts are stored in the ALERT file (#8992).

ALERT ACTION The computing activity that can be associated with an alert (i.e., an option
[XQAOPT input variable] or routine [XQAROU input variable]).

ALERT DATA An optional string that the developer can define when creating the alert. This
string is restored in the XQADATA input variable when the alert action is taken.

ALERT FLAG An optional tool currently controlled by the Alert Handler to indicate how the
alert should be processed (XQAFLG input variable).

ALERT HANDLER The name of the mechanism by which alerts are stored, presented to the user,
processed, and deleted. The Alert Handler is a part of Kernel, in the XQAL
namespace.

ALERT IDENTIFIER A three-semicolon piece identifier, composed of the original Package Identifier
(described below) as the first piece; the DUZ of the alert creator as the second
piece; and the date and time (in VA FileMan format) when the alert was
created as the third piece. The Alert Identifier is created by the Alert Handler
and uniquely identifies an alert.

ALERT MESSAGE One line of text that is displayed to the user (the XQAMSG input variable).

PACKAGE
IDENTIFIER

An optional identifier that the developer can use to identify the alert for such
purposes as subsequent lookup and deletion (XQAID input variable).

PURGE INDICATOR Checked by the Alert Handler (in the XQAKILL input variable) to determine
whether an alert should be deleted, and whether deletion should be for the
current user or for all users who might receive the alert.

Alerts: Developer Tools

14 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

3.4 Application Program Interface (API)

Several APIs are available for developers to work with alerts. These APIs are described below.

3.4.1 AHISTORY^XQALBUTL(): Get Alert Tracking File
Information

Reference Type Supported

Category Alerts

IA # 2788

Description This API returns information from the ALERT TRACKING file (#8992.1) for
alerts with the xqaid input parameter as its alert ID. The data is returned descendent
from the closed root passed in the root input parameter. Usually, xqaid is known
based on alert processing.

Format AHISTORY^XQALBUTL(xqaid,root)

Input Parameters xqaid: (required) This is the value of the alert identifier. It is passed to the
routine or option that is run when the alert is selected. It can also be
obtained from a listing of all of the xqaid values for a specified
user and/or patient.

 root: (required) This parameter is a closed reference to a local or global
root. The information associated with the desired entry in the
ALERT TRACKING file (#8992.1) is returned descendent from
the specified root.

 NOTE: A more user (developer) friendly call would be the
ALERTDAT^XQALBUTL(): API, which returns the data in
an array with the field numbers and names as the subscripts
and the internal and external (if different) values as the
value.

Output returns: The data returned reflects the global structure of the ALERT
TRACKING file (#8992.1).

 Alerts: Developer Tools

July 1995 Kernel 15
Revised September 2011 Developer's Guide
 Version 8.0

Example

The following example illustrates the use of this API and the format of the data returned.

>S XQAID="NO-ID;20;2990212.11294719"

>D AHISTORY^XQALBUTL(XQAID,"XXXROOT")

>ZW XXXROOT

XXXROOT(0)=NO-ID;20;2990212.11294719^2990212.112947^NO-ID^^20
XXXROOT(1)=TEST MESSAGE (ROUTINE) 20^^^XM
XXXROOT(20,0)=^8992.11^20^1
XXXROOT(20,1,0)=20^2990212.112954^2990212.145609^2990212.145621^2990212.145621
XXXROOT(20,"B",20,1)=

This is in the basic structure of the nodes taken from the global for this entry, which can be seen from a
global map view of the ALERT TRACKING file (#8992.1):

^XTV(8992.1,D0,0)= (#.01) NAME [1F] ^ (#.02) DATE CREATED [2D]^ (#.03) PKG
 ==>ID [3F] ^ (#.04) PATIENT [4P] ^ (#.05)
GENERATED BY [5P] ^
 ==>(#.06) GENERATED WHILE QUEUED [6S] ^ (#.07)
STATUS [7S] ^
 ==>(#.08) RETENTION DATE [8D] ^

^XTV(8992.1,D0,1)= (#1.01) DISPLAY TEXT [1F] ^ (#1.02) OPTION FOR PROCESSING
 ==>[2F] ^ (#1.03) ROUTINE TAG [3F] ^ (#1.04)
ROUTINE FOR
 ==>PROCESSING [4F] ^

^XTV(8992.1,D0,2)= (#2) DATA FOR PROCESSING [E1,245F] ^

^XTV(8992.1,D0,20,0)=^8992.11PA^^ (#20) RECIPIENT

^XTV(8992.1,D0,20,D1,0)= (#.01) RECIPIENT [1P] ^ (#.02) ALERT FIRST DISPLAYED
 ==>[2D] ^ (#.03) FIRST SELECTED ALERT [3D] ^ (#.04)
 ==>PROCESSED ALERT [4D] ^ (#.05) DELETED ON [5D] ^
 ==>(#.06) AUTO DELETED [6D] ^ (#.07) FORWARDED BY [7P]
 ==>^ (#.08) DATE/TIME FORWARDED [8D] ^ (#.09) DELETED
 ==>BY USER [9P] ^

NOTE: A more user (developer) friendly API would be the ALERTDAT^XQALBUTL(): API,
which returns the data in an array with the field numbers and names as the subscripts and the
internal and external (if different) values as the value.

Alerts: Developer Tools

16 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

3.4.2 ALERTDAT^XQALBUTL(): Get Alert Tracking File
Information

Reference Type Supported

Category Alerts

IA # 2788

Description This API returns information from the ALERT TRACKING file (#8992.1) for
alerts with the xqaid input parameter as its alert ID in the array specified by the root
input parameter. If root is not specified, then the data is returned in an XQALERTD
array. If the specified alert is not present, the root array is returned with a NULL
value.

Format ALERTDAT^XQALBUTL(xqaid[,root])

Input Parameters xqaid: (required) This is the value of the alert identifier. It is passed to the
routine or option that is run when the alert is selected. It can also be
obtained from a listing of all of the xqaid values for a specified
user and/or patient.

 root: (optional) This parameter is a closed reference to a local or global
root. If root is not specified, then the data is returned in an
XQALERTD array.

Output returns: Returns:

ALERT TRACKING File Entry—The information associated
with the desired entry in the ALERT TRACKING file
(#8992.1) descendent from the specified root.

NULL—If the specified alert is not present, the array root is
returned with a NULL value.

 Alerts: Developer Tools

July 1995 Kernel 17
Revised September 2011 Developer's Guide
 Version 8.0

Example

>S XQAID="NO-ID;20;2990212.11294719"

>D ALERTDAT^XQALBUTL(XQAID,$NA(^TMP($J,"A")))

>D ^%G Global ^TMP($J,"A"
 TMP($J,"A"
^TMP(000056198,"A",.01) = NO-ID;20;2990212.11294719
^TMP(000056198,"A",.01,"NAME") =
^TMP(000056198,"A",.02) = 2990212.112947^FEB 12, 1999@11:29:47
^TMP(000056198,"A",.02,"DATE CREATED") =
^TMP(000056198,"A",.03) = NO-ID ^TMP(000056198,"A",.03,"PKG ID") =
^TMP(000056198,"A",.04) =
^TMP(000056198,"A",.04,"PATIENT") = ^TMP(000056198,"A",.05) = 20^USER,XXX
^TMP(000056198,"A",.05,"GENERATED BY") =
^TMP(000056198,"A",.06) = ^TMP(000056198,"A",.06,"GENERATED WHILE QUEUED") =
^TMP(000056198,"A",.07) =
^TMP(000056198,"A",.07,"STATUS") =
^TMP(000056198,"A",.08) =
^TMP(000056198,"A",.08,"RETENTION DATE") =
^TMP(000056198,"A",1.01) = TEST MESSAGE (ROUTINE) 20
^TMP(000056198,"A",1.01,"DISPLAY TEXT") =
^TMP(000056198,"A",1.02) = ^TMP(000056198,"A",1.02,"OPTION FOR PROCESSING") =
^TMP(000056198,"A",1.03) =
^TMP(000056198,"A",1.03,"ROUTINE TAG") =
^TMP(000056198,"A",1.04) = XM ^TMP(000056198,"A",1.04,"ROUTINE FOR PROCESSING") =
^TMP(000056198,"A",2) =
^TMP(000056198,"A",2,"DATA FOR PROCESSING") =

The data elements at the top level of the ACTIVITY TRACKING file are returned subscripted by the
field numbers. This subscript is sufficient to obtain the data. The values are shown as internal^external if
the internal and external forms are different. The next subscript after the field number will provide the
field names if they are desired.

Alerts: Developer Tools

18 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

3.4.3 DELSTAT^XQALBUTL(): Get User Information and Status
for Recent Alert

Reference Type Supported

Category Alerts

IA # 3197

Description This API obtains information on the recipients of the most recent alert with a
specified alert ID and the status of whether the alert has been deleted or not for
those recipients.

Format DELSTAT^XQALBUTL(xqaidval,.values)

Input Parameters xqaidval: (required) This input parameter is a value that has been used as
the xqaid value for generating an alert by a software application.
This value is used to identify the most recent alert generated with
this xqaid value and that alert is used to generate the responses in
terms of recipients and deletion status of the alert for each of the
recipients.

Output Parameters .values: This parameter is passed by reference and is returned as an array.
The value of the values array indicates the number of entries in
the array. The entries are then ordered in numerical order in the
values array. The array contains the DUZ for users along with an
indicator of whether or not the alert has been deleted.

 NOTE: The contents of the array are KILLed prior to
building the list.

For example:

DUZ^1—If alert deleted.

DUZ^0—If alert not deleted.

Example

>D DELSTAT^XQALBUTL("OR;14765;23",.VALUE)

The value of VALUE indicates the number of entries in the array. The entries are then ordered in
numerical order in the VALUE array:

VALUE = 3
VALUE(1) = "146^0" User 146 - not deleted
VALUE(2) = "297^1" User 297 - deleted
VALUE(3) = "673^0" User 673 - not deleted

 Alerts: Developer Tools

July 1995 Kernel 19
Revised September 2011 Developer's Guide
 Version 8.0

3.4.4 NOTIPURG^XQALBUTL(): Purge Alerts Based on Code

Reference Type Supported

Category Alerts

IA # 3010

Description This API deletes all alerts that have the specified NOTIFNUM notification number
as the third comma-piece of the alert's Package Identifier (the original value of
XQAID when the alert was created).

Format NOTIPURG^XQALBUTL(notifnum)

Input Parameters notifnum: (required) The notification number for which all alerts should be
deleted. Alerts are deleted if the value of this parameter matches
the third comma-piece in the alert's Package Identifier.

Output none

3.4.5 $$PENDING^XQALBUTL(): Pending Alerts for a User

Reference Type Supported

Category Alerts

IA # 2788

Description This extrinsic function returns whether or not the user specified has the alert
indicated by the xqaid input parameter as pending. It returns either of the following:

• 1—YES, alert is pending.

• 0—NO, alert is not pending.

Format $$PENDING^XQALBUTL(xqauser,xqaid)

Input Parameters xqauser: (required) This is the Internal Entry Number (IEN, DUZ value) in
the NEW PERSON file (#200) for the desired user.

 xqaid (required) This is the value of the alert identifier. It is passed to the
routine or option that is run when the alert is selected. It can also be
obtained from a listing of all of the xqaid values for a specified
user and/or patient.

Output returns: Returns:
• 1—YES, alert is pending.

• 0—NO, alert is not pending.

Alerts: Developer Tools

20 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 1

The following is an example of an alert not pending:

>S XQAID="NO-ID;20;2990212.11294719"

>W $$PENDING^XQALBUTL(20,XQAID)
0

Example 2

The following is an example of an alert pending:

>S XQAID="NO-ID;20;2990212.15540723"

>W $$PENDING^XQALBUTL(20,XQAID)
1

3.4.6 $$PKGPEND^XQALBUTL(): Pending Alerts for a User in
Specified Software

Reference Type Supported

Category Alerts

IA # 2788

Description This extrinsic function returns whether or not the user specified has an alert with
XQAID containing the first ";"-piece (software/package identifier) indicated by the
xqapkg input parameter pending. It returns either of the following:

• 1—YES, indicates one or more alerts pending for the specified user
containing the software/package identifier.

• 0—NO, alerts not pending.

Format $$PENDING^XQALBUTL(xqauser,xqapkg)

Input Parameters xqauser: (required) This is the Internal Entry Number (IEN, DUZ value) in
the NEW PERSON file (#200) for the desired user.

 xqapkg: (required) This is the software/package identifier portion of the
alert identifier (XQAID). It is a textual identifier for the software
that created the alert and is the first ";"-piece of XQAID. It can be
used in this context to determine whether the user specified by
xqauser has any alerts pending containing the specified software
identifier. The software identifier used can be a complete software
identifier (e.g., XU-TSK) or more general (e.g., XU) to find users
with any XU software alerts.

 Alerts: Developer Tools

July 1995 Kernel 21
Revised September 2011 Developer's Guide
 Version 8.0

Output returns: Returns:

• 1—YES, indicates one or more alerts pending for the
specified user containing the software/package identifier
string in the package part of XQAID.

• 0—NO, alerts not pending.

Example 1

The following is an example of an alert not pending:

>S XQAPKG="XU"

>W $$PKGPEND^XQALBUTL(20,XQAPKG)
0

Example 2

The following is an example of an alert pending (one or more):

>S XQAPKG="XU"

>W $$PKGPEND^XQALBUTL(20,XQAPKG)
1

3.4.7 PTPURG^XQALBUTL(): Purge Alerts Based on Patient

Reference Type Supported

Category Alerts

IA # 3010

Description This API deletes all alerts that have the specified patient internal entry number
(DFN) as the second comma-piece of the alert's Package Identifier (the original
value of XQAID when the alert was created).

Format PTPURG^XQALBUTL(dfn)

Input Parameters dfn: (required) Internal entry number (DFN in the PATIENT file [#2])
for which alerts are deleted.

Output none

Alerts: Developer Tools

22 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

3.4.8 RECIPURG^XQALBUTL(): Purge User Alerts

Reference Type Supported

Category Alerts

IA # 3010

Description This API deletes all alerts that have been sent to the user in the NEW PERSON file
(#200), as indicated by the duz parameter.

Format RECIPURG^XQALBUTL(duz)

Input Parameters duz: (required) Internal Entry Number (IEN in the NEW PERSON file
[#200]) of the user who received alerts are deleted.

Output none

3.4.9 USERDATA^XQALBUTL(): Get User Information for an
Alert

Reference Type Supported

Category Alerts

IA # 2788

Description This API returns recipients of the alert with the xqaid input parameter as its alert ID
from the ALERT TRACKING file (#8992.1) in the array specified by the root input
parameter. If root is not specified, then the data is returned in the XQALUSER
array. If the specified alert is not present, the root array is returned with a NULL
value.

Format USERDATA^XQALBUTL(xqaid,xqauser,root)

Input Parameters xqaid: (required) This is the value of the alert identifier. It is passed to the
routine or option that is run when the alert is selected. It can also be
obtained from a listing of all of the xqaid values for a specified
user and/or patient.

 xqauser: (required) This is the Internal Entry Number (IEN, DUZ value) in
the NEW PERSON file (#200) for the desired user.

 root: (optional) This parameter is a closed reference to a local or global
root. If root is not specified, then the data is returned in the
XQALUSER array.

 Alerts: Developer Tools

July 1995 Kernel 23
Revised September 2011 Developer's Guide
 Version 8.0

Output returns: Returns:

ALERT TRACKING File Entry—The information associated
with the desired entry in the ALERT TRACKING file
(#8992.1) descendent from the specified root.

NULL—If the specified alert is not present, the array root is
returned with a NULL value.

Example

>D USERDATA^XQALBUTL(XQAID,20,"XXX")

>ZW XXX

XXX(.01)=20^USER,XXX XXX(.01,"RECIPIENT")=
XXX(.02)=2990212.112954^FEB 12, 1999@11:29:54 XXX(.02,"ALERT FIRST DISPLAYED")=
XXX(.03)=2990212.145609^FEB 12, 1999@14:56:09 XXX(.03,"FIRST SELECTED ALERT")=
XXX(.04)=2990212.145621^FEB 12, 1999@14:56:21 XXX(.04,"PROCESSED ALERT")=
XXX(.05)=2990212.145621^FEB 12, 1999@14:56:21 XXX(.05,"DELETED ON")=
XXX(.06)= XXX(.06,"AUTODELETED")=
XXX(.07)= XXX(.07,"FORWARDED BY")=
XXX(.08)= XXX(.08,"DATE/TIME FORWARDED")=
XXX(.09)= XXX(.09,"DELETED BY USER")=

Alerts: Developer Tools

24 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

3.4.10 USERLIST^XQALBUTL(): Get Recipient Information for an
Alert

Reference Type Supported

Category Alerts

IA # 2788

Description This API returns recipients of the alert with the xqaid input parameter as its alert ID
from the ALERT TRACKING file (#8992.1) in the array specified by the root input
parameter. If root is not specified, then the data is returned in the XQALUSRS
array. If the specified alert is not present, the root array is returned with a NULL
value.

Format USERLIST^XQALBUTL(xqaid,root)

Input Parameters xqaid: (required) This is the value of the alert identifier. It is passed to the
routine or option that is run when the alert is selected. It can also be
obtained from a listing of all of the xqaid values for a specified
user and/or patient.

 root: (optional) This parameter is a closed reference to a local or global
root. If root is not specified, then the data is returned in the
XQALUSRS array.

Output returns: Returns:
• ALERT TRACKING File Entry—The information

associated with the desired entry in the ALERT
TRACKING file (#8992.1) descendent from the specified
root.

• NULL—If the specified alert is not present, the array root
is returned with a NULL value.

Example

>D USERLIST^XQALBUTL(XQAID)

>ZW XQALUSRS XQALUSRS(1)=20^USER,XXX

 Alerts: Developer Tools

July 1995 Kernel 25
Revised September 2011 Developer's Guide
 Version 8.0

3.4.11 ACTION^XQALERT(): Process an Alert

Reference Type Supported

Category Alerts

IA # 10081

Description This API processes an alert for a user, if that user is the current user. Processing of
the alert happens exactly as if the user had chosen to process the alert from the
View Alerts menu.

Format ACTION^XQALERT(alertid)

Input Parameters alertid: (required) Alert Identifier of the alert to process (same as ALERT
ID field in ALERT file [#8992]). This contains three semicolon-
delimited pieces, the first being the original software application
identifier, the second being the DUZ of the alert creator, and the
third being the VA FileMan date and time the alert was created.

Output none

3.4.12 DELETE^XQALERT: Clear Obsolete Alerts

Reference Type Supported

Category Alerts

IA # 10081

Description This API deletes (clears) a single alert, for the current user (XQAKILL=1) or all
recipients (XQAKILL=0 or XQAKILL undefined). The current user (as identified by
the value of DUZ) does not need to be a recipient of an alert; however, in that case,
only a value of zero (0 or undefined) for XQAKILL makes sense.

DELETE^XQALERT, unlike DELETEA^XQALERT, deletes only a single alert
whose alert identifier matches the complete Alert Identifier.

 REF: For more information on alert identifiers, see the "Package Identifier vs.
Alert Identifier" topic in this chapter.

Format DELETE^XQALERT

Alerts: Developer Tools

26 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variables XQAID: (required) Alert Identifier of the alert to delete. It must be a complete
Alert Identifier, containing all three semicolon pieces:

• The first semicolon piece (Package Identifier) must be in the
same form as the alert creator defined it.

• The second piece being the DUZ of the user who created the
alert.

• The third piece being the time the alert was created.

 NOTE: The second and third pieces are defined by the Alert
Handler.

 XQAKILL: (optional) XQAKILL determines how the alert is deleted. If XQAKILL
is undefined or zero (0), the Alert Handler deletes the alert for all
recipients. If XQAKILL is set to 1, Alert Handler only purges the alert
for the current user, as identified by DUZ (using a value of 1 only
makes sense if the current user is a recipient of the alert, however).

If the software application identifier portion of the alert identifier is
"NO-ID", however, the alert is treated as if XQAKILL were set to 1
(i.e., the alert is deleted only from one user), regardless of how it is
actually set.

Output none

 Alerts: Developer Tools

July 1995 Kernel 27
Revised September 2011 Developer's Guide
 Version 8.0

3.4.13 DELETEA^XQALERT: Clear Obsolete Alerts

Reference Type Supported

Category Alerts

IA # 10081

Description This API deletes (clears) all alerts with the same software application identifier, for
the current user (XQAKILL=1) or all recipients (XQAKILL=0 or XQAKILL
undefined). The current user (as identified by the value of DUZ) does not need to be a
recipient of an alert; however, in that case, only a value of zero (0 or undefined) for
XQAKILL makes sense.

One example of the use of DELETEA^XQALERT is when a troublesome condition
has been resolved. You can use this API to delete any unprocessed alerts associated
with the condition. It deletes all alerts whose software application identifiers match
the software application identifier you pass in the xqaid input parameter (multiple
alerts can potentially share the same software application identifier).

 REF: For more information on software application identifiers, see the
"Package Identifier vs. Alert Identifier" topic earlier in this chapter.

Format DELETEA^XQALERT

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variables XQAID: (required) All alerts whose software application identifier matches the
value of this input parameter will be deleted, for the alert recipients
designated by the xqakill input parameter.

The form of XQAID can be exactly as initially set when creating the
alert. Alternatively, it can contain the two additional semicolon pieces
added by the Alert Handler (the full alert identifier). The two
additional semicolon pieces are ignored, however; this API only
requires the original software application identifier.

If the alert identifier you specify is "NO-ID", however, (the generic
software application ID assigned to alerts with no original software
application identifier), this API will not delete matching alerts.

Alerts: Developer Tools

28 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

 XQAKILL: (optional) XQAKILL determines how the alert is deleted. If
XQAKILL is undefined or zero (0), the Alert Handler deletes matching
alerts for all recipients. If XQAKILL is set to 1, Alert Handler deletes
matching alerts for the current user, as identified by DUZ (using a
value of 1 only makes sense if the current user is also a recipient of the
alert, however).

Output none

3.4.14 GETACT^XQALERT(): Return Alert Variables

Reference Type Supported

Category Alerts

IA # 10081

Description This API returns to the calling routine the required variables to act on a specific
alert.

Format GETACT^XQALERT(alertid)

Input Parameters alertid: (required) This is the alert identifier in the ALERT TRACKING
file (#8992.1).

Output Variables XQAID: This is the full alert identifier.

XQADATA: The XQADATA variable stores any software application-specific
data string that was passed at the time the alert was generated.

XQAOPT: Indicates a non-menu type option on the user's primary, secondary
or common menu to be run if not null.

XQAROU: Indicates the routine or tag^routine to run when the alert is
processed. It can have three values:

• Null—A null value indicates no routine to be used
(XQAOPT contains option name to be run).

• ^<space>—A value of ^<space> indicates that the alert is
information only (no routine or option action involved).

• ^ROUTINE or TAG^ROUTINE—The name of the routine
as ^ROUTINE or TAG^ROUTINE.

 Alerts: Developer Tools

July 1995 Kernel 29
Revised September 2011 Developer's Guide
 Version 8.0

3.4.15 PATIENT^XQALERT(): Get Alerts for a Patient

Reference Type Supported

Category Alerts

IA # 10081

Description This API allows you to return an array of all alerts for a particular patient that are
either:

• Open.

• Within a given time range (both open and closed).

The association of an alert with a patient is based on the conventions used by the
CPRS software application for the Package Identifier (original value of XQAID
input variable when creating the alert), where the second comma-piece is a
pointer to the PATIENT file (#2).

 REF: For information on CPRS conventions for the format of the Package
Identifier, see the "Package Identifier vs. Alert Identifier" topic earlier in
this chapter.

Format PATIENT^XQALERT(root,dfn[,startdate][,enddate])

Input Parameters root: (required) Fully resolved global or local reference in which to
return a list of matching alerts.

 dfn: (required) Internal entry number (DFN in the PATIENT file
[#2]) of the patient for whom alerts are returned.

 startdate: (optional) Starting date to check for alerts. If you pass this
parameter, all alerts are returned, open or closed, from the
startdate until the enddate (if no enddate is specified, all alerts
beyond the startdate are returned). If you omit this parameter
(and enddate), only currently open alerts are returned.

 enddate: (optional) Ending date to check for alerts. If you omit this
parameter, but pass a startdate, all alerts are returned beyond the
startdate.

Alerts: Developer Tools

30 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Output Parameters root: All alerts matching the request are returned in the input
parameter you specified in root, in the following format:

root=number of matching alerts

root(1)= "I "_messagetext_"^"_alertid

root(2)=...

where the first three characters are either:

 "I ": if the alert is informational

 " ": if the alert runs a routine

and where alertid (Alert Identifier) contains three semicolon-
delimited pieces:

1. The original software application identifier (value of
XQAID).

2. The DUZ of the alert creator.

3. The VA FileMan date and time the alert was created.

3.4.16 SETUP^XQALERT: Send Alerts

Reference Type Supported

Category Alerts

IA # 10081

Description This API sends alerts to users; however, the preferred API to use is
$$SETUP1^XQALERT: Send Alerts.

To send an information-only alert, make sure that XQAOPT and XQAROU input
variables are not defined. To send an alert that takes an action, specify either the
XQAOPT (to run an option) or XQAROU (to run a routine) input variables.

Format SETUP^XQALERT

 Alerts: Developer Tools

July 1995 Kernel 31
Revised September 2011 Developer's Guide
 Version 8.0

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variables XQA: (required) Array defining at least one user to receive the alert.
Subscript the array with users' DUZ numbers to send to
individual users; subscript the array with mail group names to
send to users in mail groups:

>S XQA(USERDUZ)=""

>S XQA("G.MAILGROUP")=""

 XQAARCH: (optional) Number of days that alert tracking information for this
alert should be retained in the ALERT TRACKING file
(#8992.1). Default time period is 30 days. Users can specify a
different number of days using this input variable. To retain
information forever, a value of 100000 is recommended (good
for approximately 220 years).

 XQACNDEL: (optional) Setting a value in the XQACNDEL variable prior to
calling this API causes the CAN DELETE WITHOUT
PROCESSING field (#.1) in the ALERT file (#8992) to be set. A
value in this field indicates that the alert can be deleted by the
user without having processed it.

 XQADATA: (optional) Use this to store a software application-specific data
string, in any format. It will be restored in the XQADATA input
variable when the user processes the alert and is therefore
available to the routine or option that processes the alert.

You can use any delimiter in the input variable, including the
caret. You can use it to make data such as patient number, lab
accession, or cost center available to your software application-
specific routine or option without needing to query the user when
they process the alert. It is up to your routine or option to know
what format is used for data in this string.

 XQAFLG: (optional) Alert flag to regulate processing (currently not
supported). The values are:

• D—To delete an information-only alert after it has been
processed (the default for information-only alerts).

• R—To run the alert action immediately upon invocation
(the default for alerts that have associated alert actions).

This input variable currently has no effect, however.

Alerts: Developer Tools

32 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

 XQAGUID: (optional) As of Kernel Patch XU*8.0*207, the GUID FOR GUI
adds an interface GUID (a 32 character string containing
hexadecimal digits in a specific format within curly braces) to
permit a program on the client to process the alert. The presence
of a GUID in the variable indicates that the alert can be
processed within a GUI environment, and is used to open the
correct application to process the alert within the GUI
environment.

 NOTE: Unfortunately, this functionality has never been
implemented by CPRS or other GUI applications.

 XQAID: (optional) Package identifier for the alert, typically a software
application namespace followed by a short character string. Must
not contain carets ("^") or semicolons (";"). If you do not set
XQAID, you will not be able to identify the alert in the future,
either during alert processing, to delete the alert, or to perform
other actions with the alert.

 REF: For information on CPRS conventions for the format
of the Package Identifier, see the "Package Identifier vs.
Alert Identifier" topic in this chapter.

 XQAMSG: (required) Contains the text of the alert. 80 characters can be
displayed in the original alert. 70 characters can be displayed in
the View Alert listing. The string cannot contain a caret ("^").

 XQAOPT: (optional) Name of a non-menu type option on the user's
primary, secondary or common menu. The phantom jump is used
to navigate to the destination option, checking pathway
restrictions in so doing. An error results if the specified option is
not in the user's menu pathway.

 XQAROU: (optional) Indicates a routine or tag^routine to run when the alert
is processed. If both XQAOPT and XQAROU are defined,
XQAOPT is used and XQAROU is ignored.

 XQASUPV: (optional) Number of days to wait before Delete Old (>14d)
Alerts option forwards alert to recipient's supervisor based on
Service/Section, if alert is unprocessed by recipient. Can be a
number from 1 to 30.

 XQASURO: (optional) Number of days to wait before Delete Old (>14d)
Alerts option forwards alert to recipient's MailMan surrogates (if
any), if alert is unprocessed by recipient. Can be a number from 1
to 30.

 Alerts: Developer Tools

July 1995 Kernel 33
Revised September 2011 Developer's Guide
 Version 8.0

 XQATEXT: (optional) As of Kernel Patch XU*8.0*207, this variable permits
informational text of any length to be passed with an alert. When
the alert is selected, the contents of this variable will be displayed
in a ScreenMan form within the roll & scroll environment.

 NOTE: It was also intended to be displayed within a text
display box within the GUI environment. However, CPRS
has never implemented this functionality, so it can only be
viewed in the roll & scroll environment.

Output none

Details—When the Alert is Processed

Once the alert is created, the user is then able to receive and process the alert from their View Alerts
listing. When this occurs, Alert Handler executes the following four steps for the alert:

1. Alert Handler sets up the following input variables:

• XQADATA—If originally set when alert was created.

• XQAID—If originally set when alert was created.

• XQAKILL—The purge indicator. It is always set to 1 by the Alert Handler.

If you associated a software application identifier, XQAID, with the alert, it is restored along with
two additional semicolon pieces:

• Current user number.

• Current date/time.

With the two additional semicolon pieces, the software application identifier becomes the alert
identifier. If you did not define XQAID when creating the alert, Alert Handler sets XQAID input
variable to "NO-ID" followed by the two additional semicolon pieces.

2. Alert Handler runs the routine or option specified, if any, in the XQAOPT or XQAROU input
variables.

You can refer to the three input variables listed above (i.e., XQADATA, XQAID, and
XQAKILL) in the option or routine that processes the alert.

Alerts: Developer Tools

34 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

3. Once the routine or option finishes, Alert Handler deletes the alert, under the following
conditions:

• If XQAKILL remains at the value of 1 as it was set in Step #1 above, the alert is deleted
for the current user only.

• To prevent the alert from being deleted, KILL XQAKILL during Step #2 above. You
may not want the alert to be deleted if processing, such as entering an electronic
signature, was not completed.

• To delete the alert for all recipients of the alert, not just the current user, set XQAKILL to
zero (0) during Step #2 above. When XQAKILL is set to 0, Alert Handler searches for
any alerts with a matching Alert Identifier, all three semicolon pieces:

o Original Package Identifier.

o Alert sender.

o Date/Time the alert was sent.

It purges them so that other users need not be notified of an obsolete alert.

NOTE: To delete an alert for all recipients, you must define XQAID with
appropriate specificity when creating the alert.

4. Finally, the Alert Handler cleans up by KILLing XQADATA, XQAID, and XQAKILL. Alert
Handler returns the user to the View Alerts listing if pending alerts remain. Otherwise, Alert
Handler returns the user to their last menu prompt.

Example

Figure 3. Alerts: Call to send an alert sample

;send an alert
;assume DFN is for patient XUPATIENT,ONE
N XQA,XQAARCH,XQADATA,XQAFLG,XQAGUID,XQAID,XQAMSG,XQAOPT,XQAROU,XQASUPV,XQASURO,
XQATEXT,XQALERR
S XQA(161)="" ; recipient is user `161
S XQAMSG="Elevated CEA for "_$$GET1^DIQ(2,DFN_",",.01)_"
("_$E($$GET1^DIQ(2,DFN_",",9),6,9)_") Schedule follow-up exam in Surgical Clinic."
D SETUP^XQALERT
Q

Figure 4. Alerts: Resulting alert, from View Alerts option

Select Systems Manager Menu Option: "VA

 1.I Elevated CEA for XUPATIENT,ONE (5345). Schedule follow-up exam in Surgical
Clinic.
 Select from 1 to 1
 or enter ?, A, I, P, M, R, or ^ to exit:

 Alerts: Developer Tools

July 1995 Kernel 35
Revised September 2011 Developer's Guide
 Version 8.0

3.4.17 $$SETUP1^XQALERT: Send Alerts

Reference Type Supported

Category Alerts

IA # 10081

Description This API sends alerts to users. This is the preferred API rather than
SETUP^XQALERT: Send Alerts.

To send an information-only alert, make sure that XQAOPT and XQAROU input
variables are not defined. To send an alert that takes an action, specify either the
XQAOPT (to run an option) or XQAROU (to run a routine) input variables.

Format $$SETUP1^XQALERT

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variables XQA: (required) Array defining at least one user to receive the alert.
Subscript the array with users' DUZ numbers to send to
individual users; subscript the array with mail group names to
send to users in mail groups:

>S XQA(USERDUZ)=""

>S XQA("G.MAILGROUP")=""

 XQAARCH: (optional) Number of days that alert tracking information for this
alert should be retained in the ALERT TRACKING file
(#8992.1). Default time period is 30 days. Users can specify a
different number of days using this input variable. To retain
information forever, a value of 100000 is recommended (good
for approximately 220 years).

 XQACNDEL: (optional) Setting a value in the XQACNDEL variable prior to
calling this API causes the CAN DELETE WITHOUT
PROCESSING field (#.1) in the ALERT file (#8992) to be set. A
value in this field indicates that the alert can be deleted by the
user without having processed it.

Alerts: Developer Tools

36 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

 XQADATA: (optional) Use this to store a software application-specific data
string, in any format. It will be restored in the XQADATA input
variable when the user processes the alert and is therefore
available to the routine or option that processes the alert.

You can use any delimiter in the input variable, including the
caret. You can use it to make data such as patient number, lab
accession, or cost center available to your software application-
specific routine or option without needing to query the user when
they process the alert. It is up to your routine or option to know
what format is used for data in this string.

 XQAFLG: (optional) Alert flag to regulate processing (currently not
supported). The values are:

• D—To delete an information-only alert after it has been
processed (the default for information-only alerts).

• R—To run the alert action immediately upon invocation
(the default for alerts that have associated alert actions).

This input variable currently has no effect, however.

 XQAGUID: (optional) As of Kernel Patch XU*8.0*207, the GUID FOR GUI
adds an interface GUID (a 32 character string containing
hexadecimal digits in a specific format within curly braces) to
permit a program on the client to process the alert. The presence
of a GUID in the variable indicates that the alert can be
processed within a GUI environment, and is used to open the
correct application to process the alert within the GUI
environment.

 NOTE: Unfortunately, this functionality has never been
implemented by CPRS or other GUI applications.

 XQAID: (optional) Package identifier for the alert, typically a software
application namespace followed by a short character string. Must
not contain carets ("^") or semicolons (";"). If you do not set
XQAID, you will not be able to identify the alert in the future,
either during alert processing, to delete the alert, or to perform
other actions with the alert.

 REF: For information on CPRS conventions for the format
of the Package Identifier, see the "Package Identifier vs.
Alert Identifier" topic in this chapter.

 XQAMSG: (required) Contains the text of the alert. 80 characters can be
displayed in the original alert. 70 characters can be displayed in
the View Alert listing. The string cannot contain a caret ("^").

 Alerts: Developer Tools

July 1995 Kernel 37
Revised September 2011 Developer's Guide
 Version 8.0

 XQAOPT: (optional) Name of a non-menu type option on the user's
primary, secondary or common menu. The phantom jump is used
to navigate to the destination option, checking pathway
restrictions in so doing. An error results if the specified option is
not in the user's menu pathway.

 XQAREVUE (optional) This variable is used to set the DAYS FOR BACKUP
REVIEWER field (#.15) in the ALERTS file (#8992). It must be
an integer from 1 to 15.

 XQAROU: (optional) Indicates a routine or tag^routine to run when the alert
is processed. If both XQAOPT and XQAROU are defined,
XQAOPT is used and XQAROU is ignored.

 XQASUPV: (optional) Number of days that alert tracking information for this
alert should be retained in the ALERT TRACKING file
(#8992.1). Default time period is 30 days. You can specify a
different number of days using this input variable. To retain
information forever, a value of 100000 is recommended (good
for about 220 years).

 XQASURO: (optional) Number of days to wait before Delete Old (>14d)
Alerts option forwards alert to recipient's MailMan surrogates (if
any), if alert is unprocessed by recipient. Can be a number from 1
to 30.

 XQATEXT: (optional) As of Kernel Patch XU*8.0*207, this variable permits
informational text of any length to be passed with an alert. When
the alert is selected, the contents of this variable will be displayed
in a ScreenMan form within the roll & scroll environment.

 NOTE: It was also intended to be displayed within a text
display box within the GUI environment. However, CPRS
has never implemented this functionality, so it can only be
viewed in the roll & scroll environment.

Output returns: Returns:

• 1—The alert was sent successfully.

• 0—The alert was not sent successfully, in which case the
XQALERR variable will contain a text string indicating
the reason that the alert was not sent.

Alerts: Developer Tools

38 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Details—When the Alert is Processed

Once the alert is created, the user is then able to receive and process the alert from their View Alerts
listing. When this occurs, Alert Handler executes the following four steps for the alert:

1. Alert Handler sets up the following input variables:

• XQADATA—If originally set when alert was created.

• XQAID—If originally set when alert was created.

• XQAKILL—The purge indicator. It is always set to 1 by the Alert Handler.

If you associated a software application identifier, XQAID, with the alert, it is restored along with
two additional semicolon pieces:

• Current user number.

• Current date/time.

With the two additional semicolon pieces, the software application identifier becomes the alert
identifier. If you did not define XQAID when creating the alert, Alert Handler sets XQAID input
variable to "NO-ID" followed by the two additional semicolon pieces.

2. Alert Handler runs the routine or option specified, if any, in the XQAOPT or XQAROU input
variables.

You can refer to the three input variables listed above (i.e., XQADATA, XQAID, and
XQAKILL) in the option or routine that processes the alert.

3. Once the routine or option finishes, Alert Handler deletes the alert, under the following
conditions:

• If XQAKILL remains at the value of 1 as it was set in Step #1 above, the alert is deleted
for the current user only.

• To prevent the alert from being deleted, KILL XQAKILL during Step #2 above. You
may not want the alert to be deleted if processing, such as entering an electronic
signature, was not completed.

• To delete the alert for all recipients of the alert, not just the current user, set XQAKILL to
zero (0) during Step #2 above. When XQAKILL is set to 0, Alert Handler searches for
any alerts with a matching Alert Identifier, all three semicolon pieces:

o Original Package Identifier.

o Alert sender.

o Date/Time the alert was sent.

It purges them so that other users need not be notified of an obsolete alert.

NOTE: To delete an alert for all recipients, you must define XQAID with
appropriate specificity when creating the alert.

4. Finally, the Alert Handler cleans up by KILLing XQADATA, XQAID, and XQAKILL. Alert
Handler returns the user to the View Alerts listing if pending alerts remain. Otherwise, Alert
Handler returns the user to their last menu prompt.

 Alerts: Developer Tools

July 1995 Kernel 39
Revised September 2011 Developer's Guide
 Version 8.0

Example

Figure 5. Alerts: Call to send an alert sample

;send an alert
;assume DFN is for patient XUPATIENT,ONE
N
XQA,XQAARCH,XQADATA,XQAFLG,XQAGUID,XQAID,XQAMSG,XQAOPT,XQAROU,XQASUPV,XQASURO,XQATE
XT,XQALERR
S XQA(161)="" ; recipient is user `161
S XQAMSG="Elevated CEA for "_$$GET1^DIQ(2,DFN_",",.01)_"
("_$E($$GET1^DIQ(2,DFN_",",9),6,9)_") Schedule follow-up exam in Surgical Clinic."
S VAR=$$SETUP1^XQALERT I 'XQALERR W !,"ERROR IN ALERT: ",XQALERR
Q

Figure 6. Alerts: Resulting alert, from View Alerts option

Select Systems Manager Menu Option: "VA

 1.I Elevated CEA for XUPATIENT,ONE (5345). Schedule follow-up exam in Surgical
Clinic.
 Select from 1 to 1
 or enter ?, A, I, P, M, R, or ^ to exit:

Alerts: Developer Tools

40 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

3.4.18 USER^XQALERT(): Get Alerts for a User

Reference Type Supported

Category Alerts

IA # 10081

Description This API returns a list of alerts for a given user. You can return a list of all alerts
for a particular user that are either:

• Open.

• Within a given time range (open and closed).

Format USER^XQALERT(root[,duz][,startdate][,enddate])

Input Parameters root: (required) Fully resolved global or local reference in which to
return a list of matching alerts.

 duz: (optional) DUZ number of the user for whom the alert list is
returned. If you do not pass a number, the current user's DUZ is
used.

 startdate: (optional) Starting date to check for alerts. If you pass this
parameter, all alerts are returned, open or closed, from the
startdate until the enddate (if no enddate is specified, all alerts
beyond the startdate are returned). If you omit the startdate
parameter (and enddate), only currently open alerts are returned.

 enddate: (optional) Ending date to check for alerts. If you omit this
parameter, but pass a startdate, all alerts are returned beyond the
startdate.

 Alerts: Developer Tools

July 1995 Kernel 41
Revised September 2011 Developer's Guide
 Version 8.0

Output Parameters root: All alerts matching the request are returned in the input
parameter you specified in root, in the following format:

root=number of matching alerts

root(1)= "I "_messagetext_"^"_alertid

root(2)=...

where the first three characters are either:

 "I ": if the alert is informational

 " ": if the alert runs a routine

and where alertid (Alert Identifier) contains three semicolon-
delimited pieces:

1. The original software application identifier (value of
XQAID).

2. The DUZ of the alert creator.

3. The VA FileMan date and time the alert was created.

Example

>D USER^XQALERT("ZZALRT",ZZDUZ,2900101)

>ZW ZZALRT
ZZALRT=1
ZZLART(1)="I Test Message^NO-ID;92;2940729.10312"

Alerts: Developer Tools

42 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

3.4.19 FORWARD^XQALFWD(): Forward Alerts

Reference Type Supported

Category Alerts

IA # 3009

Description This API can be used to forward alerts (in most cases, for the current user only). It
is a silent (no screen input or output) API, and so can be used for windowed
applications.

Format FORWARD^XQALFWD([.]alerts,[.]users,type[,comment])

Input Parameters [.]alerts: (required) Array of alerts to be forwarded, each identified by its full
alert identifier (the value of the ALERT ID field in the ALERT
DATE/TIME multiple of the current user's entry in the ALERT file
(#8992)). Use the $$SETUP1^XQALERT: Send Alerts API to
obtain alert identifiers for a user's current open alerts.

If only a single alert is to be forwarded, only the top node must be set
(set it to the alert identifier of the alert to forward, and pass by
value). If there are multiple alerts to forward, the value of each entry
in the array should be one of the desired alert identifier. For
example:

A6AALRT(1)="NO-ID;92;2941215.100432"

A6AALRT(2)="NO-ID;161;2941220.111907"

A6AALRT(3)="NO-ID;161;2941220.132401"

If using an array, the array must be passed by reference in the
parameter list.

 [.]users: (required) Users to forward alert to. For forwarding as an alert or as a
mail message (when the type parameter is A or M), the input
parameter can specify one or more users, and/or mail groups. For
users, specify by IEN (in the NEW PERSON file [#200]). You do
not need to precede the user's IEN with an accent grave. For mail
groups, specify in format G.MAILGROUP.

If there is only a single user or mail group, just set the top node of
the array to that value, and pass it by value. If there are multiple
values to be passed, pass them as the values of numerically
subscripted array nodes (and pass the array by reference). For
example:

A6AUSER(1)="G.MAS CLERKS"

A6AUSER(2)="G.MAS OVERNIGHT"

 Alerts: Developer Tools

July 1995 Kernel 43
Revised September 2011 Developer's Guide
 Version 8.0

For forwarding to a printer (when the type parameter is P), there
should be only a single value specifying the desired entry in the
DEVICE file (#3.5). You can specify the device either by name or by
Internal Entry Number (IEN). If specifying by IEN, precede the IEN
with an accent grave (e.g., `202).

 type: (required) Indicates the method of forwarding desired. The options
are the single characters "A" (to forward as an Alert), "M" (to
forward as a Mail Message), and "P" (to print a copy of the alert). If
the value passed is not either A, M, or P, then no action will be
taken.

 comment: (optional) A character string to use as a comment to accompany the
alert when it is forwarded.

Output none

Example

Figure 7. FORWARD^XQALFWD: Example

; get open alerts for current user
K A6AALRT D USER^XQALERT("A6AALRT")
;
I +A6AALRT D ; if any current alerts...
.; loop through A6AALRT array, parse alert id for each open alert
.K A6AALRT1 S A6ASUB="",A6AI=0
.F S A6ASUB=$O(A6AALRT(A6ASUB)) Q:'$L(A6ASUB) D
..S A6AI=A6AI+1,A6AALRT1(A6AI)=$P(A6AALRT(A6ASUB),"^",2)
.;
.;forward open alerts of current user to MAS CLERKS mail group
.K A6AUSER S A6AUSER="G.MAS CLERKS"
.D FORWARD^XQALFWD(.A6AALRT1,A6AUSER,"A","Forwarded Alert")
Q

3.4.20 $$CURRSURO^XQALSURO(): Get Current Surrogate for
Alerts

Reference Type Supported

Category Alerts

IA # 2790

Description This extrinsic function obtains the current surrogate for alerts (if any for the user
with DUZ specified by the xqauser input parameter.

Format $$CURRSURO^XQALSURO(xqauser)

Alerts: Developer Tools

44 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters xqauser: (required) This is the Internal Entry Number (IEN, DUZ value) in
the NEW PERSON file (#200) for the specified user with the
surrogate.

Output returns: Returns:
• DUZ—Internal Entry Number (IEN) of the surrogate.

• -1—if there is no surrogate specified.

3.4.21 $$GETSURO^XQALSURO(): Get Current Surrogate
Information

Reference Type Supported

Category Alerts

IA # 3213

Description This extrinsic function returns the following string of information on the current
surrogate for the user with XQAUSER as his or her Internal Entry Number (IEN) in
the NEW PERSON file (#200):

ien^NAME^FM_STARTDATE^FM_ENDDATE

If there is no surrogate, the result will be:

^^^

If either of the start or end dates and times is not specified, a null value is returned
for that piece of the return string.

 REF: For a description of each piece of information separated by the caret
("^"), see the "Output" section below.

Format $$GETSURO^XQALSURO(xqauser)

Input Parameters xqauser: (required) This is the Internal Entry Number (IEN) in the NEW
PERSON file (#200) of the user for whom the alert surrogate
information is to be returned.

 Alerts: Developer Tools

July 1995 Kernel 45
Revised September 2011 Developer's Guide
 Version 8.0

Output returns: Returns the following string of information, each piece separated
by a caret ("^"):

• IEN^NAME^FM_STARTDATE^FM_ENDDATE

• IEN—Internal Entry Number (IEN) of the SURROGATE
in the NEW PERSON file (#200)

• NAME—Contents of the .01 field for the SURROGATE.

• FM_STARTDATE—Starting date/time for the
SURROGATE in internal VA FileMan format

• FM_ENDDATE—Ending date/time for the SURROGATE
in internal VA FileMan format

Example

>S X=$$GETSURO^XQALSURO(124)

>W X

2327^XUUSER,FOUR^3000929.1630^3001006.0800

This indicates that user #2327 (Four Xuuser) will become active as surrogate at 4:30 PM 9/29/00 and will
remain surrogate until 8:00 am on 10/06/00.

Alerts: Developer Tools

46 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

3.4.22 REMVSURO^XQALSURO(): Remove Surrogates for Alerts

Reference Type Supported

Category Alerts

IA # 2790

Description This API removes any surrogates for alerts for the specified user.

Format REMVSURO^XQALSURO(xqauser[,.xqalsuro][,.xqalstrt])

Input Parameters xqauser: (required) This is the Internal Entry Number (IEN, DUZ value) in
the NEW PERSON file (#200) for the specified user.

 xqalsuro: (optional) IEN of user in NEW PERSON file (#200). If passed,
only the user who is passed will be removed from the list of
surrogates. If not passed, only the current surrogate will be
removed (if any).

 xqalstrt: (optional) If passed, the surrogate will be removed only from the
start date indicated. If not passed, the surrogate will be removed
starting from the date of the current surrogate (if any). If there is no
current surrogate, no entries will be removed.

Output none

 Alerts: Developer Tools

July 1995 Kernel 47
Revised September 2011 Developer's Guide
 Version 8.0

3.4.23 SETSURO1^XQALSURO(): Establish a Surrogate for Alerts

Reference Type Supported

Category Alerts

IA # 3213

Description This API establishes a surrogate for alerts. It should be used instead of the
SETSURO^XQALSURO API. The SETSURO1^XQALSURO API also tests for
cyclic relationships (such that the user eventually would become the surrogate).
SETSURO1 does these tests and therefore has the possibility of failure. It returns
either of the following values:

• IEN (value > 0; True)—Surrogate was created successfully.

• Text String (False)—Text explaining why the surrogate was not created.

Previously, the SETSURO^XQALSURO API returned no value and, as long as
both a user and surrogate were specified, would simply store the values. This left
open the possibility that the user was specified as the surrogate or that a chain of
surrogates ended up pointing again at the user, cases that could result in a very
tight, non-ending, loop being generated if an alert was sent. These possibilities have
been tested for in the interactive specification of surrogates, and is tested for non-
interactive usage in the SETSURO1^XQALSURO API.

 NOTE: The SETSURO1^XQALSURO API should be used instead of the
SETSURO^XQALSURO API (i.e., IA# 2790).

Format SETSURO1^XQALSURO(xqauser,xqalsuro[,xqalstrt][,xqalend])

Input Parameters xqauser: (required) User's DUZ number (i.e., Internal Entry Number in the
NEW PERSON file [#200]) for which the surrogate should act in
receiving alerts.

 xqalsuro: (required) Surrogate's DUZ number (i.e., Internal Entry Number in
the NEW PERSON file [#200]) for the user who will receive and
process alerts for XQAUSER.

 xqalstrt: (optional) The start date/time or the surrogate activity, in VA
FileMan internal format. If the start date/time is not specified, the
surrogate relationship begins immediately.

 xqalend: (optional) The end date/time for the end of the surrogate
relationship, in VA FileMan internal format. If the end date/time is
not specified, the surrogate remains active until another surrogate
is specified or the surrogate is deleted.

Alerts: Developer Tools

48 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Output returns: Returns:
• IEN (value > 0; True)—Surrogate was created

successfully.

• Text String (False)—Text explaining why the surrogate
was not created.

Example

>S XQAUSER=DUZ

>S XQASURRO=45

>S XQASTART=3001004.1630

>S XQAEND=3001008.1630

>S X=$$SETSURO1^XQALSURO(XQAUSER,XQASURRO,XQASTART,XQAEND)

>I 'X W !,"Could not activate surrogate",!,?5,X Q

3.4.24 SUROFOR^XQALSURO(): Return a Surrogate's List of
Users

Reference Type Supported

Category Alerts

IA # 3213

Description This API returns a list of users for which the user, as defined by the xqauser input
parameter, is acting as a surrogate.

Format SUROFOR^XQALSURO(xqauser,.xqalist)

Input Parameters xqauser: (required) User's DUZ number (i.e., Internal Entry Number in the
NEW PERSON file [#200]) for which the surrogate should act in
receiving alerts.

 xqalist: (required) Passed by reference; it contains the name of the output
array.

 Alerts: Developer Tools

July 1995 Kernel 49
Revised September 2011 Developer's Guide
 Version 8.0

Output xqalist: The output contains the list of users for whom the specified user is
currently acting as a surrogate. The data in the list includes the:

• User's internal entry number (DUZ)

• User's name

• Start and end dates for the surrogate period

Set to a number equal to the count of the total number of surrogates
returned in the list:

XQALIST(n)

Where n is a sequential integer starting with 1. Each entry in the
array contains IEN^Name^Start Date/Time^End Date/Time.

Example

>S XQAUSER=DUZ
>D SUROFOR^XQALSURO(XQAUSER,.USERLIST)

Returns:

USERLIST=count
USERLIST(1)=IEN2^NEWPERSON,USER2^STARTDATETIME^ENDDATETIME
USERLIST(2)=3^NAME,USER3^3050407.1227^3050406

>ZW USERLIST
OUTPUT=2
OUTPUT(1)="5206652^PERSON,FIRST^3071113.141547^3071113.142"
OUTPUT(2)="5206656^PERSON,SECOND^3071114^3071114.08"

3.4.25 SUROLIST^XQALSURO(): List Surrogates for a User

Reference Type Supported

Category Alerts

IA # 3213

Description This API returns a list of current or future surrogates for the user that is defined by
the xqauser input parameter. It also sets the following surrogate fields in the
ALERT file (#8992) if there is a current surrogate for this user:

• SURROGATE FOR ALERTS (#.02)

• SURROGATE START DATE/TIME (#.03)

• SURROGATE END DATE/TIME (#.04)

Format SUROLIST^XQALSURO(xqauser,.xqalist)

Alerts: Developer Tools

50 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters xqauser: (required) This is the Internal Entry Number (IEN, DUZ value) in
the NEW PERSON file (#200) for the specified user.

 xqalist: (required) Passed by reference; it contains the name of the output
array.

Output xqalist: The output contains the list of current and future surrogates for the
specified user. The data in the list includes the following:

• User's internal entry number (DUZ)

• User's name

• Start and end dates for the surrogate period

Set to a number equal to the count of the total number of surrogates
returned in the list:

XQALIST(n)

Where n is a sequential integer starting with 1. Each entry in the
array contains IEN^Name^Start Date/Time^End Date/Time.

Example

>D SUROLIST^XQALSURO(duz,.output)

>ZW OUTPUT
OUTPUT=2
OUTPUT(1)="5206652^PERSON,FIRST^3071113.141547^3071113.142"
OUTPUT(2)="5206656^PERSON,SECOND^3071114^3071114.08"

July 1995 Kernel 51
Revised September 2011 Developer's Guide
 Version 8.0

4 Common Services: Developer Tools

4.1 Application Program Interface (API)

The following are Common Services APIs available for developers. These APIs are described below.

4.1.1 $$IEN^XUPS(): Get IEN Using VPID in File #200

Reference Type Supported

Category Common Services

IA # 4574

Description This extrinsic function accepts the VA Person ID (VPID) of an entry in the
NEW PERSON file (#200) and returns the Internal Entry Number (IEN)/DUZ.
This API was added with Kernel Patch XU*8.0*309.

Format $$IEN^XUPS(vpid)

Input Parameters vpid: (required) The VA Person ID (VPID).

Output returns: Returns the Internal Entry Number (IEN)/DUZ of the NEW
PERSON file (#200).

4.1.2 $$VPID^XUPS(): Get VPID Using IEN in File #200

Reference Type Supported

Category Common Services

IA # 4574

Description This extrinsic function accepts the internal entry number (IEN)/DUZ of an entry
in the NEW PERSON file (#200) and returns the VA Person ID (VPID) for the
selected user. This API was added with Kernel Patch XU*8.0*309.

Format $$VPID^XUPS(duz)

Input Parameters duz: (required) The Internal Entry Number (IEN) in the NEW
PERSON file (#200)

Output returns: Returns the VA Person ID (VPID) for the entry found in the
NEW PERSON file (#200).

Common Services: Developer Tools

52 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

4.1.3 EN1^XUPSQRY(): Query New Person File

Reference Type Controlled Subscription

Category Common Services

IA # 4575

Description This API is used by the XUPS PERSONQUERY RPC. This API provides the
functionality to query the NEW PERSON file (#200). The calling application
can query the NEW PERSON file (#200) by using either the VA Person ID
(VPID) of the requested entry or part or all of a last name. Other optional
parameters can be passed to the call as additional filters. This API was added
with Kernel Patch XU*8.0*325.

Format EN1^XUPSQRY(result,xupsvpid,xupslnam[,xupsfnam][,xupsssn][,xupspro
v][,xupsstn][,xupsmnm][,xupsdate])

Input Parameters result: (required) Name of the subscripted return array. In every API
that is used as an RPC, the first parameter is the return array.

 xupsvid: (required) This parameter contains the VPID for the requested
user. Either the VPID or last name is required.

 xupslnam: (required) This parameter contains all or part of a last name. A
last name or VPID are required input variables.

 xupsfnam: (optional) This parameter is set to null or the full or partial first
name.

 xupsssn: (optional) This parameter is set to null or contains the 9 digits of
the Social Security Number (SSN).

 xupsprov: (optional) This parameter is set to null or "P". If set to "P", it
screens for providers (person with active user class).

 xupsstn: (optional) This parameter is set to null or the Station Number.

 xupsmnm: (optional) This parameter is set to the maximum number of
entries (1-50) to be returned. Defaults to 50.

 xupsdate: (optional) This parameter contains the date used to determine if
person class is active. Defaults to current date.

 Common Services: Developer Tools

July 1995 Kernel 53
Revised September 2011 Developer's Guide
 Version 8.0

Output Parameters result(): Returns a subscripted output array of the input value/subscripted
array (i.e. list) with the following possible values shown:

^TMP($J,"XUPSQRY",1)—1 if found, 0 if not found
^TMP($J,"XUPSQRY",n,0)—VPID^IEN^LastName~First
Name~Middle Name^SSN^DOB^SEX^
^TMP($J,"XUPSQRY",n,1)—Provider Type^
^TMP($J,"XUPSQRY",n,2)—Provider Classification^
^TMP($J,"XUPSQRY",n,3)—Provider Area of
Specialization^
^TMP($J,"XUPSQRY",n,4)—VA CODE^X12 CODE^Specialty
Code^end-of-record character "|"|

Common Services: Developer Tools

54 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

July 1995 Kernel 55
Revised September 2011 Developer's Guide
 Version 8.0

5 Device Handler: Developer Tools

The Device Handler provides a common user interface and developer API for using output devices. This
chapter describes the Device Handler's developer API.

The ZIS* series of routines becomes the Device Handler when the Kernel installation process (the
ZTMGRSET routine) saves them in the Manager's account as %ZIS* routines. A separate set of ZIS*
routines is distributed for each operating system.

NOTE: As of Kernel Patch XU*8.0*546 (and Informational Patch XU*8.0*556), Class 3
routines that are not written to permit queuing will no longer output to devices where the
QUEUING field (#5.5) in the DEVICE file (#3.5) is set to FORCED. Sites that have completed
the Linux upgrade checklist, should have already addressed this issue.

For more specific details, please refer to Kernel Patches XU*8.0*546 and 556.

5.1 Application Program Interface (API)

Several APIs are available for developers to work with devices. These APIs are described below.

5.1.1 DEVICE^XUDHGUI(): GUI Device Lookup

Reference Type Supported

Category Device Handler

IA # 3771

Description This API allows VistA Graphical User Interface (GUI)-based applications to look
up devices. This API retrieves the first 20 devices that meet the specifications
passed. This API was made available with Kernel Patch XU*8.0*220.

Format DEVICE^XUDHGUI(.list,starting_point[,direction]
[,right_margin_range])

Device Handler: Developer Tools

56 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters .list: (required) Named array to store output.

 starting_point: (required) This parameter indicates where to start the
$ORDERing of the Global. "P" will only return devices
whose name starts with "P"; "P*" will return up to 20
devices the first starting with "P".

 direction: (optional) This parameter indicates whether to $ORDER
up or down from the starting_point parameter. The
acceptable values are 1 and -1:

• 1—Up.

• -1—Down.

 right_margin_range: (optional) This parameter is used to specify a width range
of devices:

• Exact Width (e.g., "132-132")

• At Least Width (e.g., "132")

• Range (e.g., "80-132")

Output Parameters .list: The data is returned in this named array. Data is returned
in the following format:

IEN^NAME^DISPLAY NAME^LOCATION^RIGHT
MARGIN^PAGE LENGTH

Example 1

In this example, we want to store/display a list of all devices that begin with "P" in an array
(e.g., DEVICES), without passing a direction or right margin range parameter:

>K DEVICES
>D DEVICE^XUDHGUI(.DEVICES,"P")

The DEVICES array displays the following results:

>ZW DEVICES
DEVICES(1)=358^P-MESSAGE-HFS^P-MESSAGE-HFS^HFS FILE=>MESSAGE^255^256
DEVICES(2)=348^P-MESSAGE-HFS-ONT^P-MESSAGE-HFS-ONT^HFS FILE==> MESSAGE^80^999
DEVICES(3)=274^P-MESSAGE-HFS-VXD^P-MESSAGE-HFS-VXD^HFS FILE==> MESSAGE^80^256
DEVICES(4)=292^P-RESMON^P-RESMON^IRM^132^64
DEVICES(5)=310^P-WINDOC^P-WINDOC^MWAPI WINDOW DOCUMENT BOX^80^256

 Device Handler: Developer Tools

July 1995 Kernel 57
Revised September 2011 Developer's Guide
 Version 8.0

Example 2

In this example, we want to store/display a list of all devices that begin with "P" in an array
(e.g., DEVICES), without passing a direction parameter but including those devices with a right margin
of an exact width of 80:

>K DEVICES
>D DEVICE^XUDHGUI(.DEVICES,"P",,"80-80")

The DEVICES array displays the following results:

>ZW DEVICES
DEVICES(1)=348^P-MESSAGE-HFS-ONT^P-MESSAGE-HFS-ONT^HFS FILE==> MESSAGE^80^999
DEVICES(2)=274^P-MESSAGE-HFS-VXD^P-MESSAGE-HFS-VXD^HFS FILE==> MESSAGE^80^256
DEVICES(3)=310^P-WINDOC^P-WINDOC^MWAPI WINDOW DOCUMENT BOX^80^256

Example 3

In this example, we want to store/display a list of all devices that begin with "P" in an array
(e.g., DEVICES), without passing a direction parameter but including those devices with a right margin
width range of 80-132:

>K DEVICES
>D DEVICE^XUDHGUI(.DEVICES,"P",,"80-132")

The DEVICES array displays the following results:

>ZW DEVICES
DEVICES(1)=348^P-MESSAGE-HFS-ONT^P-MESSAGE-HFS-ONT^HFS FILE==> MESSAGE^80^999
DEVICES(2)=274^P-MESSAGE-HFS-VXD^P-MESSAGE-HFS-VXD^HFS FILE==> MESSAGE^80^256
DEVICES(3)=292^P-RESMON^P-RESMON^IRM^132^64
DEVICES(4)=310^P-WINDOC^P-WINDOC^MWAPI WINDOW DOCUMENT BOX^80^256

Device Handler: Developer Tools

58 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 4

In this example, we want to store/display a list of up to 20 devices, the first of which starts with "P," in an
array (e.g., DEVICES), without passing a direction or right margin range parameter:

>K DEVICES
>D DEVICE^XUDHGUI(.DEVICES,"P*")

The DEVICES array displays the following results:

>ZW DEVICES
DEVICES(1)=358^P-MESSAGE-HFS^P-MESSAGE-HFS^HFS FILE=>MESSAGE^255^256
DEVICES(2)=348^P-MESSAGE-HFS-ONT^P-MESSAGE-HFS-ONT^HFS FILE==> MESSAGE^80^999
DEVICES(3)=274^P-MESSAGE-HFS-VXD^P-MESSAGE-HFS-VXD^HFS FILE==> MESSAGE^80^256
DEVICES(4)=292^P-RESMON^P-RESMON^IRM^132^64
DEVICES(5)=310^P-WINDOC^P-WINDOC^MWAPI WINDOW DOCUMENT BOX^80^256
DEVICES(6)=202^C6_SDD_MX3 ROUTINE^ROUTINE <C6_SDD_MX3 ROUTINE>^Next to Jean's
Office^80^59
DEVICES(7)=428^SDD DUPLEX P10^SDD DUPLEX P10^SSD DUPLEX PRINTER NEXT TO JACK^80^60
DEVICES(8)=429^SDD P10^SDD P10^Printer next to Jack.^80^60
DEVICES(9)=329^C6_SDD_MX3 P10^SS10 <C6_SDD_MX3 P10>^Near Jean's Office^80^59
DEVICES(10)=330^C6_SDD_MX3 P12^SS12 <C6_SDD_MX3 P12>^Near Jean's Office^96^57
DEVICES(11)=331^C6_SDD_MX3 P16^SS16 <C6_SDD_MX3 P16>^Near Jean's Office^255^58
DEVICES(12)=349^C6_SDD_MX3 P16P8L^SS16P8L <C6_SDD_MX3 P16P8L>^Near Jean's
Office^117^79
DEVICES(13)=202^C6_SDD_MX3 ROUTINE^SSR <C6_SDD_MX3 ROUTINE>^Next to Jean's
Office^80^59
DEVICES(14)=427^SUP$PRT TEST^SUP$PRT TEST^DISK FILE^132^58
DEVICES(15)=283^SYS$INPUT^SYS$INPUT^SYS$INPUT;^132^64
DEVICES(16)=198^VMS FILE^VMS FILE^DISK^80^64
DEVICES(17)=349^C6_SDD_MX3 P16P8L^VPM <C6_SDD_MX3 P16P8L>^Near Jean's Office^117^79
DEVICES(18)=291^VTB255^VTB255^RMS FILE^255^99999
DEVICES(19)=288^ZBROWSE^ZBROWSE^RMS FILE^255^99999

5.1.2 $$RES^XUDHSET(): Set Up Resource Device

Reference Type Supported

Category Device Handler

IA # 2232

Description This extrinsic function sets up a Resource device. It returns:
• Error: -1^text

• Successful: IEN^device name

Format $$RES^XUDHSET(device_name[,resource_name],slot_count,description,
subtype)

 Device Handler: Developer Tools

July 1995 Kernel 59
Revised September 2011 Developer's Guide
 Version 8.0

Input Parameters device_name: (required) The name of the resource device.

 resource_name: (optional) The resource name if not the same as the device name.

 slot_count: (required) The number of concurrent jobs that can use this
device. It defaults to 1.

 description: (required) The device description. It defaults to "Resource
Device".

 subtype: (required) The subtype to use. It defaults to P-OTHER.

Output returns: Returns:
• Error: -1^text

• Successful: IEN^device name

5.1.3 ^%ZIS: Standard Device Call

Reference Type Supported

Category Device Handler

IA # 10086

Description This API allows you to select a device.

All input variables are optional. Non-namespaced variables that are defined and
later KILLed by ^%ZIS include: %A, %E, %H, %X, and %Y.

If device selection is successful, characteristics of the output device are returned
in a number of different variables. If selection is unsuccessful, ^%ZIS returns
the POP output variable with a positive number. So, checks for an unsuccessful
device selection should be based on the POP input variable as a positive
number.

Device selection can be done as shown in the example that follows.

 REF: For a discussion of form feeds, see the "Form Feeds" topic in the
"Special Device Issues" chapter in this manual.

Format ^%ZIS

Input Variables %ZIS (optional) The %ZIS input variable is defined as a
string containing one or more single-character flags that
act as input specifications. The functions of each of the
flags that can be included in the string are described
below. If the %ZIS input variable contains:

Device Handler: Developer Tools

60 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

• M—RIGHT MARGIN: The user will be
prompted with the right margin query.

• N—NO OPENING: The Device Handler will
return the characteristics of the selected device
without issuing the OPEN command to open
the device.

• P (obsolete)—CLOSEST PRINTER: The
closest printer, if one has been defined in the
DEVICE file (#3.5), will be presented at the
default response to the device prompt.

• Q—QUEUING ALLOWED: The job can be
queued to run later. There is no automatic link
between the Device Handler and the TaskMan.
If queuing is allowed, just before the Device
Handler is called, the application routine must
set the %ZIS input variable to a string that
includes the letter "Q". For example:

>S %ZIS="MQ" D ^%ZIS

If the user selects queuing, the Device Handler
will define the IO("Q") input variable as an
output variable, to indicate that queuing was
selected. If queuing is selected, the application
should set the needed TaskMan variables and
call the TaskMan interface routine
^%ZTLOAD.

 REF: For further details on how to call
the TaskMan interface, see the
"TaskMan: Developer Tools" chapter in
this manual.

• 0—DON'T USE IO(0): The Device Handler
will not attempt to use IO(0), the home device
at the time of the call to ^%ZIS.

• D—DIRECT PRINTING: If the selected device
is unavailable and belongs to a Hunt Group, the
Device Handler will not route the output to
another hunt group member. Unavailability will
simply be handled in the usual way (by
returning a positive number in POP).

• L—RESET IO("ZIO"): If %ZIS contains L, the
IO("ZIO") output variable will be reset with the
static physical port name (e.g., the port name
from a Terminal Server). It is useful when the
$I of the M implementation does not represent
a physical port name.

 Device Handler: Developer Tools

July 1995 Kernel 61
Revised September 2011 Developer's Guide
 Version 8.0

 %ZIS("A"): (optional) Use to replace the default device prompt.

 %ZIS("B"): (optional) If %ZIS is defined, HOME is presented as
the default response to the device prompt. Use
%ZIS("B") to replace this default with another
response.

>S %ZIS("B")="" (If you do not want to display
any default response.)

 %ZIS("HFSMODE"): (optional) Use to pass the Host file access mode to
%ZIS. A value of "RW", which may not work in all
environments, represents READ/WRITE access, "R"
represents READ Only access, "W" represents WRITE
access, and "A" represents Append mode. For example:

>S %ZIS("HFSMODE")="R"

 %ZIS("HFSNAME"): (optional) Use to pass the name of a Host file to %ZIS.
For example:

>S %ZIS("HFSNAME")="MYFILE.DAT"

 %ZIS("IOPAR"): (optional) Use this input variable to pass open
command variables to the Device Handler. If defined,
the value of this input variable is used instead of any
value specified in the OPEN PARAMETERS field of
the DEVICE file (#3.5). The Device Handler uses the
data from either this input variable or from the OPEN
PARAMETERS field whether or not the device type is
TRM.

On some M systems, Right Margin is an OPEN
PARAMETERS. Therefore, any value for Right Margin
in the DEVICE file (#3.5), TERMINAL TYPE file
(#3.2), or user response can be ignored when this input
variable is used.

To set OPEN PARAMETERS for the tape drive device,
a device with $I=47 and device name of MAGTAPE,
the following code could be used:

>S %ZIS("IOPAR")="(""VAL4"":0:2048)"
>S IOP="MAGTAPE" D ^%ZIS

 NOTE: The specific variables you pass may not
be functional for all operating systems. Use of
this feature should be limited to local
development efforts.

Device Handler: Developer Tools

62 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

 %ZIS("IOUPAR"): (optional) Use this input variable in the same way as
%ZIS("IOPAR"), but for variables to the USE (rather
than OPEN) command. Any USE PARAMETERS
specified in the DEVICE file (#3.5) will be overridden.
For example:

>S %ZIS("IOUPAR")="NOECHO"
>S IOP="C72" D ^%ZIS

 %ZIS("S"): (optional) Use this input variable to specify a device
selection screen. The string of M code this input
variable is set to should contain an IF statement to set
the value of $T. Those entries that the IF sets as $T=0
will not be displayed or selectable. Like comparable
VA FileMan screens, %ZIS("S") should be set to sort
on nodes and pieces, without using input variables like
ION or IOT. As with VA FileMan, the variable "Y" can
be used in the screen to refer to the Internal Entry
Number (IEN) of the device. Also, the M naked
indicator is at the global level ^%ZIS(1,Y,0). An
example to limit device selection to spool device types
(SPL) only might be coded as follows:

>S %ZIS("S")="I $G(^(""TYPE""))=""SPL"""

 Device Handler: Developer Tools

July 1995 Kernel 63
Revised September 2011 Developer's Guide
 Version 8.0

 IOP: (optional) Use IOP to specify the output device. There
is no user interaction when IOP is defined to specify an
output device; the device name (.01 field) is the usual
value of IOP. You can also set IOP to Q and P. (The
value of IOP must not be $I).

You can request queuing by setting IOP="Q". The user
is then asked to specify a device for queuing. To pre-
select the device, set IOP="Q;device"; the device
specified after the semicolon is selected and IO("Q") is
set.

You can request the closest printer, as specified in the
DEVICE file (#3.5), by setting IOP="P" or IOP="p". If
there is not a closest printer associated with the home
device at the time of the call, device selection fails and
POP is returned with a positive value.

You can now also pass the Internal Entry Number
(IEN) of the desired device through IOP. For instance,
to select a device with an IEN of 202, you can set IOP
to an accent grave character followed by the IEN value
of 202 before the call to ^%ZIS. The following example
illustrates the above call:

>S IOP="`202" D ^%ZIS

Using the IEN rather than device name can be useful
when applications have the desired device stored as a
pointer to the DEVICE file (#3.5) rather than as FREE
TEXT.

Device Handler: Developer Tools

64 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Output Variables IO: If a device is successfully opened, IO is returned with
the device $I value of the selected device. If an
abnormal exit occurs, POP is returned with a positive
numeric value and IO is returned as NULL.

 CAUTION: Because the returned value of IO
can be changed, since December 1990,
developers have been advised to check for
a positive value in POP rather for IO equal
to NULL when determining if an abnormal
exit occurred.

 IO(0): HOME DEVICE—Contains the $I value of the home
device at the time of the call to the Device Handler.
Since it is defined at the time of the call, there is
obviously no restoration after the call.

 IO(1,$I): OPENED DEVICES—This array contains a list of
devices opened for the current job by the Device
Handler. The first subscript of this array is "1". The
second subscript is the $I value of the device opened.
The data value is NULL. The Device Handler sets,
KILLs, and checks the existence of IO(1,IO).

 NOTE: This array should not be altered by
applications outside of Kernel.

 IO("CLNM") This variable holds the name of the remote system. It is
defined via the RPC Broker.

 IO("CLOSE") Device closed.

 IO("DOC"): SPOOL DOCUMENT NAME—If output has been sent
to the spool device, this output variable holds the name
of the spool document that was selected.

 NOTE: This variable is KILLed when a call is
made to ^%ZIS or HOME^%ZIS.

 Device Handler: Developer Tools

July 1995 Kernel 65
Revised September 2011 Developer's Guide
 Version 8.0

 IO("HFSIO"): HOST FILE DEVICE IO—This is defined by the
Device Handler when a user queues to a file at the host
operating system level (of a layered system) and selects
a file name other than the default. This Host file system
device input variable should have the same value as that
stored in the IO output variable. If IO("HFSIO") exists
when the TaskMan interface is called, the interface will
save IO("HFSIO") and IOPAR so that the scheduled
task opens the appropriate Host file.

 NOTE: This variable is KILLed when a call is
made to ^%ZIS or HOME^%ZIS.

 IO("IP") This variable holds the Internet Protocol (IP) of the
remote system.

 IO("P") This variable holds data about the new syntax
requested.

 IO("Q"): OUTPUT WAS QUEUED—If queuing is allowed
(%ZIS["Q") and an output device for queuing is
selected, this output variable is returned with a value of
1: IO("Q")=1. Otherwise, it will be undefined.

 NOTE: This variable is KILLed when a call is
made to ^%ZIS or HOME^%ZIS.

 IO("S"): SLAVED DEVICE—When a slaved printer is selected,
the Device Handler uses this output variable to save the
subtype specification for the home device so that the
appropriate close printer logic can be executed with X
^%ZIS("C").

 IO("SPOOL"): SPOOLER WAS USED—The existence of this output
variable indicates that output was sent to the spool
device. It will exist temporarily, during spooling, and is
KILLed upon normal exit.

 NOTE: This variable is KILLed when a call is
made to ^%ZIS or HOME^%ZIS.

 IO("T") TaskMan call.

 IO("ZIO"): TERMINAL SERVER PORT—If %ZIS["L", both
physical port and server names are returned in
IO("ZIO") under Caché. This information is useful on
M implementations where the value of $I does not
represent a port on a Terminal Server.

Device Handler: Developer Tools

66 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

 IOBS: BACKSPACE—The code for backspace, usually
$C(8), is returned in this output variable. This code is
used to WRITE a backspace with W @IOBS.

 IOCPU: CPU INDICATOR—If the selected device is on
another CPU, this output variable is returned with the
other CPU reference, obtained from the VOLUME SET
(CPU) field in the DEVICE file (#3.5). The IOCPU
input variable is used by TaskMan as an indicator of
where the job should ultimately be run.

 IOF: FORM FEED—This output variable is used to issue a
form feed when writing its value with indirection; that
is, W @IOF.

 IOHG: HUNT GROUP—If the selected device is a member of
a hunt group, this variable returns the hunt group name.
If not, IOHG is returned as NULL.

 IOM: RIGHT MARGIN—The right margin is commonly set
to either 80 or 132 columns.

 ION: DEVICE NAME—This variable returns the device
NAME (.01 field) as recorded in the DEVICE file
(#3.5).

 IOPAR: OPEN PARAMETERS—This variable returns any
OPEN PARAMETERS that may have been defined for
the selected device, for example, a magnetic tape drive.
If the OPEN PARAMETERS input variable has not
been defined, IOPAR is returned as NULL.

 NOTE: When a device is closed, this variable
gets set to null.

 IOUPAR: USE PARAMETERS—This variable returns any USE
PARAMETERS that may have been defined for the
selected device. If the USE PARAMETERS input
variable has not been defined, IOUPAR is returned as
NULL.

 NOTE: When a device is closed, this variable
gets set to null.

 IOS: DEVICE NUMBER—The DEVICE file (#3.5) Internal
Entry Number (IEN) for the selected device.

 Device Handler: Developer Tools

July 1995 Kernel 67
Revised September 2011 Developer's Guide
 Version 8.0

 IOSL: SCREEN/PAGE LENGTH—The number of lines per
screen or page is defined with this variable. The page
length of a printing device is usually 66 lines. The
screen length of a display terminal is usually 24 lines.

 IOST: SUBTYPE NAME—This variable returns the NAME
(.01 field) of the selected device's subtype as recorded
in the TERMINAL TYPE file (#3.2).

 IOST(0): SUBTYPE NUMBER—This variable returns the
Internal Entry Number (IEN) of the selected device's
subtype as recorded in the TERMINAL TYPE file
(#3.2).

 IOT: TYPE OF DEVICE—The DEVICE file (#3.5) holds an
indication of Type for all devices. IOT returns the value
of the device type (e.g., TRM for terminal, VTRM for
virtual terminal, and HFS for Host File Server).

 IOXY: CURSOR POSITIONING—This output variable
returns the executable M code that allows cursor
positioning, given the input variables DX and DY. The
column position is passed in DX and the row position is
passed in DY.

 NOTE: The system special variables $X and $Y
are not necessarily updated.

Device Handler: Developer Tools

68 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

 POP: EXIT STATUS—When the Device Handler is called,
POP is the output variable that indicates the outcome
status. If device selection is successful, POP is returned
with a value of zero (POP=0). Abnormal exit returns a
positive number in the POP variable.

There are three general conditions for abnormal exit
upon which the POP output variable is returned as
positive:

• The first case is one in which a device is not
selected.

• The second concerns unavailable devices.

• The third situation arises when a device is
identified but is unknown to the system.

The first condition of no device selection will be met if
the user types a caret ("^") or times out at the device
prompt. Exceeding the TIMED READ at the right
margin or address/variables prompts will have the same
result.

The second condition, unavailability, is met if the
Device Handler cannot open the selected device. If the
device is a member of a hunt group, all members of the
group may be busy. The selected device may also have
existed on another computer but queuing was not
requested or perhaps not permitted (%ZIS had not
contained Q).

Finally, the selected device may not exist in the
DEVICE file (#3.5). A device name may have been
used that is not found as a .01 field entry. If the device
is selected with P for the closest printer, the CLOSEST
PRINTER field in the DEVICE file (#3.5) may be
NULL.

If the exit is abnormal, returning POP with a positive
value, the following output variables will be restored
with their values before the call to the Device Handler
(before D ^%ZIS): ION, IOF, IOSL, IOBS, IOST(0),
IOST, IOPAR, IOUPAR, IOS, and IOCPU.

 NOTE: If IOF had been NULL before the call, it
is returned with the pound sign as its value
(IOF="#"). For backward compatibility, IO is
currently returned as NULL (IO=""). However,
the returned value of IO may change in future
Kernel versions.

 Device Handler: Developer Tools

July 1995 Kernel 69
Revised September 2011 Developer's Guide
 Version 8.0

Example 1

This following is a simplified example; the process of issuing form feeds is not shown.

Figure 8. ^%ZIS: Example

SAMPLE ;SAMPLE ROUTINE
 ;
 S %ZIS="QM" D ^%ZIS G EXIT:POP
 I $D(IO("Q")) D Q
 .S ZTRTN="DQ^SAMPLE",ZTDESC="Sample Test routine"
 .D ^%ZTLOAD D HOME^%ZIS K IO("Q") Q
DQ U IO W !,"THIS IS YOUR REPORT"
 W !,"LINE 2"
 W !,"LINE 3"
 D ^%ZISC
EXIT S:$D(ZTQUEUED) ZTREQ="@" K VAR1,VAR2,VAR3 Q

Example 2

The IOP variable can be defined to pass a string to the Device Handler so that no user interaction will be
required for device selection information. The following is the general format for defining IOP:

>S IOP=[Q[;]][DEVICE NAME][;SUBTYPE][;SPOOL DOCUMENT NAME][;RIGHT MARGIN[;PAGE
LENGTH]]

Example 3

If the SPOOL DOCUMENT NAME is included, then the RIGHT MARGIN and PAGE LENGTH are
ignored. Therefore, use the following format if a spool device is desired:

>S IOP=[Q[;]][DEVICE NAME][;SUBTYPE][;SPOOL DOCUMENT NAME]

Example 4

The following shows how a device named "RXPRINTER" in the DEVICE file (#3.5) can be opened
without user interaction:

>S IOP="RXPRINTER" D ^%ZIS Q:POP

Device Handler: Developer Tools

70 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 5

When setting the IOP variable, you can include the right margin:

>S IOP=ION_";"_IOM or S IOP=";120"

Or

>S IOP="RXPRINTER;120"

In this example, ION is the local variable that contains the name of the device to be opened and the IOM
variable contains the value of the desired right margin.

Example 6

The IOP variable can be set to FORCED queuing by starting the string with "Q":

>SET IOP="Q;"_ION_";"_IOM ... etc.

In order to force queuing and prompt the user for a device:

>SET IOP="Q" D ^%ZIS Q:POP

Example 7

A spool document name can be passed to the Device Handler:

>S IOP=DEVNAM_";"_IO("DOC") D ^%ZIS Q:POP

Or

>S IOP="SPOOL;"_IO("DOC")

Or

>S IOP=DEVNAM_";"_IOST_";"_IO("DOC")

Or

>S IOP="SPOOL;P-OTHER;MYDOC"

REF: For more information, see the "Spooling" chapter in the Kernel Systems Management
Guide.

In this example, DEVNAM contains the name of the device to be opened. IO("DOC") contains the spool
document name, and IOST contains the name of the desired subtype. "SPOOL" is the actual name of a
device entry that corresponds to the spool device, "P-OTHER" is the desired subtype, and "MYDOC" is
the name of the spool document.

 Device Handler: Developer Tools

July 1995 Kernel 71
Revised September 2011 Developer's Guide
 Version 8.0

Example 8

Finally, the IOP variable can be used to select a device by the device's Internal Entry Number (IEN). To
select a device with an IEN of 202, set IOP to an accent grave character followed by the IEN value of
202:

>S IOP="`202" D ^%ZIS

Multiple Devices and ^%ZIS

Beyond the home device, the ^%ZIS API is not designed to open more than one additional device at a
time.

For interactive users, the home device should already be open and defined in the Kernel environment.
^%ZIS should only be used to open one additional device at a time for interactive users. For a task, you
can use ^%ZIS to open one additional device beyond the task's assigned device.

Beginning with Kernel 8.0, there are three APIs to support using more than one additional device
simultaneously:

• OPEN^%ZISUTL(): Open Device with Handle

• USE^%ZISUTL(): Use Device Given a Handle

• CLOSE^%ZISUTL(): Close Device with Handle

These "multiple device" APIs are described later in this chapter.

Host Files and ^%ZIS

Although it is possible to use the ^%ZIS API to manipulate Host files, the Host file API (in ^%ZISH)
offers more robust Host file functionality.

REF: For more information on using the Host file API, see the "Host Files" chapter in this
manual.

Device Handler: Developer Tools

72 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

5.1.4 HLP1^%ZIS: Display Brief Device Help

Reference Type Supported

Category Device Handler

IA # 10086

Description This API displays brief help about device selection. There are no input parameters.

While invoking the Help Processor involves a straightforward call in the
production account (the EN^XQH or EN1^XQH calls), it is a more complex
matter in the Manager account where ^%ZIS resides. Hence, this call is provided.

Format HLP1^%ZIS

Input Parameters none

Output none

5.1.5 HLP2^%ZIS: Display Device Help Frames

Reference Type Supported

Category Device Handler

IA # 10086

Description This API allows you to display extended help about device selection . The Help
Processor is invoked to display a series of help frames. There are no input
parameters.

While invoking the Help Processor involves a straightforward call in the
production account (the ACTION^XQH4(): Print Help Frame Tree or EN1^XQH:
Display Help Frames APIs), it is a more complex matter in the Manager account
where ^%ZIS resides. Hence, this call is provided.

Format HLP2^%ZIS

Input Parameters none

Output none

 Device Handler: Developer Tools

July 1995 Kernel 73
Revised September 2011 Developer's Guide
 Version 8.0

5.1.6 HOME^%ZIS: Reset Home Device IO Variables

Reference Type Supported

Category Device Handler

IA # 10086

Description This API sets the key IO variables to match the characteristics of the home
device. The HOME^%ZIS API performs the same function as the obsolete
CURRENT^%ZIS API. Developers have been advised that Kernel 8.0 is the last
version of Kernel to support CURRENT^%ZIS.

HOME^%ZIS, beyond updating the set of variables for the home device, also
updates the active right margin system setting for the home device, by executing
^%ZOSF("RM") based on the home device's IOM value.

Format HOME^%ZIS

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variables none

Output Variables IO: Device $I.

 IO(0): Home device at the time of the call to ^%ZIS.

 IOBS: Backspace code.

 IOF: Form Feed code.

 IOM: Right Margin length.

 ION: Name of last selected input/output device from the DEVICE file
(#3.5).

 IOS: Internal Entry Number (IEN) of last selected input/output
device from the DEVICE file (#3.5).

 IOSL: Screen or page length.

 IOST: Subtype of the selected device.

 IOST(0): Subtype Internal Entry Number (IEN).

 IOT: Type of device, such as TRM for terminal.

Device Handler: Developer Tools

74 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

 IOXY: Executable M code for cursor control.

5.1.7 $$REWIND^%ZIS(): Rewind Devices

Reference Type Supported

Category Device Handler

IA # 10086

Description This extrinsic function rewinds special devices. These devices may be of the
following types:

• Magtape

• Sequential Disk Processor

• Host File Server

Format $$REWIND^%ZIS(io,iot,iopar)

Input Parameters io: (required) The $IO representation of the device to be rewound, in
the same format as IO, which is returned by ^%ZIS.

 iot: (required) The "Type" of device to be rewound, in the same
format as IOT, which is returned by ^%ZIS.

 iopar: (required) The "Open Parameters" for the selected device, in the
same format as IOPAR which is returned by ^%ZIS.

Output returns: Returns:
• 1—Device was rewound successfully.

• 0—Device was not rewound successfully.

Example

>S Y=$$REWIND^%ZIS(IO,IOT,IOPAR)

 Device Handler: Developer Tools

July 1995 Kernel 75
Revised September 2011 Developer's Guide
 Version 8.0

5.1.8 ^%ZISC: Close Device

Reference Type Supported

Category Device Handler

IA # 10089

Description This API closes a device opened with a call to the ^%ZIS API and restores the
home device.

Do not issue a form feed when calling ^%ZISC. The Device Handler takes care of
issuing a form feed if necessary (i.e., if $Y>0, indicating the cursor or print head is
not at the top of form). To prevent the Device Handler from issuing this form feed,
as appropriate for continuous printing of labels, for example, define the IONOFF
input variable before calling ^%ZISC.

Before the ^%ZISC API existed, close logic was executed with the command X
^%ZIS("C"). Developers have been advised that X ^%ZIS("C") will no longer be
supported and that the ^%ZISC API should be used instead. In the current version
of Kernel, the ^%ZIS("C") node only holds a call to the ^%ZISC routine. Versions
of Kernel following 8.0 will not export ^%ZIS("C").

Format ^%ZISC

Input Variables various: For a list of input variables, see the normal device output variables
from the ^%ZIS: Standard Device Call API.

Output Variables various: For a list of output variables, see the normal device output
variables from the ^%ZIS: Standard Device Call API.

Example

>D ^%ZISC

5.1.9 PKILL^%ZISP: Kill Special Printer Variables

Reference Type Supported

Category Device Handler

IA # 3172

Description This API KILLs printer-specific Device Handler variables. All output parameters
defined by the PSET^%ZISP: Set Up Special Printer Variables API are KILLed.

Format PKILL^%ZISP

Device Handler: Developer Tools

76 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters none

Output none

5.1.10 PSET^%ZISP: Set Up Special Printer Variables

Reference Type Supported

Category Device Handler

IA # 3172

Description This API defines a set of variables that toggle special printer modes. The
corresponding fields in the TERMINAL TYPE file (#3.2) entry for the terminal
type in question must be correctly set up, however; that is where PSET^%ZISP
retrieves its output values.

Format PSET^%ZISP

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variables IOST(0) (required) Pointer to the TERMINAL TYPE entry for the
printer in question, as set up by the Device Handler.

Output Variables IOBAROFF: Bar code off.

 IOBARON: Bar code on.

 IOCLROFF: Color off.

 IOCLRON: Color on.

 IODPLXL: Duplex, long edge binding.

 IODPLXS: Duplex, short edge binding.

 IOITLOFF: Italics off.

 IOITLON: Italics on.

 IOSMPLX: Simplex.

 IOSPROFF: Superscript off.

 Device Handler: Developer Tools

July 1995 Kernel 77
Revised September 2011 Developer's Guide
 Version 8.0

 IOSPRON: Superscript on.

 IOSUBOFF: Subscript off.

 IOSUBON: Subscript on.

Example

To toggle a printer mode with one of PSET^%ZISP's output variables, WRITE the variable to the printer
using indirection, as follows:

>D PSET^%ZISP
>W @IOBARON

5.1.11 ENDR^%ZISS: Set Up Specific Screen Handling Variables

Reference Type Supported

Category Device Handler

IA # 10088

Description This API sets up specific screen-handling variables and other terminal type
attributes. Unlike the ENS^%ZISS: Set Up Screen-handling Variables API, which
sets up all screen-handling variables, you specify which ones to set up with
ENDR^%ZISS.

Format ENDR^%ZISS

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variables IOST(0): (required) Internal entry number (IEN) of the selected device's
subtype as recorded in the TERMINAL TYPE file (#3.2).

 X: (required) Use this input variable to select the ENS^%ZISS
screen-handling variables to define. It should be a semicolon-
delimited list of the variables to define. For example:

>S X="IORVON;IORVOFF;IOUON;IOUOFF"

If more than 255 characters are needed to define the x variable,
make two or more calls to ENDR^%ZISS, each with a partial list
of the variable settings for x.

Device Handler: Developer Tools

78 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

 %ZIS: (optional) If you define %ZIS="I", the output array IOIS is
created. The format of IOIS is as follows:

IOIS(ASCII value of first character followed by
remaining characters)=output variable

For example:

IOIS("27[C")=IOCUF

Not every screen-handling variable has a corresponding IOIS
node. Also, only the nodes in the IOIS array that correspond to
screen-handling variables specified in the x input variable will be
created.

Output Variables A subset of the output variables returned by ENS^%ZISS: Set Up
Screen-handling Variables API are returned by ENDR^%ZISS,
depending on what screen-handling variables are requested in the
x input variable.

5.1.12 ENS^%ZISS: Set Up Screen-handling Variables

Reference Type Supported

Category Device Handler

IA # 10088

Description This API is used for screen management. This API sets up screen handling
variables and other terminal type attributes.

Format ENS^%ZISS

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variables IOST(0): (required) Internal entry number of the selected device's subtype
as recorded in the TERMINAL TYPE file (#3.2).

 %ZIS: (optional) If you define %ZIS = "I", the output array IOIS
(mapping escape codes sent by input keys to input keys) is
created.

 REF: For a description of the IOIS nodes created, see the
Outputs that follow.

 Device Handler: Developer Tools

July 1995 Kernel 79
Revised September 2011 Developer's Guide
 Version 8.0

Output Variables The output variables are listed below.

 NOTE: Not all characteristics are possible on all terminal types. The IOEFLD and IOSTBM
variables are used with indirection. Also, IOSTBM requires the setting of IOTM and IOBM as
input variables for the top and bottom margins.

 IOARM0: Auto repeat mode off.

 IOARM1: Auto repeat mode on.

 IOAWM0: Auto wrap mode off.

 IOAWM1: Auto wrap mode on.

 IOBOFF: Blink off.

 IOBON: Blink on.

 IOCOMMA: Keypad's comma.

 IOCUB: Cursor backward.

 IOCUD: Cursor down.

 IOCUF: Cursor forward.

 IOCUON: Cursor on.

 IOCUOFF: Cursor off.

 IOCUU: Cursor up.

 IODCH: Delete character.

 IODHLB: Double-high/wide bottom.

 IODHLT: Double-high/wide top.

 IODL: Delete line.

 IODWl: Doublewide length.

 IOECH: Erase character.

 IOEDALL: Erase in display entire page.

 IOEDBOP: Erase in display from beginning of page to cursor.

 IOEDEOP: Erase in display from cursor to end of page.

Device Handler: Developer Tools

80 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

 IOEFLD: Erase field (*use through indirection, such as, W @IOEFLD).

 IOELALL: Erase in line entire line.

 IOELBOL: Erase in line from beginning of line to cursor.

 IOELEOL: Erase in line from cursor to end of line.

 IOENTER: Keypad's Enter.

 IOFIND: Find key.

 IOHDWN: Half down.

 IOHOME: Home cursor.

 IOHTS: Horizontal tab set.

 IOHUP: Half up.

 IOICH: Insert character.

 IOIL: Insert line.

 IOIND: Index.

 IOINHI: High intensity.

 IOINLOW: Low intensity.

 IOINORM: Normal intensity.

 IOINSERT: Insert key.

 IOKP0: Keypad 0.

 IOKP1: Keypad 1.

 IOKP2: Keypad 2.

 IOKP3: Keypad 3.

 IOKP4: Keypad 4.

 IOKP5: Keypad 5.

 IOKP6: Keypad 6.

 IOKP7: Keypad 7.

 IOKP8: Keypad 8.

 Device Handler: Developer Tools

July 1995 Kernel 81
Revised September 2011 Developer's Guide
 Version 8.0

 IOKP9: Keypad 9.

 IOIRM0: Replace mode.

 IOIRM1: Insert mode.

 IOKPAM: Keypad application mode on.

 IOKPNM: Keypad numeric mode on.

 IOMC: Print screen.

 IOMINUS: Keypad's minus.

 IONEL: Next line.

 IONEXTSC: Next screen.

 IOPERIOD: Keypad's period.

 IOPF1: Function key 1.

 IOPF2: Function key 2.

 IOPF3: Function key 3.

 IOPF4: Function key 4.

 IOPREVSC: Previous screen.

 IOPROP: Proportional spacing.

 IOPTCH10: 10 Pitch.

 IOPTCH12: 12 Pitch.

 IOPTCH16: 16 Pitch.

 IORC: Restore cursor.

 IOREMOVE: Keypad's Remove.

 IORESET: Reset.

 IORI: Reverse index.

 IORLF: Reverse line feed.

 IORVOFF: Reverse video off.

 IORVON: Reverse video on.

Device Handler: Developer Tools

82 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

 IOSC: Save cursor.

 IOSGR0: Turn off select graphic rendition attributes.

 IOSELECT: Keypad's Select.

 IOSTBM: Set top and bottom margins (*use through indirection, such as,
W @IOSTBM; IOTM and IOBM must be defined as the top and
bottom margins.)

 IOSWL: Singlewide length.

 IOTBC: Tab clear.

 IOTBCALL: Clear all tabs.

 IOUOFF: Underline off.

 IOUON: Underline on.

 IOIS: This array is created as follows:

IOIS(escape_code)=KEYNAME

Where escape_code is the escape code generated by pressing the
key KEYNAME on the selected terminal, and KEYNAME can
be one of the following:

COMMA KP5

DO KP6

ENTER KP7

FIND KP8

HELP KP9

INSERT MINUS

IOCUB NEXTSCRN

IOCUD PERIOD

IOCUF PF1

IOCUU PF2

KP0 PF3

KP1 PF4

KP2 PREVSCRN

KP3 REMOVE

KP4 SELECT

 Device Handler: Developer Tools

July 1995 Kernel 83
Revised September 2011 Developer's Guide
 Version 8.0

5.1.13 GKILL^%ZISS: KILL Graphic Variables

Reference Type Supported

Category Device Handler

IA # 10088

Description This API is used for screen management. It KILLs graphic variables used in
screen handling. All output parameters set up by the GSET^%ZISS: Set Up
Graphic Variables API are KILLed.

Format GKILL^%ZISS

Input Parameters none

Output none

5.1.14 GSET^%ZISS: Set Up Graphic Variables

Reference Type Supported

Category Device Handler

IA # 10088

Description This API is used for screen management. It sets up graphic variables for screen
handling. Graphics on/off is a toggle that remaps characters for use as graphics.
Not all terminals need remapping, since they already have the high range of
ASCII codes.

Format GSET^%ZISS

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variables IOST(0): (required) Terminal Type.

Device Handler: Developer Tools

84 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Output Variables IOBLC: Bottom left corner.

 IOBRC: Bottom right corner.

 IOBT: Bottom "T".

 IOG1: Graphics on.

 IOG0: Graphics off.

 IOHL: Horizontal line.

 IOLT: Left "T".

 IOMT: Middle "T", or cross hair ("+").

 IORT: Right "T".

 IOTLC: Top left corner.

 IOTRC: Top right corner.

 IOTT: Top "T".

 IOVL: Vertical line.

Example

Figure 9. GSET^%ZISS: Example

; write a horizontal line
D GSET^%ZISS
W IOG1
F I=1:1:20 W IOHL
W IOG0
D GKILL^%ZISS

 Device Handler: Developer Tools

July 1995 Kernel 85
Revised September 2011 Developer's Guide
 Version 8.0

5.1.15 KILL^%ZISS: KILL Screen Handling Variables

Reference Type Supported

Category Device Handler

IA # 10088

Description This API is used for screen management. It KILLs graphic variables used in
screen handling. Only the output parameters set up by the ENS^%ZISS: Set Up
Screen-handling Variables and ENDR^%ZISS: Set Up Specific Screen Handling
Variables APIs are KILLed by this call.

Format KILL^%ZISS

Input Parameters none

Output none

5.1.16 CALL^%ZISTCP: Make TCP/IP Connection (Remote
System)

Reference Type Supported

Category Device Handler

IA # 2118

Description This API is used to make a TCP/IP connection to a remote system.

Format CALL^%ZISTCP

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variables IPADDRESS: (required) This is the Internet Protocol (IP) address of the Host
system to which it connects. It must be in the IP format of four
numbers separated by dots (e.g., 99.99.9.999).

 SOCKET: (required) This is the socket to connect to on the remote host. It
is an integer from 1-65535. Values below 5000 are reserved for
standard Internet services (e.g., SMTP mail).

 TIMEOUT: (optional) This is the timeout to apply to the Open.

Device Handler: Developer Tools

86 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Output Variables IO: If the connection is made then IO variable will hold the
implementation value that is used to reference the connection.

 POP: This output variable reports the connection status:
• Successful—A value of zero (0) means the connection

was successful.

• Unsuccessful—A positive value means the connection
failed.

It works the same as a call to ^%ZIS: Standard Device Call.

5.1.17 CLOSE^%ZISTCP: Close TCP/IP Connection (Remote
System)

Reference Type Supported

Category Device Handler

IA # 2118

Description This API is used to close the connection opened with the CALL^%ZISTCP: Make
TCP/IP Connection (Remote System) API. It works like a call to the ^%ZISC:
Close Device API.

Format CLOSE^%ZISTCP

Input Variables various: For a list of input variables, see CALL^%ZISTCP: Make TCP/IP
Connection (Remote System) API.

Output Variables various For a list of output variables, see CALL^%ZISTCP: Make TCP/IP
Connection (Remote System) API.

 Device Handler: Developer Tools

July 1995 Kernel 87
Revised September 2011 Developer's Guide
 Version 8.0

5.1.18 CLOSE^%ZISUTL(): Close Device with Handle

Reference Type Supported

Category Device Handler

IA # 2119

Description This API closes a device opened with the OPEN^%ZISUTL(): Open Device with
Handle API. When you close a device with CLOSE^%ZISUTL, the IO variables
are set back to the home device's and the home device is made the current device.
One of three functions that support using multiple devices at the same time.

 REF: See also OPEN^%ZISUTL(): Open Device with Handle and
USE^%ZISUTL(): Use Device Given a Handle APIs.

Format CLOSE^%ZISUTL(handle)

Input Parameters handle: (required) The handle of a device opened with the
OPEN^%ZISUTL(): Open Device with Handle API.

Output none

5.1.19 OPEN^%ZISUTL(): Open Device with Handle

Reference Type Supported

Category Device Handler

IA # 2119

Description This API is used when you expect to be using multiple output devices. This API,
as well as its two companion APIs: RMDEV^%ZISUTL(): Delete Data Given a
Handle and CLOSE^%ZISTCP: Close TCP/IP Connection (Remote System),
makes use of handles to refer to a device. A handle is a unique string identifying
the device.

The three ^%ZISUTL APIs are essentially wrappers around the ^%ZIS API.
They provide enhanced management of IO variables and the current device,
especially when working with multiple open devices. One of three functions that
support using multiple devices at the same time.

 REF: See also CLOSE^%ZISTCP: Close TCP/IP Connection (Remote
System) and RMDEV^%ZISUTL(): Delete Data Given a Handle APIs.

Format OPEN^%ZISUTL(handle[,valiop][,.valzis])

Device Handler: Developer Tools

88 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters handle: (required) A unique FREE TEXT name to associate with a
device you want to open.

 valiop: (optional) Output device specification, in the same format as
the IOP input variable for the ^%ZIS: Standard Device Call
API. The one exception to this is passing a value of NULL;
this is like leaving IOP undefined. With ^%ZIS, on the other
hand, setting IOP to NULL specifies the home device. To
request the home device, pass a value of "HOME" instead.

 .valzis: (optional) Input specification array, in the same format (and
with the same meanings) as the %ZIS input specification
array for the ^%ZIS: Standard Device Call API. Must be
passed by reference.

 REF: For more information, see the ^%ZIS function
documentation.

Output Variables IOF: OPEN^%ZISUTL returns all the same output variables as
the ^%ZIS: Standard Device Call API. OPEN^%ZISUTL
serves as a "wrapper" around the ^%ZIS: Standard Device
Call API, providing additional management of IO output
variables that ^%ZIS does not (principally to support
opening multiple devices simultaneously).

 REF: For more information on these input parameter,
see the ^%ZIS documentation.

 IOM

 IOSL

 IO

 IO(0)

 IO("Q")

 IO("S")

 IO("DOC")

 IO("SPOOL")

 IO("ZIO")

 IO("HFSIO")

 IO(1,$I)

 Device Handler: Developer Tools

July 1995 Kernel 89
Revised September 2011 Developer's Guide
 Version 8.0

 IOST

 IOST(0)

 IOT

 ION

 IOBS

 IOPAR

 IOUPAR

 IOS

 IOHG

 IOXY

 POP

Example

Figure 10. OPEN^%ZISUTL: Example

ZXGTMP ; ISC-SF/doc %ZISUTL sample ;11-oct-94
 ;;1.0;;
EN ;
 K A6AZIS S A6AZIS("A")="Enter the printer to output first 40 chars in each
line: "
 D OPEN^%ZISUTL("PRT1","",.A6AZIS) Q:POP
 K A6AZIS S A6AZIS("A")="Enter the printer to output chars 41
to end of line: "
 D OPEN^%ZISUTL("PRT2","",.A6AZIS) I POP D CLOSE^%ZISUTL("PRT1") Q
 S I="" F S I=$O(^TMP($J,"DOC",I)) Q:I']"" S X=^(I) D
 .D USE^%ZISUTL("PRT1") U IO W $E(X,1,40),!
 .D USE^%ZISUTL("PRT2") U IO W $E(X,41,$L(X)),!
 D CLOSE^%ZISUTL("PRT1"),CLOSE^%ZISUTL("PRT2")
 Q

Device Handler: Developer Tools

90 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

5.1.20 RMDEV^%ZISUTL(): Delete Data Given a Handle

Reference Type Supported

Category Device Handler

IA # 2119

Description This API deletes the data associated with the handle. It does not change any of the
IO* variables.

Format RMDEV^%ZISUTL(handle)

Input Parameters handle: (required) A unique Free Text name to associate with a device
that you want to delete.

Output none

5.1.21 SAVDEV^%ZISUTL(): Save Data Given a Handle

Reference Type Supported

Category Device Handler

IA # 2119

Description This API saves the current device IO* variables under the handle name.

Format SAVDEV^%ZISUTL(handle)

Input Parameters handle: (required) A unique Free Text name to associate with a device
that you want to save.

Output none

 Device Handler: Developer Tools

July 1995 Kernel 91
Revised September 2011 Developer's Guide
 Version 8.0

5.1.22 USE^%ZISUTL(): Use Device Given a Handle

Reference Type Supported

Category Device Handler

IA # 2119

Description This API restores the IO variables for a device saved with the
OPEN^%ZISUTL(): Open Device with Handle or SAVDEV^%ZISUTL(): Save
Data Given a Handle APIs. It then does a USE of the device if it is open. The
same as:

>DO USE^%ZISUTL(handle) U IO

 REF: See also OPEN^%ZISUTL(): Open Device with Handle and
CALL^%ZISTCP: Make TCP/IP Connection (Remote System) APIs.

Format USE^%ZISUTL(handle)

Input Parameters handle: (required) A unique Free Text name to associate with the device
that was opened with the OPEN^%ZISUTL(): Open Device
with Handle API.

Output Variables IO*: Standard IO variables.

Device Handler: Developer Tools

92 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

5.2 Special Device Issues

This topic discusses the following special devices and device issues:

• Form Feeds

• Resources

5.2.1 Form Feeds

The Device Handler has a method for issuing a form feed at the point when it closes the device. The
purpose for this utility is to eliminate unnecessary page feeds at the beginning or end of a report. Extra
page feeds result when an application issues its own form feed at the beginning of a report and then VA
FileMan issues another pair, one at the beginning and one at the end. An additional problem is laser
printers that also generate an extra form feed to clear the print buffer.

When closing a device, ^%ZISC checks the value of $Y to determine the cursor or print head's vertical
line location. If $Y is greater than zero, the Device Handler WRITEs a form feed (W @IOF) to reset the
value of $Y to zero. Applications, therefore, should not issue any form feeds when calling the Device
Handler to open or close a device.

VA FileMan has already removed its initial form feed. For the benefit of those who use VA FileMan
without Kernel and its Device Handler, VA FileMan continues to issue a form feed at the end when the
device is closed. Since this procedure resets the $Y special variable to zero, the Device Handler does not
send an additional form feed when VA FileMan is used with Kernel.

Device Handler also checks for the existence of the IONOFF variable when closing the device. Thus,
application developers can use the IONOFF variable to suppress form feeds by setting it just before
calling ^%ZISC: Close Device API to close the device.

5.2.1.1 How to Check if Current Device is a CRT

You should use the following code to test if the current device is a CRT (if it returns false, the current
device is a CRT; if it returns true, you should assume that the current device is a printer):

>I $E(IOST,1,2)'="C-"

5.2.1.2 Guidelines for Form Issuing Form Feeds

In most cases, a form feed before the first page is only needed for reports to CRTs. When directing
reports to a printer, do not issue an initial form feed before the first page; it is not needed. However, you
should print the heading (if used) on the first page. You do need to issue a form feed between pages,
regardless of whether the report is directed to a CRT or to a printer.

 Device Handler: Developer Tools

July 1995 Kernel 93
Revised September 2011 Developer's Guide
 Version 8.0

The following summarizes the current guidelines for issuing form feeds for CRTs and printers:

CRTs

1. Issue the initial form feed before the first page of a report as before.

2. Print a heading on the first page if headings are used.

3. Print the lines of the report while checking the value of the vertical position ($Y).

4. If there is no more data to process, then GO TO STEP #9.

5. If the value of the vertical position plus a predetermined number to serve as a buffer exceeds the
screen length, prompt the user to press <Enter> to continue.

6. A time-out at the READ or a caret ("^") response to the continue prompt represents a request to
terminate the display. GO TO STEP #9.

7. If the user presses <Enter> in response to the prompt, issue a form feed followed by a heading (if
used).

8. GO TO STEP #3.

9. The application should terminate the display of the report.

10. END

Printers

1. Do not issue a form feed before the first page of a report.

2. Print a heading on the first page if headings are used.

3. Print the lines of the report while checking the value of the vertical position ($Y).

4. If there is no more data to process, then GO TO STEP #7.

5. If the value of the vertical position plus a predetermined number to serve as a buffer exceeds the
page line limit, issue a form feed.

6. GO TO STEP #3.

7. The application should terminate the printout of the report.

8. END

The sample routines on the following page provide two examples of how to output a report following
current guidelines for form feeds. In the examples, a series of three vertical dots indicates omitted
information.

Device Handler: Developer Tools

94 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Figure 11. Device Handler: Issuing form feeds following current guidelines

ROU ;SAMPLE ROUTINE
 S IOP="DEVNAM" D ^%ZIS G EXIT:POP
 I $D(IO("Q")) S ZTRTN="DQ^ROU",ZTDESC="SAMPLE REPORT" D ^%ZTLOAD,HOME^%ZIS
Q
.
.
.
DQ ;SAMPLE REPORT
 S (END,PAGE)=0
 U IO D @("HDR"_(2-($E(IOST,1,2)="C-"))) F Q:END D
 .W !,....
 .W !,...
 .D HDR:$Y+5>IOSL Q
 .
 .
 .
 D ^%ZISC Q
HDR ;SAMPLE HEADER
 I $E(IOST,1,2)="C-" W !,"Press RETURN to continue or '^' to exit: " R
X:DTIME S END='$T!(X="^") Q:END
HDR1 W @IOF
HDR2 S PAGE=PAGE+1 W ?20,"SAMPLE HEADING",?(IOM-10),"PAGE: ",$J(PAGE,3)

Figure 12. Device Handler: Alternate approach following current guidelines

ROU ;SAMPLE ROUTINE
 S IOP="DEVNAM" D ^%ZIS G EXIT:POP
 I $D(IO("Q")) S ZTRTN="DQ^ROU",ZTDESC="SAMPLE REPORT" D ^%ZTLOAD,HOME^%ZIS
Q
.
.
.
DQ ;SAMPLE REPORT
 S (END,PAGE)=0
 U IO F Q:END D
 .D HDR:$Y+5>IOSL Q
 .W !,....
 .W !,...
 .
 .
 .
 D ^%ZISC Q
HDR ;SAMPLE HEADER
 I PAGE,$E(IOST,1,2)="C-" W !,"Press RETURN to continue or '^' to exit: " R
X:DTIME S END='$T!(X="^") Q:END
HDR1 W:'($E(IOST,1,2)'="C-"&'PAGE) @IOF
HDR2 S PAGE=PAGE+1 W ?20,"SAMPLE HEADING",?(IOM-10),"PAGE: ",$J(PAGE,3)

 Device Handler: Developer Tools

July 1995 Kernel 95
Revised September 2011 Developer's Guide
 Version 8.0

5.2.2 Resources

5.2.2.1 Queuing to a Resource

You can only use resources through calls to ^%ZTLOAD. They cannot be directly manipulated (except
by TaskMan). To use a resource, you need to set the ZTIO input variable to the name of the resource. For
example:

>S ZTIO="ZZRES",ZTRTN="tag^routine",ZTDTH=$H
>S ZTDESC="First task in a series"
>D ^%ZTLOAD

Since the name of the resource is part of the call, application developers must include installation
procedures so that IRM will be able to create the resources using the correct names and other attributes.

You can optionally use a SYNC FLAG when queuing to a Resource type device. Using a SYNC FLAG
helps to ensure that sequential tasks queued to a resource only run if the preceding task in the series has
completed successfully.

REF: For more information on using SYNC FLAGs, see the "TaskMan: Developer Tools"
chapter in this manual.

Device Handler: Developer Tools

96 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

July 1995 Kernel 97
Revised September 2011 Developer's Guide
 Version 8.0

6 Domain Name Service (DNS): Developer Tools

6.1 Application Program Interface (API)

Several APIs are available for developers to work with Domain Name Service (DNS). These APIs are
described below.

6.1.1 $$ADDRESS^XLFNSLK(): Convert Domain Name to IP
Addresses

Reference Type Supported

Category Domain Name Service (DNS)

IA # 3056

Description This extrinsic function calls the Domain Name Service (DNS) to convert a domain
name into its IP addresses. The IP addresses of the DNS being called are in the
DNS IP field (#8989.3,51) in the KERNEL SYSTEM PARAMETERS file
(#8989.3).

Format $$ADDRESS^XLFNSLK(domain_name[,type])

Input Parameters domain_name: (required) This is the fully qualified domain name
(e.g., FORUM.VA.GOV).

 type: (optional) This input parameter is from the set A: address (the
default), CNAME: alias.

Output returns: Returns a comma-separated list of IP addresses that are
associated with the input domain.

Example

>S X=$$ADDRESS^XLFNSLK("FORUM.VA.GOV")

>W X
10.2.29.130

Domain Name Service (DNS): Developer Tools

98 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

6.1.2 MAIL^XLFNSLK(): Get IP Addresses for a Domain Name

Reference Type Supported

Category Domain Name Service (DNS)

IA # 3056

Description This API calls the Domain Name Service (DNS) to get the MX records for a
domain name with its IP addresses.

Format MAIL^XLFNSLK(.return,domain_name)

Input Parameters .return: (required) A local variable passed by reference to hold the
return array.

 domain_name: (required) This parameter is a fully qualified domain name
(e.g., FORUM.VA.GOV).

Output Parameters .return: Returns data in the array passed in by reference. The data is
subscripted by priority. The domain_name parameter is a fully
qualified domain name (e.g., FORUM.VA.GOV).

Example

>K ZX D MAIL^XLFNSLK(.ZX,"ISC-SF.MED.VA.GOV") ZW ZX
ZX=2
ZX(5)=a2.ISC-SF.MED.VA.GOV.^10.6.21.15
ZX(10)=a1.ISC-SF.MED.VA.GOV.^10.6.21.14

July 1995 Kernel 99
Revised September 2011 Developer's Guide
 Version 8.0

7 Electronic Signatures: Developer Tools

7.1 Application Program Interface (API)

Several APIs are available for developers to work with electronic signatures. These APIs are described
below.

7.1.1 ^XUSESIG: Set Up Electronic Signature Code

Reference Type Controlled Subscription

Category Electronic Signatures

IA # 936

Description This API, when called from the top, allows the user to set up a personal electronic
signature code. It is used within application code to allow the user immediate on-
the-fly access to set up the electronic signature, rather than force the user to leave
the application and enter a different option to do the same.

Format ^XUSESIG

Input Parameters none

Output none

7.1.2 SIG^XUSESIG(): Verify Electronic Signature Code

Reference Type Supported

Category Electronic Signatures

IA # 10050

Description This API requests and verifies the electronic signature code of the current user.

Format SIG^XUSESIG(duz,x1)

Input Parameters duz: (required) User number.

Output Parameters x1: If the user entered the correct electronic signature code, the
encrypted electronic signature code as stored in the NEW
PERSON file (#200) is returned in x1. Otherwise, x1 is returned
as NULL.

Electronic Signatures: Developer Tools

100 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

7.1.3 $$CHKSUM^XUSESIG1(): Build Checksum for Global Root

Reference Type Supported

Category Electronic Signatures

IA # 1557

Description This extrinsic function takes a global root ($name_value) and builds a checksum
for all data in the root.

 NOTE: The flag input parameter is no longer used. Previously, It was used
when there was more than one checksum algorithm.

Format $$CHKSUM^XUSESIG1($name_value[,flag])

Input Parameters $name_value: (required) This is a global root as would be returned from
$NAME.

 flag: (obsolete) Not used at this time.

Output returns Returns the checksum for the global root.

7.1.4 $$CMP^XUSESIG1(): Compare Checksum to $Name_Value

Reference Type Supported

Category Electronic Signatures

IA # 1557

Description This extrinsic function compares the checksum passed in to the calculated value
from the $NAME_VALUE. It Returns the following:

• 1—Match.

• 0—No match.

Format $$CMP^XUSESIG1(checksum,$name_value)

Input Parameters checksum: (required) The output from the $$CHKSUM^XUSESIG1(): Build
Checksum for Global Root API.

 $name_value: (required) This is a global root as would be returned from
$NAME.

 Electronic Signatures: Developer Tools

July 1995 Kernel 101
Revised September 2011 Developer's Guide
 Version 8.0

Output returns: Returns:
• 1—Match.

• 0—No match.

7.1.5 $$DE^XUSESIG1(): Decode String

Reference Type Supported

Category Electronic Signatures

IA # 1557

Description This extrinsic function decodes the input string using the checksum as the key.

Format $$DE^XUSESIG1(checksum,encoded_string)

Input Parameters checksum: (required) The output from the $$CHKSUM^XUSESIG1():
Build Checksum for Global Root API.

 encoded_string: (required) The output from the $$EN^XUSESIG1(): Encode
Esblock API.

Output returns: Returns the decoded string.

7.1.6 $$EN^XUSESIG1(): Encode Esblock

Reference Type Supported

Category Electronic Signatures

IA # 1557

Description This extrinsic function encodes the ESBLOCK using the checksum as the key.

Format $$EN^XUSESIG1(checksum,esblock)

Input Parameters checksum: (required) A number that reveals if the data in the root has been
changed.

 esblock: (optional) This should be the data returned from the
$$ESBLOCK^XUSESIG1(): E-Sig Fields Required for Hash API.

Output returns: Returns encoded ESBLOCK.

Electronic Signatures: Developer Tools

102 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

7.1.7 $$ESBLOCK^XUSESIG1(): E-Sig Fields Required for Hash

Reference Type Supported

Category Electronic Signatures

IA # 1557

Description This extrinsic function returns the set of fields from the NEW PERSON file
(#200) that are needed as part of the hash for an acceptable electronic signature (E-
Sig). These fields include the following:

• E-Sig Block

• E-Sig Title

• Degree

• Current Date/Time

If the Internal Entry Number (IEN) is not passed in then the DUZ is used.

Format $$ESBLOCK^XUSESIG1([ien])

Input Parameters ien: (optional) This is the Internal Entry Number (IEN) of the NEW
PERSON file (#200) entry for which data is requested. The
default is to use the DUZ of the current user.

Output returns: Returns the following fields:
• E-Sig Block

• E-Sig Title

• Degree

• Current Date/Time

7.1.8 DE^XUSHSHP: Decrypt Data String

Reference Type Supported

Category Electronic Signatures

IA # 10045

Description This API decrypts a string encrypted by a call to the EN^XUSHSHP: ENCRYPT
Data String API. Typically, this API would be used to decrypt strings when
printing a document containing encrypted strings.

Format DE^XUSHSHP

 Electronic Signatures: Developer Tools

July 1995 Kernel 103
Revised September 2011 Developer's Guide
 Version 8.0

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variables X: (required) Encrypted string generated by a call to the
EN^XUSHSHP: Encrypt Data String API.

 X1: (required) Identification number used as the X1 input variable in
the EN^XUSHSHP: Encrypt Data String API.

 X2: (required) Number used as the X2 input variable in the
EN^XUSHSHP: Encrypt Data String API.

Output Variables X: The decrypted string (can be printed).

7.1.9 EN^XUSHSHP: Encrypt Data String

Reference Type Supported

Category Electronic Signatures

IA # 10045

Description This API encrypts a string, and associates the encrypted string with an
identification number and a document number. To decrypt the string, a call must
be made to the DE^XUSHSHP: Decrypt Data String API, with the encrypted
string, identification number, and document number as input variables.
Typically, this API would be used to encrypt strings within a document.

Format EN^XUSHSHP

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variables X: (required) The string to be encrypted (e.g., the contents of the
SIGNATURE BLOCK PRINTED NAME field in the NEW
PERSON file [#200]).

 X1: (required) An identification number (e.g., DUZ).

 X2: (required) A document number (or the number one).

Electronic Signatures: Developer Tools

104 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Output Variables X: Encrypted string.

7.1.10 HASH^XUSHSHP: Hash Electronic Signature Code

Reference Type Supported

Category Electronic Signatures

IA # 10045

Description This API uses as input the text string (signature) entered by the user. The routine
then hashes the string. The hashed result can then be used to verify the user's
identity by comparison with the stored electronic signature code (in the NEW
PERSON file [#200]).

Format HASH^XUSHSHP

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variables X: (required) Electronic Signature code as entered by the user.

Output Variables X: Hashed form of the electronic signature code submitted as input
to function.

July 1995 Kernel 105
Revised September 2011 Developer's Guide
 Version 8.0

8 Error Processing: Developer Tools

8.1 Direct Mode Utilities

These direct mode utilities can be run from Programmer mode. They are not, however, APIs; instead, they
are provided for convenience.

8.1.1 >D ^XTER

You can call the ^XTER direct mode utility from Programmer mode. It is the same as using the Error
Trap Display option.

8.1.2 >D ^XTERPUR

You can call the ^XTERPUR direct mode utility from Programmer mode. It is the same as using the
Clean Error Trap option.

8.2 Application Program Interface (API)

Several APIs are available for developers to work with error processing. These APIs are described below.

8.2.1 $$EC^%ZOSV: Get Error Code

Reference Type Supported

Category Operating System Interface

IA # 10097

Description This extrinsic function returns the most recent error message recorded by the
operating system.

Format $$EC^%ZOSV

Input Parameters none

Output returns: Returns the most recent error code/message.

Example

>S X=$$EC^%ZOSV

Error Processing: Developer Tools

106 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

8.2.2 ^%ZTER: Kernel Standard Error Recording Routine

Reference Type Supported

Category Error Processing

IA # 1621

Description Kernel sets the error trap in ZU so that all user errors are trapped. In this context,
when an error occurs, the optional %ZT input array is set to indicate the user's
location in the menu system. Then ^%ZTER is called to record this information
in the ERROR LOG file (#3.075).

The application-specific error trap routine, when it is called as a result of an
error, can then use the ^%ZTER API to record error information in the ERROR
LOG file (#3.075) if it decides that it needs to. ^%ZTER gathers all available
information such as local symbols and last global reference and stores that
information in an entry in the ERROR LOG file (#3.075).

The simple example below shows an application that replaces the standard
Kernel error trap with its own error trap. When an error occurs, and the
application's error trap routine is called, it calls $$EC^%ZOSV to see what type
of error occurred. If an end-of-file (EOF) error occurs, it lets the application
continue. Otherwise, it calls ^%ZTER to record the error, and then quits to
terminate the application.

 NOTE: The recording mechanism of ^%ZTER also functions in the
absence of an error. In a debug mode, this would enable a developer to
record local symbols and global structures at predetermined places within
code execution for later checking.

Format ^%ZTER

Make sure to perform the following steps before calling this API:

• Set all input variables.

• Call the API.

Input Variable %ZT (optional) The %ZT array can be used to identify a global
node whose descendents should be recorded in the error log.
When called within the standard Kernel error trap, %ZT is
set to record the user's location in the menu system:

>S %ZT("^TMP($J)")=""
>D ^%ZTER

 Error Processing: Developer Tools

July 1995 Kernel 107
Revised September 2011 Developer's Guide
 Version 8.0

Output %ZTERROR Calls to the error recorder always return this parameter. It
has the error name and error type as its first and second
caret-delimited ("^") pieces, for example,
%ZTERROR=UNDEF^P. While the first piece is always
defined since it is retrieved from the operating system, the
second piece could be missing if unavailable from the
ERROR MESSAGES file (#3.076).

Example

The following is an example of the Error Trap:

Figure 13. Error Trap: Example

ZXGAPP ; 999/NV - sample routine ; 23-FEB-95
 ;;1.0;;
 ;
FILEOPEN ;
 ;
 ; This code resets the error trap routine that is stepped to
 ; when an error occurs.
 ;
 N $ESTACK,$ETRAP S $ETRAP="D ERR^ZXGAPP"
 ;
 ; Open a file, and read lines from it until End-of-file (EOF)
 ; is reached.
 ;
 K %ZIS S %ZIS=""
 S %ZIS("HFSNAME")="MYFILE.DAT",%ZIS("HFSMODE")="RW"
 D ^%ZIS Q:POP
 F U IO R LINE:DTIME U IO(0) W !,LINE
 ;
FILECLOS ;
 ;
 D ^%ZISC Q
 ;
ERR ;
 ; This is the application specific error trap.
 ;
 I $$EC^%ZOSV["ENDOFILE" S $ECODE="" G FILECLOS ; continue if EOF error
 D ^%ZTER ; record the error if anything other than EOF
 D UNWIND^%ZTER ; unwind the stack, return to caller.
 Q
 ;

Error Processing: Developer Tools

108 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

8.2.3 $$NEWERR^%ZTER: Verify Support of Standard Error
Trapping (Obsolete)

NOTE: This API is obsolete, because all VA systems support the standard error trapping.

Reference Type Supported

Category Error Processing

IA # 1621

Description This extrinsic function reports if the current platform supports the standard error
trapping. It returns:

• 1—If the standard error trapping is supported.

• 0—For all other cases.

Format $$NEWERR^%ZTER

Input Parameters none

Output returns: Returns:
• 1—If the standard error trapping is supported.

• 0—For all other cases.

8.2.4 UNWIND^%ZTER: Quit Back to Calling Routine

Reference Type Supported

Category Error Processing

IA # 1621

Description This API is used after a package error trap to quit back to the calling routine.
Control returns to the level above the one that NEWED $ESTACK.

Format UNWIND^%ZTER

Input Parameters none

Output none

 Error Processing: Developer Tools

July 1995 Kernel 109
Revised September 2011 Developer's Guide
 Version 8.0

Example

Main:

Figure 14. UNWIND^%ZTER: Main code example

S X=1 D SUB
W X
Q SUB N $ESTACK,$ETRAP S $ETRAP="D ERROR"
S X=1/0
Q

Usage:

Figure 15. UNWIND^%ZTER: Usage

D ^%ZTER ;This will record the error info and clear $ECODE
S ^XXX="Incomplete record"
G UNWIND^%ZTER

Error Processing: Developer Tools

110 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

July 1995 Kernel 111
Revised September 2011 Developer's Guide
 Version 8.0

9 Field Monitoring: Developer Tools

9.1 Application Program Interface (API)

One API is available for developers to work with field monitoring. This API is described below.

9.1.1 OPKG^XUHUI(): Monitor New Style Cross-referenced Fields

Reference Type Supported

Category Field Monitoring

IA # 3589

Description This API allows other packages to task an Option or Protocol from a New Style
cross-reference. This API can be used to monitor any field or fields in any file
using a New Style cross-reference.

Format OPKG^XUHUI([xuhuiop,]xuhuinm[,xuhuia],xuhuixr)

Input Parameters xuhuiop (optional) This parameter is a set of Numeric codes that tells the
Unwinder to use the PROTOCOL file (#101) or the OPTION file
(#19). If this parameter is null, the default value will be used
(i.e., "101"):

• 101 (default)—PROTOCOL file (#101) will be used.

• 19—The OPTION file (#19) will be used.

 xuhuinm (required) This parameter is the NAME (#.01) value of the
Protocol or Option that is to be launched.

 xuhuia (optional) This parameter is a Set of Codes. If this input parameter
is null, the default value will be used (i.e., "S"):

• S (default)—The data being passed is from the SETting of
the cross-reference.

• K—The data being passed is from the KILLing of the
cross-reference.

 xuhuixr (required) This parameter is the name of the cross-reference.

Output See Example Monitored fields with a New Style cross-reference.

Field Monitoring: Developer Tools

112 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example

The Hui Project needs to monitor the following fields at the top level of the NEW PERSON file (#200)
for changes in value, in the order listed:

• NAME (#.01)

• TERMINATION DATE (#9.2)

• DOB (#5)

• SSN (#9)

Create New Style Cross-references

Create a MUMPS New Style cross-reference for the fields that are to be monitored for value changes, as
shown below:

Figure 16. OPKG^XUHUI: Example of creating New Style Cross-references

Index Name: AXUHUI (#n)

Short Description: Hui Project Top File Cross-reference

 Description: This MUMPS New Style cross-reference is on non-multiple
 fields in the NEW PERSON file (#200) that the Hui Project
 needs to monitor for changes in value. The following fields
 are being monitored in the order listed:

 .01 (NAME)
 9.2 (TERMINATION DATE)
 5 (DOB)
 9 (SSN)
 For details on how this cross-reference processes changes,
 please refer to the patch description for Kernel Patch XU*8*236.
 For more detailed information about the MUMPS New Style
 cross-reference, please refer to the "VA FileMan V. 22.0 Key
 and Index Tutorial" at the following web address:

http://vista.med.va.gov/fileman/fileMan_training/online_pres/FMtut_frm.htm
 (see Lessons #5 and #6)

 Type: MUMPS

 EXECUTION: RECORD

 Use: ACTION

 Set Logic: D OPKG^XUHUI("","XUHUI FIELD CHANGE EVENT","","AXUHUI") Q
 Kill Logic: Q
 Whole Kill: Q
 X(1): NAME (200,.01) (forwards)
 X(2): TERMINATION DATE (200,9.2) (forwards)
 X(3): DOB (200,5) (forwards)
 X(4): SSN (200,9) (forwards)

 Field Monitoring: Developer Tools

July 1995 Kernel 113
Revised September 2011 Developer's Guide
 Version 8.0

Sample Scenario

Change a monitored (cross-referenced) field value in the NEW PERSON file (#200), as shown below:

Figure 17. OPKG^XUHUI API: Sample scenario

INPUT TO WHAT FILE: NEW PERSON// <Enter>
EDIT WHICH FIELD: ALL// DOB
THEN EDIT FIELD: SSN
THEN EDIT FIELD: <Enter>

Select NEW PERSON NAME: XUUSER <Enter> XUUSER,ONE OK
DOB: JUL 4,1950// 12.24.49 <Enter> (DEC 24, 1949)
SSN: 000220000// 000558888

Here we have changed ONE XUUSER's Date of Birth (DOB) from 07/04/50 to 12/24/49 and changed his
Social Security Number (SSN) from 000-22-0000 to 000-55-8888. Since these fields are being monitored
(i.e., MUMPS New Style cross-reference, see the "Create Cross-references" previous topic), we should
see this data passed to the "XUHUI FIELD CHANGE EVENT" protocol (see the "Internal Results for
Developers" topic that follows).

Field Monitoring: Developer Tools

114 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Internal Results for Developers

The following data is passed to the "XUHUI FIELD CHANGE EVENT" Protocol via the Kernel
OPKG^XUHUI API that is called in the AXUHUI cross-reference (see the "Create Cross-references"
previous topic).

Figure 18. OPKG^XUHUI: Example of internal results

If executing the Kill logic, then the 'X' array will be equal to the 'X1'
array. If executing the Set logic, then the 'X' array will be equal to
the 'X2' array.

X=XUUSER,ONE
X(1)=XUUSER,ONE
X(2)=
X(3)=2491224
X(4)=000558888

X1=XUUSER,ONE
X1(1)=XUUSER,ONE
X1(2)=
X1(3)=2500704
X1(4)=000220000

X2=XUUSER,ONE
X2(1)=XUUSER,ONE
X2(2)=
X2(3)=2491224
X2(4)=000558888

XUHUIA=S
XUHUIDA=70
XUHUIFIL=200
XUHUIFLD=
XUHUINM=XUHUI FIELD CHANGE EVENT
XUHUIOP=101
XUHUIX=XUUSER,ONE
XUHUIX(1)=XUUSER,ONE
XUHUIX(2)=
XUHUIX(3)=2491224
XUHUIX(4)=000558888
XUHUIX1=XUUSER,ONE
XUHUIX1(1)=XUUSER,ONE
XUHUIX1(2)=
XUHUIX1(3)=2500704
XUHUIX1(4)=000220000
XUHUIX2=XUUSER,ONE
XUHUIX2(1)=XUUSER,ONE
XUHUIX2(2)=
XUHUIX2(3)=2491224
XUHUIX2(4)=000558888
XUHUIXR=AXUHUI

Name of cross-reference
being executed by DIK.

The "X2" array.

The "X1" array.

New values are in this array.

Name of Extended Action entry in File
#101 or in File #19.

File number of where to
find the Extended Action. The "X" array.

"S" = Set Logic is being executed,
"K" = Kill logic being executed.

"DA" array, File
number,& Field
numbers if available.

Old values are in this array.

July 1995 Kernel 115
Revised September 2011 Developer's Guide
 Version 8.0

10 File Access Security: Developer Tools

The File Access Security system is an optional Kernel module. It provides an enhanced security
mechanism for controlling user access to VA FileMan files.

REF: For an overview of the functionality provided by the File Access Security system, see the
"File Access Security" chapter in the Kernel Systems Management Guide.

10.1 Field Level Protection

As before, the DUZ(0) check is not performed when a user traverses fields in a DR string or in a template
(field-level protection is checked during the template-building process, but not subsequently when the
template is invoked by a user.) If you want to make the presentation of fields conditional, based on a
user's DUZ(0), branching logic may be used as described in the VA FileMan Programmers Manual.

10.2 File Navigation

Edit-type options that navigate to a second file do so by calling VA FileMan and, hence, depending on the
type of navigation and the existing file protection, will require that the user have WRITE access to change
data in the pointed-to file, DELETE access to delete an entry, and perhaps LAYGO access to add a new
entry.

Adding new entries when navigating to a file is controlled by LAYGO access. If a pointing field allows
LAYGO, as specified in the data dictionary, and the pointed-to file also allows LAYGO, the user will not
need explicit file access to add entries. If the pointed-to file is protected, however, the user will need
explicit LAYGO access to the file. DELETE access is checked at the moment the user tries to delete a file
entry.

When coding calls, if DIC(0) contains "L", DIC allows the user to add a new entry if one of three
conditions is met:

• The user has been granted LAYGO access to the file.

• The user's DUZ(0) is equal to "@".

• The DLAYGO variable is defined equal to the file number.

File Access Security: Developer Tools

116 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

10.3 Use of DLAYGO When Navigating to Files

Use of input templates or ^DIE calls as part of edit-type options permits user access to the first file.
However, if navigation to a second file is involved, LAYGO is not automatically granted. One of the
three conditions mentioned above must be met to allow navigation to the second file:

• LAYGO access is granted.

• DUZ(0)=@.

• DLAYGO variable is set.

Providing LAYGO access by using the DLAYGO variable obviates the need for IRM to grant LAYGO
file access to the pointed-to file via the File Access system. An example of setting DLAYGO in a
template is shown below:

Figure 19. File Access Security: Setting DLAYGO in a template

INPUT TO WHAT FILE: RENTAL
EDIT WHICH FIELD: TRANSACTION NUMBER
THEN EDIT FIELD: DATE RENTED
THEN EDIT FIELD: S DLAYGO=800265
THEN EDIT FIELD: LINE ITEM:
 By 'LINE ITEM', do you mean the LINE ITEM File,
 pointing via its 'RENTAL TRANSACTION' Field? YES// Y <Enter> (YES)
WILL TERMINAL USER BE ALLOWED TO SELECT PROPER ENTRY IN 'LINE ITEM' FILE? YES//
<Enter> (YES)
DO YOU WANT TO PERMIT ADDING A NEW 'LINE ITEM' ENTRY? NO// Y <Enter> (YES)
WELL THEN, DO YOU WANT TO **FORCE** ADDING A NEW ENTRY EVERY TIME? NO// <Enter>
(NO)
DO YOU WANT AN 'ADDING A NEW LINE ITEM' MESSAGE? NO// N <Enter> (NO)
 EDIT WHICH LINE ITEM FIELD: LINE ITEM
 THEN EDIT LINE ITEM FIELD: RENTAL TRANSACTION
 THEN EDIT LINE ITEM FIELD: K DLAYGO
 THEN EDIT LINE ITEM FIELD:

10.4 Use of DLAYGO in ^DIC Calls

When a user attempts to add an entry at the top level of a file in a ^DIC call, their file access security is
checked for LAYGO access to the file. Developers can override this check (and save the site from having
to grant explicit LAYGO access) by setting DLAYGO to the file number in question.

REF: For more information on DLAYGO as used in ^DIC calls, see the VA FileMan
Programmer Manual.

KILL DLAYGO upon
exit.

Set DLAYGO to the number
of the file to be navigated-
to via backward pointing.

A file pointed-to by
the Line Item file.

 File Access Security: Developer Tools

July 1995 Kernel 117
Revised September 2011 Developer's Guide
 Version 8.0

10.5 Use of DIDEL in ^DIE Calls

When a user attempts to delete an entry at the top level of a file in a ^DIE call, their file access security is
checked for DELETE access to the file. Developers can override this check (and save the site from having
to grant explicit DELETE access) by setting DIDEL to the file number in question. Use of DIDEL does
not override a file's "DEL" nodes, however.

REF: For more information on DIDEL as used in ^DIE calls, see the VA FileMan Programmer
Manual.

File Access Security: Developer Tools

118 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

July 1995 Kernel 119
Revised September 2011 Developer's Guide
 Version 8.0

11 Help Processor: Developer Tools

11.1 Entry and Exit Execute Statements

The HELP FRAME file (#9.2) contains two fields for the entry of M code. Code in the Entry Execute
Statement is executed just before the help frame is displayed. Code in the Exit Execute Statement is
executed afterwards.

11.2 Link to the OBJECT File

The HELP FRAME file (#9.2) contains a pointer to the OBJECT file (#2005), a file that is maintained by
the Washington DC OIFO. It has been established so that images (e.g., cardiac catheterization films) can
be integrated within an educational help system on multimedia workstations.

Help Processor: Developer Tools

120 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

11.3 Application Program Interface (API)

Several APIs are available for developers to work with help processing. These APIs are described below.

11.3.1 EN^XQH: Display Help Frames

Reference Type Supported

Category Help Processor

IA # 10074

Description This API displays a help frame. It immediately clears the screen and displays the
help frame (unlike the EN1^XQH: Display Help Frames API, which does not clear
the screen and offers the user a choice of whether to load the help frame).

Format EN^XQH

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variable XQH: (required) Help Frame name (the .01 value from the HELP
FRAME file [#9.2]).

Output none

11.3.2 EN1^XQH: Display Help Frames

Reference Type Supported

Category Help Processor

IA # 10074

Description This API displays a help frame as ACTION^XQH4(): Print Help Frame Tree does,
except that it does not clear the screen beforehand, and prior to loading the help
frame, EN1^XQH invokes end of page handling (i.e., prompting the user "Enter
return to continue or '^' to quit"). If the user enters an "^", the help frame is not
displayed. If they press <Enter>, the help frame is displayed.

Format EN1^XQH

 Help Processor: Developer Tools

July 1995 Kernel 121
Revised September 2011 Developer's Guide
 Version 8.0

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variable XQH: (required) Help Frame name (the .01 value from the HELP
FRAME file [#9.2]).

Output none

11.3.3 ACTION^XQH4(): Print Help Frame Tree

Reference Type Supported

Category Help Processor

IA # 10080

Description This API prints out all the help frames in a help frame tree, including a table of
contents showing the relationships between help frames and the page of the
printout where each help frame is found. Since help frames can be referenced by
more than one help frame, any help frame referenced multiple times appears in the
table of contents in each appropriate location, but the help text itself is printed
only once. You can alter the format of the output with the xqfmt input parameter.

Format ACTION^XQH4(xqhfy[,xqfmt])

Input Parameters xqhfy: (required) Help frame name, equal to the .01 field of the desired
entry in the HELP FRAME file (#9.2). Should be set to the
NAME of the top-level help frame for which a listing is desired.

 xqfmt: (optional) Specifies the output format. Value of xqfmt can be:
• T—Text of help frames only (default).

• R—Text of help frames, plus a table of related frames and
keywords (if any) for each help frame.

• C—Complete listing (text of help frames, table of related
frames for each help frame, and internal help frame
names).

Output none

Help Processor: Developer Tools

122 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

July 1995 Kernel 123
Revised September 2011 Developer's Guide
 Version 8.0

12 Host Files: Developer Tools

12.1 Application Program Interface (API)

Several APIs are available for developers to work with Host files. These APIs are described below.

The traditional method of working with Host File System (HFS) files prior to Kernel 8.0 was to use the
Device Handler API (^%ZIS). Using several input parameters, you could open a Host file (given a Host
file device entry in the DEVICE file [#3.5]). For example:

Figure 20. Host Files: Opening a Host file using the ^%ZIS API

S %ZIS("HFSNAME")="ARCHIVE.DAT"
S %ZIS("HFSMODE")="W"
S IOP="HFS" D ^%ZIS Q:POP
U IO D...

Kernel 8.0 provides a set of APIs for working with Host files. The Host file APIs are:

• CLOSE^%ZISH Close Host file opened by OPEN^%ZISH.

• $$DEL^%ZISH Delete Host file.

• $$FTG^%ZISH Copy lines from a Host file into a global.

• $$GATF^%ZISH Append records from a global to a Host file.

• $$GTF^%ZISH Copy records from a global into a Host file.

• $$LIST^%ZISH Get a list of files in a directory.

• $$MV^%ZISH Rename Host file.

• OPEN^%ZISH Open Host file (bypass Device Handler).

• $$PWD^%ZISH Get name of current directory.

• $$STATUS^%ZISH Return end-of-file status.

Host Files: Developer Tools

124 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

The following definitions apply for the Host file APIs:

Path: Full path specification up to, but not including, the filename. This includes any
trailing slashes or brackets. If the operating system allows shortcuts, you can use
them. Examples of valid paths include:

• DOS c:\scratch\

• UNIX /home/scratch/

• VMS USER$:[SCRATCH]

To specify the current directory, use a path of NULL ("").

Filename: Filename of the file only. Do not include device or directory specifications.

Access mode: Access mode when opening files. It can be one of the following codes:

• R—READ; use the file for READs only.

• W—WRITE; use the file for writing. If the file exists, it is truncated to a
length of zero (0) first. If the file does not exist, it is created.

• A—APPEND; use the file for writing but start writing at the end of the
current file. If the file does not exist, it is created.

• B—BINARY file.

12.1.1 CLOSE^%ZISH(): Close Host File

Reference Type Supported

Category Host Files

IA # 2320

Description This API closes a Host file that was opened with the OPEN^%ZISH(): Open Host
File API.

Format CLOSE^%ZISH(handle)

Input Parameters handle: (required) Handle used when file was opened with the
OPEN^%ZISH(): Open Host File API.

Output none

 Host Files: Developer Tools

July 1995 Kernel 125
Revised September 2011 Developer's Guide
 Version 8.0

Example

Figure 21. CLOSE^%ZISH: Example

D OPEN^%ZISH("OUTFILE","USER$:[ANONYMOUS]","ARCHIVE.DAT","W")
Q:POP
U IO F I=1:1:100 W I,": ",ARRAY(I),!
D CLOSE^%ZISH("OUTFILE")

12.1.2 $$DEFDIR^%ZISH(): Get Default Host File Directory

Reference Type Supported

Category Host Files

IA # 2320

Description This extrinsic function gets the default Host file directory. It has two modes:
• NULL/Missing Parameter—If it is called with a NULL/missing

parameter, it returns the "default directory for HFS files" from the
KERNEL SYSTEM PARAMETERS file (#8989.3).

• Directory Parameter—If it is called with a parameter, it must be the
directory for a file. This parameter is checked to see that it is in the correct
format for the operating system in question.

Format $$DEFDIR^%ZISH([df])

Input Parameters df: (optional) This is the directory path upon which a simple format
check is made. For the NT operating system it changes "/" to "\"
and makes sure that there is a trailing "\". There is no error
response.

Output returns: Returns the default Host file directory.

Host Files: Developer Tools

126 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

12.1.3 $$DEL^%ZISH(): Delete Host File

Reference Type Supported

Category Host Files

IA # 2320

Description This extrinsic function deletes Host files. You can delete one or many Host files,
depending on how you set up the array whose name you pass as the second input
parameter.

Format $$DEL^%ZISH(path,arrname)

Input Parameters path: (required) Full path, up to but not including the filename.

 arrname: (required) Fully resolved array name containing the files to delete
as subscripts at the next descendent subscript level. For example,
to delete two files, FILE1.DAT and FILE2.DAT, set up the array
as:

ARRAY("FILE1.DAT")=""

ARRAY("FILE2.DAT")=""

Pass the array name "ARRAY" as the arrname parameter.
Wildcard specifications cannot be used with this function.

Output returns: Returns:

1—Success for all deletions.

0—Failure on at least one deletion.

Example

>K FILESPEC
>S FILESPEC("TMP.DAT")=""
>S Y=$$DEL^%ZISH("\MYDIR\",$NA(FILESPEC))

 Host Files: Developer Tools

July 1995 Kernel 127
Revised September 2011 Developer's Guide
 Version 8.0

12.1.4 $$FTG^%ZISH(): Load Host File into Global

Reference Type Supported

Category Host Files

IA # 2320

Description This extrinsic function loads a Host file into a global. Each line of the Host file
becomes the value of one node in the global. You do not need to open the Host file
before making this call; it is opened and closed by $$FTG^%ZISH.

If a line from a Host file exceeds 255 characters in length, the overflows are stored
in overflow nodes for that line, as follows:

Figure 22. Host Files: Overflow lines in a Host file sample

 ^TMP($J,35,0)="1st 255 of host file line..."
^TMP($J,35,"OVF",1)="next 255 chars of host file line..."
^TMP($J,35,"OVF",2)="next 255 characters of line etc."

Incrementing subscript for line
Overflow subscript level for line
Incrementing subscript for overflows

Format $$FTG^%ZISH(path,filename,global_ref,inc_subscr[,ovfsub])

Input Parameters path: (required) Full path, up to but not including the filename.

 filename: (required) Name of the file to open.

 global_ref: (required) Global reference to WRITE Host file to, in fully
resolved (closed root) format. This function does not KILL the
global before writing to it.

At least one subscript must be numeric. This will be the
incrementing subscript (i.e., the subscript that $$FTG^%ZISH
will increment to store each new global node). This subscript need
not be the final subscript. For example, to load into a WORD
PROCESSING field, the incrementing node is the second-to-last
subscript; the final subscript is always zero.

Host Files: Developer Tools

128 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

 inc_subscr: (required) Identifies the incrementing subscript level. For
example, if you pass ^TMP(115,1,1,0) as the global_ref parameter
and pass 3 as the inc_subscr parameter, $$FTG^%ZISH will
increment the third subscript, such as ^TMP(115,1,x), but will
WRITE nodes at the full global reference, such as
^TMP(115,1,x,0).

 ovfsub: (optional) Name of subscript level at which overflow nodes for
lines (if any) should be stored. Overflows occur if a line is greater
than 255 characters. Further overflows occur for every additional
255 characters. The default subscript name at which overflows are
stored for a line is "OVF".

Output returns: Returns:
• 1—Success.

• 0—Failure.

Example

>S Y=$$FTG^%ZISH("USER$:[COMMON]","MYFILE.DAT",$NA(^MYGLOBAL(612,1,0)),2)

12.1.5 $$GATF^%ZISH(): Copy Global to Host File

Reference Type Supported

Category Host Files

IA # 2320

Description This extrinsic function is used in the same way as the $$GTF^%ZISH(): Copy
Global to Host File. The one difference is that if the file already exists,
$$GATF^%ZISH appends global nodes to the existing file rather than truncating
the existing file first.

 REF: For more information, see the $$GTF^%ZISH(): Copy Global to Host
File API description.

Format $$GATF^%ZISH(global_ref,inc_subscr,path,filename)

Input Parameters global_ref: (required) Global to READ lines from, fully resolved in closed
root form.

 Host Files: Developer Tools

July 1995 Kernel 129
Revised September 2011 Developer's Guide
 Version 8.0

 inc_subscr: (required) Identifies the incrementing subscript level. For
example, if you pass ^TMP(115,1,1,0) as the global_ref
parameter, and pass 3 as the inc_subscr parameter, $$GATF will
increment the third subscript (e.g., ^TMP[115,1,x]), but will
READ nodes at the full global reference (e.g., ^TMP[115,1,x,0]).

 path: (required) Full path, up to but not including the filename.

 filename: (required) Name of the file to open.

Output returns: Returns:

1—Success.

0—Failure.

12.1.6 $$GTF^%ZISH(): Copy Global to Host File

Reference Type Supported

Category Host Files

IA # 2320

Description This extrinsic function WRITEs the values of nodes in a global (at the subscript
level you specify) to a Host file. If the Host file already exists, it is truncated to
length zero (0) before the copy. You do not need to open the Host file before
making this call. The Host file is opened (in WRITE mode) and closed by
$$GTF^%ZISH.

Format $$GTF^%ZISH(global_ref,inc_subscr,path,filename)

Input Parameters global_ref: (required) Global to READ lines from, fully resolved in closed
root form.

 inc_subscr: (required) Identifies the incrementing subscript level. For
example, if you pass ^TMP(115,1,1,0) as the global_ref
parameter, and pass 3 as the inc_subscr parameter, $$GTF will
increment the third subscript (e.g., ^TMP[115,1,x]), but will
READ nodes at the full global reference (e.g., ^TMP[115,1,x,0]).

 path: (required) Full path, up to but not including the filename.

 filename: (required) Name of the file to open.

Output returns: Returns:
• 1—Success.

• 0—Failure.

Host Files: Developer Tools

130 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example

>S Y=$$GTF^%ZISH($NA(^MYGLOBAL(612,1,0)),2,"USER$:[COMMON]","MYFILE.DAT")

12.1.7 $$LIST^%ZISH(): List Directory

Reference Type Supported

Category Host Files

IA # 2320

Description This extrinsic function returns a list of file names in the current directory. The
list is returned in an array in the variable named by the third parameter.

Format $$LIST^%ZISH(path,arrname,retarrnam)

Input Parameters path: (required) Full path, up to but not including any filename. For
current directory, pass the NULL string.

 arrname: (required) Fully resolved array name containing file
specifications to list at the next descendent subscript level.

For example, to list all files, set one node in the named array, at
subscript "*", equal to NULL. To list all files beginning with
"E" and "L", using the ARRAY array, set the nodes:

ARRAY("E*")=""

ARRAY("L*")=""

Pass the name "ARRAY" as the arrname parameter. You can
use the asterisk wildcard in the file specification.

 retarrnam: (required) Fully resolved array name to return the list of
matching filenames. You should ordinarily KILL this array first
(it is not purged by LIST^%ZISH).

Output Parameters retarrnam: $$LIST^%ZISH populates the array named in the third input
parameter with all matching files it finds in the directory you
specify. It populates the array in the format:

ARRAY("filename1")=""

ARRAY("filename2")=""
(etc.)

 Host Files: Developer Tools

July 1995 Kernel 131
Revised September 2011 Developer's Guide
 Version 8.0

Output returns: Returns:
• 1—Success.

• 0—Failure.

Example

>K FILESPEC,FILE
>S FILESPEC("L*")="",FILESPEC("P*")=""
>S Y=$$LIST^%ZISH("","FILESPEC","FILE")

12.1.8 $$MV^%ZISH(): Rename Host File

Reference Type Supported

Category Host Files

IA # 2320

Description This extrinsic function renames a Host file. The function performs the renaming,
regardless of the underlying operating system, by first copying the file to the new
name/location and then deleting the original file at the old name/location.

Format $$MV^%ZISH([path1,]filename1[,path2],filename2)

Input Parameters path1: (optional) Full path of the original file, up to but not including the
filename. If null, it will default to $$DEFDIR^%ZOSV.

 filename1: (required) Name of the original file.

 path2: (optional) Full path of renamed file, up to but not including the
filename. If null, it will default to $$DEFDIR^%ZOSV

 filename2: (required) Name of the renamed file.

Output returns: Returns:

1—Success.

0—Failure.

Example

>S Y=$$MV^%ZISH("","TMP.DAT","","ZXG"_I_".DAT")

Host Files: Developer Tools

132 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

12.1.9 OPEN^%ZISH(): Open Host File

Reference Type Supported

Category Host Files

IA # 2320

Description This API opens a Host file without using the Device Handler. You can USE the
device name returned in IO. You can then READ and WRITE from the opened
Host file (depending on what access mode you used to open the file).

To close the Host file, use the CLOSE^%ZISH API with the handle you used to
open the file.

Format OPEN^%ZISH([handle][,path,]filename,mode[,max][,subtype])

Input Parameters handle: (optional) Unique name you supply to identify the opened
device.

 path: (optional) Full directory path, up to but not including the
filename. If not supplied, the default HFS directory will be used.

 filename: (required) Name of the file to open.

 mode: (required) Mode to open file:
• W—WRITE

• R—READ

• A—APPEND

• B—BLOCK (fixed record size).

 max (optional) Maximum record size for a new file.

 subtype (optional) File subtype.

Output Variables POP: A value of zero (0) means the file was opened successfully; a
positive value means the file was not opened.

 IO: Name of the opened file in the format to use for M USE and
CLOSE commands.

 Host Files: Developer Tools

July 1995 Kernel 133
Revised September 2011 Developer's Guide
 Version 8.0

Example

Figure 23. OPEN^%ZISH: Example

D OPEN^%ZISH("FILE1","USER$:[ANONYMOUS]","ARCHIVE.DAT","A")
Q:POP
U IO F I=1:1:100 W I,": ",ARRAY(I),!
D CLOSE^%ZISH("FILE1")

12.1.10 $$PWD^%ZISH: Get Current Directory

Reference Type Supported

Category Host Files

IA # 2320

Description This extrinsic function returns the name of the current working directory.

Format $$PWD^%ZISH

Input Parameters none

Output returns: Returns:
• String—The string representing the current directory

specification, including device if any.

• NULL—If a problem occurs while retrieving the current
directory.

Example

>S Y=$$PWD^%ZISH()

12.1.11 $$STATUS^%ZISH: Return End-of-File Status

Reference Type Supported

Category Host Files

IA # 2320

Description This extrinsic function returns the current end-of-file status. If end-of-file has been
reached, $$STATUS^%ZISH returns 1. Otherwise, it returns 0.

Format $$STATUS^%ZISH

Host Files: Developer Tools

134 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters none

Output returns: Returns:

1—End-of-file (EOF) has been reached.

0—End-of-file (EOF) has not been reached.

Example

Figure 24. $$STATUS^%ZISH: Example

D OPEN^%ZISH("INFILE","USER$:[ANONYMOUS]","ZXG.DAT","R")
Q:POP
U IO F I=1:1 R X:DTIME Q:$$STATUS^%ZISH S ^TMP($J,"ZXG",I)=X
D CLOSE^%ZISH("INFILE")

July 1995 Kernel 135
Revised September 2011 Developer's Guide
 Version 8.0

13 Institution File: Developer Tools

13.1 Application Program Interface (API)

Several APIs are available for developers to work with the INSTITUTION file (#4). These APIs are
described below.

13.1.1 $$ACTIVE^XUAF4(): Institution Active Facility (True/False)

Reference Type Supported

Category Institution File

IA # 2171

Description This extrinsic function, given the Internal Entry Number (IEN) in the
INSTITUTION file (#4), returns the Boolean value for the question—is this an
active facility? It checks to see if the INACTIVE FACILITY FLAG field (#101) is
not set.

Format $$ACTIVE^XUAF4(ien)

Input Parameters ien: (required) Internal Entry Number (IEN) of the institution in
question.

Output returns: Returns a Boolean value:

True (non-zero)—Station Number is an active facility.

False (zero)—Station Number is not an active facility. The
INACTIVE FACILITY FLAG field (#101) has a
value indicating it is inactive.

13.1.2 CDSYS^XUAF4(): Coding System Name

Reference Type Supported

Category Institution File

IA # 2171

Description This API returns the Coding System name.

Format CDSYS^XUAF4(y)

Institution File: Developer Tools

136 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters y: (required) Pass by reference, returns:

Y(coding_system) =
$D_of_local_system^ coding_system name

Output Parameters y: Passed by reference, returns:

Y(coding_system) =
$D_of_local_system^ coding_system name

13.1.3 CHILDREN^XUAF4(): List of Child Institutions for a Parent

Reference Type Supported

Category Institution File

IA # 2171

Description This API returns a list of all institutions that make up a given Veterans Integrated
Service Network (VISN), parent institution entered in the "parent" input
parameter.

Format CHILDREN^XUAF4(array,parent)

Input Parameters array (required) $NAME reference to store the list of institutions that
make up the parent VISN institution for the "parent" input
parameter.

 parent (required) Parent (VISN) institution lookup value, any of the
following:

• Internal Entry Number (IEN), will have the ` in front of it.

• Station Number

• Station Name

Output returns: Returns the array populated with the list of institutions that make
up the parent VISN.

Variable array
("c",ien)=station_name^station_number

 Institution File: Developer Tools

July 1995 Kernel 137
Revised September 2011 Developer's Guide
 Version 8.0

13.1.4 $$CIRN^XUAF4(): Institution CIRN-enabled Field Value

Reference Type Supported

Category Institution File

IA # 2171

Description This extrinsic function returns the value of the CIRN-enabled field from the
INSTITUTION file (#4).

Format $$CIRN^XUAF4(inst[,value])

Input Parameters inst: (required) Institution lookup value, any of the following:
• Internal Entry Number (IEN), will have the ` in front of it.

• Station Number

• Station Name

 value: (optional) Restricted to use by CIRN. This input parameter allows
the setting of the field to a new value.

Output returns: Returns the CIRN-enabled field value.

13.1.5 F4^XUAF4(): Institution Data for a Station Number

Reference Type Supported

Category Institution File

IA # 2171

Description This API returns the Internal Entry Number (IEN) and other institution data,
including historical information, for a given STATION NUMBER (#99) in the
INSTITUTION file (#4).

Format F4^XUAF4(sta,[.]array[,flag][,date])

Institution File: Developer Tools

138 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters sta: (required) Station Number.

 [.]array: (required) $NAME reference for return values.

 flag: (optional) Flags that represent the Station Number
Status. Possible values are:

• A—Active entries only.

• M—Medical treating facilities only.

 date: (optional) Return name on this VA FileMan
internal date.

Output array IEN or "0^error message"

 array("NAME") Name

 array("VA NAME") Official VA Name

 array("STATION NUMBER") Station Number

 array("TYPE") Facility Type Name

 array("INACTIVE") Inactive Date (0=not inactive)

 NOTE: If inactive date not available, then
1.

 array("REALIGNED TO") IEN^station number^date

 array("REALIGNED FROM") IEN^station number^date

 array("MERGE",IEN") Merged Records

Example

>D F4^XUAF4("528A8",.ARRAY)

>ZW ARRAY
ARRAY=7020
ARRAY("INACTIVE")=0
ARRAY("NAME")=ALBANY
ARRAY("REALIGNED FROM")=500^500^3000701
ARRAY("STATION NUMBER")=528A8
ARRAY("TYPE")=VAMC
ARRAY("VA NAME")=VA HEALTHCARE NETWORK UPSTATE NEW YORK SYSTEM VISN 2 - ALBANY
DIVISION

 Institution File: Developer Tools

July 1995 Kernel 139
Revised September 2011 Developer's Guide
 Version 8.0

13.1.6 $$ID^XUAF4(): Institution Identifier

Reference Type Supported

Category Institution File

IA # 2171

Description This extrinsic function returns the Identifier (ID) of an INSTITUTION file (#4)
entry for a given Coding System and Internal Entry Number (IEN).

Format $$ID^XUAF4(cdsys,ien)

Input Parameters cdsys: (required) CDSYS is an existing CODING SYSTEM field (#.01)
in the INDENTIFIER field (#9999) multiple of the
INSTITUTION file (#4). To see existing coding systems in the
file:

>D CDSYS^XUAF4(.Y)

 ien: (required) Internal Entry Number (IEN) of the institution in
question.

Output returns: Returns the INSTITUITION file (#4) Identifier (ID) associated
with the given Coding System and IEN.

13.1.7 $$IDX^XUAF4(): Institution IEN (Using Coding System & ID)

Reference Type Supported

Category Institution File

IA # 2171

Description This extrinsic function returns the Internal Entry Number (IEN) of an
INSTITUTION file (#4) entry for a given Coding System and Identifier (ID) pair.

Format $$IDX^XUAF4(cdsys,id)

Input Parameters cdsys: (required) CDSYS is an existing CODING SYSTEM field (#.01)
in the INDENTIFIER field (#9999) multiple of the
INSTITUTION file (#4). To see existing coding systems in the
file:

>D CDSYS^XUAF4(.Y)

 id: (required) ID is the ID filed (#.02) in the INDENTIFIER field
(#9999) multiple of the INSTITUTION file (#4) that corresponds
to the Coding System input (i.e., cdsys) as the first parameter.

Institution File: Developer Tools

140 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Output returns: Returns the INSTITUTION file (#4) Internal Entry Number (IEN)
associated with the given Coding System and Identifier (ID).

13.1.8 $$IEN^XUAF4(): IEN for Station Number

Reference Type Supported

Category Institution File

IA # 2171

Description This extrinsic function returns the Internal Entry Number (IEN) of the entry for a
given STATION NUMBER field (#99) in the INSTITUTION file (#4).

Format $$IEN^XUAF4(sta)

Input Parameters sta: (required) Station Number.

Output returns: Returns:

IEN—Internal Entry Number.

NULL—Error.

Example

>S X=$$IEN^XUAF4("528A5")

>W X
532

13.1.9 $$LEGACY^XUAF4(): Institution Realigned/Legacy
(True/False)

Reference Type Supported

Category Institution File

IA # 2171

Description This extrinsic function, given the STATION NUMBER field (#99) in the
INSTITUTION file (#4), returns the Boolean value for the question—has this
station number been realigned? Is it a legacy Station Number?

Format $$LEGACY^XUAF4(sta)

 Institution File: Developer Tools

July 1995 Kernel 141
Revised September 2011 Developer's Guide
 Version 8.0

Input Parameters sta: (required) The STATION NUMBER field (#99) value in the
INSTITUTION file (#4) for the Station Number in question.

Output returns: Returns a Boolean value:
• True (non-zero)—Station Number has been realigned; it

is a legacy Station Number.

• False (zero)—Station Number has not been realigned; it is
not a legacy Station Number.

13.1.10 $$LKUP^XUAF4(): Institution Lookup

Reference Type Supported

Category Institution File

IA # 2171

Description This extrinsic function returns the IEN or zero when doing a lookup on the
INSTITUTION file (#4).

Format $$LKUP^XUAF4(inst)

Input Parameters inst: (required) Institution lookup value, any of the following:
• Internal Entry Number (IEN), will have the ` in front of it.

• Station Number

• Station Name

Output returns: Returns:

IEN—Internal Entry Number.

Zero (0).

Institution File: Developer Tools

142 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

13.1.11 LOOKUP^XUAF4(): Look Up Institution Identifier

Reference Type Supported

Category Institution File

IA # 2171

Description This API lookup utility allows a user to select an Institution by Coding System and
ID. It prompts a user for a Coding System and then prompts for an Identifier—it's
an IX^DIC API call on a New Style cross-reference of the ID field (#.02) of the
IDENTIFIER field (#9999) multiple in the INSTITUTION file (#4).

Format LOOKUP^XUAF4()

Input Parameters
 REF: For input information, see the IX^DIC documentation
in the VA FileMan Programmer Manual.

Output
 REF: For output information, see the IX^DIC
documentation in the VA FileMan Programmer Manual.

Example

 Select INSTITUTION CODING SYSTEM: DMIS
 ID: 0037
 DMIS 0037 WALTER REED DC USAH 688CN

13.1.12 $$MADD^XUAF4(): Institution Mailing Address

Reference Type Supported

Category Institution File

IA # 2171

Description This extrinsic function returns the mailing address information for an institution in
a caret-delimited string (i.e., streetaddr^city^state^zip) for a given Internal Entry
Number (IEN) in the INSTITUTION file (#4).

Format $$MADD^XUAF4(ien)

Input Parameters ien: (required) Internal Entry Number (IEN) of the institution in
question.

 Institution File: Developer Tools

July 1995 Kernel 143
Revised September 2011 Developer's Guide
 Version 8.0

Output returns: Returns the institution mailing address in a caret-delimited string:
streetaddr^city^state^zip

13.1.13 $$NAME^XUAF4(): Institution Official Name

Reference Type Supported

Category Institution File

IA # 2171

Description This extrinsic function returns the OFFICIAL NAME field (#100) value in the
INSTITUTION file (#4) for an institution given its Internal Entry Number (IEN).
However, If Field #100 is null, the NAME field (#.01) in the INSTITUTION file
(#4) is returned.

Format $$NAME^XUAF4(ien)

Input Parameters ien: (required) Internal Entry Number (IEN) of the institution in
question.

Output returns: Returns either of the following:
• OFFICIAL NAME field (#100) value in the

INSTITUTION file (#4)—If Field #100 is not null.

• NAME field (#.01) value in the INSTITUTION file
(#4)—If Field #100 is null.

13.1.14 $$NNT^XUAF4(): Institution Station Name, Number, and
Type

Reference Type Supported

Category Institution File

IA # 2171

Description This extrinsic function returns the station information for an institution in a caret-
delimited string (i.e., station_name^station_number^station_type) for a given
Internal Entry Number (IEN) in the INSTITUTION file (#4).

Format $$NNT^XUAF4(ien)

Input Parameters ien: (required) Internal Entry Number (IEN) of the institution in
question.

Institution File: Developer Tools

144 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Output returns: Returns the institution station information in a caret-delimited
string:

station_name^station_number^station_type

13.1.15 $$NS^XUAF4(): Institution Name and Station Number

Reference Type Supported

Category Institution File

IA # 2171

Description This extrinsic function returns the institution information in a caret-delimited
string (i.e., institution_name^station_number) for a given Internal Entry Number
(IEN) in the INSTITUTION file (#4).

Format $$NS^XUAF4(ien)

Input Parameters ien: (required) Internal Entry Number (IEN) of the institution in
question.

Output returns: Returns the institution information in a caret-delimited string:

institution_name^station_number

13.1.16 $$O99^XUAF4(): IEN of Merged Station Number

Reference Type Supported

Category Institution File

IA # 2171

Description This extrinsic function returns the Internal Entry Number (IEN) of the valid
STATION NUMBER in the INSTITUTION file (#4), if this entry was merged
during the INSTITUTION file (#4) cleanup process (e.g., due to a duplicate
STATION NUMBER field [#99]). This function may be used by application
developers to re-point their INSTITUTION file (#4) references to a valid entry
complete with Station Number.

Format $$O99^XUAF4(ien)

Input Parameters ien: (required) Internal Entry Number (IEN) of the institution in
question.

 Institution File: Developer Tools

July 1995 Kernel 145
Revised September 2011 Developer's Guide
 Version 8.0

Output returns: Returns the Internal Entry Number (IEN) of the INSTITUTION
file (#4) entry with a valid STATION NUMBER filed (#99)—the
Station Number deleted from the input IEN during the cleanup
process (i.e., Kernel Patch XU*8.0*206).

Example

>S NEWIEN=$$O99^XUAF4(6538)

>W NEWIEN
6164
>W ^DIC(4,6164,99)
519HB^^^

13.1.17 $$PADD^XUAF4(): Institution Physical Address

Reference Type Supported

Category Institution File

IA # 2171

Description This extrinsic function returns the physical address information for an institution
in a caret-delimited string (streetaddr^city^state^zip) for a given Internal Entry
Number (IEN) in the INSTITUTION file (#4).

Format $$PADD^XUAF4(ien)

Input Parameters ien: (required) Internal Entry Number (IEN) of the institution in
question.

Output returns: Returns the institution physical address in a caret-delimited string:
streetaddr^city^state^zip

Institution File: Developer Tools

146 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

13.1.18 PARENT^XUAF4(): Parent Institution Lookup

Reference Type Supported

Category Institution File

IA # 2171

Description This API returns a list of all institutions that make up a given Veterans Integrated
Service Network (VISN), parent institution entered in the "lookup" input
parameter.

Format PARENT^XUAF4(array,lookup[,type])

Input Parameters array: (required) $NAME reference to store the list of the parent (VISN)
institution for the "lookup" input parameter institution.

 lookup: (required) Parent (VISN) institution lookup value, any of the
following:

• Internal Entry Number (IEN), will have the ` in front of it.

• Station Number

• Station Name

 type: (optional) Type of institution from the INSTITUTION
ASSOCIATION TYPES file (#4.05, default is VISN).

Output returns: Returns the array populated with the list of parent (VISN)
institutions.

Variable array
("P",PIEN)=STATION_NAME^STATION_NUMBER

 NOTE: With the business rule that institutions can only
have one parent per type, if you specify the input parameter
type, you will get an array that will only have one PIEN in
it. If the type parameter is left blank, it finds all parents for
the institution and lists then in the array.

 Institution File: Developer Tools

July 1995 Kernel 147
Revised September 2011 Developer's Guide
 Version 8.0

13.1.19 $$PRNT^XUAF4(): Institution Parent Facility

Reference Type Supported

Category Institution File

IA # 2171

Description This extrinsic function returns the parent facility institution information in a caret-
delimited string (ien^station_number^name) for a given child facility STATION
NUMBER field (#99) in the INSTITUTION file (#4).

Format $$PRNT^XUAF4(sta)

Input Parameters sta: (required) The STATION NUMBER field (#99) value in the
INSTITUTION file (#4) for the child facility whose parent facility
information is being requested.

Output returns: Returns the parent facility institution information in a caret-
delimited string:

ien^station_number^name

13.1.20 $$RF^XUAF4(): Realigned From Institution Information

Reference Type Supported

Category Institution File

IA #

Description This extrinsic function returns the information that is pointed to in the
REALIGNED FROM field (#.06) in the HISTORY field (#999) multiple in a
caret-delimited string (ien^station_number^effective_date) for a given Internal
Entry Number (IEN) in the INSTITUTION file (#4).

Format $$RF^XUAF4(ien)

Input Parameters ien: (required) Internal Entry Number (IEN) of the institution in
question.

Output returns: Returns the realigned from institution information in a caret-
delimited string:

ien^station_number^effective_date

Institution File: Developer Tools

148 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example

>S IEN=$$RF^XUAF4(7020)

>W IEN
500^500^3000701

13.1.21 $$RT^XUAF4(): Realigned To Institution Information

Reference Type Supported

Category Institution File

IA #

Description This extrinsic function returns the information that is pointed to in the
REALIGNED TO field (#.05) in the HISTORY field (#999) multiple in a caret-
delimited string (ien^station_number^effective_date) for a given Internal Entry
Number (IEN) in the INSTITUTION file (#4).

Format $$RT^XUAF4(ien)

Input Parameters ien: (required) Internal Entry Number (IEN) of the institution in
question.

Output returns: Returns the realigned to institution information in a caret-
delimited string:

ien^station_number^effective_date

Example

>S IEN=$$RT^XUAF4(500)

>W IEN
7020^528A8^3000701

 Institution File: Developer Tools

July 1995 Kernel 149
Revised September 2011 Developer's Guide
 Version 8.0

13.1.22 SIBLING^XUAF4(): Sibling Institution Lookup

Reference Type Supported

Category Institution File

IA # 2171

Description This API returns a list of all institutions that make up a given Veterans Integrated
Service Network (VISN), parent institution entered in the "child" input parameter.

Format SIBLING^XUAF4(array,child[,type])

Input Parameters array: (required) $NAME reference to store the list of all institutions of a
parent (VISN) institution for the "child" input parameter
institution.

 child: (required) Child institution lookup value, any of the following:
• Internal Entry Number (IEN), will have the ` in front of it.

• Station Number

• Station Name

 type: (optional) Type of institution from the INSTITUTION
ASSOCIATION TYPES file (#4.05, default is VISN).

Output returns: Returns the array populated with the list of all institutions of the
parent (VISN) institution.

Variable array
("P",PIEN, "C",CIEN)=STATION_NAME^STATION_NUMBER

 NOTE: With the business rule that institutions can only
have one parent per type, if you specify the input parameter
type, you will get an array that will only have one PIEN in
it. If the type parameter is left blank, it finds all parents for
the institution and lists then in the array. Also, the input site
(i.e., "child" input parameter) is included in the list.

Institution File: Developer Tools

150 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

13.1.23 $$STA^XUAF4(): Station Number for IEN

Reference Type Supported

Category Institution File

IA # 2171

Description This extrinsic function returns the STATION NUMBER field (#99) for the entry
of a given Internal Entry Number (IEN) in the INSTITUTION file (#4).

Format $$STA^XUAF4(ien)

Input Parameters ien: (required) Internal Entry Number (IEN) of the institution in
question.

Output returns: Returns the Station Number.

Example

>S STA=$$STA^XUAF4(7020)

>W STA
528A8

13.1.24 $$TF^XUAF4(): Treating Facility (True/False)

Reference Type Supported

Category Institution File

IA # 2171

Description This extrinsic function, given the Internal Entry Number (IEN) in the
INSTITUTION file (#4), returns the Boolean value for the question—is this a
medical treating facility?

Format $$TF^XUAF4(ien)

Input Parameters ien: (required) Internal Entry Number (IEN) of the institution in
question.

Output returns: Returns a Boolean value:
• True (non-zero)—Treating facility.

• False (zero)—Not a Treating facility.

 Institution File: Developer Tools

July 1995 Kernel 151
Revised September 2011 Developer's Guide
 Version 8.0

Example

>S TF=$$TF^XUAF4(7020)

>W TF
1

13.1.25 $$WHAT^XUAF4(): Institution Single Field Information

Reference Type Supported

Category Institution File

IA # 2171

Description This extrinsic function returns the data from a single field given the Internal Entry
Number (IEN) and the specific field requested in the INSTITUTION file (#4).

Format $$WHAT^XUAF4(ien,field)

Input Parameters ien: (required) Internal Entry Number (IEN) of the institution in
question (pointer value to the INSTITUTION file (#4).

 field: (required) field number of the field in question.

Output returns: Returns the value in the specified field.

13.1.26 $$IEN^XUMF(): Institution IEN (Using IFN, Coding System,
& ID)

Reference Type Supported

Category Institution File

IA # 3795

Description This extrinsic function returns the Internal Entry Number (IEN) for a given
Internal File Number (IFN), Coding System, and Identifier (ID).

Format $$IEN^XUMF(ifn,cdsys,id)

Input Parameters ifn: (required) Internal File Number (IFN).

 cdsys: (required) Coding System.

 id: (required) Identifier.

Institution File: Developer Tools

152 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Output returns: Returns the Internal Entry Number (IEN) of the institution
requested.

13.1.27 MAIN^XUMFI(): HL7 Master File Message Builder

Reference Type Controlled Subscription

Category Institution File

IA # 2171

Description This API implements an HL7 Master File Message Builder Interface that
dynamically maps a VA FileMan field to an HL7 Master File sequence within a
segment. The interface implements functionality to build Master File Notification
(MFN), Master File Query (MFQ), and Master File Response (MFR) segments.
The interface calls applicable VISTA HL7 GENERATE and GENACK interfaces
to send/reply/broadcast an appropriate HL7 Master File message.

Format MAIN^XUMFI(ifn,ien,type,param,error)

Input Parameters
 REF: For a description of the Input parameters for this API,
see the "MAIN^XUMFP(): Master File Parameters" API.

Output Parameters &
Output

 REF: For a description of the Output Parameters and
Output for this API, see the "MAIN^XUMFP(): Master File
Parameters" API.

Details

This interface should be called after the Master File Parameter API. The Master File Parameter API sets
up the required parameters in the PARAM array.

The Institution File Redesign (IFR) patch (i.e., XU*8.0*206) implements several Application Program
Interfaces (APIs). After the IFR patch has been installed and the Cleanup performed, the STATION
NUMBER field (#99) will be a unique key to the INSTITUTION file (#4).

 Institution File: Developer Tools

July 1995 Kernel 153
Revised September 2011 Developer's Guide
 Version 8.0

Example

>D MAIN^XUMFI(4,18723,1,.PARAM,.ERROR)

From the HL7 MESSAGE TEXT file (#772), you would see the following:

DATE/TIME ENTERED: JAN 12, 2001@09:17:29
 SERVER APPLICATION: XUMF MFN TRANSMISSION TYPE: OUTGOING
 MESSAGE ID: 0259 PARENT MESSAGE: JAN 12, 2001@09:17:29
 PRIORITY: DEFERRED RELATED EVENT PROTOCOL: XUMF MFN
 MESSAGE TYPE: SINGLE MESSAGE
MESSAGE TEXT:
MFI^Z04^MFS^REP^20010112091729^20010112091729^NE
MFE^MUP^^19001011^631GD~STATION NUMBER~D
ZIN^GREENFIELD^631GD^National^CBOC~FACILITY TYPE~VA^^^MASSACHUSETTS^^^^^^
 STATUS: SUCCESSFULLY COMPLETED
 DATE/TIME PROCESSED: JAN 12, 2001@09:17:29
 NO. OF CHARACTERS IN MESSAGE: 161 NO. OF EVENTS IN MESSAGE: 1

13.1.28 MAIN^XUMFP(): Master File Parameters

Reference Type Controlled Subscription

Category Institution File

IA # 2171

Description This API sets up required parameters used by the HL7 Master File Message
Builder Interface and the HL7 Master File message handler. The interface defines
required parameters and serves as a common interface for parameter initialization.
This interface is the enabling component of the Master File Server (MFS)
mechanism allowing VA FileMan Master Files to be maintained by the server,
including files with multiple fields and extended references.

The developer can set any PARAM parameter before or after the interface call and
override the default value.

Format MAIN^XUMFP(ifn,ien,type,param,error)

Institution File: Developer Tools

154 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters ifn: (required) Internal File Number (IFN).

 ien: (required) Internal Entry Number (IEN).

Single entry (pass by value).

Example:

• IEN=1

Multiple entries (pass by reference).

Example:

• IEN(1)=""

• IEN(2)=""

ALL national entries (pass by value).

Example:

• IEN="ALL"

 type: (required) Message TYPE. Possible values are:

• 0—MFN: Unsolicited update.

• 1—MFQ: Query particular record and file.

• 3—MFQ: Query particular record in array.

• 5—MFQ: Query group records file.

• 7—MFQ: Query group records array.

• 11—MFR: Query response particular record file.

• 13—MFR: Query response particular record array.

• 15—MFR: Query response group records file.

• 17—MFR: Query response group records array.

Output Parameters param("PROTOCOL") IEN Protocol file (#101).

 param("BROADCAST") Broadcast message to all VistA sites.

 param("LLNK") Logical link in HLL("LINKS",n) format.

Output error 1^Error message text

 Institution File: Developer Tools

July 1995 Kernel 155
Revised September 2011 Developer's Guide
 Version 8.0

Details

QRD -- Query definition HL7 Sequence HL7 Data Type

param("QDT") Query Date/Time TS
param("QFC") Query Format Code ID
param("QP") Query Priority ID
param("QID") Query ID ST
param("DRT") Deferred Response Type ID
param("DRDT") Deferred Response Date/Time TS
param("QLR") Quantity Limited Request CQ
param("WHO") Who Subject Filter XCN
param("WHAT") What Subject Filter CE
param("WDDC") What Department Data Code CE
param("WDCVQ") What Data Code Value Qual. CM
param("QRL") Query Results Level ID

XCN data type of QRD WHO parameter

1ST component One of the following:

NAME Value of NAME field (#.01) for Internal Entry Number (IEN).

ALL String represents all national entries.

IEN ARRAY String represents entries passed in IEN array.

9th component D Source table (VA FileMan cross-reference).
10th component 045A4 Assigning authority.

CE data type of QRD WHAT parameter

1ST component 4 Identifier
2nd component IFN Text
3rd component VA FM Name of Coding System

Institution File: Developer Tools

156 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

MFI—Master File Identification

PARAM("MFI") Master File Identifier
PARAM("MFAI") Master File Application Identifier
PARAM("FLEC") File-Level Event Code
PARAM("ENDT") Entered Data/Time
PARAM("MFIEDT") Effective Date/Time
PARAM("RLC") Response Level Code

MFE—Master File Entry

PARAM("RLEC") Record-Level Event Code
PARAM("MFNCID") MFN Control ID
PARAM("MFEEDT") Effective Date/Time
PARAM("PKV") Primary Key Value

[Z...] segment(s) parameters

PARAM("SEG",SEG)="" HL7 segment name
PARAM("SEG",SEG,"SEQ",SEQ,FLD#) segment sequence # and field

 NOTE: If any special processing is required, in addition to the external value passed by VA
FileMan, set the FLD# node equal to a formatting function "n^$$TAG^RTN(X)".

• "n" being the component sequence number.

• "X" representing the external value from VA FileMan.

$P(segment_sequence,HLCS,n)=FM_external_value.

Files involving sub-records and/or extended reference

PARAM("SEG",SEG,"SEQ",SEQ,"FILE") See VA FileMan documentation.
PARAM("SEG",SEG,"SEQ",SEQ,"IENS") $$GET1^DIQ() for value.
PARAM("SEG",SEG,"SEQ",SEQ,"FIELD") of FILE, IENS, & FIELD.
PARAM("SEG",SEG,"SEQ",SEQ,"KEY") .01 value.
PARAM("SEG",SEG,"SEQ",SEQ,"FORMAT") format non ST data types.

 NOTE: Query group records store PARAM in the ^TMP global with the following root:
^TMP("XUMF MFS",$J,"PARAM",IEN).

Example: MFE PKV node is ^TMP("XUMF MFS",$J,"PARAM",IEN,"PKV")

 Institution File: Developer Tools

July 1995 Kernel 157
Revised September 2011 Developer's Guide
 Version 8.0

Example

The following example is a query (MFQ) for a group records array:

>D MAIN^XUMFP(4,"ALL",7,.PARAM,.ERROR)

Institution File: Developer Tools

158 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Since query group records store PARAM in the ^TMP global, display the ^TMP global to see the
PARAM values:

>D ^%G

Global ^TMP("XUMF MFS",$J
 TMP("XUMF MFS",$J
^TMP("XUMF MFS",539017563,"PARAM","DRDT") =
^TMP("XUMF MFS",539017563,"PARAM","DRT") =
^TMP("XUMF MFS",539017563,"PARAM","ENDT") =
^TMP("XUMF MFS",539017563,"PARAM","FLEC") = UPD
^TMP("XUMF MFS",539017563,"PARAM","MFAI") =
^TMP("XUMF MFS",539017563,"PARAM","MFEEDT") = 20010212110654
^TMP("XUMF MFS",539017563,"PARAM","MFI") = Z04
^TMP("XUMF MFS",539017563,"PARAM","MFIEDT") =
^TMP("XUMF MFS",539017563,"PARAM","MFNCID") =
^TMP("XUMF MFS",539017563,"PARAM","POST") = POST^XUMFP4C
^TMP("XUMF MFS",539017563,"PARAM","PRE") = PRE^XUMFP4C
^TMP("XUMF MFS",539017563,"PARAM","PROTOCOL") = 2233
^TMP("XUMF MFS",539017563,"PARAM","QDT") = 20010212110654
^TMP("XUMF MFS",539017563,"PARAM","QFC") = R
^TMP("XUMF MFS",539017563,"PARAM","QID") = Z04 ARRAY
^TMP("XUMF MFS",539017563,"PARAM","QLR") = RD~999
^TMP("XUMF MFS",539017563,"PARAM","QP") = I
^TMP("XUMF MFS",539017563,"PARAM","QRL") =
^TMP("XUMF MFS",539017563,"PARAM","RLC") = NE
^TMP("XUMF MFS",539017563,"PARAM","RLEC") = MUP
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",1,.01) = ST
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",2,99) = ST
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",3,11) = ID
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",4,13) = CE^~FACILITY TYPE~VA
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",5,100) = ST
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",6,101) = ST
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",7,.02) = ST
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",8,"DTYP") = CE^~VISN~VA
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",8,"FIELD") = 1
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",8,"FILE") = 4.014
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",8,"IENS") = 1,?+1,
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",9,"DTYP") = ST
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",9,"FIELD") = 1:99
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",9,"FILE") = 4.014
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",9,"IENS") = 2,?+1,
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",10,"DTYP") = DT
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",10,"FIELD") = .01
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",10,"FILE") = 4.999
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",11,"DTYP") = ST
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",11,"FIELD") = .06:99
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",11,"FILE") = 4.999
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",12,"DTYP") = DT
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",12,"FIELD") = .01
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",12,"FILE") = 4.999
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",13,"DTYP") = ST
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",13,"FIELD") = .05:99
^TMP("XUMF MFS",539017563,"PARAM","SEG","ZIN","SEQ",13,"FILE") = 4.999
^TMP("XUMF MFS",539017563,"PARAM","SEGMENT") = ZIN
^TMP("XUMF MFS",539017563,"PARAM","WDCVQ") =
^TMP("XUMF MFS",539017563,"PARAM","WDDC") = INFRASTRUCTURE~INFORMATION
INFRASTRUCTURE ~VA TS
^TMP("XUMF MFS",539017563,"PARAM","WHAT") = 4~IFN~VA FM
^TMP("XUMF MFS",539017563,"PARAM","WHO") = ALL~~~~~~~~D~045A4

July 1995 Kernel 159
Revised September 2011 Developer's Guide
 Version 8.0

14 Kernel Installation and Distribution System (KIDS):
Developer Tools

14.1 KIDS Build-related Options

To get to the KIDS: Kernel Installation & Distribution System menu [XPD MAIN] (locked with the
XUPROG security key) choose the Programmer Options menu option [XUPROG] on the Kernel Systems
Manager Menu [EVE], as shown below:

Figure 25. KIDS Edits and Distribution menu options

Select Systems Manager Menu Option: Programmer Options

 KIDS Kernel Installation & Distribution System ... [XPD MAIN]
 **> Locked with XUPROG
 NTEG Build an 'NTEG' routine for a package
 PG Programmer mode
 ALS MENU TEXT SAMPLE ...
 Calculate and Show Checksum Values
 Delete Unreferenced Options
 Error Processing ...
 Global Block Count
 List Global
 Map Pointer Relations
 Number base changer
 Routine Tools ...
 Test an option not in your menu
 Verifier Tools Menu ...

Select Programmer Options Option: kids <Enter> Kernel Installation & Distribution
 System

 Edits and Distribution ... [XPD DISTRIBUTION MENU]
 Utilities ... [XPD UTILITY]
 Installation ... [XPD INSTALLATION MENU]
 **> Locked with XUPROGMODE
Select Kernel Installation & Distribution System Option: Edits and Distribution

 Create a Build Using Namespace
 Copy Build to Build
 Edit a Build
 Transport a Distribution
 Old Checksum Update from Build
 Old Checksum Edit
 Routine Summary List
 Version Number Update

Select Edits and Distribution Option:

KIDS: Developer Tools

160 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

14.2 Creating Builds

KIDS introduces significant revisions to the process of exporting software applications over the previous
export mechanism, DIFROM.

REF: For an introduction to KIDS and a description of the KIDS installation and utility options,
see the "KIDS: System Management—Installations" and "KIDS: System Management—
Utilities" chapters in the Kernel Systems Management Guide.

A functional listing of the KIDS options supporting software application (package) export is shown
below:

Table 2. KIDS: Options supporting software application builds and exports

Task Category Option Name Option Text

Create Build Entry XPD BUILD NAMESPACE Create a Build using Namespace

XPD COPY BUILD Copy Build to Build

XPD EDIT BUILD Edit a Build

Create a Distribution XPD TRANSPORT PACKAGE Transport a Distribution

This chapter covers each of these tasks, describing how to accomplish the tasks using KIDS options.

14.2.1 Build Entries

KIDS stores the definition of a software application in the BUILD file (#9.6). Individual entries in the
BUILD file (#9.6) are called build entries, or builds for short. To export a software application, you must
first define a build entry for it in the BUILD file (#9.6).

Unlike DIFROM, where you re-used the same PACKAGE file (#9.4) entry each time you exported a new
version of a software application, with KIDS you create a new BUILD file (#9.6) entry each time you
export a software application version. One advantage of having one BUILD entry per software
application version is that you have a complete history of each version of your software application,
which makes it easier to compare previous versions of a software application with the current version.

After you create the build name, KIDS give you the option to choose the type of build you are creating.
There are three types from which to choose:

• Single

• Multi-Package

• Global

 KIDS: Developer Tools

July 1995 Kernel 161
Revised September 2011 Developer's Guide
 Version 8.0

Figure 26. KIDS: Choosing a build type sample

Select Edits and Distribution Option: Edit a Build
Select BUILD NAME: TEST 5.0
 Are you adding 'TEST 5.0' as a new BUILD (the 104TH)? Y <Enter> (Yes)
 BUILD PACKAGE FILE LINK: RET
 BUILD TYPE: SINGLE PACKAGE// ?
 Choose from:
 0 SINGLE PACKAGE
 1 MULTI-PACKAGE
 2 GLOBAL PACKAGE
 BUILD TYPE: SINGLE PACKAGE// GLOBAL <Enter> GLOBAL PACKAGE

The following KIDS options, described below, support creating and maintaining build entries:

• Create a Build Using Namespace

• Copy Build to Build

• Edit a Build

14.2.2 Create a Build Using Namespace

You can quickly create a build entry and populate its components by namespace. The Create a Build
Using Namespace option searches for all components in the current database matching a given list of
namespaces (you can exclude by namespace also). The option searches for components of every type that
match the namespaces and populates the build entry with all matches it finds on the system. You can then
use Edit a Build to fine-tune the build entry.

As well as creating a new build entry, you can use this option to populate an existing build entry by
namespace. In this case, you are asked if you want to purge the existing data. If you answer YES, the
option purges the build components in the entry, and then populates the build components by namespace.
If you answer NO, the option merges all components matching the selected namespaces into the existing
build entry; it removes nothing already in the current build entry.

Table 3. KIDS: Kernel 8.0 component types (listed alphabetically)

Component Types

Bulletin HL Logical Link Print Template

Dialog HL Lower Level Protocol Protocol

Form Input Template Remote Procedure

Function List Template Routine

Help Frame Mail Group Security Key

HL7 Application Parameter Option Sort Template

KIDS: Developer Tools

162 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Figure 27. KIDS: Populating a build entry by namespace

Select Edits and Distribution Option: Create a Build Using Namespace

Select BUILD NAME: ZXGY 1.0
 Are you adding 'ZXGY 1.0' as a new BUILD (the 14th)? YES
 BUILD PACKAGE FILE LINK: <Enter>

Namespace: ZXG
Namespace: -ZXGI
Namespace: <Enter>

NAMESPACE INCLUDE EXCLUDE
 ------- -------
 ZXG ZXGI

OK to continue? YES// <Enter>
...SORRY, LET ME THINK ABOUT THAT A MOMENT...

 ...Done.

Figure 28. KIDS: Copying a build entry

Select Edits and Distribution Option: Copy Build to Build

Copy FROM what Package: ZXG TEST 1.0
Copy TO what Package: ZXG TEST 1.1
 ARE YOU ADDING 'ZXG TEST 1.1' AS A NEW BUILD (THE 5TH)? Y <Enter> (YES)
 BUILD PACKAGE FILE LINK: <Enter>

OK to continue? YES// <Enter>
...HMMM, LET ME PUT YOU ON 'HOLD' FOR A SECOND... ...Done.

14.2.3 Copy Build to Build

You can create a new build entry based on a previous entry using the Copy Build to Build option. With
KIDS, you must create a new build entry for each new version of a software application. This option gives
you a way to quickly copy a previous build entry to a new entry. You can then use the Edit a Build to
fine-tune the copied build entry.

If you choose an existing entry to copy into, the option purges the existing entry first before copying into
it.

14.2.4 Edit a Build

Using the Edit a Build option, you can create new build entries and edit all parts of existing build entries.
Edit a Build is a VA FileMan ScreenMan-driven option. There are four main screens in the Edit a Build.
The following topics describe in detail each part of a build entry and how you can edit each part.

 KIDS: Developer Tools

July 1995 Kernel 163
Revised September 2011 Developer's Guide
 Version 8.0

14.2.4.1.1 KIDS Build Screens

KIDS Build Screens are designed in conjunction with the Edit a Build option to help you plan your build
entries.

Table 4. KIDS: Functional layout, Edit a Build

Screen Build Section Build Sub-Section

Screen 1 Build Name

 Date Distributed

 Description

 Environment Check Routine

 Pre-Install Routine

 Post-Install Routine

 Pre-Transportation Routine

Screen 2 Files and Data Partial DD Definition

 Send Data Definition

Screen 3 Build Components Print Template

 Sort Template

 Input Template

 Form

 Function

 Dialog

 Bulletin

 Mail Group

 Help Frame

 Routine

 Option

 Security Key

 Protocol

 List Template

 HL7 Application Parameter

 HL Lower Level Protocol

 HL Logical Link

 Remote Procedure

KIDS: Developer Tools

164 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Screen Build Section Build Sub-Section

Screen 4 Install Questions

 Required Builds

 Package File Link

 Package Tracking

14.2.4.2 Edit a Build: Name & Version, Build Information

When you invoke the Edit a Build option, KIDS loads a four-page ScreenMan form. The first screen of
the form lets you edit the following software application settings:

• Name

• Date Distributed

• Description

• Environment Check Routine

• Pre-Install Routine

• Post-Install Routine

• Pre-Transportation Routine

14.2.4.2.1.1 Build Name

 KIDS: Developer Tools

July 1995 Kernel 165
Revised September 2011 Developer's Guide
 Version 8.0

The name of a build entry is where KIDS stores both the software application's name and version number.
The build name must be a software application name, followed by a space and then followed by a version
number. This means that every version of a software application requires a separate entry in the BUILD
file (#9.6). One way that this is an advantage is that you have a record of the contents of every version of
a software application that you export.

Figure 29. KIDS: Screen 1 of Edit a Build sample

 Edit a Build PAGE 1 OF 5
Name: ZXG Test 1.0 TYPE: SINGLE PACKAGE

 Name: ZXG DEMO 1.0

 Date Distributed: AUG 29,2004

 Description: Delete Routine
 after install
 Environment Check Routine: Y/N:

 Pre-Install Routine: ZXGPRE Y/N: N

 Post-Install Routine: ZXGPOS Y/N: N

Pre-Transportation Routine:

COMMAND: Press <PF1>H for help Insert

14.2.4.3 Edit a Build: Files

The second screen of Edit a Build is where you enter all the files to export with your software application.
For each file, you can choose whether or not to send data with the file definition.

14.2.4.3.1 Data Dictionary Update

The installing site is not asked whether they want to override data dictionary updates; data dictionary
updates are determined entirely by how the developer exports the file. There are two settings in KIDS you
can use to determine whether KIDS should update a file's data dictionary at the installing site:

• YES—If you answer YES to Update the Data Dictionary, the data dictionary will be updated at
the installing site.

• NO—If you answer NO to Update the Data Dictionary, the only time the data dictionary is
updated is if the file does not exist on the installing system.

You can enter M code in the Screen to Determine DD Update field. The code should set the value of $T.
If $T is true, KIDS installs the data dictionary; if $T=0, KIDS does not. The screen is only executed if the

KIDS: Developer Tools

166 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

data dictionary already exists on the installing system, however; if the data dictionary does not already
exist, the file is installed unconditionally (the screen is not executed). You can use the code in this field,
for example, to examine the target environment to determine whether to update a data dictionary
(providing the data dictionary already exists).

14.2.4.3.2 Sending Security Codes

With KIDS, you can specify on a file-by-file basis whether to send security codes. For each file, you can
set SEND SECURITY CODE to either YES or NO.

If you answer YES to send security codes, KIDS sends the security codes of the files on the development
system. KIDS only updates security codes at the installing site on new files (i.e., files that do not already
exist), however. Security codes for a file are not updated at the installing site if the file already exists.

NOTE: Use VA FileMan's FILESEC^DDMOD API to set the security access codes for an
existing file.

REF: For more information on the FILESEC^DDMOD API, see Chapter 3 in the VA
FileMan Programmer Manual located on the VDL at the following location:

http://www4.va.gov/vdl/application.asp?appid=5

Figure 30. KIDS: Screen 2 of Edit a Build: Selecting files

 Edit a Build PAGE 2 OF 5
Name: ZXG Test 1.0 TYPE: SINGLE PACKAGE

 File List (Name or Number

 NEW PERSON

COMMAND: Press <PF1>H for help Insert

http://www4.va.gov/vdl/application.asp?appid=5

 KIDS: Developer Tools

July 1995 Kernel 167
Revised September 2011 Developer's Guide
 Version 8.0

Figure 31. KIDS: Data dictionary and data settings

 Edit a Build PAGE 2 OF 5
Name: ZXG DEMO 1.0 TYPE: SINGLE PACKAGE

 File List (Name or Number)
┌───────────────────────── DD Export Options ────────────────────────────────┐
│ │
│ File: NEW PERSON │
│ │
│ Send Full or Partial DD...: PARTIAL │
│ │
│Update the Data Dictionary: YES Send Security Code: NO │
│ │
│Screen to Determine DD Update │
│ │
│ │
│ Data Comes With File...: YES │
└──┘

COMMAND: Press <PF1>H for help Insert

14.2.4.3.3 Sending Full or Partial Data Dictionaries

KIDS supports sending out full data dictionaries (the entire file definition), and partial data dictionaries
(specified fields in a file).

14.2.4.3.4 Full DD (All Fields)

To send the entire data dictionary, answer FULL at the Send Full or Partial DD prompt. In this case, all
field definitions are exported. If you are sending data, you must export the FULL data dictionary.

KIDS: Developer Tools

168 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

14.2.4.3.5 Partial DD (Some Fields)

You can only send a partial DD if the file already exists at the site. If you answer PARTIAL at the "Send
Full or Partial DD" prompt, KIDS lets you choose what data dictionary levels to export.

In the Data Dictionary Number popup window (Figure 14-9), you can select either one of the following
types:

• File Number—Top level of the file.

• Multiple—Subdata dictionary number (also known as a subfile). You can export any Multiple, no
matter how deep (every Multiple's data dictionary number will be selectable).

File Number Level

In the Field Number popup window (Figure 14-10), if you selected the file number type you can select
which fields to export at that data dictionary level:

• If you do not specify any fields, no fields are sent.

• If you do specify fields, only the specified fields are sent. You cannot choose any multiples at
this data dictionary level.

Multiple Level

In the Field Number popup window (Figure 14-10), if you selected the Multiple (subdata dictionary
number) type, you can select which fields to export at that sub-data dictionary level:

• If you do not specify any fields, all fields are sent. All fields at this level and their descendents
will be exported. You must do this if the multiple is new at the site.

• If you do specify fields, only the specified fields are sent.

Unlike DIFROM, KIDS does not require sending the .01 field of the file if you send a partial data
dictionary.

Whenever you export a multiple, all "parents" of the multiple all the way up to the .01 field of the file
must exist at the installing site, or else you must export all "parents" (higher data dictionary levels)
yourself. Otherwise, the multiple will not be installed.

NOTE: Certain attributes (Identifiers, "ID" nodes, etc.) are considered file attributes (as
opposed to field attributes), and so are sent only when you send a full DD. They are not sent
with a partial DD.

 KIDS: Developer Tools

July 1995 Kernel 169
Revised September 2011 Developer's Guide
 Version 8.0

Figure 32. KIDS: Data dictionary settings screen—DD Export Options

 Edit a Build PAGE 2 OF 5
Name: ZXG DEMO 1.0 TYPE: SINGLE PACKAGE

 File List (Name or Number)
┌───────────────────────── DD Export Options ────────────────────────────────┐
│ │
│ File: NEW PERSON │
│ │
│ Send Full or Partial DD...: PARTIAL │
│ │
│Update the Data Dictionary: YES Send Security Code: NO │
│ │
│Screen to Determine DD Update │
│ │
│ │
│ Data Comes With File...: YES │
└──┘

COMMAND: Press <PF1>H for help Insert

Figure 33. KIDS: Partial DD—Choosing DD levels (top level and Multiple) to send: Data Dictionary Number

level

 Edit a Build PAGE 2 OF 5
Name: ZXG DEMO 1.0 TYPE: SINGLE PACKAGE

 File List (Name or Number)
┌───────────────────────── DD Export Options ────────────────────────────────┐
│┌──────────────────────── Data Dictionary Number ──────────────────────────┐│
││ NEW PERSON (File-top level) ││
││ DMMS UNITS (sub-file) ││
││ ALIAS (sub-file) ││
││ DEFINED FORMATS FOR LM (sub-file) ││
││ ││
││ ││
││ ││
││ ││
││ ││
│└──┘│
└──┘

COMMAND: Press <PF1>H for help Insert

KIDS: Developer Tools

170 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Figure 34. KIDS: Partial DD—Choosing DD levels (top level and Multiple) to send: Field Number level

 Edit a Build PAGE 2 OF 5
Name: ZXG DEMO 1.0 TYPE: SINGLE PACKAGE

 File List (Name or Number)
┌───────────────────────── DD Export Options ────────────────────────────────┐
│┌──────────────────────── Data Dictionary Number ──────────────────────────┐│
││┌─────────────────────── Field Number ───────────────────────────────────┐││
│││ TEST │││
│││ │││
│││ │││
│││ │││
│││ │││
│││ │││
│││ │││
││└──┘││
│└──┘│
└──┘

COMMAND: Press <PF1>H for help Insert

14.2.4.3.6 Choosing What Data to Send with a File

When you send data, you can send all of the data in a file. But KIDS also lets you send a subset of a file's
data to installing sites.

In the Screen to Select Data field, you can enter M code to screen data. The M code should set $T; if $T is
set to 1, the entry is sent, and if $T is set to 0, the entry is not sent. At the moment your code for the
screen is executed, the local variable "Y" is set to the Internal Entry Number (IEN) of the entry being
screened, and the M naked indicator is set to the global level @fileroot@(Y,0). Therefore, you can use the
values of "Y" and the naked indicator in your screen.

In the Data List field, you can select a search template. The contents of the template will be the entries
that are exported.

If you choose both a screen and a search template, the screen is applied to the entries stored in the search
template.

 KIDS: Developer Tools

July 1995 Kernel 171
Revised September 2011 Developer's Guide
 Version 8.0

Figure 35. KIDS: Settings for sending data

 Edit a Build PAGE 2 OF 5
Name: ZXG DEMO 1.0 TYPE: SINGLE PACKAGE

 File List (Name or Number)
┌───────────────────────── DD Export Options ────────────────────────────────┐
│┌──────────────────────── Data Export Options ─────────────────────────────┐│
││ Site's Data: OVERWRITE ││
││ ││
││ Resolve Pointers: YES May User Override Data Update: YES ││
││ ││
││ Data List: ││
││ ││
││ Screen to Select Data ││
││ ││
││ ││
│└──┘│
└──┘

COMMAND: Press <PF1>H for help Insert

14.2.4.3.7 Determining How Data is Installed at the Receiving Site

When you send data with a file, KIDS gives you several options about how the data is sent. There are four
ways KIDS can install file entries at the receiving site:

Table 5. KIDS: Data installation actions

Data Installation Action Description

ADD ONLY IF NEW FILE Installs data at the installing site only if this file is new to the site or if there
is no data in this file at the site.

MERGE If no matching entry is found, the incoming entry is added. When the
incoming entry matches an existing entry on the system, site fields that are
non-NULL are preserved. Only NULL fields in a matching site entry are
overwritten by incoming values.

KIDS does not send out cross-references with the data. When you merge
the data, however, KIDS re-indexes and creates new cross-references.
Also, when you merge the data, KIDS does not delete the old cross-
references for that data.

OVERWRITE If no matching entry is found, the incoming entry is added. When the
incoming entry matches an existing entry on the system, site fields that are
non-NULL are overwritten by incoming data. Values in the site's fields are
preserved when the incoming field value is NULL, however.

REPLACE If no matching entry is found, the incoming entry is added. When the
incoming entry matches an existing entry at the top level of a file, all fields
in the existing entry that are fields in the incoming data dictionary are
purged; then field values for the new entry are brought in. Values in fields

KIDS: Developer Tools

172 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Data Installation Action Description
that are not part of the incoming data dictionary are preserved.

KIDS does not send out cross-references with the data. When you replace
the data, however, KIDS re-indexes and creates new cross-references.
Also, when you replace the data, KIDS deletes any old cross-references
for that data.

With multiples, if the .01 field of an incoming multiple matches the .01 field
of an existing multiple, the existing multiple entry is completely purged, and
the data from the incoming multiple replaces the current multiple entirely;
values for fields in the existing multiple that are not in the incoming data
dictionary are not restored.

You can specify different settings for separate files; within a file, however, all data must be installed in
one of these four ways.

You can give the installing site the choice of overriding the data update. If you set May User Override
Data Update to YES, the installing site has the choice of whether to bring in data that has been sent with
this file. They are not given the choice of how to install data, however (add only if new file vs. merge vs.
OVERWRITE vs. REPLACE). If you set this field to NO, the installing site cannot override bringing in
data.

14.2.4.3.8 How KIDS Matches Incoming Entries with Existing
Entries

When KIDS installs VA FileMan data, it treats incoming entries differently depending on whether the
entry is a new entry for the file or the incoming entry matches an existing entry in the file.

KIDS decides if an incoming entry is new or matches an existing entry by checking, in order:

1. The B index of the file or multiple, or the .01 field if there is no B index.

2. The Internal Entry Number (IEN) of the entry (if applicable).

3. The identifiers of the entry (if applicable).

First, KIDS makes a tentative match based on the B index. If there is no B index, KIDS goes through the
.01 field entries of the file one-by-one looking for a match.

NOTE: The "B" cross-reference holds the name as a subscript. The maximum length of
subscripts is defined for each operating system and is stored in the MUMPS OPERATING
SYSTEM file (#.7). KIDS uses this length [for example, 63 (default) or 99] as the limit of
characters to compare.

If a match (either by the B cross-reference or by the first piece of the zero node) is not found, the
incoming entry is considered new and is added to the file. If a match or matches are found, two additional
checks are made to determine whether any of the existing entries are a match.

 KIDS: Developer Tools

July 1995 Kernel 173
Revised September 2011 Developer's Guide
 Version 8.0

KIDS next checks whether the IENs of any tentatively matched entries are related. If the file has a defined
.001 field, the IEN is a meaningful attribute of an entry. In this case, the IENs must match. If the input
transform of the .01 field contains DINUM, it operates the same way as a .001 field. If the IEN is
meaningful, and no match is found, the incoming entry is considered new and is added to the file.

If the possibility of a match remains after checking IENs, KIDS performs a final check based on
identifiers.

A well-designed file uses one or more identifiers to act as key fields, so that each entry is unique with
respect to name and identifiers. If identifiers exist on either the target file or the incoming data dictionary,
KIDS checks the values of all such identifier fields. The value of each identifier field must be the same for
the existing entry and the incoming entry to be considered a match. Only the internal value of the
identifier field is checked (so if an identifier is a pointer field, problems could result). Only identifiers that
have valid field numbers are used in this process.

If there is still more than one matching entry after checking .01 fields, IENs, and identifiers, the lowest
numbered entry in the site's file is considered a match for the incoming entry for the file. On the other
hand, if no match is found after checking .01 fields, IENs, and identifiers, the entry is considered new and
is added to the file.

14.2.4.3.9 Limited Resolution of Pointers

A feature of data export provided by KIDS is resolving pointers. For each file exported with data, you can
choose whether to perform pointer resolution on that file's pointer fields (with the exception of .01 fields,
identifier fields, and pointer fields pointing to other pointer fields).

KIDS does not resolve pointers for .01 fields and identifier fields in files or Multiples, nor fields that
point to other pointer fields. KIDS can resolve pointers, however, for all other pointer fields in a given file
or Multiple.

When you do not resolve pointers, and the file being installed has pointer fields, data entries for that file
are installed with whatever numerical pointer values are in the pointer fields. In which case, there is a
good chance that the pointer fields no longer point to the intended entries in the pointed to file.

Resolution of pointers remedies this by exporting the FREE TEXT value of the pointed-to entry. When
KIDS has finished installing all files and data entries at the installing site, it begins the process of
resolving pointers (if any files are set to have pointers resolved).

For each field in an entry that is a pointer field, KIDS does a lookup in the pointed to file for the FREE
TEXT value of the original pointed-to entry. If it finds an exact and unique match, it resolves the original
pointer by storing the IEN of the new matching entry in the pointer field. If it cannot find an exact match,
because there are no matching entries or there are multiple matching entries, then the pointer field is left
blank, and KIDS displays an error message.

Resolution of pointers works with pointed-to entries that are themselves variable pointers. In these cases,
it stores the file to which the pointed-to entry was pointing, and then resolves the pointer in the
appropriate target file only.

Once all pointers are resolved, KIDS re-indexes each file. Each time KIDS finishes resolving pointer
fields in a given file, it re-indexes that file.

KIDS: Developer Tools

174 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

14.2.4.3.10 Re-Indexing Files

Once all new data has been added to all files, KIDS re-indexes the files. If any of the files have compiled
cross-references, the compiled cross-reference routines are rebuilt. Then, if any data was sent for a file,
KIDS re-indexes all traditional cross-references, and all new-style indexes with an ACTIVITY that
contains an "I", for all the records in the file. Only the SET logic is executed.

14.2.4.3.11 Data Dictionary Cleanup

If you change the definition of a field or remove a cross-reference, you must delete the field or cross-
reference, or otherwise clean it up on the target account during the Pre-install routine. You must
completely purge the target site's data dictionary of the old field definition, even if you are re-using the
same node and piece for a new field. This cleanup ensures that the data dictionary will not end up with an
inconsistent structure after the installation.

You no longer need to clean up WORD PROCESSING fields in the data dictionary, however. Before
KIDS, updated data dictionary field attributes stored in WORD PROCESSING fields (e.g., field
description or technical description) did not completely overwrite a pre-existing attribute when installed.
If the incoming value had fewer lines than the pre-existing one, the install of the data dictionary did not
delete the surplus lines automatically; this deletion had to be done in the pre-install. KIDS, on the other
hand, completely replaces the values of WORD PROCESSING fields in data dictionaries.

14.2.4.4 Edit a Build: Components

In the third screen in the Edit a Build option, you can select the components of a software application to
include in the build.

KIDS lets you enter an explicit list of components for each component type. You are not restricted by
namespace. You can select items for each type of component simply by choosing them. Items can also be
selected with the asterisk (*) wildcard and the–exclusion sign.

With most component types, the permissible installation actions are:

• SEND TO SITE

• DELETE AT SITE

Some component types, however, have additional installation actions available; the special cases are
discussed on the following pages.

REF: For a list of Kernel component types, see Table 14-2 in this chapter.

 KIDS: Developer Tools

July 1995 Kernel 175
Revised September 2011 Developer's Guide
 Version 8.0

Figure 36. KIDS: Screen 3 of Edit a Build: Components

 Edit a Build PAGE 3 OF 5
Name: ZXG DEMO 1.0 TYPE: SINGLE PACKAGE

 Build Components

PRINT TEMPLATE (0)
SORT TEMPLATE (0)
INPUT TEMPLATE (0)
FORM (0)
FUNCTION (0)
DIALOG (0)
BULLETIN (0)
MAIL GROUP (0)
HELP FRAME (0)
ROUTINE (0)
OPTION (0)
SECURITY KEY (0)
PROTOCOL (0)
LIST TEMPLATE (0)
HL7 APPLICATION PARAMETE (0)
HL LOWER LEVEL PROTOCOL (0)
HL LOGICAL LINK (0)
REMOTE PROCEDURE (0)

COMMAND: Press <PF1>H for help Insert

NOTE: This is an expanded view of this screen in order to show you all of the currently
available component types. You will have to scroll through the list in order to see all of the
available types.

14.2.4.5 Edit a Build: Options and Protocols

Menus and Protocols are similar to other component types, except for menus and protocols, which have
more than the standard SEND TO SITE and DELETE AT SITE installation actions.

NOTE: Beginning with Kernel 8.0, you can no longer send out an option with an attached
scheduling frequency. Scheduling of options was moved out of the OPTION file (#19) and into
the OPTION SCHEDULING file (#19.2). One advantage to this is that a developer's scheduling
settings will no longer overwrite a site's scheduling settings.

To indicate to the site that an option should be scheduled regularly, you should fill in the SCHEDULING
RECOMMENDED field for the option. You can enter YES, NO, or STARTUP. This indicates to the site
whether they should regularly schedule the option or not. You should list the actual frequency you
recommend in the option's description. The site can then use the TaskMan option Print Recommended for
Queuing Options to list all options that developers have recommended scheduling.

KIDS: Developer Tools

176 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Table 6. KIDS: Option and protocol installation actions

Option/Protocol Installation Action Description

SEND TO SITE Menu or protocol is installed at the site; any existing version
already at the site is completely purged beforehand.

DELETE AT SITE Menu or protocol is deleted at site.

USE AS LINK FOR MENU ITEMS Designates a menu or protocol to be used as a link. The menu
or protocol is not exported to the site; instead, its name is sent
so that any item you link to it as a menu item or protocol (and
send) becomes a sub-item on the corresponding menu or
protocol at the site. KIDS does not disable options and
protocols that have an Action of USE AS LINK FOR MENU
ITEMS.

MERGE MENU ITEMS All fields in the menu or protocol except for items are purged
and replaced by the incoming values for those fields. Any items
at the site that do not match incoming items are left as is. Any
items that do match incoming items are completely replaced by
the incoming items.

The advantage with this action is that it preserves locally added
items at the site. The disadvantage is that if you have removed
items, the removed items are not purged at the site.

ATTACH TO MENU Designates an option or protocol, not exported to the site, to be
attached to a menu that is exported. This is used when a menu
is sent by KIDS to a site and the developer wants the local
option or protocol attached to the menu. The option or protocol
is not exported to the site; instead, its name is sent and the
local option or protocol becomes a sub-item on the menu that is
sent.

DISABLE DURING INSTALL Designates an option or protocol that is not exported to be
disabled during the KIDS install process.

14.2.4.6 Edit a Build: Routines

Routine selection is done based on pointers to entries in the ROUTINE file (#9.8), but this file is not
automatically updated when programs are saved and deleted on an M system. So before adding routines
to a build entry, you should run KIDS' Update Routine File option. Be sure to update all the routines and
routine namespaces that you will need to select for your build.

When selecting routines for the build, you can select individual routines by typing in their individual
names. You can select a namespace group of routines by using the * wildcard. For example, to include all
routines in the namespace XQ, type in XQ*. You can exclude routines by inserting the - exclusion sign
before either a single name or a wild-carded namespace. For example, to exclude all routines in the XQI
namespace, type -XQI*.

For each routine, you can choose one of two actions:

• SEND TO SITE (default)

• DELETE AT SITE

 KIDS: Developer Tools

July 1995 Kernel 177
Revised September 2011 Developer's Guide
 Version 8.0

The default action is SEND TO SITE. If you choose DELETE AT SITE, the routine will be deleted at the
installing site.

Installers of KIDS software applications have a choice to update routines across multiple CPUs. If they
choose to do this, routines will be installed (or deleted) across all CPUs the site selects. KIDS will display
various status messages while each CPU is updated. Sites cannot automatically install routines in the site's
manager accounts, however; you still must instruct the site to manually install any routine that goes in the
manager's account.

Figure 37. KIDS: Choosing routines

 Edit a Build PAGE 2 OF 5
Name: ZXG DEMO 1.0 TYPE: SINGLE PACKAGE

 BUILD COMPONENTS
┌──────────────────────────── ROUTINE ───────────────────────────────────────┐
│ │
│ +XQSRV4 SEND TO SITE │
│ XQSTCK DELETE AT SITE │
│ XQT SEND TO SITE │
│ XQT1 SEND TO SITE │
│ XQT2 SEND TO SITE │
│ XQT3 SEND TO SITE │
│ XQT4 SEND TO SITE │
│ XQTOC SEND TO SITE │
│ XQUSR SEND TO SITE │
│ │
└──┘

COMMAND: Press <PF1>H for help Insert

14.2.4.7 Edit a Build: Dialog Entries (DIALOG File [#.84])

VA FileMan supports the capability for other software applications to store their dialog in the VA
FileMan DIALOG file. Some advantages to using the DIALOG file (#.84) for user interaction include:

• Separating user interaction from other program functionality. This is a helpful step for creating
GUI interfaces.

• Reusing dialog. When dialog is stored in the DIALOG file (#.84), it can be re-used.

• Easily generating software application error lists. If error lists are stored in DIALOG file (#.84),
there is a single point of access to print a complete list of errors.

• Implementing alternate language interfaces. Multiple language versions of a dialog can be
exported; also, entries for one language's set of dialogs can be swapped with entries for another
language's set of dialogs.

KIDS: Developer Tools

178 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

KIDS allows you to export entries your software application maintains in the DIALOG file (#.84). Simply
select which DIALOG entries you want to include in your software application, as you would for any
other software application component, and choose an installation action for each item (the default is
SEND TO SITE, the other permissible choice is DELETE AT SITE).

REF: For more information on using the DIALOG file (#.84), see the VA FileMan Programmer
Manual.

14.2.4.8 Edit a Build: Forms

You do not need to select which blocks to send when you send VA FileMan ScreenMan forms. You only
need to select the form; KIDS sends all blocks associated with a form once you have chosen the form.

14.2.4.9 Edit a Build: Templates

When you select print, sort, or input templates, KIDS appends the file number to the name of the
template. This ensures that a unique entry exists for each template (since two templates of the same name
could exist for two different files).

Figure 38. KIDS: Selecting templates

 Edit a Build PAGE 2 OF 5
Name: ZXG DEMO 1.0 TYPE: SINGLE PACKAGE

 BUILD COMPONENTS
┌─────────────────────────── PRINT TEMPLATE ────────────────────────────────┐
│ │
│ +XUSER LIST FILE #200 SEND TO SITE │
│ XUSERINQ FILE #200 SEND TO SITE │
│ XUSERVER DISPLAY FILE #19.081 SEND TO SITE │
│ XUSERVER HEADER FILE #19.081 SEND TO SITE │
│ XUUFAA FILE #3.05 SEND TO SITE │
│ XUUFAAH FILE #3.05 SEND TO SITE │
│ XUUSEROPTH FILE #19.081 SEND TO SITE │
│ XUUSEROPTP FILE #19.081 SEND TO SITE │
│ │
│ │
└──┘

COMMAND: Press <PF1>H for help Insert

 KIDS: Developer Tools

July 1995 Kernel 179
Revised September 2011 Developer's Guide
 Version 8.0

14.2.5 Transporting a Distribution

Once you have created a build entry and added all of the files and components you want to export, you
are ready to export your software application. KIDS uses a transport global as the mechanism to move
data. INIT routines are no longer the transport mechanism (which removes the old restrictions on the
amount of data you can export). Transport globals can then be written to distributions, which are HFS
files. Use the TRANSPORT option to generate transport globals and create distributions.

Depending on how you answer the questions in this option, the transport globals this option generates can
be stored in:

• A distribution, which is then ready to export as a Host file.

• A PackMan message (to be sent over the network).

• The ^XTMP global on your local system.

If you choose to transport the distribution via a Host file enter HF after the "Transport through (HF)Host
File or (PM)PackMan:" prompt and enter a Host file name after the "Enter a Host File" prompt. The
option creates transport globals and puts them in the distribution (HFS file) that you specify.

Figure 39. KIDS: Transport a Distribution option—Creating a distribution sample user dialogue

Select Edits and Distribution Option: Transport a Distribution

Enter the Package Names to be transported. The order in which
they are entered will be the order in which they are installed.

First Package Name: ZXG DEMO 1.0
Another Package Name: ZXG TEST 1.0
Another Package Name: <Enter>

ORDER PACKAGE
 1 ZXG DEMO 1.0
 2 ZXG TEST 1.0

OK to continue? NO// YES
Transport through (HF)Host File or (PM)PackMan: HF <Enter> Host File

Enter a Host File: ZXG_EXPT.DAT
Header Comment: export of ZXG package

 ZXG DEMO 1.0...
 ZXG TEST 1.0...

Package Transported Successfully

Select Edits and Distribution Option:

If you do not enter a Host file name, KIDS creates the transport globals and stores them in your local
^XTMP global, but does not WRITE them to a distribution file.

KIDS: Developer Tools

180 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

If you have previously created a transport global for this software application in the ^XTMP global and it
still exists, KIDS asks you if you want to use what was already generated or if you want to re-generate the
transport globals instead.

If you want the distribution sent via a PackMan message enter PM after the "Transport through (HF)Host
File or (PM)PackMan:" prompt. You can only send one transport global per PackMan message, however.

Figure 40. KIDS: Transport a Distribution option—Sending via network (PackMan message) sample user
dialogue

Select Edits and Distribution Option: Transport a Distribution

Enter the Package Names to be transported. The order in which
they are entered will be the order in which they are installed.

First Package Name: TEST 1.1
Another Package Name: <Enter>

ORDER PACKAGE
 1 TEST 1.1

OK to continue? NO// YES
Transport through (HF)Host File or (PM)PackMan: PM <Enter> PackMan

 TEST 1.1...
No Package File Link
Subject: TEST
Please enter description of Packman Message

TEST

 Created by XUUSER,FIVE at KERNEL.ISC-SF.VA.GOV (KIDS) on MONDAY, 10/07/96 at
15:21
Do you wish to secure this message? No// ?

If you answer yes, this message will be secured to insure that
what you send is what is actually received.
Do you wish to secure this message? No// Y <Enter> (Yes)
Enter the scramble hint: THIS IS A HINT
Enter scramble password:
Securing the message, now. This may take a while !!!

Send mail to: XUUSER,FIVE Last used MailMan: 04 Oct 96 15:28
 Select basket to send to: IN// <Enter>
And send to: <Enter>

The password is
not echoed back.

 KIDS: Developer Tools

July 1995 Kernel 181
Revised September 2011 Developer's Guide
 Version 8.0

14.2.5.1 When to Transport More than One Transport Global in a
Distribution

If several software applications are unrelated, they should be sent as separate distributions. This gives the
installing site optimum flexibility to decide when to do each installation.

If a group of software applications is to be installed together, however, and if there are dependencies
between the software applications, sending the software applications together in one distribution can give
you more control over how the group of software applications is installed. If in some cases only software
applications A and B should be installed, and in other situations only software applications A and C
should be installed, and you can do the determination yourself (in each software application's
environment check routine), sending the group of software applications in a single distribution lets you
control which software applications in the distribution actually are installed.

When you are using PackMan messages to send your software application (rather than using a
distribution), you are limited to sending only one transport global per PackMan message.

14.2.5.2 Multi-Package Builds

Multi-Package builds contain a list of other builds and lists their installation order. A Multi-Package build
will transport this list of builds (template or meta-build).

Figure 41. KIDS: Multi-package builds sample

 Edit a Build PAGE 1 OF 5
Name: TEST 3.0 TYPE: MULTI-PACKAGE
--

 Name: TEST 3.0

 Date Distributed: OCT 9,2004

 Description:

Install Order Packages or Patches
 1 TEST 1.0
 2 TEST 1.1

COMMAND: Press <PF1>H for help Insert

KIDS: Developer Tools

182 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

14.2.5.3 Exporting Globals with KIDS

KIDS in Kernel 8.0 supports the installation of global distributions (distributions that export globals).
KIDS now supports the creation of global distributions by developers. Any number of globals can be
included in a build. You are given the opportunity to run an environment check before installing the
global and post-install routines after installing the globals. You also are given the choice of KILLing
globals prior to installing new globals at a site. If you answer NO to this question, the global is merged
with any previously installed global at the site.

REF: For more information on global distributions, see the "KIDS: System Management—
Installations" chapter in the Kernel Systems Management Guide.

Figure 42. KIDS: Exporting global distributions sample

 Edit a Build PAGE 1 OF 5
Name: TEST 5.0 TYPE: GLOBAL PACKAGE
--

 Name: TEST 5.0

 Date Distributed: OCT 9,2004

 Description:

 Environment Check Rtn.: Post-Install Rtn.:

 Globals Kill Global Before Install?
 TMP(100) NO

COMMAND: Press <PF1>H for help Insert

14.2.6 Creating Transport Globals that Install Efficiently

There are some choices you can make when designing your build entries, to make your transport globals
install efficiently at the receiving site. In particular, you can improve the efficiency of exporting data
entries using KIDS:

• When exporting data, you can use the ADD IF NEW option to only add entries if the file did not
exist prior to the installation. Data is only added if the file is created by the installation. You can
use this option to avoid re-exporting data for static files.

• When exporting data, send only the data you need to (KIDS no longer forces you to send all data
in a file when you only need to send some of the data). You can select a subset of data to send by
using a screen, a search template, or both a screen and a search template.

• When exporting data, resolve pointers only if necessary, because resolving pointers adds
significant overhead to the process of loading data entries.

 KIDS: Developer Tools

July 1995 Kernel 183
Revised September 2011 Developer's Guide
 Version 8.0

KIDS: Developer Tools

184 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

14.3 Advanced Build Techniques

The previous topics in this chapter introduced KIDS from the developer's perspective, describing the
basics of how to create build entries and how to transport distributions. This chapter describes advanced
build techniques that developers can use when creating builds. The following subjects are covered:

• Environment Check Routine

• PRE-TRANSPORTATION ROUTINE field (#900)

• Pre- and Post-Install Routines: Special Features

• Edit a Build—Screen 4

• How to Ask Installation Questions

• Using Checkpoints (Pre- and Post-Install Routines)

• Required Builds

• Package File Link

• Track Package Nationally

• Alpha/Beta Tracking

14.3.1 Environment Check Routine

KIDS, like DIFROM, lets you specify an environment check routine. Typically, the environment check
routine looks at the installing system and determines whether it's appropriate to install the software
application, based on conditions on the installing site's current system or environment.

You are not required to specify an environment check in order for your software application to be
installed. If, however, you have some special checks that you want to make to decide whether it is
appropriate to go ahead with the installation, the environment check routine is the place to do it.

KIDS lets you specify the name of the environment check routine in screen one of EDIT A BUILD
(Figure 14-23). Any routine that is specified will be automatically sent by KIDS. You do not have to list
the routine in the Build Components section (Figure 14-12).

14.3.1.1 Self-Contained Routine

The environment check routine itself must be a single, self-contained routine, because it is the only
routine from your build that will be loaded on the installing site's system at the time it is executed by
KIDS. Based on what you find out about the installing system during the environment check, you can tell
KIDS to continue installing the software application, abort installing the software application, or abort
installing all software applications (transport globals) in the distribution.

Although output during the pre-install and post-install should be done with the MES^XPDUTL(): Output
a Message and BMES^XPDUTL(): Output a Message with Blank Line APIs, during the environment
check routine you should use direct READs and WRITEs.

 KIDS: Developer Tools

July 1995 Kernel 185
Revised September 2011 Developer's Guide
 Version 8.0

14.3.1.2 Environment Check is Run Twice

KIDS runs the environment check routine twice. It runs the environment check routine first when the
installer loads the transport global from the distribution (with the Load a Distribution option).

KIDS runs the environment check a second time when the user runs the Install Package(s) option [XPD
INSTALL BUILD] to install the software applications in the loaded distribution.

The KIDS key variable XPDENV indicates in which phase (load or install) the environment check is
running.

REF: For more information on XPDENV, see the "Key Variables during Environment Check"
topic that follows.

14.3.1.3 Key Variables during Environment Check

Table 7. KIDS: Key variables during the environment check

Variable Description

XPDNM The KIDS key variable XPDNM is available during the environment check, as
well as during the pre- and post-install phases of a KIDS installation. XPDNM
is set to the name of the transport global currently being installed. It is in the
format of the .01 field of the software application's BUILD file (#9.6) entry,
which is software application name, concatenated with a space, concatenated
with version number.

XPDNM("TST") Released with Kernel Patch XU*8.0*559, the XPDNM("TST") variable is
available during the pre- and post-install and environment check phases of a
KIDS installation. XPDNM("TST") is set to one of the following values:

• Test Number—If build is a patch and the National Patch Module (NPM)
created a test number.

• Null.

XPDNM("SEQ") Released with Kernel Patch XU*8.0*559, the XPDNM("SEQ") variable is
available during the pre- and post-install and environment check phases of a
KIDS installation. XPDNM("SEQ") is set to one of the following values:

• Sequence Number—If build is a patch and the National Patch Module
(NPM) created a sequence number.

• Null.

XPDENV The KIDS key variable XPDENV is available during the environment check
only. It can have the following values:

• 1—The environment check is being run by the KIDS Install Package(s)
option.

• 0—The environment check is being run by the KIDS Load a Distribution
option.

You can use XPDENV if, for example, there is a check that is valid to perform
at install time, but not at load time.

KIDS: Developer Tools

186 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Variable Description

DIFROM For the purpose of backward compatibility, the variable DIFROM is available
during the environment check, as well as during the pre- and post-install
phases of a KIDS installation. DIFROM is set to the version number of the
incoming software application.

14.3.1.4 Package Version vs. Installing Version

KIDS provides several functions that you can use during the environment check to compare version
numbers of the current software application at the site to the incoming transport global:

• $$VER^XPDUTL

• $$VERSION^XPDUTL

REF: For more on these APIs, see the "Application Program Interface (API)" topic in this
chapter.

14.3.1.5 Telling KIDS to Skip Installing or Delete a Routine

During the environment check, you can tell KIDS to skip installing any routine, and change a routine's
installation status to delete at site.

For example, suppose you have one version of a routine for GT.M sites and one version for Caché sites.
Based on the type of system your environment check finds, you can use the $$RTNUP^XPDUTL():
Update Routine Action function to tell KIDS which routines to skip installing.

14.3.1.6 Verifying Patch Installation

During the environment check, you can tell KIDS to verify that a particular patch has been installed on a
system prior to the installation of your software application.

For example, if your software application is dependent on a particular patch being installed, you can use
the $$PATCH^XPDUTL(): Verify Patch Installation function to have KIDS alert the user that a required
patch is not installed on their system.

14.3.1.7 Aborting Installations During the Environment Check

In the environment check, you can decide whether an installation should continue or stop, or whether the
installation of all transport globals in the distribution should be aborted.

When you abort the installation of a transport global by setting XPDQUIT or XPDABORT, KIDS outputs
a message to the effect that a particular transport global in the installation is being aborted. You should
also issue your own message when aborting an installation, however, to give the site some diagnostic
information as to why you have chosen to abort the install.

 KIDS: Developer Tools

July 1995 Kernel 187
Revised September 2011 Developer's Guide
 Version 8.0

The following table lists ways you can ask KIDS to continue or abort an installation, based on the
conclusions of your environment check routine:

Table 8. KIDS: Actions based on environment check conclusions

KIDS Desired Action
(Based on Environment Check Conclusions)

How to Tell KIDS to Take Action

OK to install this transport global. (Take no action)

Do not install this transport global and KILL it from ^XTMP. >S XPDQUIT =1

Do not install this transport global but leave it in ^XTMP. >S XPDQUIT=2

Abort another transport global named pkg_name in distribution
and KILL it from ^XTMP.

>S XPDQUIT(pkg_name)=1

Abort another transport global named pkg_name in distribution
but leave it in ^XTMP.

>S XPDQUIT(pkg_name)=2

Abort all transport globals in distribution and KILL them from
^XTMP.

>S XPDABORT=1

Abort all transport globals in distribution but leave them in
^XTMP.

>S XPDABORT=2

NOTE: It is recommended that you use XPDQUIT when you have a distribution that contains
multiple builds and you only want to selectively install a portion of it. Use the XPDABORT to
abort the entire installation of a distribution.

14.3.1.8 Controlling the Queuing of the Install Prompt

By default, KIDS allows the installer to run in the future. It does this by allowing the installer to enter "Q"
at the device prompt. If the XPDNOQUE variable is set to 1, then the installer will see the following
prompt and not be allowed to enter "Q":

Figure 43. KIDS: Dialog when the XPDNOQUE variable is set to disable queuing

Enter the Device you want to print the Install messages.
Enter a '^' to abort the install.

DEVICE: HOME//

KIDS: Developer Tools

188 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

14.3.1.9 Controlling the Disable Options/Protocols Prompt

By default, KIDS asks the following question during KIDS installations:

Figure 44. KIDS: "DISABLE" default prompt during installations

Want to DISABLE Scheduled Options, Options, and Protocols? YES//

You can control the way this question is asked by defining the array XPDDIQ("XPZ1") during the
environment check. The environment check runs once during the installation and prompts the user if it
should run during the load. Setting this array only has an effect during the installation. Therefore, you
may want to define the array only when XPDENV=1. You can use this array as follows (each node is
optional):

Table 9. KIDS: Installation—XPDDIQ array sample

Array Node Description

XPDDIQ("XPZ1") (optional) Set to zero (0) to force answer to NO or set to 1 to force answer to
YES. When this node is set, the site is not asked the question.

XPDDIQ("XPZ1","A") (optional) Replace the default question prompt with the value of this node.

XPDDIQ("XPZ1","B") (optional) Set to new default answer in external form (YES or NO).

14.3.1.10 Controlling the Move Routines to Other CPUs Prompt

By default, KIDS asks the following question during KIDS installations:

Figure 45. KIDS :"MOVE routines" default prompt during installations

Want to MOVE routines to other CPUs? NO//

 KIDS: Developer Tools

July 1995 Kernel 189
Revised September 2011 Developer's Guide
 Version 8.0

You can control the way this question is asked by defining the array XPDDIQ("XPZ2") during the
environment check. The environment check runs twice (once during load and once during installation),
but setting this array only has an effect during the installation. Therefore, you may want to define the
array only when XPDENV=1. You can use this array as follows (each node is optional):

Table 10. KIDS: Environment Check—XPDDIQ array sample

Array Node Description

XPDDIQ("XPZ2") (optional) Set to zero (0) to force answer to NO, or set to 1 to force answer to
YES. When this node is set, the question will not be asked.

XPDDIQ("XPZ2","A") (optional) Replace the default question prompt with the value of this node.

XPDDIQ("XPZ2","B") (optional) Set to new default answer in external form (YES or NO).

Figure 46. KIDS: Environment Check routine sample

ZZUSER1 ;SFISC/RWF - CHECK TO SEE IF OK TO LOAD ; 8 Sep 94 10:39
 ;;8.0T13;KERNEL;;Aug 01, 1994
 N Y
 I $S($D(DUZ)[0:1,$D(DUZ(0))[0:1,'DUZ:1,1:0) W !!,*7,">> DUZ and DUZ(0) must be
defined as an active user to initialize." S XPDQUIT=2
 I $D(^DD(200,0))[0,XPDNM'["VIRGIN INSTALL" W !!,"You need to install the
KERNEL - VIRGIN INSTALL 8.0 package, instead of this package!!" G ABRT
 ;check for Toolkit 7.3
 I $$VERSION^XPDUTL("XT")<7.3 W !!,"You need Toolkit 7.3 installed!" G ABRT
 ;
 W !,"I'm checking to see if it is OK to install KERNEL v",$P($T(+2),";",3),"
in this account.",!
 W !!,"Checking the %ZOSV routine" D GETENV^%ZOSV
 I $P(Y,"^",4)="" W !,"The %ZOSV routine isn't current.",!,"Check the second
line of the routine, or your routine map table." S XPDQUIT=2
 ;must have Kernel 7.1
 S Y=$$VERSION^XPDUTL("XU") G:Y<7.1 OLD
 ;Test Access to % globals, only check during install
 D:$G(XPDENV) GBLOK
 I '$G(XPDQUIT) W !!,"Everything looks OK, Lets continue.",!
 Q
 ;
OLD W !!,*7,"It looks like you currently have version ",Y," of KERNEL installed."
 W !,*7,"You must first install KERNEL v7.1 before this version can be
installed.",!
 ;abort install, delete transport global
ABRT S XPDQUIT=1
 Q
 ;
GBLOK ;Check to see if we have WRITE access to needed globals.
 W !,"Now to check protection on GLOBALS.",!,"If you get an ERROR, you need to
add WRITE access to that global.",!
 F Y="^%ZIS","^%ZISL","^%ZTER","^%ZUA" W !,"Checking ",Y S @(Y_"=$G("_Y_")")
 Q

KIDS: Developer Tools

190 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

14.3.2 PRE-TRANSPORTATION ROUTINE field (#900)

The PRE-TRANSPORTATION ROUTINE field (#900) in the BUILD file (#9.6) contains a
[TAG^]ROUTINE that is run during the transportation process for the Build. This allows developers to
populate the transport global using the XPDGREF variable.

Developers can put information in the KIDS Transport Global, which can be used by the Pre-install,
Environment Check, and/or Post-install routines. KIDS runs the [TAG^]ROUTINE in the field PRE-
TRANSPORTATION ROUTINE during the transport process. This routine can use the XPDGREF
variable to set nodes in the transport global. For example, enter the following at the programmer prompt:
>S @XPDGREF@("My Namespace",1)="Information I need during install"

During the install process, in the Pre-install, Environment Check, and/or Post-install routines, the
developer can retrieve the data by using the same variable, XPDGREF. Since these nodes are part of the
transport global, they are removed when the install is completed.

Figure 47. KIDS: PRE-TRANSPORTATION ROUTINE field sample

 Edit a Build PAGE 1 OF 4
Name: TEST 4.0 TYPE: SINGLE PACKAGE
--

 Name: TEST 4.0

 Date Distributed: OCT 9,2004

 Description:

 Environment Check Routine:

 Pre-Install Routine:

 Post-Install Routine:

Pre-Transportation Routine: TAG^ROUTINE
__

COMMAND Press PF1H for help Insert

 KIDS: Developer Tools

July 1995 Kernel 191
Revised September 2011 Developer's Guide
 Version 8.0

14.3.3 Pre- and Post-Install Routines: Special Features

KIDS, like DIFROM, lets you specify pre-install and post-install routines. Typically, the pre- and post-
install routines are used to perform pre-install and post-install conversions. This topic describes how to
use pre- and post-install routines with KIDS installations.

Pre- and post-routines are optional; you are not required to specify them in order for your software
application to be installed. If, however, you have some special actions you want to take, either before or
after your installation, the pre- and post-install routines are the places to do it.

KIDS lets you specify the names for pre- and post-install routines in screen one of EDIT A BUILD
(Figure 14-23). Any routine that is specified will be automatically sent by KIDS. You do not have to list
the routine in the Build Components section (Figure 14-12).

Two functions can be called during the install process to disable or enable an option or protocol:

• $$OPTDE^XPDUTL(): Disable/Enable an Option

• $$PRODE^XPDUTL(): Disable/Enable a Protocol

Do not set up variables during the pre-install for use during the installation or the post-install, because
these variables will be lost if the installation aborts midway through and then is restarted by the site using
the restart option.

You can reference any routine exported in your build, since all routines with a SEND TO SITE action are
installed by the time the pre- and post-install routines run.

14.3.3.1 Aborting an Installation During the Pre-Install Routine

You can abort an installation during the pre-install routine by setting the XPDABORT variable to 1 and
quitting. This is exactly as if the installing site pressed <CTRL>C, in the sense that no cleanup is done;
options are left disabled. KIDS prints one message to the effect that the install aborted in the pre-install
program. If you abort an installation in this manner, you need to tell the site what to do to either re-start
the installation or clean up the system from the state it was left in.

14.3.3.2 Setting a File's Package Revision Data Node (Post-Install)

A new Package Revision Data node can now be updated during the post-install. This node is located in
^DD(filenumber,0,"VRRV"). It is defined by the developer who distributes the software application and
may contain patch or revision information regarding the file. $$GET1^DID can be used to retrieve the
content of the node and PRD^DILFD is used to update the node.

REF: For more information, see the VA FileMan Programmer Manual.

KIDS: Developer Tools

192 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

14.3.3.3 Key Variables during Pre- and Post-Install Routines

Table 11. KIDS: Key variables during the pre- and post-install routines

Variable Description

XPDNM The KIDS key variable XPDNM is available during the pre- and post-install
and environment check phases of a KIDS installation. XPDNM is set to the
name of the build currently being installed. It is in the format of the .01 field of
the software application's BUILD file (#9.6) entry, which is software
application name, concatenated with a space, concatenated with version
number.

XPDNM("TST") Released with Kernel Patch XU*8.0*559, the XPDNM("TST") variable is
available during the pre- and post-install and environment check phases of a
KIDS installation. XPDNM("TST") is set to one of the following values:

• Test Number—If build is a patch and the National Patch Module (NPM)
created a test number.

• Null.

XPDNM("SEQ") Released with Kernel Patch XU*8.0*559, the XPDNM("SEQ") variable is
available during the pre- and post-install and environment check phases of a
KIDS installation. XPDNM("SEQ") is set to one of the following values:

• Sequence Number—If build is a patch and the National Patch Module
(NPM) created a sequence number.

• Null.

DIFROM For the purpose of backward compatibility, the variable DIFROM is available
during the pre- and post-install (as well as environment check) phases of a
KIDS installation. DIFROM is set to the version number of the incoming
software application.

ZTQUEUED If the ZTQUEUED variable is present, you know that you are running as a
queued installation. If ZTQUEUED is not present, you know that the installer
chose to run the installation directly instead of queuing it.

14.3.3.4 NEW the DIFROM Variable When Calling MailMan

You are free to use the MailMan API to send mail messages during pre- and post-install routines
(provided MailMan exists on the target system). Make sure that you NEW the DIFROM variable before
calling any of the MailMan APIs, however. MailMan APIs can terminate prematurely if the DIFROM
variable is present because the DIFROM variable has a special meaning within MailMan.

 KIDS: Developer Tools

July 1995 Kernel 193
Revised September 2011 Developer's Guide
 Version 8.0

14.3.3.5 Update the Status Bar During Pre- and Post-Install Routines

During the installation, if the device selected for output is a VT100-compatible (or higher) terminal,
KIDS displays the installation output in a virtual window on the terminal. Below the virtual window, a
progress bar graphically illustrates the percentage complete that the current part of the installation has
reached. KIDS resets the status bar prior to the Pre- and Post-install routines.

REF: For more information on the status (progress) bar, see the "Installation Progress" topic in
the "KIDS Systems Management Installations" chapter in the Kernel Systems Management
Guide.

You can provide a similar status bar for users in the Pre- and Post Install by doing the following:

1. SET XPDIDTOT=total number of items.

2. DO UPDATE^XPDID(current number of items). This moves the status bar.

For example, if you were converting 100 records and want to update the user every time you have
completed 10% of the records you would enter the following at the programmer prompt:

>SET XPDIDTOT=100
>F%=1:1:100 D CONVERT I'(%#10) D UPDATE^XPDID(%)

If you wish to display a status bar at various intervals throughout your Pre or Post-install routines, you
should reset the status bar. To reset the status bar enter the following at the programmer prompt:

>SET XPDIDTOT=0
>D UPDATE^XPDID(0)

KIDS: Developer Tools

194 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

14.3.4 Edit a Build—Screen 4

Screen four of the EDIT A BUILD option is where you can set up the install questions, any required
builds, PACKAGE file (#9.4) links, and tracking software application information for a build.

Figure 48. KIDS: Screen 4 of Edit a Build sample

 Edit a Build PAGE 4 OF 5
Name: TEST 1.0 TYPE: SINGLE PACKAGE
--
 Install Questions

 Required Builds

 Package File Link...: TEST

 Track Package Nationally: NO

COMMAND: Press <PF1>H for help Insert

14.3.5 How to Ask Installation Questions

You are not required to ask any installation questions in order for your software application to be
installed. If, however, you have some special actions that you can take in your pre-install and post-install
processes, and these special actions depend on information you need to get from your installer, then you
need a way to ask these questions.

Screen four of the EDIT A BUILD option is where you can set up the install questions for a build.

 KIDS: Developer Tools

July 1995 Kernel 195
Revised September 2011 Developer's Guide
 Version 8.0

To ask questions, you need to supply KIDS with the proper DIR input values for each question. Then,
KIDS uses the DIR utility to ask installation questions when performing installations. The DIR input
values you can supply for each question are:

Table 12. KIDS: DIR input values for KIDS install questions

DIR Input Value Description

DIR(0) Question format.

DIR(A) Question prompt.

DIR(A,#) Additional message before question prompt.

DIR(B) Default answer.

DIR(?) Simple help string.

DIR(?,#) Additional simple help.

DIR(??) Help frame.

REF: For information on the purpose of these variables, permissible values for them, and which
are required versus which are optional, see the VA FileMan Programmer Manual.

14.3.5.1 Question Subscripts

For each question you want to ask, the .01 field of the question (as stored by KIDS) is a subscript. The
subscript must be in one of two forms:

• Pre-Install Questions—PRExxx

• Post-Install Questions—POSxxx

Where "xxx" in the subscript can be any string up to 27 characters in length. KIDS asks questions whose
subscript starts with PRE during the pre-install and questions whose subscript starts with POS during the
post-install.

The order in which questions are asked during either the pre- or post-installs is the same as the sorting
order of the subscript itself. KIDS asks questions with the lowest sorting subscript first and proceeds to
the highest sorting subscript.

14.3.5.2 M Code in Questions

Besides specifying the DIR input variables, you can specify a line of M code that is executed after the
DIR input variables have been set up but prior to the DIR call. The purpose of this line of M code is so
that you can modify the DIR parameters, if necessary, before ^DIR is actually called.

The M code must be standalone, however; it cannot depend on any routine in the software application
(other than the environment check routine) since no other exported routines besides the environment
check routine will be loaded on the installing system.

KIDS: Developer Tools

196 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

14.3.5.3 Skipping Installation Questions

If you want to prevent a question from being asked, you should KILL the DIR variable in the line of M
code for that question (execute K DIR).

14.3.5.4 Accessing Questions and Answers

Once the questions have been asked, the results of the questions are available (during pre-install and post-
install only) in the following locations:

• Pre-Install Questions:

XPDQUES(PRExxx)=internal form of answer

XPDQUES(PRExxx,"A")=prompt

XPDQUES(PRExxx,"B")=external form of answer

• Post-Install Questions:

XPDQUES(POSxxx)=internal form of answer

XPDQUES(POSxxx,"A")=prompt

XPDQUES(POSxxx,"B")=external form of answer

The results of the questions for the pre-install can only be accessed (in XPDQUES) during the pre-install,
and the results of the questions for the post-install can only be accessed (in XPDQUES) during the post-
install. At all other times, XPDQUES is undefined for pre- and post-install questions.

 KIDS: Developer Tools

July 1995 Kernel 197
Revised September 2011 Developer's Guide
 Version 8.0

Figure 49. KIDS: Pre-install question (setting up) sample

 Edit a Build PAGE 4 OF 5
┌───────────────────────── Install Questions ─────────────────────────────────┐
│ Name: PRE1 │
│ │
│ DIR(0): YA^^ │
│ │
│ DIR(A): Do you want to run the pre-install conversion? │
│DIR(A,#): │
│ │
│ DIR(B): YES │
│ │
│ DIR(?): Answer YES to run the pre-install conversion, NO to skip it. │
│DIR(?,#): │
│ DIR(??): │
│ │
│ M Code: │
└───┘

COMMAND: Press <PF1>H for help Insert

Figure 50. KIDS: Appearance of question during installation

Do you want to run the pre-install conversion? YES// ?

Answer YES to run the pre-install conversion, NO to skip it...

Do you want to run the pre-install conversion? YES//

14.3.5.5 Where Questions Are Asked During Installations

KIDS asks the pre- and post-install questions when a site initiates an installation of the software
application. The order of the questions is:

1. KIDS runs environment check routine, if any.

2. KIDS asks pre-Install questions.

3. KIDS asks generic KIDS installation questions.

4. KIDS asks post-Install questions.

5. KIDS asks site to queue the installation or run it directly.

KIDS: Developer Tools

198 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

14.3.6 Using Checkpoints (Pre- and Post-Install Routines)

KIDS allows the installing site to restart installations that have aborted. This means that your pre-install
and post-install routines must be "restart-aware:" that is, they must be able to run correctly whether it's the
first time they're executed or whether it is the nth time through.

KIDS maintains a set of internal checkpoints during an installation. For each phase of the installation (for
example, completion of each software application component), it uses a checkpoint to record whether that
phase of the installation has completed yet. If an installation errors out, checkpointing allows the
installation to be restarted, not from the very beginning, but instead only from the last completed
checkpoint onward.

In your pre- and post-install routines, you can use your own checkpoints. If there's an error during the pre-
or post-install, and you use checkpoints, when the sites restart the installation, it will resume from the last
completed checkpoint rather than running through the entire pre- or post-install again.

Another advantage of using checkpoints is that you can record timing information for each phase of your
pre- and post-install routines, which allows you to evaluate the efficiency of each phase you define.

There are two distinct types of checkpoints you can create during pre- and post-install routines:

• Checkpoints with callbacks

• Checkpoints without callbacks.

14.3.6.1 Checkpoints with Callbacks

The preferred method of using checkpoints is to use checkpoints with callbacks. When you create a
checkpoint with a callback, you give the checkpoint an API (the callback routine). That is all you have to
do during your pre- or post-install routine, create a checkpoint with a callback. You do not have to
execute the callback. At the completion of the pre- or post-install routine, KIDS manages the created
checkpoints by calling, running, and completing the checkpoint and its callback routine.

The reason to let KIDS execute checkpoints (by creating checkpoints with callbacks) is to ensure that the
pre-install or post-install runs in the same way whether it is the first installation pass, or if the installation
aborted and has been restarted. If the installation has restarted, KIDS skips any checkpoints in the pre-
install or post-install that have completed, and only executes the callbacks of checkpoints that have not
yet completed (and completes them).

In this scenario (checkpoints with callback routines), your pre-install and post-install routine should
consist only of calls to the $$NEWCP^XPDUTL(): Create Checkpoint function to create checkpoints
(with callbacks). Once you create all of the checkpoints for each discrete pre- or post-install task, the pre-
install or post-install should quit.

Once the pre- or post-install routine finishes, KIDS executes each created checkpoint (that has a callback)
in the order created. If it is the first time through, each checkpoint is executed. If the installation has been
restarted, KIDS skips any completed checkpoints, and only executes checkpoints that have not completed.

 KIDS: Developer Tools

July 1995 Kernel 199
Revised September 2011 Developer's Guide
 Version 8.0

The KIDS checkpoint functions that apply when using checkpoints with callbacks are summarized below
(listed in alphabetic order):

Table 13. KIDS: Functions using checkpoints with callbacks

Function Description

$$NEWCP^XPDUTL Create checkpoint (use during pre- or post-install routine only.)

$$UPCP^XPDUTL Update checkpoint parameter (use within callback routine.)

$$CURCP^XPDUTL Retrieve current checkpoint name (use during pre- or post-install routine).
Useful when using the same tag^routine for multiple callbacks; this is how you
determine which callback you're in.

$$PARCP^XPDUTL Retrieve checkpoint parameter (use within callback routine.)

14.3.6.2 Checkpoint Parameter Node

You can store how far you have progressed with a task you are performing in the callback by using a
checkpoint parameter node. The $$UPCP^XPDUTL(): Update Checkpoint function updates the value of a
checkpoint's parameter node; the $$PARCP^XPDUTL(): Get Checkpoint Parameter function retrieves the
value of a checkpoint's parameter node.

Being able to update and retrieve a parameter within a checkpoint can be quite useful. For example, if you
are converting each entry in a file, as you progress through the file you can update the checkpoint's
parameter node with the Internal Entry Number (IEN) of each entry as you convert it. Then, if the
conversion errors out and has to be re-started, you can WRITE your checkpoint callback in such a way
that it always retrieves the last completed IEN stored in the checkpoint's parameter node. Then, it can
process entries in the file starting from the last completed IEN, rather than the first entry in the file. This
is one example of how you can save the site time and avoid re-processing.

KIDS: Developer Tools

200 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

The pre-install API in this example is PRE^ZZUSER2; the post-install API is POST^ZZUSER2.

Figure 51. KIDS: Using checkpoints with callbacks: combined pre- and post-install routine

ZZUSER2 ;RON TEST 1.0 PRE AND POST INSTALL
 ;;1.0
 ;build checkpoints for PRE
PRE N %
 S %=$$NEWCP^XPDUTL("ZZUSER1","PRE1^ZZUSER2","C-")
 Q
PRE1 ;check terminal type file
 N DA,UPDATE,NAME
 ;quit if answer NO to question 1
 Q:'XPDQUES("PRE1")
 S UPDATE=XPDQUES("PRE2")
 ;write message to user about task
 D BMES^XPDUTL("Checking Terminal Type File")
 ;get parameter value to initialize NAME
 S NAME=$$PARCP^XPDUTL("ZZUSER1")
 F S NAME=$O(^%ZIS(2,"B",NAME)) Q:$E(NAME,1,2)'="C-" D
 .S DA=+$O(^%ZIS(2,"B",NAME,0))
 .I DA,$D(^%ZIS(2,DA,1)),$P(^(1),U,5)]"" D MES^XPDUTL(NAME_" still has data in
field 5") S:UPDATE $P(^%ZIS(2,DA,1),U,5)=""
 .;update parameter NAME
 .S %=$$UPCP^XPDUTL("ZZUSER1",NAME)
 Q
 ;build checkpoints for POST
POST N %
 S %=$$NEWCP^XPDUTL("ZZUSER1","POST1^ZZUSER2")
 S %=$$NEWCP^XPDUTL("ZZUSER2")
 Q
POST1 ;check version multiple
 N DA,VER,%
 ;quit if answer NO to question 1
 Q:'XPDQUES("POST1")
 ;write message to user about task
 D BMES^XPDUTL("Checking Package File")
 ;get parameter value to initialize DA
 S DA=+$$PARCP^XPDUTL("ZZUSER1")
 F S DA=$O(^DIC(9.4,DA)) Q:'DA D
 .S VER=+$$PARCP^XPDUTL("ZZUSER2")
 .F S VER=$O(^DIC(9.4,DA,22,VER)) Q:'VER D
 ..;here is where we could do something
 ..;update parameter VER
 ..S %=$$UPCP^XPDUTL("ZZUSER2",VER)
 .;update parameter DA
 .S %=$$UPCP^XPDUTL("ZZUSER1",DA),%=$$UPCP^XPDUTL("ZZUSER2",VER)
 Q

 KIDS: Developer Tools

July 1995 Kernel 201
Revised September 2011 Developer's Guide
 Version 8.0

14.3.6.3 Checkpoints without Callbacks (Data Storage)

KIDS ignores checkpoints that do not have callback routines specified. The ability to create checkpoints
without a callback routine is provided mainly as a facility for developers to store information during the
pre- or post-install routine. The parameter node of the checkpoint serves as the data storage mechanism. It
is not safe to store important information in local variables during pre- or post-install routines, because
installations can now be re-started in the middle; variables defined prior to the restart may no longer be
defined after a restart.

An alternative use lets you expand the scope of checkpoints without callbacks beyond simply storing data.
If you want to manage your own checkpoints instead of letting KIDS manage them, you can create
checkpoints without callbacks, but use them to divide your pre- and post-install routine into phases.
Rather than having KIDS execute and complete them (as happens when the checkpoint has a callback
routine), you would then be responsible for executing and completing the checkpoints. In this style of
coding a pre- or a post-install routine, you would:

1. Check if each checkpoint exists ($$VERCP^XPDUTL(): Verify Checkpoint); if it does not exist,
create it ($$NEWCP^XPDUTL(): Create Checkpoint).

2. Retrieve the current checkpoint parameter as the starting point if you want to
($$PARCP^XPDUTL(): Get Checkpoint Parameter); do the work for the checkpoint; update the
parameter node if you want to ($$UPCP^XPDUTL(): Update Checkpoint).

3. Complete the checkpoint when the work is finished ($$COMCP^XPDUTL(): Complete
Checkpoint).

4. Proceed to the next checkpoint.

You have to do more work this way than if you let KIDS manage the checkpoints (by creating the
checkpoints with callback routines).

The KIDS checkpoint functions that apply when using checkpoints without callbacks are summarized
below (listed in alphabetic order):

Table 14. KIDS: Functions using checkpoints without callbacks

Function Description

$$COMCP^XPDUTL Complete checkpoint (use during pre- or post-install routine).

$$NEWCP^XPDUTL Create checkpoint (use during pre- or post-install routine).

$$PARCP^XPDUTL Retrieve checkpoint parameter (use during pre-or post-install routine).

$$UPCP^XPDUTL Update checkpoint parameter (use during pre- or post-install routine).

$$VERCP^XPDUTL Verify if checkpoint exists and if it has completed (use during pre- or post-install
routine).

KIDS: Developer Tools

202 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

14.3.7 Required Builds

In the fourth screen of the EDIT A BUILD option, you can use the Required Builds multiple to enter
other builds (i.e., software applications, or patches) that either warn the installer when they are missing or
requires that they be installed before this build is installed. Make an entry in the BUILD file (#9.6) for
those software applications or patches not installed using KIDS. Include the name and version number in
the BUILD file (#9.6) entry.

REF: For the action types available, see Table 14-14. KIDS: Required builds installation
actions table.

At the installing site, KIDS checks the PACKAGE file (#9.4), VERSION multiple, and PATCH
APPLICATION HISTORY multiple to verify that the required build has been installed at that site.

Figure 52. KIDS: Required builds sample

 Edit a Build PAGE 4 OF 5
Name: TEST 1.0 TYPE: SINGLE PACKAGE
--
 Install Questions

 Required Builds
 TEST 1.1 Don't install, remove global

 Package File Link...: TEST

 Track Package Nationally: NO
__

COMMAND: Press <PF1>H for help Insert

 KIDS: Developer Tools

July 1995 Kernel 203
Revised September 2011 Developer's Guide
 Version 8.0

Table 15. KIDS: Required builds installation actions

Installation Action Description

WARNING ONLY Warns the installer the listed software application/patch is
missing at the site but allows the installation to continue.
(Displays a **WARNING** to the installer.)

DON'T INSTALL, LEAVE GLOBAL If the listed software application/patch is missing, this action
prevents sites from continuing the installation. It does not
unload the Transport Global. This allows sites to install the
missing item and continue with the installation without having
to reload the Transport Global.

DON'T INSTALL, REMOVE GLOBAL If the listed software application/patch is missing, this action
prevents sites from continuing the installation. It also unloads
the Transport Global.

14.3.8 Package File Link

In the fourth screen of the EDIT A BUILD option, you can link your build to an entry in the national
PACKAGE file (#9.4). Use this link if you want to update the site's PACKAGE file (#9.4) when the
software application you are creating is installed or if you want to use Kernel's Alpha/Beta Testing
module. You can only link to a PACKAGE file (#9.4) entry that is the same name (minus the version
number) as the build you are creating.

If you specify a PACKAGE file (#9.4) entry in the PACKAGE FILE LINK field, and the installing site
does not have a matching entry in their PACKAGE file (#9.4), KIDS creates a new entry in the installing
site's PACKAGE file (#9.4).

KIDS checks for duplicate version numbers and patch names when updating the PACKAGE file (#9.4).
When you link to an entry in the PACKAGE file (#9.4), your installation automatically updates the
VERSION multiple in the installing site's corresponding PACKAGE file (#9.4) entry. KIDS makes a new
entry in the VERSION multiple for the version of the software application you are installing. KIDS fills
in the following fields in the new VERSION entry:

• VERSION

• DATE DISTRIBUTED

• DATE INSTALLED AT THIS SITE

• INSTALLED BY

• DESCRIPTION OF ENHANCEMENTS

• PATCH APPLICATION HISTORY

o PATCH APPLICATION HISTORY

o DATE APPLIED

o APPLIED BY

o DESCRIPTION

KIDS: Developer Tools

204 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

KIDS saves patch names along with their sequence numbers in the PATCH APPLICATION HISTORY
multiple (this functionality was added with patch XU*8.0*30). The Patch Application History sample
(Figure 14-29) shows a list of patch names with and without sequence numbers. Those patches without
sequence numbers were entered prior to patch XU*8.0*30, since no sequence numbers are evident.

In addition, you can choose to update the following fields at the top level of the National PACKAGE file
(#9.4):

Table 16. KIDS: National PACKAGE file field updates

PACKAGE File (#9.4) Field Name Description

PRIMARY HELP FRAME Select the primary help frame for the software application.

AFFECTS RECORD MERGE (multiple) Select files that, if merged, affect this software
application.

ALPHA/BETA TESTING There are two possible responses:

• YES—This software application is currently in alpha or beta
test and you want to track option usage and errors relating to
this software application at the sites.

• NO—You want to discontinue tracking of alpha or beta
testing at the sites.

Beyond these fields, KIDS does not support maintaining any other information in the PACKAGE file
(#9.4).

 KIDS: Developer Tools

July 1995 Kernel 205
Revised September 2011 Developer's Guide
 Version 8.0

Figure 53. KIDS: Patch application history sample

 Select PATCH APPLICATION HISTORY: 48// ?
 Answer with PATCH APPLICATION HISTORY
Choose from:
 27
 39
 41
 42
 48
 45 SEQ #41
 46 SEQ #42
 47 SEQ #43

 You may enter a new PATCH APPLICATION HISTORY, if you wish
 Answer must be 8-15 characters in length.

 Select PATCH APPLICATION HISTORY: 48// <Enter>
 PATCH APPLICATION HISTORY: 48// <Enter>
 DATE APPLIED: SEP 20,1996// <Enter>
 APPLIED BY: XUUSER,NINETY// <Enter>
 DESCRIPTION:
 1>This contains fixes related to output fixes for the PCMM software
 2>(distributed as SD*5.3*41).
 3>
 4>Both SD*5.3*41 and SD*5.3*45 must be installed prior to loading this
 5>patch.

14.3.9 Track Package Nationally

The fourth screen of the EDIT A BUILD option also lets you choose whether to send a message to the
National PACKAGE file (#9.4) on FORUM, each time the software application is installed at a site. If
you enter YES in the TRACK PACKAGE NATIONALLY field, KIDS sends a message to FORUM
when a site installs the software application, provided the following conditions are met:

• The PACKAGE FILE LINK field in the build APIs to an entry in the PACKAGE file (#9.4).

• The software application is installed at a site that is a primary VA domain.

• The software application is installed in a production UCI.

Answering NO to TRACK PACKAGE NATIONALLY (or leaving it blank) means that KIDS does not
send a message to FORUM.

Patches without sequence
numbers means that they were
entered prior Kernel Patch
XU*8.0*30.

KIDS: Developer Tools

206 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

14.3.10 Alpha/Beta Tracking

Kernel provides a mechanism for tracking and monitoring installation and option usage during the alpha
and beta testing phases of VistA software applications. This tool is primarily intended for application
developers to use in monitoring the testing process at local test sites.

NOTE: In VA terminology "Alpha" and "Beta" testing are defined as follows:

• Alpha Testing—VistA test software application that is running in a Test account.

• Beta Testing—VistA test software application that is running in a Production account.

Alpha/Beta Tracking provides the following services to both developers and IRM personnel:

• Notification when a new alpha or beta software version is installed at a site.

• Periodic option usage reports for alpha or beta options being tracked.

• Periodic listings of errors in the software's namespace that are currently in alpha or beta test at the
site.

The Alpha/Beta Tracking of option usage is transparent to users. If the option counter is turned on, it
records the number of times an option is invoked within the menu system when entered in the usual way
via ^XUS. Options are not counted when navigated past in the course of menu jumping. Also, the counter
is not set when entering the menu system with the developers ^XUP utility.

Alpha/Beta tracking data is stored in the following Multiples in the KERNEL SYSTEM PARAMETERS
file (#8989.3), which is stored in the ^XTV global:

Table 17. Alpha/Beta Tracking—KERNEL SYSTEM PARAMETERS file (#8989.3) field setup for KIDS

Alpha/Beta Tracking Fields:
KERNEL SYSTEM PARAMETERS File (#8989.3)

Description

ALPHA/BETA TEST PACKAGE Multiple (#32) This field stores the list of software namespaces
that are currently in alpha or beta test at the site.

ALPHA,BETA TEST OPTION Multiple (#33) This field is used to keep a log of usage of the
options associated with an alpha or beta test of
VistA software based on the namespace indicated
for the alpha or beta test software in the
.ALPHA/BETA TEST PACKAGE Multiple field
(#32). This field stores pointers to entries in the
OPTION file (#19).

If there are any entries in these Multiples, the menu system's XQABTST variable is set and the options
are tracked.

Each time any subsequent test software is loaded, the current alpha/beta data is sent to the data tracker
(e.g., developer) and the alpha/beta data is purged from all Multiples.

 KIDS: Developer Tools

July 1995 Kernel 207
Revised September 2011 Developer's Guide
 Version 8.0

14.3.10.1 Initiating Alpha/Beta Tracking

In order to initiate and setup Alpha/Beta Tracking at a test site, developers should perform the following
procedures:

1. Create the build entry for the VistA software that will be exported to sites.

2. Turn on Alpha/Beta Tracking—In the "Package File Link…" section in the fourth ScreenMan
form of the build entry. Developers can turn on Alpha/Beta Tracking by entering YES at the
"BUILD TRACK PACKAGE NATIONALLY:" prompt. ALPHA/BETA TESTING field (#20)
in the BUILD file (#9.6)

3. Edit THE BUILD file Entries—Highlight the software name and press the <Enter> key. KIDS
places you in a ScreenMan form that lets you edit the following Alpha/Beta Tracking-related
fields in the BUILD file (#9.6):

Table 18. Alpha/Beta Tracking—BUILD file (#9.6) field setup for KIDS

Alpha/Beta Tracking Fields:
BUILD File (#9.6)

Description

ALPHA/BETA TESTING (#20) This field is used to initiate Alpha/Beta Tracking.
Developers should enter YES in this field to activate
Alpha/Beta Tracking.

INSTALLATION MESSAGE (#21) This field is used to send an installation message
when the VistA software application is installed at a
site. Developers should answer YES if you want the
installation message sent to the mail group specified in
the ADDRESS FOR USAGE REPORTING field (#22)
in the BUILD file (#9.6).

ADDRESS FOR USAGE
REPORTING (#22)

This field should be set to the address of the MailMan
mail group at the developer's domain. This mail group
address is where installation and option usage
messages are sent by the Alpha/Beta Tracking code.
Also, the domain specified in the address is where
server requests are sent from the sites to report errors.

PACKAGE NAMESPACE OR
PREFIX field (#23)

This field is where you identify the alpha/beta VistA
software application namespaces to be tracked.

NOTE: At Alpha/Beta Tracking termination, these fields in the BUILD file (#9.6)
need to remain populated so the software code knows where to send the final report.

4. Set up the server option at the development domain. This option must be set up correctly—In
order to track errors at test sites, make sure that the XQAB ERROR LOG SERVER server option
resides at your development site, which should be the domain specified in the ADDRESS FOR
USAGE REPORTING field (#22) in the BUILD file (#9.6) for the software build entry.

This option processes server requests from the test sites, from the Errors Logged in Alpha/Beta
Test (QUEUED) option [XQAB ERROR LOG XMIT]. The server stores the data from the
requests into the XQAB ERRORS LOGGED file (#8991.5).

KIDS: Developer Tools

208 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

REF: For more information on the Errors Logged in the Alpha/Beta Test (Queued)
option, see the "Error Tracking—Alpha/Beta Software Releases" topic that follows.

5. Schedule the Errors Logged in the Alpha/Beta Test (Queued) option [XQAB ERROR LOG
XMIT] to run at sites to gather errors and report these to the development server.

REF: For more information on the Errors Logged in the Alpha/Beta Test (Queued)
option, see the "Error Tracking—Alpha/Beta Software Releases" topic that follows.

6. Schedule the Send Alpha/Beta Usage to Programmers option [XQAB AUTO SEND] at the sites
to send mail messages containing option usage.

REF: For more information on the Send Alpha/Beta Usage to Programmers option,
see the "Send Alpha/Beta Usage to Programmers Option" topic that follows.

14.3.10.2 Error Tracking—Alpha/Beta Software Releases

As well as tracking option usage and installations, Kernel also lets developers track errors that occur in
the namespace of the alpha- or beta-tracked software. To report these errors to developers, the site should
schedule the Errors Logged in Alpha/Beta Test (QUEUED) option [XQAB ERROR LOG XMIT]. This
option cannot be run directly; it is located on the ZTMQUEUABLE OPTIONS menu, which is not on any
Kernel menu tree, as shown below:

Figure 54. KIDS: Errors Logged in Alpha/Beta Test (QUEUED) option

ZTMQUEUABLE OPTIONS [ZTMQUEUABLE OPTIONS]
 Errors Logged in Alpha/Beta Test (QUEUED) [XQAB ERROR LOG XMIT]

The Errors Logged in Alpha/Beta Test (QUEUED) option [XQAB ERROR LOG XMIT] identifies any
errors associated with an application that is in either alpha or beta test. It collects error information and
sends it to a server at the development domain. The developer may ask sites to schedule this option to run
at a specified frequency, usually nightly. For example, developers may instruct test sites to schedule it as
a task to run daily, after midnight.

The identified errors are combined in a mail message that includes the following information:

• Type of error

• Routine involved

• Date (usually the previous day)

• Option that was being used at the time of the error

• Number of times the error was logged

• Volume

• UCI

 KIDS: Developer Tools

July 1995 Kernel 209
Revised September 2011 Developer's Guide
 Version 8.0

NOTE: The volume and UCI are included so that stations with error logs being maintained
on different CPUs can run the task on each different system.

14.3.10.3 Monitoring Alpha/Beta Tracking

There are a number of options available to sites used to monitor the progress of alpha or beta testing.
These options are located on the Alpha/Beta Test Option Usage Menu [XQAB MENU], which is located
on the Operations Management menu [XUSITEMGR]:

Figure 55. Alpha/Beta Test Option Usage Menu options

Operations Management ... [XUSITEMGR]
 Alpha/Beta Test Option Usage Menu ... [XQAB MENU]
 Actual Usage of Alpha/Beta Test Options [XQAB ACTUAL OPTION USAGE]
 Low Usage Alpha/Beta Test Options [XQAB LIST LOW USAGE OPTS]
 Print Alpha/Beta Errors (Date/Site/Num/Rou/Err) [XQAB ERR DATE/SITE/NUM/ROU/ERR]
 Send Alpha/Beta Usage to Programmers [XQAB AUTO SEND]

These options are described in the topics that follow.

14.3.10.3.1 Usage Report Options

To get usage reports during the alpha/beta testing of software that is making use of the option counter,
IRM can review the tallies with the following options:

• Actual Usage of Alpha/Beta Test Options [XQAB ACTUAL OPTION USAGE]

• Low Usage Alpha/Beta Test Options [XQAB LIST LOW USAGE OPTS]

KIDS: Developer Tools

210 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

14.3.10.3.2 Actual Usage of Alpha/Beta Test Options Option

To get actual usage reports during the alpha/beta testing of software that is making use of the option
counter, IRM can review the tallies with the Actual Usage of Alpha/Beta Test Options option [XQAB
ACTUAL OPTION USAGE]. ADPACs may also be interested in being able to generate this information.
Figure 14-32 shows a printout of the actual usage of options within the XU namespace:

Figure 56. Actual Usage of Alpha/Beta Test Options option—Sample Option Usage report

 OPTION USAGE SINCE 08-05-92

XUSERINQ I 44 User Inquiry
XUUSERDISP R 49 Display User Characteristics
XUFILEACCESS M 50 File Access Management
XUSERBLK R 51 Grant Access by Profile
XUTIME A 53 Time
XUHALT A 71 Halt
XUMAINT M 83 Menu Management
XUSITEMGR M 86 Operations Management
XUSEREDITSELF R 87 Edit User Characteristics
XUSERTOOLS M 129 User's Toolbox
XUSEREDIT A 175 Edit an Existing User
XUPROG M 191 Programmer Options
XUSER M 265 User Edit
XUPROGMODE R 268 Programmer mode

14.3.10.3.3 Low Usage of Alpha/Beta Test Options Option

A similar report can be obtained of low usage options since the current version of the tracked software
was installed, using the Low Usage of Alpha/Beta Test Options option [XQAB LIST LOW USAGE
OPTS].

14.3.10.3.4 Print Alpha/Beta Errors (Date/Site/Num/Rou/Err) Option

The Print Alpha/Beta Errors (Date/Site/Num/Rou/Err) option [XQAB ERR
DATE/SITE/NUM/ROU/ERR] is used at the development domain, to print error information collected
from sites. It does not report meaningful information when used at a site.

14.3.10.3.5 Send Alpha/Beta Usage to Programmers Option

At any time during alpha/beta testing, IRM can send an interim summary message back to the developers,
with the Send Alpha/Beta Usage to Programmers option [XQAB AUTO SEND].

To receive option usage reports, developers should instruct the sites to schedule this option to run at
whatever frequency desired in order to receive option usage reports. It may be convenient to schedule this
task to run, perhaps on a weekly basis; however, the developer may ask IRM to schedule it to run at a
different specified frequency. This option can also be run manually by the sites to send option usage
information.

 KIDS: Developer Tools

July 1995 Kernel 211
Revised September 2011 Developer's Guide
 Version 8.0

Mail messages are sent to the mail group and domain specified by the national application developer in
the build entry for the ADDRESS FOR USAGE REPORTING field (#22) in the BUILD file (#9.6) when
they exported the software.

NOTE: Developers/IRM, make sure that this mail group exists at the development domain!

14.3.10.4 Terminating Alpha/Beta Tracking

Alpha/Beta Tracking, once initiated for a VistA software application, must be turned off when the final
version of the software application is released nationally (production). It is the developer's responsibility
to manually stop Alpha/Beta Tracking, terminate the audit, and purge the data when appropriate prior to
national release. However, IRM can also terminate Alpha/Beta Tracking at the local level:

• Local (Test) Software—Developer or IRM is responsible for terminating Alpha/Beta Tracking at
the local site.

• National (Production) Software—Developers are responsible for terminating Alpha/Beta
Tracking for software that is released nationally.

Information stored during Alpha/Beta Tracking is purged each time a subsequent test version of the
software is installed. A final summary report of option usage is prepared and sent to the developer's mail
group just before the purge.

14.3.10.4.1 Local (Test) Software Option Usage—Terminating
Alpha/Beta Tracking

For test versions of the software application that is loaded locally (Test/Production accounts), it is the
developer or IRM's responsibility to stop Alpha/Beta Tracking, terminate the audit, and purge the data
from the KERNEL SYSTEM PARAMETERS file (#8989.3) when appropriate. There is no Kernel option
to purge locally collected option counts; purge the data via a global KILL. If a subsequent software
version release is another test version, Alpha/Beta Tracking is automatically re-initiated and tracking
counts are reset back to zero.

NOTE: If the Alpha/Beta testing is set to YES, any subsequent software version should be
considered another test software version. If the Alpha/Beta testing is still set to NO, then the
subsequent software version should be considered a production/release software version.

KIDS: Developer Tools

212 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

To manually stop Alpha/Beta Tracking at an individual site, developers or IRM can use the Enter/Edit
Kernel Site Parameters option [XUSITEPARM] located on the Kernel Management Menu [XUKERNEL]
to remove the desired entries from the ALPHA/BETA TEST PACKAGE Multiple (#32) and
ALPHA,BETA TEST OPTION Multiple field (#33) fields in the KERNEL SYSTEM PARAMETERS
file (#8989.3):

Figure 57. Enter/Edit Kernel Site Parameters—Sample user dialogue

Select Kernel Management Menu Option: Enter/Edit Kernel Site Parameters

Note: the TaskMan site parameters have been moved out of this file.
Use the Edit TaskMan Parameters option to edit those values.

DEFAULT # OF ATTEMPTS: 3// ^ALPHA BETA TEST PACKAGE
Select ALPHA/BETA TEST PACKAGE: ZZLOCAL// @
 SURE YOU WANT TO DELETE THE ENTIRE ALPHA,BETA TEST PACKAGE? Y
Select ALPHA/BETA TEST PACKAGE: <Enter>
Select ALPHA,BETA TEST OPTION: ZZSAMPLE// @
 SURE YOU WANT TO DELETE THE ENTIRE ALPHA,BETA TEST OPTION? Y

14.3.10.4.2 National (Production) Software Option Usage—
Terminating Alpha/Beta Tracking

For the final version of the software application that is to be released nationally (production), it is the
developer's responsibility to manually stop Alpha/Beta Tracking, terminate the audit, and purge the data
from the local Test/Production accounts when appropriate prior to national release.

NOTE: For more information on how to terminate Alpha/Bea Tracking at local test sites, see
the "Local (Test) Software Option Usage—Terminating Alpha/Beta Tracking" topic in this
chapter.

To manually stop Alpha/Beta Tracking of nationally released software, developers must enter NO in the
ALPHA/BETA TESTING field (#20) in the BUILD file (#9.6) for the final build of the production
software. When the sites install the build, Alpha/Beta Tracking is shut off.

 KIDS: Developer Tools

July 1995 Kernel 213
Revised September 2011 Developer's Guide
 Version 8.0

14.4 Application Program Interface (API)

Several APIs are available for developers to work with KIDS. These APIs are described below.

NOTE: For all output during pre- and post-installs, use the MES^XPDUTL(): Output a
Message and BMES^XPDUTL(): Output a Message with Blank Line APIs. These functions
WRITE output to both the INSTALL file (#9.7) and the output device.

14.4.1 UPDATE^XPDID(): Update Install Progress Bar

Reference Type Supported

Category KIDS

IA # 2172

Description This API updates the progress bar to show the percentage complete for the
installation of the current number of items specified (i.e., "n" input parameter).

Format UPDATE^XPDID(n)

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variable XPDIDTOT: (required) This variable is the total number of items that are being
updated.

Input Parameter n: (required) The current number of items being updated.

Output none

Example

If you are converting 100 records and want to update the user every time you have completed 10% of the
records you would do the following:

>Set XPDIDTOT=100
>F%=1:1:100 D CONVERT I'(%#10) D UPDATE^XPDID(%)

KIDS: Developer Tools

214 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

14.4.2 EN^XPDIJ(): Task Off KIDS Install

Reference Type Controlled Subscription

Category KIDS

IA # 2243

Description This API can be used with XPDA and is defined to task off a KIDS install. This is
useful if a large conversion needs to run in the background while users are back on
the system. For example, the first KIDS build can install a new version of
software, then task off a second cleanup/conversion build. This allows users back
onto the system, because the new version install completes and unlocks options
and protocols. Meanwhile, the cleanup runs in the background under KIDS and
makes use of KIDS checkpoints, restart upon failure, and message logging that can
later be accessed in the Install File Print.

Format EN^XPDIJ(xpda)

Input Parameters xpda: (required) Internal entry number of the build to be tasked in the
INSTALL file (#9.7).

Output none

14.4.3 $$PKGPAT^XPDIP(): Update Patch History

Reference Type Supported

Category KIDS

IA # 2067

Description This extrinsic function updates the PATCH APPLICATION HISTORY field
(#1105, Multiple) of the VERSION field (#22, Multiple) in the PACKAGE file
(#9.4). This function can be used during the Pre- or Post-Install routine.

Format $$PKGPAT^XPDIP(software_ien,version,.x)

Input Parameters software_ien: (required) The software file entry Internal Entry Number (IEN) in
the PACKAGE file (#9.4).

 version: (required) This is the software version number. It must contain a
decimal (e.g., 8.0).

 .x: (required)

Output returns: Returns:
version ien^patch ien

 KIDS: Developer Tools

July 1995 Kernel 215
Revised September 2011 Developer's Guide
 Version 8.0

14.4.4 BMES^XPDUTL(): Output a Message with Blank Line

Reference Type Supported

Category KIDS

IA # 10141

Description This API is used during KIDS installations. It outputs a message string to the
installation device. A message is also recorded in the INSTALL file (#9.7) entry
for the installation. It is similar to the MES^XPDUTL(): Output a Message API,
except that it outputs a blank line before it outputs the message, and it does not
take arrays.

Format BMES^XPDUTL(msg)

Input Parameters msg: (required) String to output.

Output returns: Returns a message string preceded by a blank line to the
installation device.

14.4.5 $$COMCP^XPDUTL(): Complete Checkpoint

Reference Type Supported

Category KIDS

IA # 10141

Description This extrinsic function is used during KIDS installations. Use this function to
complete a checkpoint, in pre- or post-install routines. Use this only to complete
checkpoints that do not have callback routines. If the checkpoint has a callback
routine, KIDS itself completes the checkpoint. You can only complete checkpoints
that are for the same installation phase (pre-install or post-install) that you are
currently in.

Use this API only for checkpoints with no callback. KIDS completes checkpoints
that have a callback.

Format $$COMCP^XPDUTL(name)

Input Parameters name: (required) Checkpoint name.

KIDS: Developer Tools

216 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Output returns: Returns:
• 1—Successfully completed checkpoint.

• 0—Error completing checkpoint.

14.4.6 $$CURCP^XPDUTL(): Get Current Checkpoint Name/IEN

Reference Type Supported

Category KIDS

IA # 10141

Description This extrinsic function is used during KIDS installations. Use this function to
return the name of the current checkpoint. It can be useful if, for example, you use
the same tag^routine API for more than one callback. Using this function, you can
determine which callback you are in.

Use this API only for checkpoints with a callback. It will return the NULL string if
you call it when working with a checkpoint with no callback (in which case, you
would really be in either the pre- or post-install routine).

Format $$CURCP^XPDUTL(format)

Input Parameters format: (required) Pass as zero (0) to return checkpoint name. Pass as 1 to
return checkpoint Internal Entry Number (IEN).

Output returns: Returns:
• Checkpoint Name—The current checkpoint name.

• NULL String—If not currently in a checkpoint callback.

14.4.7 $$INSTALDT^XPDUTL(): Return All Install Dates/Times

Reference Type Supported

Category KIDS

IA # 10141

Description This extrinsic function is used to retrieve all dates/times that an install was
performed for a given install name in the INSTALL file (#9.7). It returns the
results in an array. This API was released with Kernel Patch XU*8.0*491.

Format $$INSTALDT^XPDUTL(install,.result)

 KIDS: Developer Tools

July 1995 Kernel 217
Revised September 2011 Developer's Guide
 Version 8.0

Input Parameters install: (required) Name of install in the INSTALL file (#9.7).

 .result: (required) Passed by reference, the name of the array to return
values.

Output Parameter .result: Returns the number of records in the result array:

• result=number of records

• result(internal date/time)="TEST#^SEQ#" (Fields 61^62
from INSTALL file [#9.7])

Example

>W $$INSTALDT^XPDUTL("XU*8.0*491", .RSLT)
1
>ZW RSLT
RSLT=1
RSLT(3080318.092151)="1^"

14.4.8 $$LAST^XPDUTL(): Last Software Patch

Reference Type Supported

Category KIDS

IA # 10141

Description This extrinsic function returns the last patch and the date it was applied to the
software. The patch will also include the Sequence # if the last patch was a
released patch.

 NOTE: This API can be used outside of KIDS.

Format $$LAST^XPDUTL(x[,y][,z])

Input Parameters x: (required) Software name or software namespace within quotes
(e.g., "KERNEL" or "XU").

 y: (optional) Full software version number with decimal point
entered within quotes (e.g., "8.0"). The current version is assumed
if this parameter is not supplied.

 z: (optional) This parameter was added with Kernel Patch
XU*8.0*559. If set to 1, then only the last released patch
information is returned.

KIDS: Developer Tools

218 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Output returns: Returns the last patch information in a caret-delimited string:
• nnn^yyymmdd—Unreleased patch, where "nnn" = patch

number and "yyymmdd" = date in VA FileMan format.

• nnn Seq #nnn^yyymmdd—Released patch, where
"nnn" = patch number, "Seq #nnn" = sequence number
for released patch, and "yyymmdd" = date in VA
FileMan format.

• -1—If either the software or version does not exist or no
patches have been applied.

Example 1

>S X="KERNEL"

>S Y="8.0"

>W $$LAST^XPDUTL(X,Y)
543^3110503

Example 2

>S X="KERNEL"

>S Y="8.0"

>S Z=1

>W $$LAST^XPDUTL(X,Y,Z)
431 SEQ #453^3110425.122831

Example 3

>S X="KERNEL"

>S Y="9.0"

>S Z=1

>-1

For this example, since there is no Kernel Version 9.0 the expected result is -1.

 KIDS: Developer Tools

July 1995 Kernel 219
Revised September 2011 Developer's Guide
 Version 8.0

14.4.9 MES^XPDUTL(): Output a Message

Reference Type Supported

Category KIDS

IA # 10141

Description This API is used during KIDS installations. It outputs a message string to the
installation device. A message is also recorded in INSTALL file (#9.7) entry for
the installation.

Format MES^XPDUTL([.]msg)

Input Parameters [.]msg: (required) Message string to output, either in a variable or passed
by reference as an array of strings.

Output returns: Returns a message string to the installation device.

KIDS: Developer Tools

220 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

14.4.10 $$NEWCP^XPDUTL(): Create Checkpoint

Reference Type Supported

Category KIDS

IA # 10141

Description This extrinsic function is used during KIDS installations. Use this function to
create a checkpoint, in pre- or post-install routines. The checkpoint is stored in the
INSTALL file (#9.7).

Pre-and post-install checkpoints are stored separately, so you can use the same
name for a pre- and post-install checkpoint if you wish. Checkpoints created with
this function from the pre-install routine are pre-install checkpoints; checkpoints
created during the post-install routine are post-install checkpoints.

You can use $$NEWCP^XPDUTL to create a checkpoint with or without a
callback. You can also store a value for the parameter node, if you wish.

Checkpoints created with callbacks have that callback automatically executed by
KIDS during the appropriate phase of the installation. If the checkpoint is created
during the pre-install routine, KIDS executes the callback as soon as the pre-install
routine completes. If the callback is created during the post-install, KIDS executes
the callback as soon as the post-install routine completes. If multiple checkpoints
are created during the pre- or post-install routine, KIDS executes the callbacks
(and completes the checkpoints) in the order the corresponding checkpoints were
created.

Checkpoints created without a callback cannot be executed by KIDS; instead, they
provide a way for developers to store and retrieve information during the pre-
install and post-install phases. Rather than storing information in a local or global
variable, you can store information in a checkpoint parameter node and retrieve it
(even if an installation is re-started).

If the checkpoint you are trying to create already exists, the original parameter and
callback will not be overwritten.

Format $$NEWCP^XPDUTL(name[,callback][,par_value])

Input Parameters name: (required) Checkpoint name.

 callback: (optional) Callback (^routine or tag^routine reference).

 par_value: (optional) Value to which the checkpoint parameter is set.

Output returns: Returns:
• Internal Entry Number (IEN)—Created checkpoint if

newly created or if checkpoint already exists.

• Zero (0)—Error occurred while creating checkpoint.

 KIDS: Developer Tools

July 1995 Kernel 221
Revised September 2011 Developer's Guide
 Version 8.0

14.4.11 $$OPTDE^XPDUTL(): Disable/Enable an Option

Reference Type Supported

Category KIDS

IA # 10141

Description This extrinsic function is used during KIDS installations in a Pre-Init or Post-Init
routine. Use this function to disable or enable an option.

Format $$OPTDE^XPDUTL(name,action)

Input Parameters name: (required) Option name.

 action: (required)
• 1—Enable an option.

• 0—Disable an option.

Output returns: Returns:
• 1—Success.

• 0—Failure.

Example

>I $$OPTDE^XPDUTL("XMUSER",0) W !,'Option Disabled.'

KIDS: Developer Tools

222 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

14.4.12 $$PARCP^XPDUTL(): Get Checkpoint Parameter

Reference Type Supported

Category KIDS

IA # 10141

Description This extrinsic function is used during KIDS installations. It retrieves the current
value of a checkpoint's stored parameter. The parameter is stored in the INSTALL
file (#9.7).

Use this API for checkpoints both with and without callbacks.

Use the optional second parameter to retrieve a pre-install checkpoint's parameter
during a post-install.

Format $$PARCP^XPDUTL(name[,pre])

Input Parameters name: (required) Checkpoint name.

 pre: (optional) To retrieve a parameter from a pre-install checkpoint
while in the post-install, set this parameter to "PRE".

Output returns: Returns the current parameter node for the checkpoint named in
the name input parameter.

14.4.13 $$PATCH^XPDUTL(): Verify Patch Installation

Reference Type Supported

Category KIDS

IA # 10141

Description This extrinsic function is used during KIDS installations—during the environment
check only. Use this function to verify if a patch has been installed. You can check
for patches with or without sequence numbers.

Format $$PATCH^XPDUTL(patch)

Input Parameters patch: (required) Patch name.

Output returns: Returns:
• 1—Specified patch was installed on the current system.

• 0—Specified patch was not installed on the current
system.

 KIDS: Developer Tools

July 1995 Kernel 223
Revised September 2011 Developer's Guide
 Version 8.0

Example

Checking for a patch installation. Enter the following at the programmer prompt:

>I '$$PATCH^XPDUTL("XU*8*28") W !,"You must install patch XU*8*28"

14.4.14 $$PKG^XPDUTL(): Parse Software Name from Build Name

Reference Type Supported

Category KIDS

IA # 10141

Description This extrinsic function parses the name of a software application from a software
application's build name. You can obtain the name of the build KIDS is installing
from the KIDS key variable XPDNM, which is defined throughout a KIDS
installation.

Format $$PKG^XPDUTL(buildname)

Input Parameters buildname: Name of build (.01 field of BUILD file [#9.6]).

Output returns: Returns the software name.

14.4.15 $$PRODE^XPDUTL(): Disable/Enable a Protocol

Reference Type Supported

Category KIDS

IA # 10141

Description This extrinsic function is used during KIDS installations in a Pre-Init or Post-Init
routine. Use this function to disable or enable a protocol.

Format $$PRODE^XPDUTL(name,action)

Input Parameters name: (required) Protocol name.

 action: (required)
• 1—Enable a protocol.

• 2—Disable a protocol.

KIDS: Developer Tools

224 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Output returns: Returns:
• 1—Success.

• 0—Failure.

14.4.16 $$RTNUP^XPDUTL(): Update Routine Action

Reference Type Supported

Category KIDS

IA # 10141

Description This extrinsic function is used during KIDS installations—during the environment
check only. Use this function to update the installation action for a routine.

Format $$RTNUP^XPDUTL(routine,action)

Input Parameters routine: (required) Routine name.

 action: (required)
• 1—Delete at site.

• 2—Skip installing at site.

Output returns: Returns:
• 1—Routine found in routine installation list.

• 0—Routine not found in routine installation list.

 KIDS: Developer Tools

July 1995 Kernel 225
Revised September 2011 Developer's Guide
 Version 8.0

14.4.17 $$UPCP^XPDUTL(): Update Checkpoint

Reference Type Supported

Category KIDS

IA # 10141

Description This extrinsic function is used during KIDS installations. Use this function to
update the parameter node of an existing checkpoint, in pre- or post-install
routines. The parameter node is stored in the INSTALL file (#9.7).

Use this API for checkpoints both with and without callbacks.

During the pre-install, you can only update pre-install checkpoints; during the
post-install, you can only update post-install checkpoints.

Format $$UPCP^XPDUTL(name[,par_value])

Input Parameters name: (required) Checkpoint name.

 par_value: (optional) Value to set checkpoint parameter to.

Output returns: Returns:
• Internal Entry Number (IEN)—Successfully updated

checkpoint.

• Zero (0)—Error updating checkpoint.

14.4.18 $$VER^XPDUTL(): Parse Version from Build Name

Reference Type Supported

Category KIDS

IA # 10141

Description This extrinsic function parses the version of a software application from a software
application's build name. You can obtain the name of the build KIDS is installing
from the KIDS key variable XPDNM, which is defined throughout a KIDS
installation.

Format $$VER^XPDUTL(buildname)

Input Parameters buildname: (required) Name of build (.01 field of BUILD file [#9.6]).

KIDS: Developer Tools

226 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Output returns: Returns:
• Version—The version of the build identified in the

buildname input parameter.

• NULL—If no match in the BUILD file (#9.6).

14.4.19 $$VERCP^XPDUTL(): Verify Checkpoint

Reference Type Supported

Category KIDS

IA # 10141

Description This extrinsic function is used during KIDS installations. Use this function to
check whether a given checkpoint exists and, if it exists, whether it has completed
or not.

Use this API only for checkpoints with no callback.

During the pre-install, you can only verify pre-install checkpoints; during the post-
install, you can only verify post-install checkpoints.

Format $$VERCP^XPDUTL(name)

Input Parameters name: (required) Checkpoint name.

Output returns: Returns:
• 1—Checkpoint has completed.

• 0—Checkpoint has not completed but exists.

• -1—Checkpoint does not exist.

14.4.20 $$VERSION^XPDUTL(): Package File Current Version

Reference Type Supported

Category KIDS

IA # 10141

Description This extrinsic function obtains the current version of a site's software application.

Format $$VERSION^XPDUTL(package_id)

 KIDS: Developer Tools

July 1995 Kernel 227
Revised September 2011 Developer's Guide
 Version 8.0

Input Parameters package_id: (required) Software application's name or namespace, from its
entry in the PACKAGE file (#9.4).

Output returns: Returns:
• Version—The current version of the software

application at the site, according to the software
application's entry in the site's PACKAGE file (#9.4).

• NULL—If the software application is not matched.

KIDS: Developer Tools

228 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

July 1995 Kernel 229
Revised September 2011 Developer's Guide
 Version 8.0

15 Menu Manager: Developer Tools

15.1 Creating Options

You can develop applications quickly and easily using Menu Manager. Once you have defined a set of
files using VA FileMan, you can use Menu Manager to provide a menu of options including entering,
editing, displaying, and printing information. You can use M code to tailor the functioning of an option,
in the option's header, entry, or exit action. You can create specialized routine-type options. And you can
associate help frames with options (as described in the Help Processor chapter) to further enhance option
creation and custom tailoring.

15.1.1 Option Types

Several different option types exist:

• Edit, Inquire, and Print are mainly used to access VA FileMan files.

• Action and Run Routine types are available for invoking M code.

• Menu types, as discussed earlier in this topic, are used to group other options for presentation to
the user at the select prompt.

• Server options are options that can be addressed through MailMan (sending to S.SERVER
NAME). The server activity, such as the running of a routine, is then carried out.

REF: For a complete description, see the "Server Options: Developer Tools" chapter
later in this "Menu Manager" section in this manual.

• Protocol, Protocol Menu, Extended Action, and Limited option types are specific to the XQOR
(Unwinder) software application. Control is passed to the XQOR (Unwinder) software for
processing. The Extended Action type, for example, "unwinds" the items on a menu in a specific
order. Protocol Menus are formatted in multiple columns allowing several items to be selected at
once. The Protocol-type option prompts the user for a selection. Limited protocols involve
patient-oriented processing, rather than application-specific tasks. Any of these option types are
included, like other options, when a software application is exported.

REF: For more information, see the Computerized Patient Record System (CPRS) or
Unwinder (XQOR) documentation.

Menu Manager: Developer Tools

230 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

15.1.2 Creating Options (Edit Options)

Figure 58. Menu Manager: Edit options [XUEDITOPT]

MENU MANAGEMENT... [XUMAINT]
 Edit options [XUEDITOPT]

You can define options with the Edit Options template, available from the Menu Management menu.
Depending on what type of option you are editing, the Edit Options template branches to the fields in the
OPTION file (#19) appropriate for that option type.

Some option types (Edit, Inquire, and Print) have fields whose names correspond to VA FileMan DI
variables. The Edit Options template branches to the DI fields that have relevance to the type of VA
FileMan call being made by the option.

For Edit type options, the DI fields presented correspond to the input variables for an ^DIE call. Likewise,
inquire-type options correspond to ^DIQ calls, and print options to ^DIP calls.

NOTE: For a complete description of the meaning of the variables represented by each of the
DI fields, see the VA FileMan Programmer Manual.

15.1.2.1.1 Options that Should Be Regularly Scheduled

If an option should be regularly scheduled to run through TaskMan, you should set its SCHEDULING
RECOMMENDED field (#209) in the OPTION file (#19)) to YES. Sites will not be able to use
Schedule/Unschedule Options to schedule an option unless this field is set to YES for the option.

15.2 Variables for Developer Use

The appearance and functioning of the menu system can be modified by developers by using several
variables. The variables can be defined within applications, such as in an option's Entry Action, Exit
Action, or Header. These variables are listed below.

The XQMM variables can be used individually or together. It is strongly recommended that you test the
effects of XQMM variables with the AUTO MENU display, DUZ("AUTO"), turned on and off.

15.2.1.1.1 XQUIT: Quit the Option

This variable can be set in an option's Entry Action to cause Menu Manager to quit and not invoke the
option. The menu system will not run the option, either as a foreground job or background task, and will
not jump past the option. If an option's use depends on the existence of certain application-specific key
variables, for example, the Entry Action logic can set XQUIT if those variables are not defined. Menu
Manager simply checks for the existence of the XQUIT variable, so it can be set to NULL (S XQUIT="")
or to a value as the developer chooses.

 Menu Manager: Developer Tools

July 1995 Kernel 231
Revised September 2011 Developer's Guide
 Version 8.0

15.2.1.1.2 XQMM("A"): Menu Prompt

If XQMM("A") exists, it is used as the prompt by the menu system instead of the normal "Select...option"
menu prompt. This variable is KILLed immediately after it is used. It does not inhibit the AUTO MENU
display. If the user has chosen to have options displayed at each cycle of the menu system, then the
options will be displayed before the XQMM("A") prompt is presented. Unlike the phantom jump,
prompts must be set singularly, and cannot be concatenated with a semicolon.

15.2.1.1.3 XQMM("B"): Default Response

If XQMM("B") is defined, it is used by the menu system as the default response and is presented along
with the usual two slashes ("//"). If the user accepts the default by pressing <Enter>, the default will
become the user's response.

XQMM("B") identifies an option if set to a unique synonym or a unique string of text from the beginning
of the option's menu text. This option must exist on the user's current menu. If the option cannot be found,
Menu Manager will respond with two question marks ("??"), KILL both XQMM("A") and XQMM("B"),
and display the standard menu prompt.

15.2.1.1.4 XQMM("J"): The Phantom Jump

This variable can be used to force a menu jump to an option within the user's menu tree. Set it equal to the
exact option name (i.e., .01 field of the OPTION file [#19]) to which Menu Manager should jump. For
example:

>S XQMM("J")="XUMAINT"

This will jump to the Menu Management option if that option is within the user's menu tree.

The phantom jump automatically turns off the user's menu display for one cycle through the menu system
so that the user does not see a list of choices before jumping to an option that is not on that list.

The phantom jump can also be used to designate a set of options for a series of jumps, called a script. The
exact option names should be separated with semicolons. For example:

>S XQMM("J")="XUMAINT;DIUSER"

After jumping to Menu Management, the menu system would jump to VA FileMan (provided that all of
the access and security requirements are met).

After all the options in a script have been completed, the phantom jump logic returns the user to the
option that was last run before the script was invoked. If for some reason this cannot be accomplished, the
user is returned to their primary menu.

Menu Manager: Developer Tools

232 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

15.2.1.1.5 XQMM("N"): No Menu Display

This variable can be used to suppress the AUTO MENU display of menu options for one menu cycle.
XQMM("N") is then KILLed and the display resumes as usual. XQMM("N") can be used in conjunction
with XQMM("A") and ("B") to present only the custom tailored menu prompts.

Setting XQMM("N") does not change the display for users who already suppress the AUTO MENU
display. For users who have AUTO MENU turned on, XQMM("N") takes precedence over
DUZ("AUTO").

It is not necessary to define XQMM("N") when using the phantom jump, XQMM("J"), since the display
will already be suppressed. If XQMM("J") is present, then XQMM("N") will not be KILLed after the first
cycle since the phantom jump is already inhibiting the display. In this case, XQMM("N") will be KILLed
after the second cycle (the display of menus after the jump is completed). If several phantom jumps are
chained together, XQMM("N") will not be KILLed until one cycle after the final jump unless code is
added to explicitly KILL it between jumps.

15.3 Direct Mode Utilities

Several Menu Manager direct mode utilities are available for developers to use at the M prompt. They are
not APIs and cannot be used in software application routines. These direct mode utilities are described
below.

15.3.1 ^XQ1: Test an Option

The ^XQ1 routine asks you to select an option; it then uses the selected option as the primary menu
option for entry into the menu system (at the top of ^XQ). This provides a way for an individual in
Programmer mode to enter into the menu system at a desired option:

>D ^XQ1

This API is also called by ^XUP.

CAUTION: Developers are advised to use ^XUP instead of ^XQ1 to enter Kernel from
Programmer mode, since the ^XUP routine sets up a standard environment and takes
care of cleanup activities.

REF: For a description of the ^XUP direct mode utility, see the "Signon/Security: Developer
Tools" chapter in this manual.

NOTE: While D ^XQ1 is a direct mode utility, it is not a callable API.

 Menu Manager: Developer Tools

July 1995 Kernel 233
Revised September 2011 Developer's Guide
 Version 8.0

15.4 Application Program Interface (API)

Several APIs are available for developers to work with menu management. These APIs are described
below.

15.4.1 $$ADD^XPDMENU(): Add Option to Menu

Reference Type Supported

Category Menu Manager

IA # 1157

Description This extrinsic function adds an option as a new item to an existing menu.

Format $$ADD^XPDMENU(menu,option[,syn][,order])

Input Parameters menu: (required) Name of the menu to which an option should be added.

 option: (required) Name of the option being added to the menu.

 syn: (optional) Synonym to add to the SYNONYM field in the new
menu item.

 order: (optional) Order to place in the DISPLAY ORDER field in the
new menu item.

Output returns: Returns:
• 1—Success, option added to menu.

• 0—Failure option not added to menu.

15.4.2 $$DELETE^XPDMENU(): Delete Menu Item

Reference Type Supported

Category Menu Manager

IA # 1157

Description This extrinsic function deletes an option from the Menu field of another option. It
returns the following values:

• 1—If the function succeeded.

• 0—If it failed.

Format $$DELETE^XPDMENU(menu,option)

Menu Manager: Developer Tools

234 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters menu: (required) This is the name of the option from which you want to
delete a menu item.

 option: (required) This is the name of the option you want to delete from
the menu item of the "menu" input parameter.

Output returns: Returns:
• 1—Success, menu item deleted.

• 0—Failure, menu item not deleted.

15.4.3 $$LKOPT^XPDMENU(): Look Up Option IEN

Reference Type Supported

Category Menu Manager

IA # 1157

Description This extrinsic function looks up an option's Internal Entry Number (IEN) using the
"B" cross-reference.

Format $$LKOPT^XPDMENU(option)

Input Parameters option: (required) The name of the option.

Output returns: Returns the Internal Entry Number (IEN) of the input option in
the OPTION file (#19).

15.4.4 OUT^XPDMENU(): Edit Option's Out of Order Message

Reference Type Supported

Category Menu Manager

IA # 1157

Description This API creates or deletes an out of order message for an option; this action
effectively puts the option out of order or back in order.

Format OUT^XPDMENU(option,text)

 Menu Manager: Developer Tools

July 1995 Kernel 235
Revised September 2011 Developer's Guide
 Version 8.0

Input Parameters option: (required) Name of option in which to place an OUT OF ORDER
MESSAGE value.

 text: (required) Text of message to place in the option's OUT OF
ORDER MESSAGE field.

If this is not NULL, the text is stored in the option's OUT OF
ORDER MESSAGE field and the option is placed out of order.

If this parameter is passed as a NULL string, the current OUT OF
ORDER MESSAGE value is deleted, and the option is put back in
order.

Output none

15.4.5 RENAME^XPDMENU(): Rename Option

Reference Type Supported

Category Menu Manager

IA # 1157

Description This API renames an existing option.

Format RENAME^XPDMENU(old,new)

Input Parameters old: (required) Current option name (.01 field of OPTION file [#19]
entry). Must be an exact match.

 new: (required) New name for option.

Output none

15.4.6 $$TYPE^XPDMENU(): Get Option Type

Reference Type Supported

Category Menu Manager

IA # 1157

Description This extrinsic function returns the option's TYPE field (#4) in the OPTION file
(#19).

Format $$TYPE^XPDMENU(option)

Menu Manager: Developer Tools

236 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters option: (required) The name of the option.

Output returns: Returns the one character TYPE field (#4) value of the input
option in the OPTION file (#19). For example:

• A—Action

• E—Edit

• I—Inquire

• M—Menu

• P—Print

• R—Run routine

• O—Protocol

• Q—Protocol Menu

• X—Extended Action

• S—Server

• L—Limited

• C—ScreenMan

• W—Window

• Z—Window Suite

• B—Broker (Client/Server)

15.4.7 NEXT^XQ92(): Restricted Times Check

Reference Type Supported

Category Menu Manager

IA # 10077

Description This API returns the next time an option can run, checking any time or date
restrictions placed on the option. If there are no times in the next week when the
option can be run, the x parameter is returned as NULL and a message is issued
regarding the time restriction.

Format NEXT^XQ92(ien,x)

Input Parameters ien: (required) Internal entry number (IEN) of the option in the
OPTION file (#19).

 Menu Manager: Developer Tools

July 1995 Kernel 237
Revised September 2011 Developer's Guide
 Version 8.0

Output x: The date/time in VA FileMan format of the next unrestricted
runtime when the option can run. If the option is able to run at the
current time, x is returned as the current time. If the option is
prohibited for the entire next week, x is returned as NULL and a
message is issued regarding the time restriction.

15.4.8 $$ACCESS^XQCHK(): User Option Access Test

Reference Type Supported

Category Menu Manager

IA # 10078

Description This extrinsic function is used to find out if a user has access to a particular option.

Format $$ACCESS^XQCHK(duz,option)

Input Parameters duz: (required) The identification number of the user in question in the
NEW PERSON file (#200).

 option: (required) The Internal Entry Number (IEN) or option name of the
option in question in the OPTION file (#19).

Menu Manager: Developer Tools

238 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Output returns: Returns:
• -1—No such user in the NEW PERSON file (#200).

• -2—User terminated or has no Access code.

• -3—No such option in the Option file (#19).

• 0—No access found in any menu tree the user owns.

• 4-Piece String—

− access^menu tree IEN^a set of codes^key

− 0^tree^codes^key: No access because of locks (see
XQCODES below).

− 1^OpIEN^^: Access allowed through Primary Menu.

− 2^OpIEN^codes^: Access found in the Common
Options.

− 3^OpIEN^codes^: Access found in top level of
secondary option.

− 4^OpIEN^codes^: Access through the secondary
menu tree OpIEN.

XQCODES can contain the following:
• N—No Primary Menu in the NEW PERSON file (#200,

warning only).

• L—Locked and the user does not have the key (forces
zero [0] in first piece).

• R—Reverse lock and user has the key (forces zero [0] in
first piece).

 Menu Manager: Developer Tools

July 1995 Kernel 239
Revised September 2011 Developer's Guide
 Version 8.0

15.4.9 OP^XQCHK(): Current Option Check

Reference Type Supported

Category Menu Manager

IA # 10078

Description This API returns the current option or protocol name and menu text in the first
and second pieces of the XQOPT output variable. It looks for the local
XQORNOD if defined or the local XQY variable, the internal number of the
option if XQORNOD is defined it needs to be in the variable pointer format, i.e.
XQORNOD=<internal number of the protocol>;<protocol file>.

If the search is unsuccessful, because the job is not running out of the menu
system or is not a tasked option, XQOPT is returned with -1 in the first piece
and "Unknown" in the second.

 NOTE: XQCHK cannot return option/protocol information if the job is a
task that did not originate from an option.

Format OP^XQCHK

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variables XQORNOD (optional) If this variable is defined, it should be in variable
pointer format. For example:

 XQORNOD="1234;ORD(101,"

Output Variables XQOPT Returns a string in the following format:
Option/Protocol Name^Menu Text

If neither an option nor a protocol can be identified, XQOPT is
returned as:

-1^Unknown

Example 1

>K XQORNOD D OP^XQCHK W !,XQOPT

>EVE^Systems Manager Menu

Example 2

Menu Manager: Developer Tools

240 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

>S XQORNOD="445;ORD(101," D OP^XQCHK W !,XQOPT

>XU USER EVENT TERMINATE^Terminate User Event

Example 3

>S XQORNOD="9;DIC(19," D OP^XQCHK W !,XQOPT

>EVE^Systems Manager Menu

Example 4

>K XQORNOD,XQY,XQOPT D OP^XQCHK W !,XQOPT

>-1^Unknown

July 1995 Kernel 241
Revised September 2011 Developer's Guide
 Version 8.0

16 Miscellaneous: Developer Tools

16.1 Direct Mode Utilities

Several Kernel Toolkit direct mode utilities are available for developers to use at the M prompt, usually
involving the DO command. They are not APIs and cannot be used in software application routines.

Many of the options on the Programmer Options menu can also be run as direct mode utilities. Some are
not available as options, but only as direct mode utilities callable at the M prompt. Table 16-1 lists
examples on how to run these utilities when working in Programmer mode.

Table 19. Miscellaneous Tools: Direct Mode Utilities

Direct Mode Utility Description
>D ^%G List the contents of a global to the screen.

16.2 Programmer Options Menu

Figure 59. Programmer Options menu options: Toolkit miscellaneous tools

SYSTEMS MANAGER MENU ... [EVE]
 Programmer Options ... <locked with XUPROG> [XUPROG]
 KIDS Kernel Installation & Distribution System ... [XPD MAIN]
 <locked with XUPROG>
 PG Programmer mode <locked with XUPROGMODE> [XUPROGMODE]
 Calculate and Show Checksum Values [XTSUMBLD-CHECK]
 Delete Unreferenced Options [XQ UNREF'D OPTIONS]
 Error Processing ... [XUERRS]
 General Parameter Tools ... [XPAR MENU TOOLS]
 Global Block Count [XU BLOCK COUNT]
 List Global <locked with XUPROGMODE> [XUPRGL]
 Routine Tools ... [XUPR-ROUTINE-TOOLS]
 Test an option not in your menu <locked with XUMGR> [XT-OPTION TEST]

16.2.1 Delete Unreferenced Options

The Delete Unreferenced Options option [XQ UNREF'D OPTIONS] is used to examine those options
that are not on any menu, are not used as primary or secondary options, and are not tasked to run. The
user may then decide in each case whether to delete the unreferenced option.

16.2.2 Global Block Count Option

The Global Block Count option [XU BLOCK COUNT] can be used to count the number of data blocks in
a global.

Miscellaneous: Developer Tools

242 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

16.2.3 Listing Globals Option

The List Global option [XUPRGL] is found on the Programmer Options menu, locked with the XUPROG
key. This option is also locked with the XUPROGMODE key as an extra level of security.

It can be used to list the contents of a global to the screen. It makes use of operating system-specific
utilities such as %G, the Global Lister.

The option is locked with the XUPROGMODE security key

The corresponding direct mode utility can be used in programmer mode. For example:

>D ^%G (OS-specific)

16.2.4 Test an option not in your menu Option

The Test an option not in your menu option [XT-OPTION TEST] is used for in-house testing of options,
only. It allows the selection of an option from the OPTION file (#19) and then executes it. This option is
locked with the XUMGR security key.

CAUTION: No security checks are performed in the XT-OPTION TEST option; therefore,
it should only be given to programmers.

REF: Kernel Toolkit Application Programming Interfaces (APIs) are documented in the
"Toolkit: Developer Tools" chapter in the Kernel Developer's Guide. Kernel and Kernel Toolkit
APIs are also available in HTML format at the following VA Intranet Website:

http://vista.med.va.gov/kernel/apis/index.shtml

 Miscellaneous: Developer Tools

July 1995 Kernel 243
Revised September 2011 Developer's Guide
 Version 8.0

16.3 ^%Z Editor

16.3.1 User Interface

The ^%Z editor (routine editor) is installed in the Manager account as the ^%Z global by ZTMGRSET
during installation. (It can also be installed with D ^ZTEDIT.) To use the editor, load the routine (it must
pre-exist) and then X ^%Z. The following example creates a one-line routine in Caché and then calls the
^%Z Editor.

Figure 60. Calling the ^%Z Editor—Sample user entries

>ZR

>ZZTEST <Enter> ;ID/SITE;test routine;
>ZS ZZTEST

>ZL ZZTEST X ^%Z

%Z Editing: ZZTEST Terminal type: C-VT100
Edit:

Enter ".F" (dot-file) at the edit prompt to change files. When saving with dot-file, an edit comment can be
entered. This text is stored in the EDIT HISTORY multiple in the ROUTINE file (#9.8) as programmer
documentation. The following example shows how an entire routine can be displayed by entering the ZP
print command followed by a space at the M prompt. Dot-file (.File) is then used to file. A dot is then
used to exit. (The dot exit does not automatically file changes.)

Figure 61. ^%Z Editor—Displaying a routine using the ZP command

>ZL ZZTEST X ^%Z

%Z Editing: ZZTEST Terminal type: C-VT100
Edit: ZP<SPACE> <Enter>
ZZTEST ;test routine

Length: 20 <Enter> Line: ZZTEST
ZZTEST ;test routine
Edit: .Insert after: ZZTEST// <Enter>
Line: ;next line
Line: Q
Line: <Enter>
Edit: .File ZZTEST
Edit comment:
 1> This text is stored in the Routine file's Edit History multiple. <Enter>
 2> <Enter>
EDIT Option: <Enter>
Edit: . <Enter>
>

Routines are filed by the name used when loading, not by the first line tag. If a ROUTINE file (#9.8)
exists, then the routine is added if not already there, and an entry is made of the date/time and DUZ of the
user that filed it. When filing, the editor updates the third piece of the first line of the routine with the
date/time.

The editor fills in the third
"<space>;" piece with the
date/time that the routine is
filed.

First, either a <tab> or line
label is entered.

Miscellaneous: Developer Tools

244 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

When editing, a question mark ("?") can be entered to provide help. The dot commands are listed first.
They provide the usual break, join, insert, and remove functions. The +n method of selecting lines to edit
is also noted. The line tag can be used along with a number (e.g., TAG+3) to reach a particular line. A
minus sign ("-") will back up lines. And the asterisk ("*") can be entered to reach the last line.

Figure 62. ^%Z Editor—Listing edit commands

>X ^%Z
Edit: ?
.ACTION menu .BREAK line .CHANGE every
.FILE routine .INSERT after .JOIN lines
.MOVE lines .REMOVE lines .SEARCH for
.TERMinal type .XY change to/from replace-with
. -TO EXIT THE EDITOR
""+n Absolute line n +n To advance n lines -n To backup n lines_
 use '*' to get last line

^NAME - to edit a GLOBAL node *NAME - to edit a LOCAL variable
MUMPS command line (mumps command <space> or Z command <space>)

Help displays information about editing in line mode. A complete line is displayed and various keys can
be used to navigate. The <Spacebar> moves forward by words, the period moves forward by characters,
and the <CTRL H> command key sequence moves backwards by characters. Upon reaching the desired
location, the <Delete> key can be used to remove characters. To enter characters, the character "E" must
first be entered as an insert/delete toggle. Pressing the <Enter> key reverses the toggle and allows
navigation. Pressing the <Enter> key again moves back to the beginning of the line.

Figure 63. ^%Z Editor—Line mode help information

In the line mode,
Spacebar moves to the next space or comma. Dot to the next char.
'>' To move forward 80 char or to end of line.
Backspace to back up one char. E to enter new char's at the cursor.
CR to exit enter mode, return to start of line or EDIT prompt.
D to delete from the cursor to the next space or comma.
Delete (Rub) to delete the char under the cursor.
CTRL-R to restore line and start back at the beginning.

 Miscellaneous: Developer Tools

July 1995 Kernel 245
Revised September 2011 Developer's Guide
 Version 8.0

Replace mode editing can be invoked by entering dot-XY at the edit prompt. This method allows easy
string substitution, as in VA FileMan's Line Editor. Entering a question mark at the next edit prompt
displays the following help:

Figure 64. ^%Z Editor—Replace mode editing help information

In the replace/with mode,
SPECIAL <REPLACE> STRINGS:
 END -to add to the END of a line
 ... -to replace a line
 A...B -to specify a string that begins with "A" and ends with "B"
 A... -to specify a string that begins with "A" to the end of the line
CTRL-R to restore line.

The ACTION menu provides additional functions. Save and restore lines can be used to move lines
within one routine or from one routine to another. To copy lines to another routine, first save the lines,
then load and edit the other routine, and restore the lines.
When patching a routine, the ACTION menu can be used to calculate checksums. Before filing changes,
the new checksum can be displayed and compared with the patch report for verification of editing. The
following figure shows how to reach the ACTION menu with dot-A (.A).

Figure 65. ACTION menu—Sample user entries

Edit: .A
Action: ?
Bytes in routine Checksum Restore lines
Save lines Version #
Action: C
 Checksum is 4971725
Action: <Enter>
Edit: <Enter>

Global nodes and local variables may also be edited with the ^%Z editor. Editing occurs directly, so the
idea of filing does not apply. The editor must then be exited with a dot, not with a dot-file, since filing
should not take place.

Miscellaneous: Developer Tools

246 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

16.4 Application Program Interface (API)

The following are miscellaneous APIs available for developers. These APIs are described below.

16.4.1 Progress Bar Emulator

The following APIs can be use d to emulate a KIDS Progress Bar outside of KIDS. To create the progress
bar, you must first call the INIT^XPDID: Progress Bar Emulator: Initialize Device and Draw Box Borders
API, and when you are finished, you must call the EXIT^XPDID(): Progress Bar Emulator: Restore
Screen, Clean Up Variables, and Display Text API.

16.4.1.1 INIT^XPDID: Progress Bar Emulator: Initialize Device and
Draw Box Borders

Reference Type Supported

Category Miscellaneous

IA # 2172

Description This API Initializes the device, draws the borders for the progress bar box, and
draws the progress bar. When you are finished, you must call the EXIT^XPDID():
Progress Bar Emulator: Restore Screen, Clean Up Variables, and Display Text
API.

Format INIT^XPDID

Input Parameters none

Output returns: Returns XPDIDVT:
• 1—If output device supports graphics.

• 0—If output device does not support graphics.

16.4.1.2 TITLE^XPDID(): Progress Bar Emulator: Display Title Text

Reference Type Supported

Category Miscellaneous

IA # 2172

Description This API displays the text in the x input parameter as a title at the top of the
progress bar box.

Format TITLE^XPDID(x)

 Miscellaneous: Developer Tools

July 1995 Kernel 247
Revised September 2011 Developer's Guide
 Version 8.0

Input Parameters x: (required) Title text to be displayed at the top of the box.

Output none

16.4.1.3 EXIT^XPDID(): Progress Bar Emulator: Restore Screen,
Clean Up Variables, and Display Text

Reference Type Supported

Category Miscellaneous

IA # 2172

Description This API restores the screen to normal, cleans up all variables, and displays the
text in the x input parameter.

Format EXIT^XPDID(x)

Input Parameters x: (required) Text to display on screen after removing box and
progress bar.

Output none

16.4.2 Lookup Utility

16.4.2.1 $$EN^XUA4A71(): Convert String to Soundex

Reference Type Supported

Category Miscellaneous

IA # 3178

Description This extrinsic function converts a string into a numeric representation of the string,
using soundex methods. Soundex represents the phonetic properties of a string; its
chief feature is that it assigns similar strings the same soundex representation.

Format $$EN^XUA4A71(string)

Input Parameters string: (required) String to convert into soundex form.

Output returns: Returns the soundex version of the string.

Miscellaneous: Developer Tools

248 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

16.4.3 Date Conversions and Calculations

16.4.3.1 ^XQDATE: Convert $H to VA FileMan Format (Obsolete)

NOTE: This API is obsolete. You should use either of the following APIs instead:

• $$FMTE^XLFDT(): Convert VA FileMan Date to External Format

• $$HTFM^XLFDT(): Convert $H to VA FileMan Date Format

Reference Type Supported

Category Miscellaneous

IA # 10079

Description This API converts $H formatted input date to a VA FileMan formatted date in
%, and in human readable format (e.g., Jan. 9, 1990 1:37 PM) in %Y variable.

Format ^XQDATE

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variable XQD1: (optional) If this variable is not set, the system uses $H.

Output Variables %: Returns the converted $H date in VA FileMan format.

 %Y: Returns the converted $H date, in human readable format.

 Miscellaneous: Developer Tools

July 1995 Kernel 249
Revised September 2011 Developer's Guide
 Version 8.0

16.4.3.2 ^XUWORKDY: Workday Calculation (Obsolete)

NOTE: This API is obsolete. The XUWORKDY routine is maintained for code that might still

use it.

Reference Type Supported

Category Miscellaneous

IA # 10046

Description To use the ^XUWORKDY APIs, you must make sure that HOLIDAY file
(#40.5) is populated with each year's holidays for the workday calculation to
work correctly. If it is not populated, you need to populate it yourself (Kernel
distributes this file without data). Only enter holidays that fall on weekdays,
however.

You can call the ^XUWORKDY routine to calculate the number of workdays
between two dates (X, X1). It returns a positive value if X<X1 and a negative
value if X>X1. If either date is imprecisely specified, or if the HOLIDAY global
is empty, then ^XUWORKDY returns a NULL string.

The first FOR loop in ^XUWORKDY checks the HOLIDAY global and sets
%H equal to the number of holidays between the two dates. It is assumed that
the HOLIDAY global contains only weekday holidays.

The second FOR loop (F %J=%J:1 ...) steps forward from the earliest date and
stops at the first Sunday or at the ending date (whichever comes first) counting
the number of workdays.

The third FOR loop (F %K=%K:-1 ...) steps backward from the latest date and
stops at the first Sunday or at the beginning date (whichever comes first),
counting the workdays.

Then %I is set equal to the number of days between the two Sundays.

Finally, X is set equal to the total counted days minus the number of weekend
days between the two Sundays (-(%I\7*2)).

Format ^XUWORKDY

Input Variables X: (required) Starting date in VA FileMan internal format
(e.g., 2850420).

 X1: (required) Ending date in VA FileMan internal format
(e.g., 2850707).

Output Variables X: The number of workdays in the interval.

Miscellaneous: Developer Tools

250 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example

>S X=2850420,X1=2850707 D ^XUWORKDY W X

55

16.4.3.3 $$EN^XUWORKDY: Number of Workdays Calculation

NOTE: The XUWORKDY routine is maintained for code that might still use it.

Reference Type Supported

Category Miscellaneous

IA # 10046

Description To use the ^XUWORKDY APIs, you must make sure that HOLIDAY file
(#40.5) is populated with each year's holidays for the workday calculation to
work correctly. If it is not populated, you need to populate it yourself (Kernel
distributes this file without data). Only enter holidays that fall on weekdays,
however.

The $$EN^XUWORKDY extrinsic function is used to calculate the number of
workdays between two dates (date1, date2). It returns a positive value if
date1<date2 and a negative value if date1>date2. If either date is imprecisely
specified, or if the HOLIDAY global is empty, then $$EN^XUWORKDY
returns a NULL string.

The first FOR loop in ^XUWORKDY checks the HOLIDAY global and sets
%H equal to the number of holidays between the two dates. It is assumed that
the HOLIDAY global contains only weekday holidays.

The second FOR loop (F %J=%J:1 ...) steps forward from the earliest date and
stops at the first Sunday or at the ending date (whichever comes first) counting
the number of workdays.

The third FOR loop (F %K=%K:-1 ...) steps backward from the latest date and
stops at the first Sunday or at the beginning date (whichever comes first),
counting the workdays.

Then %I is set equal to the number of days between the two Sundays.

Finally, the return value is set equal to the total counted days minus the number
of weekend days between the two Sundays (-(%I\7*2)).

Format $$EN^XUWORKDY(date1,date2)

 Miscellaneous: Developer Tools

July 1995 Kernel 251
Revised September 2011 Developer's Guide
 Version 8.0

Input Parameters date1: (required) Starting date in VA FileMan internal format
(e.g., 2850420).

 date2: (required) Ending date in VA FileMan internal format
(e.g., 2850707).

Output returns: Returns the number of workdays in the interval.

Example

>W $$EN^XUWORKDY(3090102,3090108)
4

16.4.3.4 $$WORKDAY^XUWORKDY: Workday Validation

NOTE: The XUWORKDY routine is maintained for code that might still use it.

Reference Type Supported

Category Miscellaneous

IA # 10046

Description To use the ^XUWORKDY APIs, you must make sure that HOLIDAY file
(#40.5) is populated with each year's holidays for the workday calculation to
work correctly. If it is not populated, you need to populate it yourself (Kernel
distributes this file without data). Only enter holidays that fall on weekdays,
however.

The $$WORKDAY^XUWORKDY extrinsic function returns 1 if the date
submitted is a workday and 0 if it is not. If the date is imprecisely specified, or if
the HOLIDAY global is empty, then $$WORKDAY^XUWORKDY returns a
NULL string.

Format $$WORKDAY^XUWORKDY(date)

Input Parameters date: (required) Starting date in VA FileMan internal format
(e.g., 2850420).

Output returns: Returns:
• 1—Workday

• 0—Non-Workday

Miscellaneous: Developer Tools

252 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 1

This example shows the return value when a workday in VA FileMan internal format is input:

>W $$WORKDAY^XUWORKDY(3090102)
1

Example 2

This example shows the return value when a non-workday in VA FileMan internal format is input:

>W $$WORKDAY^XUWORKDY(3090103)
0

16.4.3.5 $$WORKPLUS^XUWORKDY: Workday Offset Calculation

NOTE: The XUWORKDY routine is maintained for code that might still use it.

Reference Type Supported

Category Miscellaneous

IA # 10046

Description To use the ^XUWORKDY APIs, you must make sure that HOLIDAY file
(#40.5) is populated with each year's holidays for the workday calculation to
work correctly. If it is not populated, you need to populate it yourself (Kernel
distributes this file without data). Only enter holidays that fall on weekdays,
however.

The $$WORKPLUS^XUWORKDY extrinsic function returns the date that is
"n" working days (i.e., offset) +/- of the input date. If the date is imprecisely
specified, or if the HOLIDAY global is empty, then
$$WORKPLUS^XUWORKDY returns a NULL string.

Format $$WORKPLUS^XUWORKDY(date,offset)

Input Parameters date: (required) Starting date in VA FileMan internal format
(e.g., 2850420).

 offset: (required) The number of days to offset.

Output returns: Returns the date in VA FileMan internal format that is "n"
working days (i.e., offset) +/- of the input date.

 Miscellaneous: Developer Tools

July 1995 Kernel 253
Revised September 2011 Developer's Guide
 Version 8.0

Example

>W $$WORKPLUS^XUWORKDY(3090108,3)
3090113

Miscellaneous: Developer Tools

254 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

July 1995 Kernel 255
Revised September 2011 Developer's Guide
 Version 8.0

17 Name Standardization: Developer Tools

17.1 Application Program Interface (API)

Several APIs are available for developers to work with name standardization. These APIs are described
below.

17.1.1 $$BLDNAME^XLFNAME(): Build Name from Component
Parts

Reference Type Supported

Category Name Standardization

IA # 3065

Description This extrinsic function takes the component parts of a name and returns the name,
truncated if necessary, in the following format:

Family_name,Given_name<space>Middle_name<space>Suffix(es)

Format $$BLDNAME^XLFNAME(.name[,max])

Input Parameters .name (required) The component parts of the name:

• NAME("FAMILY") = Family (Last) Name

• NAME("GIVEN") = Given (First) Name(s)

• NAME("MIDDLE") = Middle Name(s)

• NAME("SUFFIX") = Suffix(es)

Alternatively, this array can contain the file number, IENS, and
field number of the field that contains the name. If the name has a
corresponding entry in the NAME COMPONENTS file (#20),
then the name components are obtained from that entry.
Otherwise, the name is obtained directly from the file, record, and
field specified, and the name components are obtained by making
a call to the STDNAME^XLFNAME(): Name Standardization
Routine API.

• NAME("FILE") = Source file number (required)

• NAME("IENS") = IENS of entry in the source file
(required)

• NAME("FIELD") = Source field number (required)

Name Standardization: Developer Tools

256 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

 max: (optional) The maximum length of the Name to be returned
(default = 256). See the following section named "Details" for a
description of the pruning algorithm.

Output returns: Returns the name, truncated if necessary, in the following format:
Family_name,Given_name<space>Middle_name<space>Suff
ix(es)

Details

If the MAX input parameter is used, and the resulting name is longer than MAX, the following pruning
algorithm is performed to shorten the name:

1. Truncate Middle Name from the right-most position until only the initial character is left;

2. Drop suffix;

3. Truncate Given Name from the right-most position until only the initial character is left;

4. Truncate Family Name from the right-most position;

5. Truncate the name from the right.

Example 1

Suppose the MYNAME array contains the following elements:

MYNAME("FAMILY")="XUUSER"
MYNAME("GIVEN")="SIXTY"
MYNAME("MIDDLE")="K."
MYNAME("SUFFIX")="JR"

Calls to $$BLDNAME^XLFNAME will return the name as follows:

>S X=$$BLDNAME^XLFNAME(.MYNAME)

>W X
XUUSER,SIXTY K JR

"Pruning" the name to 12 characters total:

>S X=$$BLDNAME^XLFNAME(.MYNAME,12)

>W X
XUUSER,SI K

 Name Standardization: Developer Tools

July 1995 Kernel 257
Revised September 2011 Developer's Guide
 Version 8.0

Example 2

If an entry in the NAME COMPONENTS file (#20) stores the components of a name stored in the
NAME field (#.01) of record number 32 in the NEW PERSON file (#200), and the data in the
corresponding record in the NAME COMPONENT file (#20) is:

FILE=200
FIELD=.01
IENS="32,"
GIVEN NAME="SIXTY"
MIDDLE NAME="K."
FAMILY NAME="XUUSER"
SUFFIX="JR"

You can set:

MYNAME("FILE")=200
MYNAME("FIELD")=.01
MYNAME("IENS")="32,"

Then call $$BLDNAME^XLFNAME as in Example 1, listed previously:

>S X=$$BLDNAME^XLFNAME(.MYNAME)

>W X
XUUSER,SIXTY K JR

"Pruning" the name to 12 characters total:

>S X=$$BLDNAME^XLFNAME(.MYNAME,12)

>W X
XUUSER,SI K

Name Standardization: Developer Tools

258 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

17.1.2 $$CLEANC^XLFNAME(): Name Component Standardization
Routine

Reference Type Supported

Category Name Standardization

IA # 3065

Description This extrinsic function takes a single name component and returns that name in
standard format.

Format $$CLEANC^XLFNAME(comp[,flags])

Input Parameters comp: (required) The name component to be converted to standard
format.

 flags: (optional) Flag to control processing. Possible values are:

• F—If the name component to be converted is the
FAMILY (LAST) NAME, pass the "F" flag. With the "F"
flag, colons (:), semicolons (;), and commas (,) are
converted to hyphens (-). Spaces and all punctuation
except hyphens are removed. Two or more consecutive
spaces or hyphens are replaced with a single space or
hyphen. Birth position indicators 1ST through 10TH are
changed to their Roman numeral equivalents.

• NULL—Without the "F" flag, the component is converted
to upper case. Colons (:), semicolons (;), commas (,), and
periods (.) are converted to spaces. All punctuation except
for hyphens and spaces are removed. Two or more
consecutive spaces or hyphens are replaced with a single
space or hyphen. Birth position indicators 1ST through
10TH are changed to their Roman numeral equivalents.

Output returns: Returns the standard formatted name.

 Name Standardization: Developer Tools

July 1995 Kernel 259
Revised September 2011 Developer's Guide
 Version 8.0

Example 1

Standardize family (last) name:

>Set X=$$CLEANC^XLFNAME("XUUSER-XU U SER","F")

>W X
XUUSER-XUUSER

>Set X=$$CLEANC^XLFNAME("XUUSER-XU U SER 2ND","F")

>W X
XUUSER-XUUSERII

>Set X=$$CLEANC^XLFNAME("XUUSER-XU U SER")

>W X
XUUSER-XU U SER

>Set X=$$CLEANC^XLFNAME("ST. USER","F")

>W X
STUSER

Example 2

Standardize other (non-family) name components:

>S X=$$CLEANC^XLFNAME("F.O.")

>W X
F O

>S X=$$CLEANC^XLFNAME("FORTY'")

>W X
FORTY

>S X=$$CLEANC^XLFNAME("FORTY ONE")

>W X
FORTY ONE

>S X=$$CLEANC^XLFNAME("FORTY-ONE")

>W X
FORTY-ONE

Name Standardization: Developer Tools

260 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

17.1.3 $$FMNAME^XLFNAME(): Convert HL7 Formatted Name to
Name

Reference Type Supported

Category Name Standardization

IA # 3065

Description This extrinsic function converts an HL7 formatted input name to a VistA
formatted name.

Format $$FMNAME^XLFNAME([.]name[,flags][,delim])

Input Parameters [.]name: (required) This is the HL7 name to be converted; it can be
passed by reference. If the "C" flag is used, the name
components are returned in nodes descendent from this
parameter (see "Output" that follows).

 flags: (optional) Flags to controls processing. Possible values are:

• C—Return name components in the NAME array (see
"Output" that follows).

• L#—Truncate the returned name to a maximum Length
of # characters, where # is an integer between 1 and
256.

• M—Return the name in Mixed case, with the first letter
of each name component capitalized.

• S—Return the name in Standardized form.

 delim: (optional) The delimiter used in the HL7 formatted name
(default = "^").

Output Parameters name: If the FLAGS input parameter contains a "C", the component
parts of the name are returned in the NAME array:

NAME("FAMILY) = Family (Last) Name
NAME("GIVEN") = Given (First) Name(s)
NAME("MIDDLE") = Middle Name(s)
NAME("SUFFIX") = Suffix(es)

 Name Standardization: Developer Tools

July 1995 Kernel 261
Revised September 2011 Developer's Guide
 Version 8.0

Details

If the L# flag is used, and the resulting name is longer than #, the following pruning algorithm is
performed to shorten the name:

1. Truncate Middle Name from the right-most position until only the initial character is left;

2. Drop suffix;

3. Truncate Given Name from the right-most position until only the initial character is left;

4. Truncate Family Name from the right-most position;

5. Truncate the name from the right.

Example 1

Convert an HL7 formatted name to a VistA name:

>S X=$$FMNAME^XLFNAME("XUUSER^SIXTY^K.^JR^MR.^PHD")

>W X
XUUSER,SIXTY K. JR

>S X=$$FMNAME^XLFNAME("XUUSER^SIXTY^K.^JR^MR.^PHD","S")

>W X
XUUSER,SIXTY K JR

>S X=$$FMNAME^XLFNAME("XUUSER^SIXTY^K.^JR^MR.^PHD","M")

>W X
Xuuser,Sixty K. Jr

>S X=$$FMNAME^XLFNAME("XUUSER^SIXTY^K.^JR^MR.^PHD","SL12")

>W X
XUUSER,SI K

Example 2

Convert an HL7 formatted name where "~" is the delimiter to a standard name:

>S X=$$FMNAME^XLFNAME("XUUSER~SIXTY~K.~JR~MR","S","~")

>W X
XUUSER,SIXTY K JR

Name Standardization: Developer Tools

262 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 3

Convert an HL7 formatted name to a standard name, and return the components of that name in the
MYNAME array:

>S MYNAME="XUUSER^SIXTY^K.^JR^MR.^PHD"

>W $$FMNAME^XLFNAME(.MYNAME,"CS")
XUUSER,SIXTY K JR

>ZW MYNAME
MYNAME=XUUSER^SIXTY^K.^JR^MR.^PHD
MYNAME("DEGREE")=PHD
MYNAME("FAMILY")=XUUSER
MYNAME("GIVEN")=SIXTY
MYNAME("MIDDLE")=K.
MYNAME("PREFIX")=MR.
MYNAME("SUFFIX")=JR

17.1.4 $$HLNAME^XLFNAME(): Convert Name to HL7 Formatted
Name

Reference Type Supported

Category Name Standardization

IA # 3065

Description This extrinsic function converts an input name to an HL7 formatted name.

Format $$HLNAME^XLFNAME([.]name[,flags][,delim])

 Name Standardization: Developer Tools

July 1995 Kernel 263
Revised September 2011 Developer's Guide
 Version 8.0

Input Parameters [.]name: (required) The component parts of the name to be converted:

NAME("FAMILY) = Family (Last) Name (required)
NAME("GIVEN") = Given (First) Name(s) (optional)
NAME("MIDDLE") = Middle Name(s) (optional)
NAME("SUFFIX") = Suffix(es) (optional)
NAME("PREFIX") = Prefix (optional)
NAME("DEGREE") = Degree (optional)

Alternatively, this array can contain the file number, IENS, and
field number of the field that contains the name. If the name has a
corresponding entry in the NAME COMPONENTS file (#20),
then the name components are obtained from that entry.
Otherwise, the name is obtained directly from the file, record, and
field specified, and the name components are obtained by making
a call to the STDNAME^XLFNAME(): Name Standardization
Routine API.

NAME("FILE") = Source file number (required)
NAME("IENS") = IENS of entry in the source file (required)
NAME("FIELD") = Source field number (required)

Another alternative is to pass in the unsubscripted NAME
parameter the name to be converted. $$HLNAME^XLFNAME
obtains the components parts of that name by making a call to the
STDNAME^XLFNAME(): Name Standardization Routine API.
This alternative is recommended only for names that do not have
associated entries on the NAME COMPONENTS file (#20).

 flags: (optional) Flags to controls processing. Possible values are:

• L#—Truncate the returned name to a maximum Length of
characters, where # is an integer between 1 and 256.

• S—Return the name components in the HL7 formatted
name in Standardized form.

 delim: (optional) The delimiter to use in the HL7 string (default = "^").

Output returns: Returns the converted name in HL7 format.

Name Standardization: Developer Tools

264 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Details

If the L# flag is used, and the resulting name is longer than #, the following pruning algorithm is
performed to shorten the name:

1. Truncate Middle Name from the right-most position until only the initial character is left;

2. Drop suffix;

3. Truncate Given Name from the right-most position until only the initial character is left;

4. Truncate Family Name from the right-most position;

5. Truncate the name from the right.

Example 1

Suppose the MYNAME array contains the following elements:

MYNAME("PREFIX")="MR."
MYNAME("GIVEN")="SIXTY"
MYNAME("MIDDLE")="K."
MYNAME("FAMILY")="XUUSER"
MYNAME("SUFFIX")="JR"
MYNAME("DEGREE")="PHD"

Then calls to the $$HLNAME^XLFNAME API will return the name as follows:

>S X=$$HLNAME^XLFNAME(.MYNAME)

>W X
XUUSER^SIXTY^K.^JR^MR.^PHD

>S X=$$HLNAME^XLFNAME(.MYNAME,"","~")

>W X
XUUSER~SIXTY~K.~JR~MR.~PHD

>S X=$$HLNAME^XLFNAME(.MYNAME,"S","~")

>W X
XUUSER~SIXTY~K~JR~MR~PHD

>S X=$$HLNAME^XLFNAME(.MYNAME,"L12S")

>W X
XUUSER^SI^K

 Name Standardization: Developer Tools

July 1995 Kernel 265
Revised September 2011 Developer's Guide
 Version 8.0

Example 2

If an entry in the NAME COMPONENTS stores the components of a name stored in the NAME field
(#.01) of record number 32 in the NEW PERSON file (#200), and the data in the corresponding record in
the NAME COMPONENT file (#20) is:

FILE = 200
FIELD = .01
IENS = "32,"
PREFIX = "MR."
GIVEN NAME = "SIXTY"
MIDDLE NAME = "K."
FAMILY NAME = "XUUSER"
SUFFIX = "JR"
DEGREE = "PHD"

You can set:

MYNAME("FILE") = 200
MYNAME("FIELD") = .01
MYNAME("IENS") = "32,"

Then call the $$HLNAME^XLFNAME API, as in Example 1, to return the name in various formats.

Example 3

Convert a name passed by value to HL7 format:

>S X=$$HLNAME^XLFNAME("XUUSER,SIXTY HOWARD II")

>W X
XUUSER^SIXTY^HOWARD^II

>S X=$$HLNAME^XLFNAME("XUUSER,SIXTY HOWARD II","S")

>W X
XUUSER^SIXTY^HOWARD^II

>S X=$$HLNAME^XLFNAME("XUUSER,SIXTY HOWARD II","SL10","~")

>W X
XUUSE~S~H

Name Standardization: Developer Tools

266 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

17.1.5 NAMECOMP^XLFNAME(): Component Parts from
Standard Name

Reference Type Supported

Category Name Standardization

IA # 3065

Description This API takes a name in standard format and returns in an array the component
parts of that name.

Format NAMECOMP^XLFNAME(.name)

Input Parameters .name: (required) This parameter is the name in standard format to be
parsed. NAMECOMP^XLFNAME returns the component parts
of the name in nodes descendent from NAME. (See "Output"
that follows.)

Output Parameters .name: The component parts of the name are returned in the NAME
array passed in.

• NAME("FAMILY) = Family (last) Name

• NAME("GIVEN") = Given (first) Name

• NAME("MIDDLE") = Middle Name

• NAME("SUFFIX") = Suffix(es)

Example

In this example, the MYNAME variable is set to the standard name. The NAMECOMP^XLFNAME call
is made to return in the MYNAME array the component parts of that name:

>S MYNAME="XUUSER-XUUSER,FORTY ONE S MD"
>D NAMECOMP^XLFNAME(.MYNAME)

>ZW MYNAME
MYNAME=XUUSER-XUUSER,FORTY ONE S MD
MYNAME("FAMILY")=XUUSER-XUUSER
MYNAME("GIVEN")=FORTY ONE
MYNAME("MIDDLE")=S
MYNAME("SUFFIX")=MD

 Name Standardization: Developer Tools

July 1995 Kernel 267
Revised September 2011 Developer's Guide
 Version 8.0

17.1.6 $$NAMEFMT^XLFNAME(): Formatted Name from Name
Components

Reference Type Supported

Category Name Standardization

IA # 3065

Description This extrinsic function returns a name converted to a form useful for display.

Format $$NAMEFMT^XLFNAME(.name[,format][,flags])

Input Parameters .name: (required) An array that contains the component parts of the
name:

• NAME("FAMILY) = Family (Last) Name (required)

• NAME("GIVEN") = Given (First) Name(s) (optional)

• NAME("MIDDLE") = Middle Name(s) (optional)

• NAME("SUFFIX") = Suffix(es) (optional)

• NAME("PREFIX") = Prefix (optional)

• NAME("DEGREE") = Degree (optional)

Alternatively, this array can contain the file number, IENS, and
field number of the field that contains the name. If the name has a
corresponding entry in the NAME COMPONENTS file (#20),
then the name components are obtained from that entry.
Otherwise, the name is obtained directly from the file, record, and
field specified, and the name components are obtained by making
a call to the STDNAME^XLFNAME(): Name Standardization
Routine API.

• NAME("FILE") = Source file number (required)

• NAME("IENS") = IENS of entry in the source file
(required)

• NAME("FIELD") = Source field number (required)

 format: (optional) Controls the general formatting of the output
(default = G). Possible values are:

• F—Return Family (Last) Name first.

• G—Return Given (First) Name first.

• O—Return Only the Family (Last) Name.

Name Standardization: Developer Tools

268 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

 flags: (optional) Flags to controls processing. Possible values are:

• C—If the "F" format is used, return a Comma between
the Family (Last) and Given (First) Names. Otherwise,
the Family (Last) Name and the Given (First) Name are
separated by a space. (Ignored if the "F" format is not
used.)

• D—Return the Degree.

• Dc—Return the Degree preceded by a comma and space.

• L#—Truncate the returned name to a maximum Length of
characters, where # is an integer between 1 and 256. See
"Details" as follows for a description of the pruning
algorithm.

• M—Return the name in Mixed case, with the first letter
of each name component capitalized.

• P—Return the Prefix.

• S—Standardize the name components before building
formatted name.

• Xc—Precede the SuffiX with a comma and space.

Output returns: Returns the formatted name.

Details

If the L# flag is used, and the resulting name is longer than #, the following pruning algorithm is
performed to shorten the name:

1. Drop Degree;
2. Drop Prefix;

3. Truncate Middle Name from the right-most position until only the initial character is left;

4. Drop suffix;

5. Truncate Given Name from the right-most position until only the initial character is left;

6. Truncate Family Name from the right-most position;

7. Truncate the name from the right.

 Name Standardization: Developer Tools

July 1995 Kernel 269
Revised September 2011 Developer's Guide
 Version 8.0

Example 1

Suppose the MYNAME array contains the following elements:

MYNAME("PREFIX")="MR."
MYNAME("GIVEN")="SIXTY"
MYNAME("MIDDLE")="K."
MYNAME("FAMILY")="XUUSER"
MYNAME("SUFFIX")="JR"
MYNAME("DEGREE")="PHD"

Then calls to the $$NAMEFMT^XLFNAME API will return the name as follows:

>S X=$$NAMEFMT^XLFNAME(.MYNAME,"F")

>W X
XUUSER SIXTY K. JR

>S X=$$NAMEFMT^XLFNAME(.MYNAME,"F","C")

>W X
XUUSER,SIXTY K. JR

>S X=$$NAMEFMT^XLFNAME(.MYNAME,"F","CS")

>W X
XUUSER,SIXTY K JR

>S X=$$NAMEFMT^XLFNAME(.MYNAME,"F","CSD")

>W X
XUUSER,SIXTY K JR PHD

>S X=$$NAMEFMT^XLFNAME(.MYNAME,"F","CDcXc")

>W X
XUUSER,SIXTY K., JR, PHD

>S X=$$NAMEFMT^XLFNAME(.MYNAME,"F","CSL12")

>W X
XUUSER,SI K

>S X=$$NAMEFMT^XLFNAME(.MYNAME,"F","CMD")

>W X
Xuuser,Sixty K. Jr PhD

>S X=$$NAMEFMT^XLFNAME(.MYNAME,"G")

>W X
SIXTY K. XUUSER JR

>S X=$$NAMEFMT^XLFNAME(.MYNAME,"G","D")

>W X
SIXTY K. XUUSER JR PHD

Name Standardization: Developer Tools

270 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

>S X=$$NAMEFMT^XLFNAME(.MYNAME,"G","Dc")

>W X
SIXTY K. XUUSER JR, PHD

>S X=$$NAMEFMT^XLFNAME(.MYNAME,"G","P")

>W X
MR. SIXTY K. XUUSER JR

>S X=$$NAMEFMT^XLFNAME(.MYNAME,"G","Xc")

>W X
SIXTY K. XUUSER, JR

>S X=$$NAMEFMT^XLFNAME(.MYNAME,"G","PDcXc")

>W X
MR. SIXTY K. XUUSER, JR, PHD

>S X=$$NAMEFMT^XLFNAME(.MYNAME,"G","PDcXcM")

>W X
Mr. Sixty K. Xuuser, Jr, PhD

>S X=$$NAMEFMT^XLFNAME(.MYNAME,"G","S")

>W X
SIXTY K XUUSER JR

>S X=$$NAMEFMT^XLFNAME(.MYNAME,"G","SL12")

>W X
SI K XUUSER

>S X=$$NAMEFMT^XLFNAME(.MYNAME,"O")

>W X
XUUSER

>S X=$$NAMEFMT^XLFNAME(.MYNAME,"O","S")

>W X
XUUSER

>S X=$$NAMEFMT^XLFNAME(.MYNAME,"O","M")

>W X
Xuuser

>S X=$$NAMEFMT^XLFNAME(.MYNAME,"O","L3")

>W X
XU

 Name Standardization: Developer Tools

July 1995 Kernel 271
Revised September 2011 Developer's Guide
 Version 8.0

Example 2

If an entry in the NAME COMPONENTS stores the components of a name stored in the NAME field
(#.01) of record number 32 in the NEW PERSON file (#200), and the data in the corresponding record in
the NAME COMPONENT file (#20) is:

FILE = 200
FIELD = .01
IENS = "32,"
PREFIX = "MR."
GIVEN NAME = "SIXTY"
MIDDLE NAME = "K."
FAMILY NAME = "XUUSER"
SUFFIX = "JR"
DEGREE = "PHD"

You can set:

MYNAME("FILE")=200
MYNAME("FIELD")=.01
MYNAME("IENS")="32,"

Then call the $$NAMEFMT^XLFNAME API, as in Example 1, to return the name in various formats.

17.1.7 STDNAME^XLFNAME(): Name Standardization Routine

Reference Type Supported

Category Name Standardization

IA # 3065

Description This API parses a name and converts it into the following standard format:

Family_name,Given_name<space>Middle_name<space>Suffix(es)

A name in standard format is entirely in uppercase, and contains no Arabic
numerals. The Family_name (last name) portion of a standard name appears to
the left of the comma and contains no spaces and no punctuation except hyphens
(-). The other parts of a standard name (the portion to the right of the comma)
contain no punctuation except for hyphens and spaces. NMI and NMN are not
used for the Middle_name.

STDNAME^XLFNAME optionally returns in an array the component parts of
the name. It also optionally returns information in an array about possible
problems encountered during the conversion of the name to standard form and
the parsing of the name into its component parts.

Format STDNAME^XLFNAME(.name[,flags][,.audit])

Name Standardization: Developer Tools

272 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters .name (required) NAME is the name to be converted to standard
format. It is assumed that the name is in the general format:

Family_name,Given_name(s) Middle_name Suffix(es)

If the "F" flag is not used, and the name contains no comma, it
is assumed the name is in the general format:

Given_name(s) Middle_name Family_name Suffix(es)

The standard form of the name is returned in the NAME
variable. If the "C" flag is passed in, the components of the
name are returned in nodes descendent from NAME. (See
"Output" that follows.)

 flags: (optional) Flags to control processing. Possible values are:

• C—Return name components in the NAME array. (See
"Output" that follows.)

• F—If the name passed in the NAME input parameter
does not contain a comma, assume it is the Family
Name only. For example, if the name input is "ST
USER", return the name as "STUSER" instead of
"USER,ST".

• G—Do not return AUDIT("GIVEN") even if the Given
Name is missing.

• P—Remove text in parentheses (), brackets [], or
braces { } from the name. If such text is actually
removed, return AUDIT("STRIP").

 .audit: (optional) If provided, this is an array that
STDNAME^XLFNAME returns if there are any ambiguities or
possible problems in standardizing the name or parsing the
name into component parts. (See "Output" that follows.)

Output Parameters name: This parameter is set to the name that was input converted to
standard format.

If the Flags input parameter contains a "C", the component parts
of the name are returned in the NAME array:

NAME("FAMILY) = Family (Last) Name
NAME("GIVEN") = Given (First) Name(s)
NAME("MIDDLE") = Middle Name
NAME("SUFFIX") = Suffix(es)

 audit: If this parameter is set to the original name that was passed in
the Name parameter. In addition, if there were any problems in
the interpretation of the Name being standardized, descendents
of Audit are set:

AUDIT("subscript") = ""

 Name Standardization: Developer Tools

July 1995 Kernel 273
Revised September 2011 Developer's Guide
 Version 8.0

where "subscript" can be any one of the following:
• AUDIT("FAMILY")—The Family Name starts with

ST. (The period and space are removed from the Family
Name. For example, the name "ST. USER" is converted
to "STUSER".)

• AUDIT("GIVEN")—Returned if there is no Given
Name and the "G" flag is not passed in.

• AUDIT("MIDDLE")—Returned if there are three or
more names between the first comma and the
Suffix(es). (All name parts except the last are assumed
to be part of the Given Name. Only the last part is
assumed to be the Middle Name.)

• AUDIT("NM")—Returned if NMI or NMN appears to
be used as the Middle Name. (NMI and NMN are
removed from the standard name, and the Middle Name
component is returned as null.)

• AUDIT("NOTE")—Returned if the name appears to
contain a note or flag that may not actually be part of
the name. For example, the name starts with "C-" or
"EEE," or has "FEE" at the end.

• AUDIT("NUMBER")—Returned if a name part (other
than a valid numeric Suffix) contains a number.

• AUDIT("PERIOD")—Returned if periods were
removed.

• AUDIT("PUNC")—Returned if punctuation was
removed.

• AUDIT("SPACE")—Returned if spaces were removed
from the Family Name.

• AUDIT("STRIP")—Returned if text in parentheses (),
brackets [], or braces { } were removed from the Name.
(This is done only if the "P" flag is passed.)

• AUDIT("SUFFIX")—Returned if:

− Suffix(es) are found immediately to the left of the
1st comma.

− I, V, or X, and nothing else except valid suffixes,
appear immediately after the Given Name. (It is
interpreted as the Middle Name.)

− The name immediately after the Given Name
appears to be a non-numeric suffix (except I, V, and
X), and everything after that also appear to be
suffixes. (It is assumed there are a Given Name and
Suffix(es), but no Middle Name.)

Name Standardization: Developer Tools

274 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

− M.D. or M D is found at the end of the name, or
before any valid suffixes at the end of the name. (It
is assumed that M and D are initials in the Given or
Middle Name rather than a Suffix.)

− The name part before any recognizable suffixes is
more than one character in length and does not
contain any vowels or Y. It is interpreted as a
suffix.

− Suffix is found between commas immediately after
the Family Name.

Details

In forming the standard name, the following changes are made:

1. The name is converted to uppercase.
2. In the Family Name:

a. Semicolons (;) and colons (:) are converted to hyphens (-).

Spaces and all other punctuation except hyphens are removed.

b. Spaces and all other punctuation except hyphens are removed.

3. In the other name parts (Given Name, Middle Name, and Suffix).

a. Semicolon, colons, commas (,), and periods (.) are converted to spaces.

Spaces and all other punctuation except hyphens are removed.

b. All punctuation except hyphens and spaces are removed.

4. Hyphens and spaces at the beginning and end of the name are removed.

5. Two or more consecutive hyphens/spaces are replaced with a single hyphen/space.

6. Any suffixes immediate preceding the comma are moved to the end.

7. The suffixes indicating birth positions 1st, 2nd, 3rd, ..., 10th are converted to their Roman
numeral equivalents I, II, III, … X.

8. DR immediately after the comma (or if there is no comma, at the beginning of the name), is
assumed to be a suffix and moved to the end of the name.

9. Any suffixes between two commas immediate after the Family Name are moved to the end of the
name.

10. NMI or NMN used as a Middle Name is deleted.

 Name Standardization: Developer Tools

July 1995 Kernel 275
Revised September 2011 Developer's Guide
 Version 8.0

In forming the component parts of the name, only the following changes are made:

1. The name component is converted to uppercase.
2. In the Family Name, semicolons (;) and colons (:) are converted to hyphens (-).

3. In the other name parts (Given Name, Middle Name, and Suffix), semicolons, colons, and
commas (,) are converted to spaces.

4. Hyphens and spaces at the beginning and end of the name are removed.

5. Two or more consecutive hyphens/spaces are replaced with a single hyphen/space.

6. A Middle Name of NMI or NMN is changed to null.

7. Spaces after periods are removed.

8. Accent graves (`) and carets (^) are removed.

In parsing the name into its component parts, if the name contains a comma or the "F" flag is passed,
STDNAME^XLFNAME looks for suffixes immediately to the left of the first comma, and at the very end
of the name. The suffixes it recognizes are 1ST through 10TH, JR, SR, DR, MD, ESQ, DDS, RN and
Roman numerals I through X. If a name part before any recognizable suffixes is more than one character
in length, and contains no vowel or 'Y', it is also assumed to be a suffix. The Name Standardization looks
for the DR suffix immediately after the first comma, and for any suffix between two commas immediately
after the Family Name. The portion of the name to the left of the comma, less any suffixes, is assumed to
be the Family Name.

After STDNAME^XLFNAME accounts for all Suffixes, it looks at the portion of the name after the
comma. It assumes that the first space-delimited piece is the Given Name. If any other pieces are left, the
last one (rightmost) is assumed to be the Middle Name, and anything else is appended to the end of the
Given Name.

If the name contains no comma, and the "F" flag is not passed, STDNAME^XLFNAME looks for
suffixes at the very end of the name. The last space-delimited piece before any suffixes is assumed to be
the Family Name. The first space-delimited piece is assumed to be the Given Name. If any other pieces
are left, the last one (rightmost) is assumed to be the Middle Name, and anything else is appended to the
end of the Given Name.

Name Standardization: Developer Tools

276 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example

In this example, the MYNAME variable is set to the name to be standardized. The "C" flag indicates that
the name components should be returned in the MYNAME array, and the "P" flag indicates that
parenthetical text should be removed from the name. STDNAME^XLFNAME sets MYAUD to original
name passed in and sets nodes in the MYAUD array to flag changes and possible problems.

>S MYNAME="XUUSER,FIFTY A. B. 2ND (TEST)"
>D STDNAME^XLFNAME(.MYNAME,"CP",.MYAUD)

>ZW MYNAME
MYNAME=XUUSER,FIFTY A B II
MYNAME("FAMILY")=XUUSER
MYNAME("GIVEN")=FIFTY A.
MYNAME("MIDDLE")=B.
MYNAME("SUFFIX")=2ND

>ZW MYAUD
MYAUD=XUUSER,FIFTY A. B. 2ND (TEST)
MYAUD("MIDDLE")=""
MYAUD("PERIOD")=""
MYAUD("SPACE")=""
MYAUD("STRIP")=""

STDNAME^XLFNAME returned the standard form of the name in MYNAME as XUUSER,FIFTY A B
II. It interpreted FIFTY A. as the given (first) name and B. as the middle name. Since this may not be
correct, MYAUD("MIDDLE") is set. Periods were removed and spaces were removed to form the
standard name, therefore MYAUD("PERIOD") and MYAUD("SPACE") were set. Finally, since the
parenthetical text (TEST) was removed, MYAUD("STRIP") was set.

17.1.8 DELCOMP^XLFNAME2(): Delete Name Components Entry

Reference Type Controlled Subscription

Category Name Standardization

IA # 3066

Description This API deletes an entry in the NAME COMPONENTS file (#20), and
optionally, the value of the pointer in the source file that points to the name
components entry.

 NOTE: This API is designed to be used in the KILL logic for the MUMPS
cross-reference mentioned previously in the UPDCOMP^XLFNAME2():
Update Name Components Entry API.

Format DELCOMP^XLFNAME2(file,[.]record,field[,ptrfield])

 Name Standardization: Developer Tools

July 1995 Kernel 277
Revised September 2011 Developer's Guide
 Version 8.0

Input Parameters file: (required) The number of the file or Multiple (the "source file")
that contains the name.

 [.]record: (required) The IENS or the Internal Entry Number array (that
looks like the DA array) of the record in the source file that
contains the name.

 field: (required) The number of the field in the source file that contains
the name.

 ptrfield: (optional) The number of the pointer field in the source file that
points to the NAME COMPONENTS file (#20). Only if this
parameter is passed will the value of this pointer field be deleted.

Output none Deletes record.

Example

Suppose that you have a NAME COMPONENTS file (#20) entry that contains the components of a name
stored in File #1000, Record #132, Field #.01. Pointer Field #1.1 of that File #1000 is a pointer to the
NAME COMPONENTS file (#20). To delete the entry in the NAME COMPONENTS file (#20), and the
value of the pointer field, you can do the following:

>D DELCOMP^XLFNAME(1000,132,.01,1.1)

Name Standardization: Developer Tools

278 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

17.1.9 UPDCOMP^XLFNAME2(): Update Name Components Entry

Reference Type Controlled Subscription

Category Name Standardization

IA # 3066

Description This API updates an entry in the NAME COMPONENTS file (#20). Optionally,
the pointer in the source file that points to the name components entry is also
updated.

This API is designed to be used in the SET logic of a MUMPS cross-reference on
the name field in a source file, to keep the name field and the associated name
components in sync. For an example of its use, see the ANAME index in the
INDEX file (#.11). The ANAME index is a MUMPS cross-reference on the .01
NAME field of the NEW PERSON file (#200). If an entry's NAME field is edited,
the ANAME cross-reference updates the associated entry in the NAME
COMPONENTS file (#20).

 NOTE: Existing MUMPS cross-references on the NAME COMPONENTS
file (#20) already exist to update the associated name field on the source file
if the components are edited.

Format UPDCOMP^XLFNAME2(file,[.]record,field,[.]name[,ptrfield]
[,ptrval])

Input Parameters file: (required) The number of the file or Multiple (the "source file")
that contains the name.

 [.]record: (required) The IENS or the Internal Entry Number array (that
looks like the DA array) of the record in the source file that
contains the name.

 field: (required) The number of the field in the source file that contains
the name.

 Name Standardization: Developer Tools

July 1995 Kernel 279
Revised September 2011 Developer's Guide
 Version 8.0

 [.]name: (required) An array that contains the component parts of the name
to store in the NAME COMPONENTS file (#20) entry:

• NAME("FAMILY) = Family Name (required)

• NAME("GIVEN") = Given Name(s) (optional)

• NAME("MIDDLE") = Middle Name(s) (optional)

• NAME("SUFFIX") = Suffix(es) (optional)

• NAME("PREFIX") = Prefix (optional)

• NAME("NOTES") = optional free text string

Alternatively, a name in standard format can be passed in the
NAME input parameter. If the NAME input parameter has no
descendents (that is, $D(NAME)=1), UPDCOMP^XLFNAME2
will make a call to the NAMECOMP^XLFNAME(): Component
Parts from Standard Name API to build the NAME array for you.

 ptrfield: (optional) The number of the pointer field in the source file that
points to the NAME COMPONENTS file (#20). Only if this
parameter is passed will the value of this pointer field be updated
with the entry number of the record in the NAME
COMPONENTS file (#20) that was added or edited.

 ptrval: (optional) The current value of the pointer field specified by the
PTRFIELD input parameter. This parameter can be used to save
processing time. If both PTRFIELD and PTRVAL are passed, the
pointer field will be updated only if this value is different from the
entry number of the record in the NAME COMPONENTS file
(#20) that was added or edited.

Output returns: Updated entry in the NAME COMPONENTS file (#20).

Example

Suppose the .01 field of File #1000 contains a person's name, and the component parts of the name in
entry 132 should be updated as follows:

• Family (last) name: XUUSER

• Given (first) name: FIFTY HENRY

• Middle name: A.

• Suffix: JR.

Name Standardization: Developer Tools

280 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Field #1.1 is defined as a pointer to the NAME COMPONENTS file (#20) and has a value of 42, the IEN
of a record in the NAME COMPONENTS file (#20). To update the NAME COMPONENTS file (#20)
with this name, you can do the following:

>S MYNAME("FAMILY")="XUUSER"
>S MYNAME("GIVEN")="FIFTY HENRY"
>S MYNAME("MIDDLE")="A."
>S MYNAME("SUFFIX")="JR."

>D UPDCOMP^XLFNAME2(1000,132,.01,.MYNAME,1.1,42)

If there is an entry in the NAME COMPONENTS file (#20) that corresponds to File #1000, Field #.01,
IEN #132, that entry is updated with the name components passed in the MYNAME array. Otherwise, a
new entry is added to the name components with this information.

If the entry in the name components that was updated or added is record #42, no change is made to the
value of the pointer field #1.1, since 42 was passed in the 6th parameter.

MUMPS cross-references on the NAME COMPONENTS file (#20) updates the name in the Field #.01 of
File #1000 to "XUUSER,FIFTY HENRY A JR" if it does not already contain that name.

July 1995 Kernel 281
Revised September 2011 Developer's Guide
 Version 8.0

18 National Provider Identifier (NPI): Developer Tools

18.1 Application Program Interface (API)

The following are National Provider Identifier (NPI) APIs available for developers. These APIs are
described below.

18.1.1 $$CHKDGT^XUSNPI(): Validate NPI Format

Reference Type Controlled Subscription

Category National Provider Identifier (NPI)

IA # 4532

Description This extrinsic function validates the format of a National Provider Identifier
(NPI) number. It checks the following:

• NPI is numeric

• Length of the Number (must be 10-digits)

• Check Digit is Valid

This API was added with Kernel Patch XU*8.0*410.

Format $$CHKDGT^XUSNPI(xusnpi)

Input Parameters xusnpi: (required) The 10-digit National Provider Identifier (NPI)
number to validate. No default.

Output returns: Returns:

• 1—If check digit is valid. The NPI number must be 10-
digits long

• 0—If check digit is not valid.

Example 1

The following example shows the result when checking a valid NPI:

>W $$CHKDGT^XUSNPI(1234567893)
1

National Provider Identifier (NPI): Developer Tools

282 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 2

The following example shows the result when checking an invalid NPI (not 10 digits):

>W $$CHKDGT^XUSNPI(123456789)
0

18.1.2 $$NPI^XUSNPI(): Get NPI from Files #200 or #4

Reference Type Controlled Subscription

Category National Provider Identifier (NPI)

IA # 4532

Description This extrinsic function retrieves the National Provider Identifier (NPI) and
related utilities from the NEW PERSON (#200) or INSTITUTION (#4) files.
This API was added with Kernel Patch XU*8.0*410.

Format $$NPI^XUSNPI(xusqi,xusien[,xusdate])

Input Parameters xusqi: (required) The Qualified Identifier for the NPI. For example:
Individual_ID or Organization_ID. No default.

 xusien: (required) The Internal Entry Number (IEN) from the NEW
PERSON (#200) or INSTITUTION (#4) files. No default.

 xusdate: (optional) A date of interest. Defaults to "Today."

Output returns: Returns any of the following strings:
• NPI^EffectiveDate^Status—If National Provider

Identifier (NPI) exists.

• 0—If NPI does not exist.

• -1^ErrorMessage—If invalid xusqi or xusien.

 National Provider Identifier (NPI): Developer Tools

July 1995 Kernel 283
Revised September 2011 Developer's Guide
 Version 8.0

Example 1

The following example uses the following file data:

• Individual_ID = NEW PERSON file (#200)

• NPI = 9876543213

• EffectiveDate = 3061108.123651

• Status = Active

>W $$NPI^XUSNPI("Individual_ID",82)
9876543213^3061108.123651^Active

Example 2

The following example uses the following file data:

• Organization_ID = INSTITUTION file (#4)

• NPI = 1111111112

• EffectiveDate = 3070122

• Status = Active

>W $$NPI^XUSNPI("Organization_ID",1)
1111111112^3070122^Active

18.1.3 $$QI^XUSNPI(): Get Provider Entities

Reference Type Controlled Subscription

Category National Provider Identifier (NPI)

IA # 4532

Description This extrinsic function retrieves all qualified provider entities for a National
Provider Identifier (NPI) identifier. This API was added with Kernel Patch
XU*8.0*410.

Format $$QI^XUSNPI(xusnpi)

Input Parameters xusnpi: (required) The National Provider Identifier (NPI) identifier. No
default.

Output returns: Returns either of the following strings:
• QualifiedIdentifier^IEN^EffectiveDate^Status—

National Provider Identifier (NPI) exists. If more than
one record is found, they are separated by ";".

• 0—Qualified NPI does not exist.

National Provider Identifier (NPI): Developer Tools

284 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 1

The following example uses the following file data:

• Individual_ID = NEW PERSON file (#200)

• IEN = 82

• EffectiveDate = 3061108.123651

• Status = Active

>W $$QI^XUSNPI(9876543213)
Individual_ID^82^3061108.123651^Active;

Example 2

The following example uses the following file data:

• Organization_ID = institution file (#4)

• IEN = 1

• EffectiveDate = 3070122

• Status = Active

>W $$QI^XUSNPI(1111111112)
Organization_ID^1^3070122^Active;

18.1.4 $$TAXIND^XUSTAX(): Get Taxonomy Code from File #200

Reference Type Controlled Subscription

Category National Provider Identifier (NPI)

IA # 4911

Description This extrinsic function retrieves the taxonomy code for a given record in the
NEW PERSON file (#200). This API was added with Kernel Patch
XU*8.0*410.

Format $$TAXIND^XUSTAX(xuien)

Input Parameters xuien: (required) This is the Internal Entry Number (IEN) of the record
in the NEW PERSON file (#200). No default.

 National Provider Identifier (NPI): Developer Tools

July 1995 Kernel 285
Revised September 2011 Developer's Guide
 Version 8.0

Output returns: Returns either of the following strings:
• TaxonomyX12Code^TaxonomyIEN—Taxonomy

exists.

• ^—Taxonomy does not exist.

Example

The following example uses the following file data:

• Taxonomy X12 code of the record in the NEW PERSON file (#200) = 2086S0105

• Taxonomy IEN from the PERSON CLASS file (#8932.1) = 900

>W $$TAXIND^XUSTAX(82)
2086S0105X^900

18.1.5 $$TAXORG^XUSTAX(): Get Taxonomy Code from File #4

Reference Type Controlled Subscription

Category National Provider Identifier (NPI)

IA # 4911

Description This extrinsic function retrieves the taxonomy code for a given record in the
INSTITUTION file (#4). This API was added with Kernel Patch XU*8.0*410.

Format $$TAXORG^XUSTAX(xuien)

Input Parameters xuien: (required) This is the Internal Entry Number (IEN) of the record
in the INSTITUTION file (#4). No default.

Output returns: Returns either of the following strings:
• TaxonomyX12Code^TaxonomyIEN—Taxonomy

exists.

• ^—Taxonomy does not exist.

National Provider Identifier (NPI): Developer Tools

286 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example

The following example uses the following file data:

• Taxonomy X12 code of the record in the INSTITUTION file (#4) = 390200000X

• Taxonomy IEN from the PERSON CLASS file (#8932.1) = 144

>W $$TAXORG^XUSTAX(2)
390200000X^144

July 1995 Kernel 287
Revised September 2011 Developer's Guide
 Version 8.0

19 Operating System (OS) Interface: Developer Tools

Kernel and Kernel Toolkit provides several utilities to work with the underlying operating system. In
addition, Kernel's ^%ZOSF global holds operating system-dependent logic so that application programs
can be written independently of any specific operating system. Each CPU or node in a system should have
its own copy of the ^%ZOSF global; the ^%ZOSF global should not be translated.

19.1 Direct Mode Utilities

19.1.1.1 >D ^%ZTBKC: Global Block Count

You can count the data blocks in a global using the direct mode utility ^%ZTBKC. An entire global or a
subscripted section can be measured, such as ^DIC or ^DIC(9.2). There is a corresponding option that can
be used from the Programmer Options menu, called the Global Block Count option [XU BLOCK
COUNT].

REF: For more information on the XU BLOCK COUNT, see Chapter 28, "Miscellaneous
Programmer Tools," in the Kernel Systems Management Guide.

19.1.1.2 >D ^ZTMGRSET: Update ^%ZOSF Nodes

This direct mode utility is only available from the manager's account. It is ordinarily run during Kernel
installations to initialize Kernel in the manager's account. It can be used at a later time, however, to
update an account's ^%ZOSF nodes with new UCI and Volume Set information. The ^%ZOSF nodes that
^ZTMGRSET updates are:

• ^%ZOSF("MGR")

• ^%ZOSF("PROD")

• ^%ZOSF("VOL")

An example of a use for re-running ^ZTMGRSET would be when creating a new print, compute, file, or
shadow server by copying an existing server's account. Although Kernel is already set up in the copied
account, the new server's UCI and Volume Set ^%ZOSF nodes would need to be updated from their old
values to the values needed for the new server. Re-running ^ZTMGRSET allows these values to be
updated.

Operating System Interface: Developer Tools

288 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

19.2 Application Program Interface (API)

Several APIs are available for developers to work with the operating system. These APIs are described
below.

19.2.1 ^%ZOSF(): Operating System-dependent Logic Global

The ^%ZOSF global holds operating system-dependent logic so that application programs can be written
independently of any specific operating system.

Most of the nodes contain logic that must be executed to return a value, for example:

X ^%ZOSF("SS")

Those prefaced with one asterisk in Table 19-1, however, are reference values. For example, to WRITE
the operating system, use:

W ^%ZOSF("OS")

The nodes prefaced with two asterisks in Table 19-1 should be used with the DO command, as in the
following:

>D @^%ZOSF("ERRTN")

Table Key:

* indicates those nodes that hold reference values.

** indicates those nodes that are invoked with a DO statement (D).

Table 20. ^%ZOSF: Global nodes

Node Description

ACTJ Return in Y the number of active jobs on the system.

AVJ Return in Y the number of jobs that can be started. The number of available
jobs is the maximum number less the number of active jobs.

BRK Allow the user to break the running of a routine.

DEL Delete the routine named in X from the UCI.

EOFF Turn off echo to the $I device.

EON Turn on echo to the $I device.

EOT Returns Y = 1 if Magtape end-of-tape mark is detected.
**ERRTN This node is set to the name of the routine that should be used to record errors.

For most systems this will be the KERNEL error recording routine (%ZTER):
>D @^%ZOSF("ERRTN")

To initially set the trap:
>S X=^%ZOSF("ERRTN"),@^%ZOSF("TRAP")

ETRP Obsolete.

 Operating System Interface: Developer Tools

July 1995 Kernel 289
Revised September 2011 Developer's Guide
 Version 8.0

Node Description

GD Display the global directory.

GSEL Returns the user's selection of globals as follows:
^UTILITY($J,"global name")

 NOTE: This is only supported for Caché at this time.

JOBPARAM When passed the job in X, returns the UCI for that job in Y. It is used to
determine whether the job is valid on the system.

LABOFF Turn off echo to the IO device.

LOAD Load routine X into @(DIE_"XCNP,0)".

LPC Returns in Y the longitudinal parity check of the string in X.

MAGTAPE Sets the %MT local variable to hold magtape functions. Issue the backspace
command as follows:

>W @%MT("BS")

The full list of functions are:

• "BS"—Back Space

• "FS"—Forward Space

• "WTM"—WRITE Tape Mark

• "WB"—WRITE Block

• "REW"—Rewind

• "RB"—READ Block

• "REL"—READ Label

• "WHL"—WRITE HDR Label

• "WEL"—WRITE EOF Label

MAXSIZ For M/SQL-VAX only. Sets the partition size to X.
*MGR Holds the name of the MGR account (UCI, Volume Set).

MTBOT Returns Y = 1 if the magtape is at BOT.

MTERR Returns Y = 1 if a magtape error is detected.

MTONLINE Returns Y = 1 if the magtape is online.

MTWPROT Returns Y = 1 if the magtape is WRITE Protected.

NBRK Do not allow the user to break a routine.

NO-PASSALL Sets device $I to interpret tabs, carriage returns, line feeds, or control
characters (normal text mode).

NO-TYPE-AHEAD Turn off the TYPE-AHEAD for the device $I.
*OS In the first "^" piece, holds the type of MUMPS (e.g., Caché, VAX DSM, GT.M).

PASSALL Sets device $I to pass all codes, allow tabs, carriage returns, and other control
characters to be passed (binary transfer).

Operating System Interface: Developer Tools

290 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Node Description

PRIINQ Returns Y with the current priority of the job.

PRIORITY Sets the priority of the job to X (1 is low, 10 is high).
*PROD Holds the name of the Production account (UCI, Volume Set).

PROGMODE Returns Y = 1 if the user is in Programmer mode.

RD Displays the routine directory.

RESJOB References the operating system routine for restoring a job.

RM Sets the $I width to X characters. If X=0, then the line in set to no wrap.

RSEL Returns the user's selection of routines as follows:
^UTILITY($J,"routine name")

RSUM Passes a routine name in X, and it returns the checksum in Y. Used by
CHECK^XTSUMBLD. The second line and comments are not included in the
total.

RSUM1 Passes a routine name in X, and it returns the checksum in Y. Used by
CHECK1^XTSUMBLD. The second line and comments are not included in the
total.

SAVE Saves the code in @(DIE_"XCN,0)") as routine X.

SIZE Returns Y=size (in bytes) of the current routine.

SS Displays the system status.

TEST Returns $T = 1 if routine X exists.

TMK Returns Y = 1 if a tape mark was detected on the last READ.

TRAP To set the error trap:
>S X="error routine",@^%ZOSF("TRAP")

TRMOFF Resets terminators to normal.

TRMON Turns on all controls as terminators.

TRMRD Returns in Y what terminated the last READ.

TYPE-AHEAD Allow TYPE-AHEAD for the device $I.

UCI Returns Y with the current account (UCI, Volume Set).

UCICHECK Returns Y'="" if X is a valid UCI name.

UPPERCASE Converts lowercase to uppercase. Setting X="User Name" returns Y="USER
NAME". Applications can gain efficiency by executing this node rather than
performing checks within the application program.

*VOL Contains the current Volume Set (CPU) name.

XY Sets $X=DX and $Y=DY (may not work on all systems).

ZD Given X in $H format, returns the printable form of X in Y.

 Operating System Interface: Developer Tools

July 1995 Kernel 291
Revised September 2011 Developer's Guide
 Version 8.0

19.2.2 $$ACTJ^%ZOSV: Number of Active Jobs

Reference Type Supported

Category Operating System Interface

IA # 10097

Description This extrinsic function returns the number of active jobs in the scope of this
process. It is the same as ^%ZOSF("ACTJ").

Format $$ACTJ^%ZOSV

Input Parameters none

Output returns: Returns the number of active jobs.

19.2.3 $$AVJ^%ZOSV: Number of Available Jobs

Reference Type Supported

Category Operating System Interface

IA # 10097

Description This extrinsic function returns a best effort on the number of available jobs
(i.e., number of new jobs that could be started). It is the same as ^%ZOSF("AVJ").

Format $$AVJ^%ZOSV

Input Parameters none

Output returns: Returns the number of available jobs.

19.2.4 DOLRO^%ZOSV: Display Local Variables

Reference Type Controlled Subscription

Category Operating System Interface

IA # 3883

Description This API is used to save all local variables. It stores all local variables in the
global storage location specified by the "X" input variable.

Format DOLRO^%ZOSV

Operating System Interface: Developer Tools

292 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variable X: (required) When this variable is set to an open global reference,
(e.g., '^XTMP("ZZHL",25,'), all local variables existent when
DOLRO^%ZOSV is called are stored in the location specified by
the open global reference. These variables, now stored in the X-
specified global location, can be listed and examined by
application developers.

Output returns: Local variables are stored in the global specified by the X input
variable.

Example

>S X="^%ZTSK(ZTSKm.3," D DOLRO^%ZOSV

19.2.5 GETENV^%ZOSV: Current System Information

Reference Type Supported

Category Operating System Interface

IA # 10097

Description This API returns environment information about the current system.

Format GETENV^%ZOSV

Input none

Output Variable Y: Returns a string in the following format:
UCI^VOL/DIR^NODE^BOX LOOKUP

 Operating System Interface: Developer Tools

July 1995 Kernel 293
Revised September 2011 Developer's Guide
 Version 8.0

19.2.6 $$LGR^%ZOSV: Last Global Reference

Reference Type Supported

Category Operating System Interface

IA # 10097

Description This extrinsic function returns the last global reference.

Format $$LGR^%ZOSV

Input Parameters none

Output returns: Returns the string set to the last full global reference.

Example

>S X=$$LGR^%ZOSV

19.2.7 LOGRSRC^%ZOSV(): Record Resource Usage (RUM)

Reference Type Supported

Category Operating System Interface

IA # 10097

Description This API records resource usage in ^XTMP("KMPR" via the Resource Usage
Monitor (RUM) software.

Format LOGRSRC^%ZOSV(opt,type,status)

Input Parameters opt: (required) Name of Option, Protocol, Remote Procedure Call
(RPC) or Health Level Seven (HL7). This is a Free Text
parameter.

type: (required) Type of option:

• 0—Option

• 1—Protocol

• 2—Remote Procedure Call (RPC)

• 3—Health Level Seven (HL7)

status: (optional) Reserved for future use.

Operating System Interface: Developer Tools

294 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Output returns: This API saves RUM-related data for each option/type into a file.
This file is then downloaded weekly to the Capacity Planning
National Database. The data is then available to all sites via the
Capacity Planning Service VA Intranet Website:

http://vista.med.va.gov/capman/

19.2.8 $$OS^%ZOSV: Get Operating System Information

Reference Type Supported

Category Operating System Interface

IA # 10097

Description This extrinsic function returns the underlying operating system (e.g., VMS on
OpenVMS, NT on Windows, Unix on Linux). It is only available under
Caché/OpenVMS M systems.

Format $$OS^%ZOSV

Input Parameters none

Output returns: Returns the underlying operating system information (e.g., VMS
on OpenVMS, NT on Windows, Unix on Linux).

Example

I ^%ZOSF("OS")["OpenM" S Y=$$OS^%ZOSV

19.2.9 SETENV^%ZOSV: Set VMS Process Name (Caché/OpenVMS
Systems)

Reference Type Supported

Category Operating System Interface

IA # 10097

Description This API sets the VMS process name. It only has meaning on Caché/OpenVMS
systems, otherwise it just quits.

Format SETENV^%ZOSV

 Operating System Interface: Developer Tools

July 1995 Kernel 295
Revised September 2011 Developer's Guide
 Version 8.0

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variable X: (required) This is a 1-15 character name to be given to the process
at the VMS level.

Output none

19.2.10 SETNM^%ZOSV(): Set VMS Process Name
(Caché/OpenVMS Systems)

Reference Type Supported

Category Operating System Interface

IA # 10097

Description This API sets the VMS process name. It only has meaning on Caché/OpenVMS
systems, otherwise it just quits. It is the parameter-passing version of the
SETENV^%ZOSV: Set VMS Process Name (Caché/OpenVMS Systems) API.

Format SETNM^%ZOSV(name)

Input Parameter name: (required) This is a 1-15 character name to be given to the process
at the VMS level.

Output none

Operating System Interface: Developer Tools

296 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

19.2.11 T0^%ZOSV: Start RT Measure (Obsolete)

NOTE: This API is obsolete as of the release of Kernel Toolkit Patch XT*7.3*102 and Kernel
Patch XU*8.0*425.

Reference Type Supported

Category Operating System Interface

IA # 10097

Description This API starts RT Measure. The Kernel site parameter flag to enable RT
logging must be set for the volume set. The setting of this flag defines the XRTL
variable. The call to this API should, thus, include a check for the existence of
XRTL, such as the following:

>D:$D(XRTL) T0^%ZOSV

This API should be placed just before a process that may take a few seconds
before the system responds with another prompt. If the minimal pause is at least
a half second, there is enough variability to notice changes as the load on the
system is increased or decreased. There should be no terminal IOs between the
T0 start point and the T1 stop point.

 REF: For more information on RT measure, see the Resource Usage
Monitor (RUM) documentation, located on the VDL at the following
Website:

http://www.va.gov/vdl/Infrastructure.asp?appID=130

Format T0^%ZOSV

Input Variables none

Output Variables XRT0: Output variable (start time).

The T0 call sets the XRT0 variable to the start time. To discard a
sample, the XRT0 variable should be KILLed. Such a KILL
would be appropriate if there is an exit path between the T0 and
T1 checkpoints that is circuitous or otherwise irrelevant to the
normal execution of the code in question.

 NOTE: On Caché systems, it only records to the nearest
second.

http://www.va.gov/vdl/Infrastructure.asp?appID=130

 Operating System Interface: Developer Tools

July 1995 Kernel 297
Revised September 2011 Developer's Guide
 Version 8.0

19.2.12 T1^%ZOSV: Stop RT Measure (Obsolete)

NOTE: This API is obsolete as of the release of Kernel Toolkit Patch XT*7.3*102 and Kernel
Patch XU*8.0*425.

Reference Type Supported

Category Operating System Interface

IA # 10097

Description This API stops RT Measure. This API logs the elapsed time into the ^%ZRTL
global (obsolete). The API should include a check for the existence of the XRT0
variable to confirm that the start time is available.

 REF: For more information on RT measure, see the Resource Usage
Monitor (RUM) documentation, located on the VDL at the following
Website:

http://www.va.gov/vdl/Infrastructure.asp?appID=130

Format T1^%ZOSV

Input Variables XRTN (required) Routine name.

The XRTN variable is normally set to the name of the routine
being monitored via the command:

>S XRTN=$T(+0)

To log more than one stop point in the same routine, a number or
other characters can be concatenated (e.g., XRTN_1) so that a
separate entry is made in the ^%ZRTL global (obsolete), since the
global is subscripted by routine name:

>S:$D(XRT0) XRTN=$T(+0) D:$D(XRT0) T1^%ZOSV

Output returns: Logs elapsed time into the ^%ZRTL global (obsolete)

19.2.13 $$VERSION^%ZOSV(): Get OS Version Number or Name

Reference Type Supported

Category Operating System Interface

IA # 10097

Description This extrinsic function returns the operating system version number or name.

Format $$VERSION^%ZOSV([flag])

http://www.va.gov/vdl/Infrastructure.asp?appID=130

Operating System Interface: Developer Tools

298 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters flag: (optional) If you pass a value of 1, the operating system name is
returned instead of the version number.

 NOTE: The name is as defined by the vendor and does not
necessarily correspond with the OS name stored in
^%ZOSF("OS").

Output returns: Returns the operating system version number or name, depending
on the (optional) flag input parameter.

Example 1

>W $$VERSION^%ZOSV(1)

Cache for OpenVMS/ALPHA V7.x (Alpha)

Example 2

>W $$VERSION^%ZOSV

4.1.16

July 1995 Kernel 299
Revised September 2011 Developer's Guide
 Version 8.0

20 Security Keys: Developer Tools

As well as locking options, developers can use security keys within options if some part of an option
requires special security. One example of this is Kernel's use of the ZTMQ key; it restricts functionality
within the Dequeue Task, Requeue Tasks, and Delete Tasks options.

20.1 Key Lookup

When writing code that checks whether the current user holds a certain key, do not reference the
SECURITY KEY file (#19.1) for this information. Instead, check the ^XUSEC global. The most efficient
check is:

>I $D(^XUSEC(keyname,DUZ))

This is (and will continue to be) a supported reference. The ^XUSEC global is built by a cross-reference
on the SECURITY KEY file (#19.1).

20.2 Person Lookup

If a key is flagged for Person Lookup, a cross-reference on the NEW PERSON file (#200) will be built
and maintained to facilitate APIs. It is constructed with the letters "AK" before the key name. The
Provider key is exported with the Person Lookup flag set; as a result, providers can be easily identified in
this AK.keyname cross-reference, at ^VA(200,"AK.PROVIDER",DUZ). Specifically, the lookup would
be:

>S DIC="^VA(200,",DIC(0/)="AEQ",D="AK.PROVIDER" D IX^DIC

Security Keys: Developer Tools

300 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

20.3 Application Program Interface (API)

Several APIs are available for developers to work with security keys. These APIs are described below.

20.3.1 DEL^XPDKEY(): Delete Security Key

Reference Type Supported

Category Security Keys

IA # 1367

Description This API deletes a security key from the SECURITY KEY file (#19.1). All
necessary indexing is performed to maintain the ^XUSEC global. The security key
is removed from all holders in the NEW PERSON file (#200).

Format DEL^XPDKEY(key_name)

Input Parameters key_name: (required) The name of the security key to delete.

Output none

Example

>D DEL^XPDKEY(key_name)

20.3.2 $$LKUP^XPDKEY(): Look Up Security Key Value

Reference Type Supported

Category Security Keys

IA # 1367

Description This extrinsic function looks up a security key by name or by Internal Entry
Number (IEN) value. It returns the security key:

• Name—If called with a security key number.

• IEN—If called with a security key name.

Format $$LKUP^XPDKEY(key_value)

Input Parameters key_value: (required) The name or IEN of the security key in question.

 Security Keys: Developer Tools

July 1995 Kernel 301
Revised September 2011 Developer's Guide
 Version 8.0

Output returns: Returns the security key:
• Name—If called with a security key number.

• IEN—If called with a security key name.

Example

>S value=$$LKUP^XPDKEY(key_value)

20.3.3 $$RENAME^XPDKEY(): Rename Security Key

Reference Type Supported

Category Security Keys

IA # 1367

Description This extrinsic function renames a security key. All necessary indexing is
performed to maintain the ^XUSEC global.

Format $$RENAME^XPDKEY(oldname,newname)

Input Parameters oldname: (required) Name of security key to be renamed.

 newname: (required) New name for security key.

Output returns: Returns:
• 1—Success.

• 0—Failure.

Security Keys: Developer Tools

302 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

20.3.4 OWNSKEY^XUSRB(): Verify Security Keys Assigned to a
User

Reference Type Supported

Category Security Keys

IA # 3277

Description This API is used by the XUS KEY CHECK RPC. This API can be used to verify
if a user has a specified security key assigned. The calling routine sends one or a
reference to a subscripted array and the API returns a subscripted array with the
following possible values:

• 1—User owns key.

• 0—Key not found.

The DUZ variable should be defined before calling this API.

(This was developed as a Broker RPC and all RPCs have as the first parameter
the return/output parameter.)

Format OWNSKEY^XUSRB(ret,list[,ien])

Input Parameters ret: (required) Name of the subscripted return array. In every API that
is used as an RPC, the first parameter is the return array.

 list: (required) A single value or an input subscripted array of security
keys to be evaluated.

 ien: (optional) The DUZ of a user for whom you want to check if
he/she holds security keys.

Output Parameter ret(): Returns a subscripted output array of the input value/subscripted
array (i.e. list) with the following possible values shown:

• 1—User owns key.

• 0—Key not found.

Example 1

In the following example, the return array is named "ZZ" and the single security key to be checked is the
XUPROG security key:

>K ZZ D OWNSKEY^XUSRB(.ZZ,"XUPROG") ZW ZZ
ZZ(0)=1

 Security Keys: Developer Tools

July 1995 Kernel 303
Revised September 2011 Developer's Guide
 Version 8.0

Example 2

In the following example, the return subscripted array is named "ZZ" and the input array of security keys
to be checked is named "LST":

>K LST S LST(1)="XUPROG",LST(2)="XUMGR",LST(3)="ABC"
>K ZZ D OWNSKEY^XUSRB(.ZZ,.LST) ZW ZZ
ZZ(1)=1
ZZ(2)=1
ZZ(3)=0

Security Keys: Developer Tools

304 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

July 1995 Kernel 305
Revised September 2011 Developer's Guide
 Version 8.0

21 Server Options: Developer Tools

21.1 Tools for Processing Server Requests

When a server option runs, it can call custom programs to perform server-related tasks such as responding
to the sender of the server request, or retrieving the actual text of the server request message. In this way,
server requests can act not only as triggers, but also as message carriers. The server option can call
custom programs via the following fields:

• ENTRY ACTION

• HEADER

• ROUTINE

• EXIT ACTION

REF: For more information on server options, see Chapter 11 in the Kernel Systems
Management Guide.

REF: For more information on the developer API for processing server requests, see the
MailMan Developer's Guide.

21.2 Key Variables When a Server Option is Running

There are key variables that are set up when a server option is running. You can reference these key
variables during any routine run by the server option's ENTRY ACTION, HEADER, ROUTINE, and
EXIT ACTION fields. The key variables for server options are set up as follows:

Table 21 Key variable setup—Server options

Variable Description

XQSOP Server option name.

XQMSG Server request message number.

XQSND DUZ of the sender if the request is local; network address of the sender if the request is
not local

XQSUB Subject heading of the server request message.

Server Options: Developer Tools

306 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

21.3 Appending Text to a Server Request Bulletin or Mailman
Reply

Server options use bulletins and MailMan messages to communicate with the local IRM staff when a
server request is received, or with the sender of a server request, usually in the event of an error. These
two kinds of documents look very similar and must contain certain key pieces of data. It is also possible,
however, for the sender or the local IRM staff to append other information to the bulletin or MailMan
message by setting that information into the array XQSTXT (one line per node). For example, if the
following array exists:

XQSTXT(0)="Please append these two lines of text"

XQSTXT(1)="to the end of the bulletin XQSERVER."

The default bulletin, XQSERVER, would then look like:

Figure 66. XQSERVER: Default bulletin

Subj: Server request notice
From: <Postmaster>
--

Dec. 21, 1989 3:08 PM

A request for execution of a server option was received.

Sender: <Child,Your@HOME.VA.GOV>
Option name: ZZUPDATECL
Subject: UPDATE CHRISTMAS LIST DATA BASE
Message #: 136771

Menu system Action: No error(s) detected by the menu system.

Please append these two lines of text
to the end of the bulletin XQSERVER.

You can use the same method to append text to MailMan messages.

21.4 Customizing a Server Request Bulletin

Please note that the first six data elements in a server request bulletin are always:

1. The date and time the request was received.

2. The sender.

3. The requested option's name.

4. The subject of the message of the server request.

5. The requesting message's number.

6. A brief statement of the menu system's action or an error message.

 Server Options: Developer Tools

July 1995 Kernel 307
Revised September 2011 Developer's Guide
 Version 8.0

If a customized bulletin is used instead of XQSERVER, these data elements should always be printed
first, followed by the contents of XQSTXT.

The easiest way to create a customized local bulletin is to use the VA FileMan copy function to copy the
default bulletin XQSERVER to a bulletin of another name.

NOTE: XQSERVER has a line of text in it that says:

This is the server request bulletin XQSERVER

To avoid confusion, you should edit this line using the Bulletin Edit option to reflect the name of the new
bulletin.

Server Options: Developer Tools

308 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

July 1995 Kernel 309
Revised September 2011 Developer's Guide
 Version 8.0

22 Signon/Security: Developer Tools

Kernel's Signon/Security module sets up a standard VistA programming environment as a foundation for
software applications. Once a signon session has been created, applications can assume that system-wide
variables exist for common reference. For example, key variables defined via Signon/Security include the
user's institution and agency (DUZ(2) and DUZ("AG"), respectively).

22.1 Direct Mode Utilities

Several Signon/Security direct mode utilities are available for developers to use at the M prompt. They
are not APIs and cannot be used in software application routines. These utilities allow developers to
simulate ordinary user signon and yet work from Programmer mode to test code and diagnose errors.
These direct mode utilities are described below.

22.1.1 ^XUP: Programmer Signon

The ^XUP routine can be called as a quick way to enter Kernel and set up a standard environment:

>D ^XUP: Programmer Signon

It does the following:

• Sets up DT.

• Calls ^%ZIS.

• Prompts for Access code if DUZ is zero or undefined.

• KILLs and rebuilds ^XUTL("XQ",$J).

• KILLs ^UTILITY($J).

• Calls ^XQ1 to prompt for an option if one should be run.

If a non-menu-type option is specified, returning from the option will display the "Select:"
prompt as though the option was a menu-type. Although this construction may at first appear
misleading, restricting option selection to menu-type only would be a functional limitation to the
call.

22.1.2 ^XUS: User Signon: No Error Trapping

^XUS determines whether access to the computer is allowed, and then sets up the user with the proper
environment:

>D ^XUS

This routine can be called to establish the signon environment. A recommended alternative for developers
is to call ^XUP, which establishes signon conditions as well as calling ^XQ1 for an option name. Neither
^XUP nor ^XUS sets the error trap. Entering through ^ZU sets the trap and then calls the ^XUS routine.

Signon/Security: Developer Tools

310 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

22.1.3 H^XUS: Programmer Halt

The following is an obsolete utility:

>D H^XUS

It simply transfers control to ^XUSCLEAN.

22.1.4 ^XUSCLEAN: Programmer Halt

Developers are advised to call the ^XUSCLEAN routine when signing off:

>D ^XUSCLEAN

It is the same code that Kernel uses when a user signs off or restarts. It notes the signoff time in the
SIGN-ON LOG file (#3.081) and KILLs the $J nodes in ^XUTL and ^UTILITY. It then performs a
normal halt.

22.1.5 ^ZU: User Signon

The ZU routine sets the error trap and then calls ^XUS:

>D ^ZU

User signons should be tied to ^ZU.

 Signon/Security: Developer Tools

July 1995 Kernel 311
Revised September 2011 Developer's Guide
 Version 8.0

22.2 XU USER SIGN-ON Option

Some software applications asked for the means to execute an action at user signon, but not through the
alert system. Kernel provides the XU USER SIGN-ON option that software applications can attach to and
perform software application-specific tasks on user signon.

22.2.1 XU USER SIGN-ON: Package-specific Signon Actions

Kernel 8.0 introduced a method to support software application-specific signon actions. Kernel exports an
extended-action option called XU USER SIGN-ON. Packages that want Kernel to execute a software
application-specific user signon routine can accomplish this by attaching their own option, of type action,
to Kernel's XU USER SIGN-ON option. Your action-type option should call your software application-
specific user signon routine.

To attach your option to the XU USER SIGN-ON option, make your option an item of the XU USER
SIGN-ON protocol; then, export your option with a KIDS action of SEND, and export the XU USER
SIGN-ON option with a KIDS action of USE AS LINK FOR MENU ITEMS.

During signon, Kernel executes the XU USER SIGN-ON option, which in turn executes any options that
software applications have attached to XU USER SIGN-ON. No database integration agreements are
required to attach to the XU USER SIGN-ON option.

If you need to perform any output during your action, you should use the SET^XUS1A function to
perform the output. Output is not immediate, but occurs once all software application-specific signon
actions have completed. Also, you should not perform any tasks requiring interaction in an action
attached to the XU USER SIGN-ON option.

The DUZ variable will be defined at the time the signon actions are executed; DUZ is set as it normally is
to the person's Internal Entry Number (IEN) in the NEW PERSON file (#200).

Take care to make code efficient, since executed by every signon. A few examples of tasks you might
want to accomplish during signon are:

• Alert the user to a software application status.

• Issue a reminder.

• Notify the software application of the signon of a software application user.

Signon/Security: Developer Tools

312 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example

The following option, when attached to the XU USER SIGN-ON protocol, outputs one line during
signon:

Figure 67. ZZTALK: Protocol

NAME: ZZTALK PROTOCOL MENU TEXT: TALKING PROTOCOL
 TYPE: action E ACTION PRESENT: YES
 DESCRIPTION: USE TO TEST EXTENDED ACTION PROTOCOLS
 ENTRY ACTION: D SET^XUS1A("!This line is from the ZZTALK option.")
 UPPERCASE MENU TEXT: TALKING PROTOCOL

22.3 XU USER TERMINATE Option

Kernel 8.0 introduced a method to support software application-specific user termination actions. Kernel
8.0 exports an extended-action option called XU USER TERMINATE. Packages that want Kernel to
execute a software application-specific user termination action can accomplish this by attaching their own
option, of type action, to Kernel's XU USER TERMINATE extended action.

22.3.1 Discontinuation of USER TERMINATE ROUTINE

Kernel 7.1 introduced a method for software applications to have Kernel execute a software application-
specific routine when Kernel terminated a user. The method was for the software application to have a
routine tag and name in fields 200.1 (USER TERMINATE TAG) and 200.2 (USER TERMINATE
ROUTINE) of the software application's PACKAGE file (#9.4) entry. When Kernel 7.1 terminated a user,
it executed the TAG^ROUTINE API stored in these fields, if any.

Kernel 8.0 continues to execute the API, if any, stored in a software application's PACKAGE file (#9.4)
entry. However, Kernel 8.0 will be the last version to support that method of software application-specific
user termination routines.

22.3.2 Creating a Package-specific User Termination Action

Beginning with Kernel 8.0, you should create an action-type option that calls your software application-
specific user termination routine. To attach it to the XU USER TERMINATE option, do the following:

1. Export your option with a KIDS action of SEND.

2. Export the XU USER TERMINATE option with a KIDS action of USE AS LINK FOR MENU
ITEMS.

Kernel defines the XUIFN variable at the time your action executes; it is defined as the Internal Entry
Number (IEN) in the NEW PERSON file (#200) of the user being terminated.

When terminating a user, Kernel executes the XU USER TERMINATE option, which in turn executes
any options attached to XU USER TERMINATE. No database integration agreements are required to
attach to the XU USER TERMINATE option.

 Signon/Security: Developer Tools

July 1995 Kernel 313
Revised September 2011 Developer's Guide
 Version 8.0

A few examples of user clean up you might want to accomplish when Kernel terminates users are as
follows:

• Removal of HINQ access.

• Removal of Control Point access.

• Removal from health care teams.

Signon/Security: Developer Tools

314 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

22.4 Application Program Interface (API)

Several APIs are available for developers to work with signon/security. These APIs are described below.

22.4.1 $$GET^XUPARAM(): Get Parameters

Reference Type Supported

Category Signon/Security

IA # 2542

Description This extrinsic function gets simple parameters from the KERNEL PARAMETERS
file (#8989.2) that the site can edit.

Format $$GET^XUPARAM(parameter_name[,style])

Input Parameters parameter_name: (required) This is the namespaced name of the parameter to
look up in the KERNEL PARAMETERS file (#8989.2) and
return the REPLACEMENT value or DEFAULT.

 style: (optional) This input parameter controls the return value if the
REPLACEMENT value or DEFAULT is empty.

Output returns: Returns the REPLACEMENT value or DEFAULT.

22.4.2 $$KSP^XUPARAM(): Return Kernel Site Parameter

Reference Type Supported

Category Signon/Security

IA # 2541

Description This extrinsic function retrieves a Kernel site parameter. The following parameters
are currently supported:

• INST

• SPOOL DOC

• SPOOL LIFE

• SPOOL LINE

• WHERE

Format $$KSP^XUPARAM(param)

 Signon/Security: Developer Tools

July 1995 Kernel 315
Revised September 2011 Developer's Guide
 Version 8.0

Input Parameters

param: (required) Site parameter to retrieve. Currently, the following
values for param are supported:

• INST—Internal Entry Number (IEN) of the site's
institution, in the site's INSTITUTION file (#4).

• SPOOL DOC—MAX SPOOL DOCUMENTS PER
USER (internal value) from the site's KERNEL SYSTEM
PARAMETERS file (#8989.3).

• SPOOL LIFE—MAX SPOOL DOCUMENT LIFE-
SPAN (internal value) from the site's KERNEL SYSTEM
PARAMETERS file (#8989.3).

• SPOOL LINE—MAX SPOOL LINES PER USER
(internal value) from site's KERNEL SYSTEM
PARAMETERS file (#8989.3).

• WHERE—Site's domain name (FREE TEXT value), from
the site's DOMAIN file (#4.2).

Output returns: Returns the requested site parameter value.

Example 1

>S A6ASITE=$$KSP^XUPARAM("WHERE")

Example 2

>S A6ASPLLF=$$KSP^XUPARAM("SPOOL LIFE")

22.4.3 $$LKUP^XUPARAM(): Look Up Parameters

Reference Type Supported

Category Signon/Security

IA # 2542

Description This extrinsic function looks up simple parameters from the KERNEL
PARAMETERS file (#8989.2) that the site can edit.

Format $$LKUP^XUPARAM(parameter_name[,style])

Signon/Security: Developer Tools

316 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters parameter_name: (required) This is the namespaced name of the parameter to
look up in the KERNEL PARAMETERS file (#8989.2) and
return the REPLACEMENT value or DEFAULT.

 style: (optional) This input parameter controls the return value if the
REPLACEMENT value or DEFAULT is empty.

Output returns: Returns the REPLACEMENT value or DEFAULT.

22.4.4 SET^XUPARAM(): Set Parameters

Reference Type Supported

Category Signon/Security

IA # 2542

Description This API sets simple parameters in the KERNEL PARAMETERS file (#8989.2).

Format SET^XUPARAM(parameter_name[,style])

Input Parameters parameter_name: (required) This is the namespaced name of the parameter to set
in the KERNEL PARAMETERS file (#8989.2).

 style: (optional) This input parameter controls the return value if the
REPLACEMENT value or DEFAULT is empty.

Output none

 Signon/Security: Developer Tools

July 1995 Kernel 317
Revised September 2011 Developer's Guide
 Version 8.0

22.4.5 $$PROD^XUPROD(): Production Vs. Test Account

Reference Type Supported

Category Signon/Security

IA # 4440

Description This API was released with Kernel Patch XU*8.0*284. It is called by applications
to check and see if the application is running in a Production or a Test account.

The Ask if Production Account option [XU SID ASK] on the Kernel Management
Menu [XUKERNEL], asks if the current account is the Production account. It
returns the following values:

True (1 or non-zero)—If the answer is YES, the account is the Production account,
so the current system ID (SID) is set as the Production SID.

False (zero)—If the answer is NO, the account is not the Production account, so a
fake value is stored.

The Startup PROD check option [XU SID STARTUP] can be scheduled for startup
so that when TaskMan starts the SID is checked. The first check each day gets the
current SID and compares it with the stored SID to see if they match.

Format $$PROD^XUPROD([force])

Input Parameters force: (optional) The parameter value of 1 allows an application to force a
full test.

Output returns: Returns a Boolean value:

• True (1 or non-zero)—Production account, current SID is
set as the Production SID.

• False (zero)—Test account.

22.4.6 H^XUS: Programmer Halt

Reference Type Supported

Category Signon/Security

IA # 10044

Description This API is the Programmer Halt.

Format H^XUS

Signon/Security: Developer Tools

318 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters none

Output none

22.4.7 SET^XUS1A(): Output Message During Signon

Reference Type Supported

Category Signon/Security

IA # 3057

Description This API is used to perform any output during a software application-specific
action executed at signon. This function should only be used by action-type
options attached to and executed by Kernel's XU USER SIGN-ON extended
action.

Display of the string is not immediate; instead, every call to SET^XUS1A appends
a node to an array containing the post signon text. When all software application-
specific signon actions have completed, the signon process then displays the post
signon text array, which will also contain any strings registered with the
SET^XUS1A function, appended at the end.

Format SET^XUS1A(string)

Input Parameters string: (required) String to output. First character is stripped from string; if
the first character is an exclamation point, a line feed is issued before
the string is displayed; otherwise, no line feed is issued.

Output none

Details

As of Kernel 8.0, software applications can attach an action-type option to a Kernel extended action-type
option called XU USER SIGN-ON. This option, and all attached action-types, are executed during every
signon.

REF: For more information on software application-specific action executed at signon, see the
"XU USER SIGN-ON: Package-specific Signon Actions" topic in this chapter.

 Signon/Security: Developer Tools

July 1995 Kernel 319
Revised September 2011 Developer's Guide
 Version 8.0

22.4.8 AVHLPTXT^XUS2: Get Help Text

Reference Type Controlled Subscription

Category Signon/Security

IA # 4057

Description This API retrieves help text to display to the user when they change their Verify
code.

Format AVHLPTXT^XUS2

Input Parameters none

Output returns: Returns the help text for a user to use when entering a new Verify
code.

Signon/Security: Developer Tools

320 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

22.4.9 $$CREATE^XUSAP: Create Application Proxy User

Reference Type Controlled Subscription

Category Signon/Security

IA # 4677

Description Released with Kernel Patch XU*8.0*361, this extrinsic function is a non-
interactive API to create an Application Proxy User to support J2EE middle-tier
applications. The Application Proxy User represents an application and not an
end-user.

 CAUTION: If the user running this extrinsic function does not hold
the XUMGR security key, it returns an error upon the filing of the
Application Proxy as the User Class.

The Application Proxy User is a special category of user account that is created in
the NEW PERSON file (#200) and can execute authorized RPCs. The Application
Proxy User created must adhere to the following criteria:

• The name added to the NEW PERSON file (#200) must be unique.

• It must have a user class of "Application Proxy," as defined in the USER
CLASS file (#201) and pointed to by the USER CLASS field (#9.5) in the
NEW PERSON file (#200).

• It must not have an Access or Verify code assigned to it.

• It must not have a Primary menu assigned to it.

• It must have one or more Secondary menu options assigned to it.

• The RPCs that the menu options reference must have the APP PROXY
ALLOWED field (#.11) in the REMOTE PROCEDURE file (#8994) set
to YES.

Format $$CREATE^XUSAP(proxyusername[,filemanaccesscode][,options])

Input Parameters proxyusername: (required) This is the name of the Application Proxy User.
This name must be unique and should be namespaced.

filemanaccesscode: (optional) This is the VA FileMan Access code. It cannot be
an at-sign ("@").

 REF: For more information, see the VA FileMan
Advanced User Manual.

 Signon/Security: Developer Tools

July 1995 Kernel 321
Revised September 2011 Developer's Guide
 Version 8.0

options: (optional) This is the name of a single option name
(e.g., XUS FATKAAT PROXY LOGON) or an array of
options, such as XUOPT("XMUSER")=1. Applications can
only access the Remote Procedure Calls (RPCs) contained in
the options provided in this input parameter. RPCs are tied to
"B"-type options.

Output returns: Returns:
• IEN of entry created in NEW PERSON file (#200)—

Successful; writes new Application Proxy User to
the NEW PERSON file (#200).

• "0^Name In Use"—Unsuccessful; Application Proxy
User of that name already exists in the NEW
PERSON file (#200).

• -1—Unsuccessful; could not create Application
Proxy User OR error in call to UPDATE^DIE.

 NOTE: For more information on the
UPDATE^DIE-related error, users should
check ^TMP("DIERR",$J).

Example

The following example shows a successful creation of an Application Proxy User:

>IF $$CREATE^XUSAP("FATKAAT,PROXY","","XUS FATKAAT PROXY LOGON")>0 W !,"Proxy
Created"

Proxy Created

Signon/Security: Developer Tools

322 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

22.4.10 KILL^XUSCLEAN: Clear all but Kernel Variables

Reference Type Supported

Category Signon/Security

IA # 10052

Description This API clears the partition of all but key variables essential to Kernel.
Application developers are allowed to use this call to clean up application
variables and leave the local symbol table unchanged when returning from an
option or as otherwise required by SAC Standards.

In the past, options that have called KILL^XUSCLEAN have occasionally created
problems for other options that had defined software-wide variables. For example,
a user might enter the top-level menu for a software application, which could have
an entry action that retrieved site parameters into a local variable that is supposed
to remain defined while in any menu of that software application, between options.
But if the user could then reach a secondary menu option that happened to call
KILL^XUSCLEAN, a side effect would be the KILLing off the previously
defined software-wide variable.

KILL^XUSCLEAN now provides a way for sites and developers to work around
this problem. For any menu-type option, the PROTECTED VARIABLES field in
the OPTION file (#19) allows you to enter a comma-delimited list of variables to
protect from being KILLed by KILL^XUSCLEAN. Once a user enters a menu
subtree descendent from the protected menu, the variables are protected until the
menu subtree is exited.

So, for example, to protect a software-wide variable for an entire software
application, you can enter that variable in the PROTECTED VARIABLES field
for the top-level menu in the software application. As long as a user does not exit
the top-level menu of the software application's menu tree, the software-wide
variable will be protected from all calls to KILL^XUSCLEAN. "Up-arrow Jumps"
into a menu tree also work fine, as long as the menu that has been protected is in
the menu path made by the jump.

Format KILL^XUSCLEAN

Input Parameters none

Output none

 Signon/Security: Developer Tools

July 1995 Kernel 323
Revised September 2011 Developer's Guide
 Version 8.0

22.4.11 $$ADD^XUSERNEW(): Add New Users

Reference Type Supported

Category Signon/Security

IA # 10053

Description This extrinsic function adds new entries to the NEW PERSON file (#200). It was
modified with Kernel Patch XU*8.0*134. After prompting for the user's name, it
parses the input into its component parts, and then prompts for each name
component separately, presenting the parsed input as defaults. It then prompts for
the default identifiers for the NEW PERSON file (#200) entry in the following
order:

1. INITIAL (#1)

2. SSN (#9)

3. SEX (#4)

If the user of this function has the XUSPF200 security key, entry of the SSN is not
required. The default identifiers can be locally modified by modifying the NEW
PERSON IDENTIFIERS field in the KERNEL SYSTEM PARAMETERS file
(#8989.3).

To prompt for additional fields during this call, you pass a DR string containing the
fields for which you wish to prompt as a parameter to this function. If the person
adding the entry enters a caret ("^") to exit out before filling in all the identifiers
and requested fields, the entry will be removed from the NEW PERSON file
(#200), and -1 will be returned.

Format $$ADD^XUSERNEW([dr_string][,keys])

Input Parameters dr_string: (optional) Additional fields to ask when adding the new user, in
the format for a DR string as used in a standard DIC call.

 REF: For information about DIC, see the VA FileMan
documentation.

 keys: (optional) A comma-delimited string of keys to assign to the
newly created user.

Signon/Security: Developer Tools

324 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Output returns: Returns a value similar in format to the value of "Y" returned
from a standard DIC call:

• -1—User neither existed nor could be added.

• N^S—User already exists in the file; N is the internal
number of the entry in the file, and S is the value of the
.01 field for that entry.

• N^S^1—N and S are defined as above, and the 1
indicates the user has just been added to the file.

 REF: For information about DIC, see the VA FileMan
documentation.

Example 1

To add a new user, asking default fields for new entry:

Figure 68. $$ADD^XUSERNEW: Example of adding a new user

>S X=$$ADD^XUSERNEW

Enter NEW PERSON's name (Family,Given Middle Suffix): XUUSER,TWO E
 Are you adding 'XUUSER,TWO E' as a new NEW PERSON (the 1602ND)? No// Y <Enter>
(Yes)
Checking SOUNDEX for matches.
No matches found.
Name components.
FAMILY (LAST) NAME: XUUSER// <Enter>
GIVEN (FIRST) NAME: TWO// <Enter>
MIDDLE NAME: E// <Enter>
SUFFIX: <Enter>
Now for the Identifiers.
INITIAL: TEK
SSN: 000222222
SEX: M <Enter> MALE
>W X
1000118^XUUSER,TWO E^1
>

Example 2

To add a new user, specifying a key to add:

>S X=$$ADD^XUSERNEW("","PROVIDER")

 Signon/Security: Developer Tools

July 1995 Kernel 325
Revised September 2011 Developer's Guide
 Version 8.0

Example 3

To add a new user, specifying additional fields to ask, plus two keys to add:

>S X=$$ADD^XUSERNEW("5;13;53","PSMGR,PSNARC")

22.4.12 $$CHECKAV^XUSRB(): Check Access/Verify Codes

Reference Type Controlled Subscription

Category Signon/Security

IA # 2882

Description This extrinsic function checks an Access/Verify code pair (delimited by a semi-
colon) and returns whether or not it is a valid pair.

Format $$CHECKAV^XUSRB(access_verify)

Input Parameters access_verify: (required) This is a string containing the Access and Verify code
pair delimited by a semi-colon (i.e., Access code;Verify code).

Output returns: Returns:
• Internal Entry Number (IEN)—Codes are OK.

• Zero (0)—Codes are not OK.

Example

>S X=$CHECKAV^XUSRB(<string>)

String = Access code;Verify code

22.4.13 CVC^XUSRB: VistALink—Change User's Verify Code

Reference Type Controlled Subscription

Category Signon/Security

IA # 4054

Description This API changes a VistALink user's Verify code.

Format CVC^XUSRB

Input Parameters none

Signon/Security: Developer Tools

326 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Output duz: If DUZ is defined, we consider the "change verify code" operation to
have been successful.

22.4.14 $$INHIBIT^XUSRB: Check if Logons Inhibited

Reference Type Supported

Category Signon/Security

IA # 3277

Description This extrinsic function is used to check if logons have been inhibited.

Format $$INHIBIT^XUSRB

Input Parameters none

Output none

22.4.15 INTRO^XUSRB: VistALink—Get Introductory Text

Reference Type Controlled Subscription

Category Signon/Security

IA # 4054

Description This API retrieves the introductory text from M to display in VistALink.

Format INTRO^XUSRB

Input Parameters none

Output returns: Returns each line in the introductory text as a value stored at the first
subscript level node of the pass-by-reference first parameter to the
method call. For example:

RETURN(0)=line 1 RETURN(1)=line 2 etc.

 Signon/Security: Developer Tools

July 1995 Kernel 327
Revised September 2011 Developer's Guide
 Version 8.0

22.4.16 LOGOUT^XUSRB: VistALink—Log Out User from M

Reference Type Controlled Subscription

Category Signon/Security

IA # 4054

Description This API logs out a VistALink user from M.

Format LOGOUT^XUSRB

Input Parameters none

Output none

22.4.17 SETUP^XUSRB(): VistALink—Set Up User's Partition in M

Reference Type Controlled Subscription

Category Signon/Security

IA # 4054

Description This API sets up a VistALink user's partition in M prior to signon.

Format SETUP^XUSRB(ret)

Input Parameters ret: (required) Name of the subscripted return array. In every API
that is used as an RPC, the first parameter is the return array.

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variables XWBTIP: (required) The Internet Protocol (IP) address of the client
workstation.

XWBCLMAN: (optional) The client workstation name.

XWBVER: (optional) This is the version of the RPC Broker software on the
client workstation.

Signon/Security: Developer Tools

328 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Output RET(): Returns a subscripted output array:

• RET(0)—Server option name

• RET(1)—Volume

• RET(2)—UCI

• RET(3)—Device

• RET(4)—# Attempts

• RET(5)—Skip signon-screen

• RET(6)—Domain name

22.4.18 VALIDAV^XUSRB(): VistALink—Validate User Credentials

Reference Type Controlled Subscription

Category Signon/Security

IA # 4054

Description This API validates a VistALink user's credentials for signon to M.

Format VALIDAV^XUSRB(credential)

Input Parameters credential: (required) A credential (typically the encoded "Access code;Verify
code" string) to use to attempt a signon for the current user.

Output returns: Returns:
 ;Return R(0)=DUZ, R(1)=(0=OK, 1,2...=Can't sign on
for some reason)
 ; R(2)=verify needs changing, R(3)=Message, R(4)=0,
R(5)=msg cnt, R(5+n)
 ; R(R(5)+6)=# div user must select from,
R(R(5)+6+n)=div

 Signon/Security: Developer Tools

July 1995 Kernel 329
Revised September 2011 Developer's Guide
 Version 8.0

22.4.19 $$DECRYP^XUSRB1(): Decrypt String

Reference Type Supported

Category Signon/Security

IA # 2241

Description This extrinsic function decrypts a string that was encrypted on a Client system.
This function decrypts a string that has been encrypted using the Encrypt Delphi
function supplied by the RPC Broker, returning the decrypted string.

Format $$DECRYP^XUSRB1(encrypted_string)

Input Parameters encrypted_string: (required) Encrypted string to be decrypted.

Output returns: Returns the decrypted string.

22.4.20 $$ENCRYP^XUSRB1(): Encrypt String

Reference Type Supported

Category Signon/Security

IA # 2240

Description This extrinsic function encrypts a string before transport to a Client system, where
it will be decrypted. This function performs encryption on the input string,
returning the encrypted string.

Format $$ENCRYP^XUSRB1(string)

Input Parameters string: (required) The input string to be encrypted.

Output returns: Returns the encrypted string.

Signon/Security: Developer Tools

330 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

22.4.21 $$HANDLE^XUSRB4(): Return Unique Session ID String

Reference Type Supported

Category Signon/Security

IA # 4770

Description (This API is made available with Kernel Patch XU*8.0*395.) This extrinsic
function returns a unique Caché cluster string for a VistA system for use by
HealtheVet Desktop applications.

Format $$HANDLE^XUSRB4("namespace"[,timetolive])

Input Parameters "namespace": (required) This input parameter should start with the VistA
software namespace. In addition, users can add any additional
application/software identifiers.

 timetolive: (optional) This input parameter indicates the number of days that
this handle will be available for use. Possible values range from 1
to 7. The default is 1. The ^XTMP global requires that the zero
node hold the save through date. This value is cleaned up via the
XQ82 routine (i.e., Clean old Job Nodes in XUTL option [XQ
XUTL $J NODES]).

Output returns: Returns the unique Vista system Caché cluster string. The value
generated includes the data entered in the namespace input
parameter and $J and $H. If this value is already defined, a new
value is generated.

Example

In this example, we are creating a unique session ID for the RPC Broker namespace (i.e., "XWB"):

>S HDL=$$HANDLE^XUSRB4("XWB-CCOW")

>W HDL
XWB-CCOW928-57785_0

When checking the ^XTMP temporary global you would see:

^XTMP("XWB-CCOW928-57785_0",0) = 3050805^3050804

 Signon/Security: Developer Tools

July 1995 Kernel 331
Revised September 2011 Developer's Guide
 Version 8.0

22.4.22 ̂ XUVERIFY: Verify Access and Verify Codes

Reference Type Supported

Category Signon/Security

IA # 10051

Description This API validates Access and Verify codes. You can use it anytime within an
application program to verify that the person using the system is the same person
who signed onto the system.

Format ^XUVERIFY

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variables %: (required) If % equals:
• A—Check the Access code.

• V—C heck the Verify code.

• AV—Check both the Access and Verify code.

 %DUZ: (required) The user's number (DUZ value).

Output Variables %: Returns the following values:

• 2—Failure (the incorrect code was entered).

• 1—Success (the correct code was entered).

• 0—A question mark was entered.

• -1—A caret ("^") was entered.

Signon/Security: Developer Tools

332 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

22.4.23 $$CHECKAV^XUVERIFY(): Check Access/Verify Codes

Reference Type Supported

Category Signon/Security

IA # 10051

Description This extrinsic function checks an Access/Verify code pair entered by the user
(delimited by a semi-colon) and returns whether or not it is a valid pair.

Format $$CHECKAV^XUVERIFY(access_verify)

Input Parameters access_verify: (required) This is a string containing the Access and Verify code
pair delimited by a semi-colon (i.e., Access code;Verify code).

Output returns: Returns:
• Internal Entry Number (IEN)—Codes are OK.

• Zero (0)—Codes are not OK.

Example

>S X=$CHECKAV^XUVERIFY(<string>)

String = Access code;Verify code

22.4.24 WITNESS^XUVERIFY(): Return IEN of Users with A/V
Codes & Security Keys

Reference Type Controlled Subscription

Category Signon/Security

IA # 1513

Description This API returns the IEN of a user if he/she has an Access code, Verify code, and
security keys.

Format WITNESS^XUVERIFY(prefix,keys)

Input Parameters prefix: String to put before the Access/Verify code prompt.

 keys: String of security keys the user must have.

 Signon/Security: Developer Tools

July 1995 Kernel 333
Revised September 2011 Developer's Guide
 Version 8.0

Output returns: Returns:
• IEN (successful)—The user has an Access code, Verify

code, and security keys.

• 0 (failure)—The user does not have an Access code, Verify
code, and security keys.

Example

>S Y=$$WITNESS^XUVERIFY("Cosign","XUMGR") W !,Y

Cosign ACCESS CODE: ********
Cosign VERIFY CODE: ********
2

22.4.25 GETPEER^%ZOSV: VistALink—Get IP Address for Current
Session

Reference Type Controlled Subscription

Category Signon/Security

IA # 4056

Description This API retrieves an IP address value for the current session, which is required as
input (i.e., XWBTIP input variable) for the SETUP^XUSRB(): VistALink—Set
Up User's Partition in M API. The VistALink security module calls this API.

Format GETPEER^%ZOSV

Input Parameters none

Output returns: Returns the Internet Protocol (IP) address of the current connected
session to M.

Signon/Security: Developer Tools

334 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

July 1995 Kernel 335
Revised September 2011 Developer's Guide
 Version 8.0

23 Spooling: Developer Tools

In order for an application to spool reports, the application must call the Device Handler to open the spool
device. If the application fails to close the device, the spool document will not be accessible. The
application should close the spool device by using D ^%ZISC. Furthermore, queuing to the spooler
requires that the application invoke ^%ZTLOAD with the proper variables defined.

The ZTIO input variable can be set to identify how the device should be opened. If incorrectly set up, the
queued task could fail to send results to the spooler. If you have any doubt about how to set ZTIO, you
should leave it undefined. ^%ZTLOAD can define ZTIO with the appropriate variables from symbols left
in the current partition following the last call to the Device Handler.

NOTE: The following code samples are not complete. They do not contain code to issue form
feeds between pages of output.

REF: For the details of issuing form feeds, see the "Form Feeds" topic in the "Special Device
Issues" chapter in this manual.

Figure 69. Spooling: Sending output to the spooler (and pre-defining ZTIO)

SAMPLE ;SAMPLE ROUTINE
 ;
 S %ZIS="QM" D ^%ZIS G EXIT:POP
 I $D(IO("Q")) D D ^%ZTLOAD D HOME^%ZIS K IO("Q") Q
 .S ZTRTN="DQ^SAMPLE",ZTDESC="Sample Test routine"
 .S ZTIO=ION_";"_IOST
 .I $D(IO("DOC"))#2,IO("DOC")]"" S ZTIO=ZTIO_";"_IO("DOC") Q
 .I IOM S ZTIO=ZTIO_";"_IOM
 .I IOSL S ZTIO=ZTIO_";"_IOSL
DQ U IO W !,"THIS IS YOUR REPORT"
 W !,"LINE 2"
 W !,"LINE 3"
 D ^%ZISC
EXIT S:$D(ZTQUEUED) ZTREQ="@" K VAR1,VAR2,VAR3 Q

Figure 70. Spooling: Allowing output to go the spooler (without pre-defining ZTIO)

SAMPLE ;SAMPLE ROUTINE
 ;
 S %ZIS="QM" D ^%ZIS G EXIT:POP
 I $D(IO("Q")) D Q
 .S ZTRTN="DQ^SAMPLE",ZTDESC="Sample Test routine"
 .D ^%ZTLOAD D HOME^%ZIS K IO("Q") Q
DQ U IO W !,"THIS IS YOUR REPORT"
 W !,"LINE 2"
 W !,"LINE 3"
 D ^%ZISC
EXIT S:$D(ZTQUEUED) ZTREQ="@" K VAR1,VAR2,VAR3 Q

Spooling: Developer Tools

336 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

23.1 Application Program Interface (API)

Several APIs are available for developers to work with spooling. These APIs are described below.

23.1.1 DSD^ZISPL: Delete Spool Data File Entry

Reference Type Controlled Subscription

Category Spooling

IA # 1092

Description This API Deletes SPOOL DATA file (#3.519) entry following transfer of data, to
minimize consumption of data.

Format DSD^ZISPL

Input Parameters none

Output none

23.1.2 DSDOC^ZISPL: Delete Spool Document File Entry

Reference Type Controlled Subscription

Category Spooling

IA # 1092

Description This API deletes the SPOOL DOCUMENT file (#3.51) entry following transfer of
data, to minimize consumption of disk space.

Format DSDOC^ZISPL

Input Parameters none

Output none

July 1995 Kernel 337
Revised September 2011 Developer's Guide
 Version 8.0

24 TaskMan: Developer Tools

The TaskMan API consists of several callable entry points and an extrinsic variable. Use of these calls
makes the creation, scheduling, and monitoring of background processing from within applications
straightforward.

Developers must avoid directly setting information into TaskMan's globals to queue tasks. In fact, the
SAC specifies that TaskMan's calls be used. The structure of the globals is not static; there is no
commitment to support their current structure in the future.

REF: For more information on why and when to use TaskMan to perform queuing, see the
"TaskMan System Management: Overview" chapter in the Kernel Systems Management Guide.

24.1 How to Write Code to Queue Tasks

Writing code to queue a task is not difficult; however, the coding must be done carefully and
systematically. If you think of it in two parts, it will be easier to write. These two parts are the queuer and
the task:

• Queuer—Some code must invoke ^%ZTLOAD to create and schedule the task. This code is the
queuer. The most complex part of a queuer is determining which variables must be passed on to
the task.

In one type of queuer, the program application makes its own calls to ^%ZTLOAD to queue
tasks. In the other common type of queuer, scheduled options, an option is scheduled to run as a
task through the OPTION SCHEDULING file (#19.2); TaskMan itself takes care of the queuing.

• Task—Some code must perform the actual work in the background. Sometimes the task shares
code with an equivalent foreground activity. However, remember that a queued task runs under
special conditions that must be considered. For example, no interactive dialogue with the user is
possible.

Usually, both pieces of code should be planned together since they interact heavily.

24.1.1 Queuers

As mentioned above, there are two common types of queuers:

• Application code that itself acts as the queuer by calling ^%ZTLOAD.

• Options that are scheduled (in which case, TaskMan itself acts as the queuer).

TaskMan: Developer Tools

338 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Calling ^%ZTLOAD to Create Tasks

One common way to create tasks is to call TaskMan's main API, ^%ZTLOAD. You can use ^%ZTLOAD
interactively, or non-interactively.

REF: For more information on queuing tasks with ^%ZTLOAD, see the ^%ZTLOAD: Queue a
Task topic in this chapter.

24.1.1.1.1 Calling EN^XUTMDEVQ to Create Tasks

The EN^XUTMDEVQ API encapsulates the logic to handle both direct printing and queuing in a single
call.

24.1.1.1.2 Creating Tasks Using Scheduled Options

You can also create options that you ask the sites to schedule on a regular basis. In this case, TaskMan
itself (rather than application code) acts as the queuer. Site managers use TaskMan to queue options and
can schedule these options to run again and again on some specified schedule.

You should be careful because this creates a great possibility for confusion. Obviously, some options
cannot be scheduled, in the same way that some routines cannot be queued. When you create options that
should be scheduled, you should:

• Indicate whether an option can be scheduled through TaskMan and, if so, the recommended
frequency of scheduling. Do this using the DESCRIPTION field of the option.

• Indicate the format of data to pass to the scheduled option via the TASK PARAMETERS field, if
the option uses such data. Do this using the DESCRIPTION field of the option.

• Set the SCHEDULING RECOMMENDED field of the option to YES. This will make the option
show up in a Kernel report that lists all options on the system that should be scheduled.

• Consider using a name for the option that reflects the fact that it is intended to be run only by
TaskMan, if you create such an option.

• Give the option a parent (that is, attach it to a menu). This prevents the option from being deleted
by Kernel's Delete Unreferenced Options (XQ UNREF'D OPTIONS) purge option. If the option
cannot be used interactively, make sure that it is not attached to a menu that will be part of a
user's menu tree. Instead, attach it to a menu that is not on any user's menu tree. An example is
Kernel's ZTMQUEUABLE OPTIONS. It is not in any user menu tree. If you do not want to
create your own menu to be a parent of queuable options, you are allowed to attach your option to
Kernel's ZTMQUEUABLE OPTIONS option and export ZTMQUEUABLE OPTIONS through
KIDS' USE AS LINK FOR MENU ITEMS action.

When you create options that queue tasks but that cannot be scheduled themselves, you should be
especially clear in documenting this so that site managers will not try to schedule them.

 TaskMan: Developer Tools

July 1995 Kernel 339
Revised September 2011 Developer's Guide
 Version 8.0

Queued options differ from other tasks in only a few ways:

• They may have an entry and exit action and may set XQUIT in the entry action to avoid running.

• They can run on a scheduling cycle as defined by the system manager.

• They are designed explicitly for the system manager to use, since the option used to schedule
options is available only to system managers.

• They can be better documented than normal tasks because the OPTION file (#19) entry provides
a place for a permanent description of the task's purpose and behavior (the DESCRIPTION field).

• If the option is scheduled regularly, data can be passed to your task from the OPTION
SCHEDULING file's (#19.2) TASK PARAMETERS field; the data is made available to the task
at run time in the ZTQPARAM variable. The variable is only defined if an entry is made in the
TASK PARAMETERS field when the task is scheduled. The format that is expected of
information entered in the TASK PARAMETERS field should be described in the option's
DESCRIPTION field.

You should describe scheduling recommendations and the format, if any, for the TASK PARAMETERS
field (as well as in the option's DESCRIPTION field) in your software application installation guide for
all the queuable options, since options are usually set on their schedules shortly after installation.

24.1.2 Tasks

This topic describes information about Tasks. It applies whether the queuer that queued the task was a call
to ^%ZTLOAD, or TaskMan itself was running the task because it was scheduled in the OPTION
SCHEDULING file (#19.2).

When you write a task, you create an API that TaskMan can call to perform the work. The submanager
calls the API you specify to run the task. The submanager does more than pass your task a few
parameters, however; it creates an entire specialized environment for the task, according to your
specifications. Then the submanager calls your API, at which point your task begins running. When your
task quits, control passes back to the submanager.

The interface between tasks and submanagers determines the special problems you must solve and the
features you have available to do so. This interface consists of two parts:

• The environment and tools that the submanagers guarantee to the tasks.

• The responsibilities of the tasks themselves.

TaskMan: Developer Tools

340 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

24.1.2.1.1 Key Variables and Environment When Task is Running

All VistA processes run in a guaranteed environment, with standard variables and devices available to the
software. The guaranteed environment for tasks differs from that of foreground processes in some ways,
however. This reflects the differences between the foreground and background, and the special services
provided by TaskMan. The submanagers guarantee tasks the following variables and other features:

• DT: While this usually designates the date when a user signs on, here it contains the date when
the task first began running (in FileMan format, of course).

• DUZ(: The entire DUZ array (except DUZ("NEWCODE")), as defined at the time of your call to
the Program Interface, is always passed to your task. If DUZ was not properly set up at that time,
then it is set to 0. If DUZ(0) was not properly set up, then the submanager attempts to look it up
using your DUZ variable; if the lookup fails, it sets DUZ(0)="". The submanager does the same
thing with DUZ(2).

• IO*: All of the IO variables describing the output device that you receive are passed to you. If
you request no output device, then IO, IO(0), and ZTIO will all equal "".

• ZTDESC: This contains the free-text description of your task that you passed to the Program
Interface.

• ZTDTH: This contains the date and time (in $HOROLOG format) that you wanted your task to
begin running. Because delays from a number of sources can make your task begin late, this
variable may be useful.

• ZTIO: This contains your original output device specifications. Because the Device Handler
allows the use of Hunt Groups, it is possible that your task may get an output device other than
the one you requested. In such cases, however, the device will be one that the site manager
considers equivalent.

• ZTQUEUED: This variable is always defined when your task begins, and is only defined for
background tasks. Many queued routines can run either in the foreground or in the background.
The only reliable way to determine which situation is currently the case is using the M code:

>IF $D(ZTQUEUED)

• ZTRTN: This variable is the API that TaskMan will DO to start the task.

• ZTSK: Every task is passed its internal number so that it can make use of the Program Interface.

• Destination: Using ZTUCI, ZTIO, and ZTCPU, you can request a specific UCI on a specific
volume set and CPU node where your task should run. The location you request is where the
submanager will call your API. Remember that the SAC does not protect the TaskMan
namespaced input variables to your task (e.g., ZTIO, ZTSK, etc.), however. The submanagers
guarantee their values to the tasks, but once you begin running, their values may change. For
example, the utilities you call may alter these variables, or your own code may. If your task needs
to know these values throughout its execution, you should load them into your own namespaced
variables, which you can then protect.

• Device: If you request an IO device for your task then, when the task starts, the device will be
open. The submanager will even issue the USE command for you and after your task completes,
it will properly close the device for you. If you leave it open when you are finished with it, the
submanager will be able to recycle the device more efficiently for use with other tasks.

 TaskMan: Developer Tools

July 1995 Kernel 341
Revised September 2011 Developer's Guide
 Version 8.0

• Error Trap: The submanager always sets an error trap before calling your task. This way, if your
task errors out, the submanager can record that fact in the system error log, in TaskMan's error
log, and in the entry for your task in the TASKS file (#14.4).

• Priority: Your task will begin running with the priority specified if you request one.

• Saved Variables: The submanager passes any variables that the queuer saved using ZTSAVE.
These act as input variables.

• Tools: The task can rely upon the following tools to assist it in meeting its responsibilities (as
described below):

o $$S^%ZTLOAD

o ZTSTOP

o ZTQUEUED

o ZTREQ

o KILL^%ZTLOAD

o ^%ZTLOAD

o Device Handler

o Resource devices

o SYNC FLAGs

24.1.2.1.2 Checking for Stop Requests

You should write tasks in such a way that your tasks honor stop requests. Since Kernel 7.0, users have
been able to call the TaskMan User option to stop tasks that they started. A task should periodically check
whether it has been asked to stop and should gracefully shut down when asked. This involves four steps:

1. To check for a stop request, the task can execute the following code:
>IF $$S^%ZTLOAD

If this evaluates to TRUE, the user has asked the task to stop. This check should occur
periodically throughout the task; not so often as to increase significantly the task's CPU usage,
but often enough that the response time satisfies the users. For example, a report printout might
check once per page, while a massive data compilation might check once every hundred or even
thousand records. Very short tasks can choose not to check at all.

2. The task may need to perform some internal flagging or cleanup. Stop requests from a user rarely
come at ideal moments in the overall algorithm of the task, and the task may need to perform
some work to prepare to quit.

3. The task needs to notify the submanager that it responded to the user's request to stop, so that the
submanager can notify the user. The task should use the following code to do so:

>SET ZTSTOP=1

The ZTSTOP flag is processed by the submanager when the task quits. Do not KILL this variable
if you wish to pass it back to the submanager.

TaskMan: Developer Tools

342 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

4. The task should then quit. Depending on how deeply within loops these stop request checks are
made, it may take some processing to work out of all loops and quit on short notice. The code
may need to be adjusted to allow for this kind of exit.

In the end, checking for stop requests benefits not only the developer, by satisfying your users, but also
the users themselves by making them feel more in control, and the system managers by freeing them up
from stopping tasks for users.

24.1.2.1.3 Purging the Task Record

According to the SAC, tasks have a responsibility to remove their own records from the TASKS file
(#14.4) when they complete. This serves two purposes. First, it helps keep the TASKS file small, which
makes TaskMan more efficient. Second, because any tasks that cause errors will never reach the final
commands to delete the task's record, such tasks will remain in the TASKS file after they complete. This
greatly assists system management staff in identifying and troubleshooting problem tasks.

You have two methods to delete TASKS file (#14.4) entries:

• ZTREQ output variable

• KILL^%ZTLOAD API

The recommended method, simpler than the other, is to use the ZTREQ output variable to instruct the
submanager to delete your task's record after it finishes running. Do this with the following line of M
code:

>S ZTREQ="@"

Because the submanager does not get this variable back until after your task quits, you can set ZTREQ
anywhere within the task and still ensure your task does not delete its record if it errors out.

NOTE: If you KILL off the variable before the task quits, the submanager does not delete your
task.

The other method is to call KILL^%ZTLOAD to delete the task's record. This solution has two
disadvantages. First, the ZTSK input variable to KILL^%ZTLOAD needs to equal the task number of the
task to delete, which may not be the case if the task has called other utilities. The task can solve this
problem by saving off ZTSK at the beginning and restoring it prior to calling KILL^%ZTLOAD. Second,
you must place the call at the end of the task, just prior to quitting, ensuring the record remains if the task
encounters an error. This causes problems for tasks that lack a single exit point, but you can solve this by
writing a new API for the task that does the main body of the task, performs the deletion, and then quits.

 TaskMan: Developer Tools

July 1995 Kernel 343
Revised September 2011 Developer's Guide
 Version 8.0

24.1.2.1.4 Checking For Background Execution: ZTQUEUED

When you share code for both foreground and background processing, you often need the code to behave
differently under the two situations. The only reliable way to test whether the code is running in the
background is to check if the ZTQUEUED variable is defined. It will only be defined if the current
running job is a task. You can check for its existence, and therefore, whether the code is truly running in
the background, with the following M statement:

>IF $D(ZTQUEUED)

24.1.2.1.5 Post-Execution Commands: ZTREQ

Tasks can make the submanager execute a certain limited set of commands after the tasks complete. Use
the ZTREQ output variable to describe these post-execution commands.

The use of ZTREQ to delete a task's record has already been discussed above. ZTREQ can also be used to
edit and/or reschedule the task.

• To reschedule the task to run again immediately:
>S ZTREQ=""

• To requeue a modified version of your task:

Use ZTREQ to specify how to modify the existing task to run again. By optionally setting any of
the various ^-pieces of ZTREQ, you can modify that aspect of how the rescheduled task will run.
The purpose and format of each ^-piece roughly corresponds to the input variables of
REQ^%ZTLOAD listed below:

Table 22. TaskMan: ZTREQ piece and equivalent REQ^ZTLOAD variable

ZTREQ Piece Equivalent REQ^%ZTLOAD Variable

1 ZTDTH

2 ZTIO

3 ZTDESC

4^5 ZTRTN

All of these ^-pieces in ZTREQ are optional; only set the pieces that affect parameters you want
to change. However, that in the case of leaving piece 2 NULL, the task uses the same device that
your task initially requested, which is not necessarily the device that it actually got. If the system
manager uses hunt groups, your task can use a task other than the one it requested. To reschedule
the task to run on the device your task currently has, you must build up the ZTIO value using your
IO variables.

TaskMan: Developer Tools

344 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

• To edit the task without actually rescheduling it:

Set ^-piece 1 to "@", and set the other pieces to the values you want. This is equivalent to setting
ZTDTH="@", as described in the REQ^%ZTLOAD API below. Remember, however, to include
at least one caret ("^") in ZTREQ to do this, since if ZTREQ="@" the task will be deleted.

Remember that ZTREQ is not an input parameter that you pass to the submanager; it is an output
parameter from your task. The submanager does its best to honor your request, but if the request
is impossible, then there is no way for you to find out. For example, if you specify that the
submanager should requeue your task, then it attempts to do so; if it finds that your task has been
deleted, there is no way for the submanager to let you know. When the submanager cannot honor
your request, it ignores it.

24.1.2.1.6 Calling ^%ZTLOAD within a Task

Tasks can use all of the standard TaskMan API calls. There is no reason a task should not itself call the
TaskMan API to do requeuing, deletion, or any of the other standard calls. The only way such calls are
special is that they have many of the variables they need to pass already defined for them by the
submanager.

You should be careful to avoid interference from these pre-defined variables; sometimes the submanager
passes you the value you will need for the API call, but sometimes you will need a different one. For
example, from within a task that has an IO device, to call ^%ZTLOAD to queue a task without an IO
device, you should set ZTIO (to ""), because the input variable passed in by the submanager may still be
defined. With a little care, these kinds of problems can easily be anticipated and prevented.

24.1.2.1.7 Calling the Device Handler (^%ZIS) within a Task

The main Device Handler API (^%ZIS) by itself is not designed to open more than one I/O device beyond
the already-open home device. Within a task, you are free to open one additional device (beyond the
home device) using ^%ZIS. If you need to open more than one device concurrently within a task,
however, you should use Kernel's multiple device APIs (OPEN^%ZISUTL, USE^%ZISUTL, and
CLOSE^%ZISUTL).

 TaskMan: Developer Tools

July 1995 Kernel 345
Revised September 2011 Developer's Guide
 Version 8.0

24.1.2.1.8 Long Running Tasks—Writing Two-step Tasks

A situation you should always consider is how to deal with jobs that will take a long time to gather data
and then print a report of that data. If you write this as a single job that both gathers and prints data, any
requested IO device that will eventually be used to print that data will sit idle for a long period of time.
Thus, the IO device is unused and unavailable to any other tasks during that entire period of time it takes
to gather the data for your report.

If you write the task to start without a device, and to call the ^%ZIS: Standard Device Call API to open
the device when the report is ready, two different problems occur:

1. First, if the device is heavily used by tasks, then this task may never get a chance to open the
device; TaskMan will keep it busy with other tasks.

2. Second, if the task does manage somehow to grab the device away from TaskMan, it interferes
with the fair distribution of resources, potentially running ahead of other tasks that have been
waiting longer.

One way around this problem is to queue the task to a spool device. Spool devices are always available,
which solves the problem of tying up a device. However, some system managers discourage use of
spoolers, because of the possibility for disk crashes resulting from users who send excessively large
reports to the spooler.

Therefore, the best solution to this problem involves splitting the job into two separate tasks:

1. Gather—The first task runs without a device, gathers and generates the report data in the ^XTMP
global, and schedules the second task (Print).

2. Print—The second task runs with the IO device and prints the report data generated by the first
task (Gather).

In order to perform these two separate but associated tasks, Kernel provides the following APIs:

1. $$QQ^XUTMDEVQ(): Double Queue—Direct Queuing in a Single Call—This API creates the
Gather and the Print tasks. The gather task is scheduled to run, while the print task is not
scheduled.

2. $$REQQ^XUTMDEVQ(): Schedule Second Part of a Task—At the end of the Gather task, it
invokes the $$REQQ^XUTMDEVQ API to schedule the Print task.

24.1.2.1.9 Long Running Tasks—Using ^%ZIS

As an alternative to splitting the job into two separate tasks an interactive call can be made to ^%ZIS to
allow the user to select the output device without opening it. The gather data portion of the job can then
proceed without tying up the output device. When the job is ready to print it can open the output device
using the variables that were saved when the ^%ZIS device selection call was made.

To allow for selection of the output device without actually opening it make sure the ^%ZIS input
variable %ZIS contains "N".

TaskMan: Developer Tools

346 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Some of the variables returned by the device selection call to ^%ZIS need to be saved for use when the
device open call is made. These include:

• IO

• IO("DOC"),

• IOM

• ION

• IOSL

If IO("Q") is 1 queuing has been selected and your code should handle that and take care of the queuing.

The following code excerpt shows the basic structure for allowing the user to select whether a job is
queued or not and the output device to use.

Figure 71. Sample code allowing users to select whether a job is queued or not and the output device to use

 N POP,%ZIS
 S %ZIS="NQ"
 W !
 D ^%ZIS
 I POP G EXIT
 I ION=("HOST FILE SERVER")!(ION="P-MESSAGE-HFS") S SAVEHFIO=IO
 S SAVEIOP=ION_";"_$G(IOST)_";"_$G(IO("DOC"))_";"_$G(IOM)_";"_$G(IOSL)
 ;
 I IO("Q") D Q
 .;Queue the report.
 .;If ZTIO is not explicitly set to null then %ZTLOAD will open
 .;the device.
 . S ZTIO=""
 .
 .
 .
 . D ^%ZTLOAD
 .
 .
 .
 I 'IO("Q") D Q
 .;Run the report.
 .
 .
 .

 TaskMan: Developer Tools

July 1995 Kernel 347
Revised September 2011 Developer's Guide
 Version 8.0

When it is time to print, the output device can be opened using the variables that were saved.

Figure 72. Sample code printing to a device using saved variables

 N IOP,POP,VDUZ,XMDUZ,XMQUIET,XMSUB,XMY,%ZIS
 ;Check for output to p-message. TaskMan will automatically copy
 ;^TMP("XM-MESS",$J) to the tasked job.
 I $D(^TMP("XM-MESS",$J)) D
 . S XMQUIET=1
 . S XMDUZ=$G(^TMP("XM-MESS",$J,"XMAPHOST","XMINSTR","FROM"))
 . I XMDUZ="" S XMDUZ=^TMP("XM-MESS",$J,"XMAPHOST","XMDUZ")
 . S XMSUB=^TMP("XM-MESS",$J,"XMAPHOST","XMSUB")
 . S VDUZ=""
 . F S VDUZ=$O(^TMP("XM-MESS",$J,"XMY",VDUZ)) Q:VDUZ="" S XMY(VDUZ)=""
 . I $D(XMY(DUZ)),$D(^TMP("XM-MESS",$J,"XMAPHOST","XMINSTR","SELF BSKT")
) S XMY(DUZ,0)=^TMP("XM-MESS",$J,"XMAPHOST","XMINSTR","SELF BSKT")
 S IOP=SAVEIOP
 I $D(SAVEHFIO) S %ZIS("HFSNAME")=SAVEHFIO
 D ^%ZIS
 I POP G EXIT
 U IO

If p-message was selected then ^TMP("XM-MESS",$J) will be defined and will contain all the
information required to deliver the message. Setting XMQUIET=1 stops interactive processing by
MailMan. XMDUZ is the sender and XMSUB is the subject. The VDUZ loop is the list of people to
which the user has chosen to send the message. Finally, the check for "SELF BSKT" is to determine if the
user has selected a particular basket to which the message is to be delivered.

24.1.2.1.10 Using SYNC FLAGs to Control Sequences of Tasks

You can use SYNC FLAGs together with resource type devices when queuing through ^%ZTLOAD, as a
mechanism to ensure sequential processing of a series of tasks. The mechanism also ensures that
subsequent tasks in the series will not run if a previous task errors out or completes unsuccessfully.

A SYNC FLAG is a unique, arbitrary FREE TEXT name you use as an identifying flag. You use SYNC
FLAGs in conjunction with resource devices; when paired with a particular resource device, the pairing is
called a SYNC FLAG pair.

The SYNC FLAG pair ties all tasks that have requested the same SYNC FLAG and the same resource
together. If a task in a group of tasks is running, all other tasks queued with the same SYNC FLAG pair
have to wait until the running task has completed. If one task in the series does not finish successfully,
then all other tasks using the same SYNC FLAG pair will wait.

To build a series of tasks, you need to choose a resource device and queue the entire series of tasks in the
same order that they should run, through ^%ZTLOAD. Use the ZTIO variable to queue all tasks in the
series to the same resource device. Use the ZTSYNC parameter to use the same SYNC FLAG for each
task in the series. TaskMan then runs the series of tasks in the same order that they were queued.

The SYNC FLAG pair uniquely identifies one group of tasks using one resource device. TaskMan builds
a SYNC FLAG pair by concatenating the requested resource (from the ^%ZTLOAD ZTIO input variable)
with the name of the SYNC FLAG (from the ^%ZTLOAD ZTSYNC input variable).

TaskMan: Developer Tools

348 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

In any given task in the series of tasks, you indicate that the task completed successfully by KILLing the
ZTSTAT variable or setting it to 0. Otherwise, no subsequent tasks will be able to run.

The following describes how using SYNC FLAG pairs ensures sequential processing of a series of tasks:

1. When a task is queued through ^%ZTLOAD, if the ZTSYNC is defined, then the SYNC FLAG
defined by ZTSYNC is saved with that task.

2. When TaskMan is ready to start the task, after it is able to allocate the resource device to which it
was queued, it checks whether the SYNC FLAG pair (Resource_SYNC FLAG) exists in the
TASK SYNC FLAG file (#14.8).

3. If the SYNC FLAG pair does not exist in the TASK SYNC FLAG file (#14.8), TaskMan creates
an entry for the SYNC FLAG pair in the TASK SYNC FLAG file (#14.8) and starts the task.

If, on the other hand, the SYNC FLAG pair already exists in the TASK SYNC FLAG file
(#14.8), then any task requiring the same SYNC FLAG has to wait until the corresponding entry
in the TASK SYNC FLAG file (#14.8) is deleted.

4. If the task was able to start, the variable ZTSTAT is set to "1" in the running task.

To indicate success (e.g., that the series of tasks should continue), you must KILL ZTSTAT or set
it to zero. In this case, when your task completes, the SYNC FLAG pair for that task will be
cleared.

To indicate failure (e.g., that the series of tasks should not continue) leave ZTSTAT set to 1.

5. When the task completes, TaskMan checks to see the value of ZTSTAT. If ZTSTAT is set to zero
(0) or not defined, TaskMan deletes the SYNC FLAG pair entry in the TASK SYNC FLAG file
(#14.8). This allows any future tasks in the series to run.

If, on the other hand, ZTSTAT is left with a positive value, the task is assumed to have had some
kind of error. In this case, the value of ZTSTAT is saved in the STATUS field of the SYNC
FLAG pair entry, and the entry in the TASK SYNC FLAG file (#14.8) is not deleted. Subsequent
jobs in the series are prevented from running.

If the task errors out, the SYNC FLAG pair entry is also left in the TASK SYNC FLAG file (#14.8),
preventing subsequent jobs in the series from running. TaskMan puts a message in the STATUS field,
saying that the task stopped due to an error.

 TaskMan: Developer Tools

July 1995 Kernel 349
Revised September 2011 Developer's Guide
 Version 8.0

24.2 Direct Mode Utilities

You can use TaskMan's direct mode utilities from both the Manager and Production UCIs. Developers
cannot call them from applications, however.

24.2.1 >D ^ZTMB: Start TaskMan

This utility can be used to start TaskMan for the first time since system startup. As part of this startup,
any tasks scheduled to begin at system startup are fired off.

24.2.2 >D RESTART^ZTMB: Restart TaskMan

This utility restarts TaskMan. RESTART^ZTMB, unlike ^ZTMB, does not fire off the startup tasks and
should be used whenever the startup tasks have already been initiated. The Restart TaskMan option uses
this entry point.

24.2.3 >D ^ZTMCHK: Check TaskMan's Environment

This utility provides the same functionality as the Check Taskman's Environment option but from
Programmer mode.

24.2.4 >D RUN^ZTMKU: Remove Taskman from WAIT State
Option

This utility provides the same functionality as the Remove Taskman from WAIT State option but from
Programmer mode.

24.2.5 >D STOP^ZTMKU: Stop Task Manager Option

This utility provides the same functionality as the Stop Task Manager option but from Programmer mode.

24.2.6 >D WAIT^ZTMKU: Place Taskman in a WAIT State Option

This utility provides the same functionality as the Place Taskman in a WAIT State option, but from
Programmer mode.

24.2.7 >D ^ZTMON: Monitor TaskMan Option

This utility provides the same functionality as the Monitor Taskman option, but from Programmer mode.

TaskMan: Developer Tools

350 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

24.3 Application Program Interface (API)

Several APIs are available for developers to work with TaskMan. These APIs are described below.

24.3.1 $$DEV^XUTMDEVQ(): Force Queuing—Ask for Device

Reference Type Supported

Category TaskMan

IA # 1519

Description (Added with Kernel Patch XU*8.0*275.) This extrinsic function encapsulates the
logic to handle direct (FORCED) queuing in a single call and ask users for a
device.

Format $$DEV^XUTMDEVQ(ztrtn[,ztdesc][,%var][,%voth][,%zis][,iop]
[,%wr])

Input Parameters ztrtn: (required) The API that TaskMan will DO to start the task (job).
You can specify it as "LABEL^ROUTINE" or "^ROUTINE" or
"ROUTINE".

 ztdesc: (optional) Task description, up to 200 characters describing the
task, with the software application name at the front. Default to
name of [tag]^routine.

 %var: (optional) ZTSAVE values for the task. Single value or passed by
reference, this will be used to S ZTSAVE(). It can be a string of
variable names separated by ";". Each ;-piece will be used as a
subscript in ZTSAVE.

 %voth: (optional) Passed by reference, %voth(sub)="" or explicit value
sub—this is any other %ZTLOAD variable besides ZTRTN,
ZTDESC, ZTIO, ZTSAVE. For example:

%VOTH("ZTDTH")=$H

 %zis: (optional) Default value "MQ". Passed by reference, standard
%zis variable array for calling the Device Handler.

 iop: (optional) The IOP variable as defined in Kernel's Device
Handler.

 %wr: (optional) If %WR>0 then write text to the screen as to whether or
not the queuing was successful.

Output returns Returns:
• 0—If run ztrtn without queuing.

• -1—If unsuccessful device call or failed the %ZTLOAD
call.

 TaskMan: Developer Tools

July 1995 Kernel 351
Revised September 2011 Developer's Guide
 Version 8.0

Example

This example is a job that consists of gathering information and then printing it. Assume that the
gathering takes a few hours. We do not want the device that the user selects to be tied up for that time, so
we divide the job into two tasks. The first task gathers the information, and the second task prints it. We
use the $$DEV^XUTMDEVQ API to select the device and queue up the print task, and the
$$NODEV^XUTMDEVQ(): Force Queuing—No Device Selection API to schedule the gather task. We
use the REQ^%ZTLOAD: Requeue a Task API to schedule the print task when the gather task finishes.

NOTE: You could also use the $$REQQ^XUTMDEVQ(): Schedule Second Part of a Task API
to schedule the print task.

Figure 73. $$DEV^XUTMDEVQ example—Sample code

ARHBQQ ;SFVAMC/GB - Demo of 'gather' and 'print' in 2 tasks ;1/19/06 08:31
 ;;1.1
DEV ;
 N ARH,ARHZTSK,X
 ;The user doesn't know it, but he's actually queuing the second task,
 ;the "print" portion of the job. The only question the user will be
 ;asked is to select the device.
 S ARH("ZTDTH")="@" ;Don't schedule the task to run, we'll do it later.
 ;In the following, the "Q" sets IOP=Q, which forces queuing.
 S X=$$DEV^XUTMDEVQ("PRINT^ARHBQQ","ARHB Print",,.ARH,,"Q",1)
 W !,"X=",X
 Q:X<1
 N ARH
 ;Now queue the first task, the "gather" portion of the job. The user
 ;won't be asked any questions.
 S ARHZTSK=X ; Save the ZTSK number of the "print" task.
 S ARH("ZTDTH")=$H ; Force the task to start now.
 ;To ask the user the start time, comment out the above line.
 S X=$$NODEV^XUTMDEVQ("GATHER^ARHBQQ","ARHB Gather","ARHZTSK",.ARH,1)
 W !,"X=",X
 Q

TaskMan: Developer Tools

352 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

24.3.2 EN^XUTMDEVQ(): Run a Task (Directly or Queued)

Reference Type Supported

Category TaskMan

IA # 1519

Description This API encapsulates the logic to handle both direct printing and queuing in a
single call.

EN^XUTMDEVQ calls ^%ZIS to query the user for device selection. The user
can choose a device on which to run the job directly or choose to queue the job.

After calling ^%ZIS, EN^XUTMDEVQ looks to see if the queuing was chosen. If
so, EN^XUTMDEVQ uses the values from the ztrtn, ztdesc, and ztsave input
parameters to queue the job to the chosen device. If the user did not choose to
queue, EN^XUTMDEVQ runs the job directly using the ztrtn input parameter.
Thus, EN^XUTMDEVQ provides a simple way to facilitate both queuing and
running a job directly.

If the IOP variable is defined before calling EN^XUTMDEVQ, it will have the
same effect as it does if defined before a ^%ZIS call.

If the ZTPRI or ZTKIL variables are defined before calling EN^XUTMDEVQ,
they will have the same effect as they do if defined before an ^%ZTLOAD call.
Other ^%ZTLOAD input variables have no effect, however.

You do not need to "USE IO" in the routine specified in the ztrtn input parameter;
IO will be the current device, whether the job is queued or run directly. Also, you
do not need to pass "Q" in the top level of the %ZIS input array; if the top level of
the array does not contain "Q", "Q" will be appended to it (to allow queuing).

Format EN^XUTMDEVQ(ztrtn,ztdesc,.ztsave[,.%zis][,retztsk])

Input Parameters ztrtn: (required) The API that TaskMan will DO to start the task. You
can specify it as "LABEL^ROUTINE" or "^ROUTINE" or
"ROUTINE".

 ztdesc: (required) Task description, up to 200 characters describing the
task, with the software application name at the front.

 .ztsave: (required) Pass by reference. Set up this array in the same format
as the ztsave input array is set up for the ^%ZTLOAD TaskMan
API. The array you set up in ztsave is passed directly as ztsave to
TaskMan if the user chooses to queue the job.

 TaskMan: Developer Tools

July 1995 Kernel 353
Revised September 2011 Developer's Guide
 Version 8.0

 .%zis: (optional) Pass by reference. String containing input specifications
for the Device Handler. Set up the array in the same way as the
%ZIS array is set up for the ^%ZIS: Standard Device Call API.
The array you set up in the %zis input parameter is passed directly
as %ZIS to the Device Handler.

All %zis subscripts from the regular ^%zis call ("A", "B",
"HFSMODE", etc.) can be passed in the %zis input array.

 retztsk: (optional) This is the return task number (i.e., ztsk). Put a number
in this parameter, such that $G(retztsk), then ztsk will exist as an
output variable. Otherwise, ztsk will not exist as an output
variable.

Output ztsk: If a number is entered in the retztsk input parameter, the task
number assigned to a task is returned.

Example

Figure 74. EN^XUTMDEVQ: Sample report

ZZYZOPT ;ISC-SF/doc
 ;;1.0;;
EN ;
 N ZZEN K X,DIC S DIC=9.6,DIC(0)="AEMO" D ^DIC
 Q:+Y'>0 S ZZEN=+Y
 ;
 K ZTSAVE S ZTSAVE("ZZEN")=""
 D EN^XUTMDEVQ("P^ZZYZOPT","Print from BUILD File",.ZTSAVE)
 Q
P ;
 ; code for printout
 ;
 W !,"Here goes the body of the report!"
 W !,"ZZEN = ",ZZEN
 Q

TaskMan: Developer Tools

354 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

24.3.3 $$NODEV^XUTMDEVQ(): Force Queuing—No Device
Selection

Reference Type Supported

Category TaskMan

IA # 1519

Description (Added with Kernel Patch XU*8.0*275.) This extrinsic function encapsulates the
logic to handle direct (FORCED) queuing in a single call and does not ask users
for a device.

Format $$NODEV^XUTMDEVQ(ztrtn[,ztdesc][,%var][,%voth][,%wr])

Input Parameters ztrtn: (required) The API that TaskMan will DO to start the task (job).
You can specify it as "LABEL^ROUTINE" or "^ROUTINE" or
"ROUTINE".

 ztdesc: (optional) Task description, up to 200 characters describing the
task, with the software application name at the front. Default to
name of [tag]^routine.

 %var: (optional) ZTSAVE values for the task. Single value or passed by
reference, this will be used to S ZTSAVE(). It can be a string of
variable names separated by ";". Each ;-piece will be used as a
subscript in ZTSAVE.

 %voth: (optional) Passed by reference, %voth(sub)="" or explicit value
sub—this is any other %ZTLOAD variable besides ZTRTN,
ZTDESC, ZTIO, ZTSAVE. For example:

%VOTH("ZTDTH")=$H

 %wr: (optional) If %WR>0 then write text to the screen as to whether or
not the queuing was successful.

Output returns Returns:
• > 0—Successful; Task # (number of the job).

• -1—Unsuccessful; If failed, the %ZTLOAD call.

 TaskMan: Developer Tools

July 1995 Kernel 355
Revised September 2011 Developer's Guide
 Version 8.0

Example

This example is a job that consists of gathering information and then printing it. Assume that the
gathering takes a few hours. We do not want the device that the user selects to be tied up for that time, so
we divide the job into two tasks. The first task gathers the information, and the second task prints it. We
use the $$DEV^XUTMDEVQ(): Force Queuing—Ask for Device API to select the device and queue up
the print task, and the $$NODEV^XUTMDEVQ API to schedule the gather task. We use the
REQ^%ZTLOAD: Requeue a Task API to schedule the print task when the gather task finishes.

NOTE: You could also use the $$REQQ^XUTMDEVQ(): Schedule Second Part of a Task API
to schedule the print task.

Figure 75. $$NODEV^XUTMDEVQ example—Sample code

ARHBQQ ;SFVAMC/GB - Demo of 'gather' and 'print' in 2 tasks ;1/19/06 08:31
 ;;1.1
DEV ;
 N ARH,ARHZTSK,X
 ;The user doesn't know it, but he's actually queuing the second task,
 ;the "print" portion of the job. The only question the user will be
 ;asked is to select the device.
 S ARH("ZTDTH")="@" ;Don't schedule the task to run, we'll do it later.
 ;In the following, the "Q" sets IOP=Q, which forces queuing.
 S X=$$DEV^XUTMDEVQ("PRINT^ARHBQQ","ARHB Print",,.ARH,,"Q",1)
 W !,"X=",X
 Q:X<1
 N ARH
 ;Now queue the first task, the "gather" portion of the job. The user
 ;won't be asked any questions.
 S ARHZTSK=X ; Save the ZTSK number of the "print" task.
 S ARH("ZTDTH")=$H ; Force the task to start now.
 ;To ask the user the start time, comment out the above line.
 S X=$$NODEV^XUTMDEVQ("GATHER^ARHBQQ","ARHB Gather","ARHZTSK",.ARH,1)
 W !,"X=",X
 Q

TaskMan: Developer Tools

356 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

24.3.4 $$QQ^XUTMDEVQ(): Double Queue—Direct Queuing in a
Single Call

Reference Type Supported

Category TaskMan

IA # 1519

Description (Added with Kernel Patches XU*8.0*275 and updated with Kernel Patch
XU*8.0*389.) This extrinsic function encapsulates the logic to handle direct
queuing in a single call. This extrinsic function does a double queuing:

• Queue up the second task to a device, but do not schedule the task in
TaskMan.

• Queue up the first task to ZTIO="" and schedule it.

If it will take a long time to gather and print data, users should split the job into
two tasks:

1. Gather Data—The first task gathers the data.

2. Print Data—The second task prints the data.

Separating the data-gathering task from the data print task helps avoid
unnecessarily tying up a printer while large amounts of data are gathered.

The task number of the second task (i.e., print data) is added to the saved variables
with the name XUTMQQ. This makes it easier to schedule the second task when
the first task (i.e., gather data) has finished.

To schedule the second task to run at the end of the first task, you must call the
$$REQQ^XUTMDEVQ(): Schedule Second Part of a Task API.

Format $$QQ^XUTMDEVQ(%rtn[,%desc][,%var1][,%voth1][,%zis][,iop][,%wr],
%rtn2[,%desc2][,%var2][,%voth2])

Input Parameters %rtn: (required) First task that TaskMan will run, usually a search and
build sorted data type process (i.e., gather data). The API that
TaskMan will DO to start the task. You can specify it as
"LABEL^ROUTINE" or "^ROUTINE" or "ROUTINE".
[tag]^routine that TaskMan will run.

 %desc: (optional) First task description, up to 200 characters describing
the task, with the software application name at the front. Defaults
to name of [tag]^routine.

 %var1: (optional) ZTSAVE values for the first task. Single value or
passed by reference, this will be used to SET ZTSAVE(). It can be
a string of variable names separated by ";". Each ;-piece will be
used as a subscript in ZTSAVE.

 TaskMan: Developer Tools

July 1995 Kernel 357
Revised September 2011 Developer's Guide
 Version 8.0

 %voth1: (optional) First task other parameter. Passed by reference,
%voth(sub)="" or explicit value sub—this is any other
%ZTLOAD variable besides ZTRTN, ZTDESC, ZTIO, ZTSAVE.
For example:

%VOTH("ZTDTH")=$H

 %zis: (optional) Default value "MQ". Passed by reference, standard
%ZIS variable array for calling the Device Handler. Except for
one difference, the second task of the job will be tasked to this
device call.

Exception:

• IF $D(%ZIS)=0 then default value is "MQ" and call the
Device Handler.

• IF $D(%ZIS)=1,%ZIS="" then queue the second task also
with ZTIO="" (i.e., do not do the Device Handler call).

 iop: (optional) The IOP variable as defined in Kernel's Device
Handler. Default value "Q"—if IOP is passed and IOP does not
start with "Q;" then "Q;" will be added.

 %wr: (optional) If %WR>0 then write text to the screen as to whether or
not the queuing was successful.

 %rtn2: (required) Second task that TaskMan will run, usually a print
process (i.e., print data).The API that TaskMan will DO to start
the task. You can specify it as "LABEL^ROUTINE" or
"^ROUTINE" or "ROUTINE".

 %desc2: (optional) Second task description, up to 200 characters
describing the task, with the software application name at the
front. Default to name of [tag]^routine.

 %var2: (optional) ZTSAVE values for the second task. Single value or
passed by reference, this will be used to S ZTSAVE(). It can be a
string of variable names separated by ";". Each ;-piece will be
used as a subscript in ZTSAVE.

• If %var1 is not passed and $D(%VAR), then also send
%VAR data to the second task.

• If $D(%VAR1), then do not send %VAR data to the
second task.

TaskMan: Developer Tools

358 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

 %voth2: (optional) Second task other parameter, usually not needed.
Passed by reference, %voth(sub)="" or explicit value sub—this is
any other %ZTLOAD variable besides ZTRTN, ZTDESC, ZTIO,
ZTSAVE. For example:

%VOTH("ZTDTH")=$H

 NOTE: If %voth1("ZTDTH") is passed, it will be ignored
as it is necessary to S ZTDTH="@" for the second task—
this creates the task but does not schedule it.

Output ztsk1^ztsk2: Returns:
• ztsk1^ztsk2—If successfully queued:

− ztsk1 = ZTSK value of first task.

− ztsk2 = ZTSK value of second task.
• -1—If unsuccessful device call or failed %ZTLOAD call.

 TaskMan: Developer Tools

July 1995 Kernel 359
Revised September 2011 Developer's Guide
 Version 8.0

Example

This example is a job that consists of gathering information and then printing it. Assume that the
gathering takes a few hours. We do not want the device that the user selects to be tied up for that time, so
we divide the job into two tasks. The first task gathers the information, and the second task prints it. We
use the $$QQ^XUTMDEVQ API to select the device, schedule the gather task, and queue the print task.
We use the $$REQQ^XUTMDEVQ(): Schedule Second Part of a Task API to schedule the print task
when the gather task finishes.

NOTE: This is the easiest way to divide a job into two tasks.

Figure 76. $$QQ^XUTMDEVQ example—Sample code

ARHBQQ ;SFVAMC/GB - Demo of 'gather' and 'print' in 2 tasks ;1/19/06 08:31
 ;;1.1
QQ ;
 N X
 S X=$$QQ^XUTMDEVQ("GATHERQ^ARHBQQ","ARHB
Gather",,,,,1,"PRINTQ^ARHBQQ","ARHB Print")
 W !,"X=",X
 Q
GATHERQ ;
 N ARHJ,X
 S ZTREQ="@"
 S ARHJ="ARHB-QQ"_"-"_$J_"-"_$H ; namespace + unique ID
 K ^XTMP(ARHJ) ; Use ^XTMP to pass a lot of data between tasks.
 S ^XTMP(ARHJ,0)=$$FMADD^XLFDT(DT,1)_U_DT ; Save-thru and create dates.
 S ^XTMP(ARHJ)="HI MOM!" ; Pretend this is a lot of data!
 ; XUTMQQ holds the ZTSK of the print task
 S X=$$REQQ^XUTMDEVQ(XUTMQQ,$H,"ARHJ") ; Schedule print task to start
 Q
PRINTQ ;
 S ZTREQ="@"
 ;U IO ; Don't need this if invoked using a ^XUTMDEVQ API.
 W !,"The secret message is: '",$G(^XTMP(ARHJ)),"'"
 K ^XTMP(ARHJ)
 Q

TaskMan: Developer Tools

360 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

24.3.5 $$REQQ^XUTMDEVQ(): Schedule Second Part of a Task

Reference Type Supported

Category TaskMan

IA # 1519

Description (Added with Kernel Patch XU*8.0*389.) This extrinsic function schedules the
second task (i.e., print data) from the $$QQ^XUTMDEVQ(): Double Queue—
Direct Queuing in a Single Call API.

If it will take a long time to gather and print data, users should split the job into
two tasks:

1. Gather Data—The first task gathers the data.

2. Print Data—The second task prints the data.

Separating the data-gathering task from the data print task helps avoid
unnecessarily tying up a printer while large amounts of data are gathered.

This API makes sure that only the scheduled time and any variables in %VAR are
passed to the REQ^%ZTLOAD: Requeue a Task.

Format $$REQQ^XUTMDEVQ(xutsk,xudth[,[.]%var])

Input Parameters xutsk: (required) This input parameter is the TaskMan task to schedule
the second task from the $$QQ^XUTMDEVQ(): Double Queue—
Direct Queuing in a Single Call API and should be in the
XUTMQQ variable.

 xudth: (required) This input parameter is the new scheduled run time.

 [.]%var: (optional) This input parameter is converted to the ZTSAVE
variable; it is the same as the %var input parameter for the
$$DEV^XUTMDEVQ(): Force Queuing—Ask for Device API.

Output returns: Returns:
• 1—Successful

• 0—Unsuccessful

 TaskMan: Developer Tools

July 1995 Kernel 361
Revised September 2011 Developer's Guide
 Version 8.0

Example

This example is a job that consists of gathering information and then printing it. Assume that the
gathering takes a few hours. We do not want the device that the user selects to be tied up for that time, so
we divide the job into two tasks. The first task gathers the information, and the second task prints it. We
use the $$QQ^XUTMDEVQ(): Double Queue—Direct Queuing in a Single Call API to select the device,
schedule the gather task, and queue the print task. We use the $$REQQ^XUTMDEVQ API to schedule
the print task when the gather task finishes.

NOTE: This is the easiest way to divide a job into two tasks.

Figure 77. $$REQQ^XUTMDEVQ example—Sample code

ARHBQQ ;SFVAMC/GB - Demo of 'gather' and 'print' in 2 tasks ;1/19/06 08:31
 ;;1.1
QQ ;
 N X
 S X=$$QQ^XUTMDEVQ("GATHERQ^ARHBQQ","ARHB
Gather",,,,,1,"PRINTQ^ARHBQQ","ARHB Print")
 W !,"X=",X
 Q
GATHERQ ;
 N ARHJ,X
 S ZTREQ="@"
 S ARHJ="ARHB-QQ"_"-"_$J_"-"_$H ; namespace + unique ID
 K ^XTMP(ARHJ) ; Use ^XTMP to pass a lot of data between tasks.
 S ^XTMP(ARHJ,0)=$$FMADD^XLFDT(DT,1)_U_DT ; Save-thru and create dates.
 S ^XTMP(ARHJ)="HI MOM!" ; Pretend this is a lot of data!
 ; XUTMQQ holds the ZTSK of the print task
 S X=$$REQQ^XUTMDEVQ(XUTMQQ,$H,"ARHJ") ; Schedule print task to start
 Q
PRINTQ ;
 S ZTREQ="@"
 ;U IO ; Don't need this if invoked using a ^XUTMDEVQ API.
 W !,"The secret message is: '",$G(^XTMP(ARHJ)),"'"
 K ^XTMP(ARHJ)
 Q

24.3.6 DISP^XUTMOPT(): Display Option Schedule

Reference Type Supported

Category TaskMan

IA # 1472

Description This API is used to display the schedule for an option.

Format DISP^XUTMOPT(option_name)

TaskMan: Developer Tools

362 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters option_name: (required) The name of the option from the OPTION file (#19) for
which the TaskMan schedule is to be displayed.

Output returns: Returns the TaskMan option schedule.

Example

>D DISP^XUTMOPT(option_name)

24.3.7 EDIT^XUTMOPT(): Edit an Option's Scheduling

Reference Type Supported

Category TaskMan

IA # 1472

Description This API allows users to edit an option's scheduling in the OPTION
SCHEDULING file (#19.2).

Format EDIT^XUTMOPT(option_name)

Input Parameters option_name: (required) The name of the option from the OPTION file (#19)
whose schedule the user is to be allowed to edit.

Output returns: Returns the requested option in order to edit the schedule.

24.3.8 OPTSTAT^XUTMOPT(): Obtain Option Schedule

Reference Type Supported

Category TaskMan

IA # 1472

Description This API allows an application to find out when an option is scheduled and get
other data.

Format OPTSTAT^XUTMOPT(option_name,.root)

Input Parameters option_name: (required) The name of the option from the OPTION file (#19)
upon which to return data.

 .root: (required) This variable is passed by reference. This is an array
because the same task can be scheduled more than once.

 TaskMan: Developer Tools

July 1995 Kernel 363
Revised September 2011 Developer's Guide
 Version 8.0

Output Parameters .root: Returns an array of data about the option in question.

Example

>D OPTSTAT^XUTMOPT("OPTION NAME",.ROOT)

Returns an array of data in ROOT (pass by ref) in the form:

ROOT=count ROOT(1)=task number^scheduled time^reschedule freq^special queuing flag

24.3.9 RESCH^XUTMOPT(): Set Up Option Schedule

Reference Type Supported

Category TaskMan

IA # 1472

Description This API allows an application to set up the schedule for an option.

Format RESCH^XUTMOPT(option_name[,when_to_run][,device_to_use]
[,reschedule_freq][,flags][,.error_array])

Input Parameters option_name: (required) The name of the option from the OPTION file
(#19) to be rescheduled.

 when_to_run: (optional) The new scheduled time for the option to run.

 device_to_use: (optional) The device to use for the rescheduled option.

 reschedule_freq: (optional) The frequency to run the rescheduled option.

 flags: (optional) If the flag is set to an "L" LAYGO a new entry if
needed.

 .error_array: (optional) Passed by reference.

Output Parameters .error_array: (optional) This will be set to -1 if the option was not found.

TaskMan: Developer Tools

364 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

24.3.10 EN^XUTMTP(): Display HL7 Task Information

Reference Type Controlled Subscription

Category TaskMan

IA # 3521

Description This API is called to display the Health Level Seven (HL7)-related task
information. First, the currently running tasks are examined in the SCHEDULE
file. For each task found, examine the ROUTINE field. If the ROUTINE field
contains "HL", it is a Health Level Seven-related task.

Format EN^XUTMTP(task[,ztenv,ztkey,ztname,ztflag,xutmuci])

Input Parameters task: (required) TaskMan's task ID.

 ztenv: (optional) Set = 1.

 ztkey: (optional) Set = 0.

 ztname: (optional) Set = ,User name.

 ztflag: (optional) Set = 1.

 xutmuci: (optional) X ^%ZOSF("UCI") S XUTMUCI=Y

Output returns: Returns the HL7-related task information. The following is an
example of the information displayed by this API:

261181: EN^HLCSLM, HL7 Link Manager. No device.
DEV,MOU.
From 12/31/2001 at 14:17, By XUUSER,THIRTY.
Started running 12/31/2001 at 14:17. Job #:
562039155

 TaskMan: Developer Tools

July 1995 Kernel 365
Revised September 2011 Developer's Guide
 Version 8.0

24.3.11 ̂ %ZTLOAD: Queue a Task

^%ZTLOAD is the main API used to create and schedule tasks (commonly referred to as "queuing").
Queuing tells TaskMan to use a background partition to DO a certain API at a certain time, with certain
other conditions established as described by the input variables.

Reference Type Supported

Category TaskMan

IA # 10063

Description This API, as used in code, behaves consistently so most queuers strongly
resemble one another. The queuer can be written so that it is either interactive
with the user or so that it is not interactive. The standard variations on this
structure deserve attention.

Format ^%ZTLOAD

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variables ZTRTN: (required) The API that TaskMan will DO to start the task. You
can specify it as "LABEL^ROUTINE" or "^ROUTINE" or
"ROUTINE". If it is not passed, the original API is used.

 ZTDESC: (required) Task description, up to 200 characters describing the
task, with the software application name at the front. While not
required, use of this variable is recommended.

 ZTDTH: (optional) Start Time when TaskMan should start the task. It
must be a date and time in VA FileMan or $HOROLOG format.
Setting it to "@" will cause the task to be created but not
scheduled. If ZTDTH is not set, ^%ZTLOAD asks the user for
the start time.

 ZTIO: (optional) The I/O device the task should use. If ZTIO is NULL,
no device is used. If undefined, the current I/O variables will be
used to select a device. ZTIO should only be used when the
current I/O variables do not describe the needed device. If you
do not need a device for a job, SET ZTIO="". The ZTIO
variable accepts the same I/O formatting string as IOP variable
in the ^%ZIS: Standard Device Call.

 REF: For more information, see the "Device Handler:
Developer Tools" section in this manual.

TaskMan: Developer Tools

366 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

 ZTUCI: (optional) UCI the task should use. The current UCI is used if
ZTUCI is undefined.

 ZTCPU: (optional) Volume Set:CPU. Specifies the name of the volume
set and CPU on which the task should run. The volume set can
be passed in the first :-piece, and the CPU in the second. Neither
piece of information is required; either can be passed without
the other. If the CPU alone is passed, it must still be preceded by
a ":" (e.g., :ISC6A1). If the volume set is not passed, TaskMan
will run the task on the volume set it came from or on a Print
Server. If the CPU is not passed, TaskMan will run the task on
the CPU where TaskMan resides. Any volume set and/or CPU
specified by the task's I/O device takes precedence over the
same information passed here.

 NOTE: On Caché systems, specifying which CPU a job
should run on only works if you are running TaskMan
from a DCL context. If you specify the CPU, but are not
running TaskMan from a DCL context, the job may not
run correctly.

 ZTPRI: (optional) The CPU priority the task should receive. It should be
an integer between 1 (low) and 10 (high). The site's default for
tasks is used if this is undefined.

 ZTSAVE(): (optional) Input variable array. An array whose nodes specify
input variables to the task beyond the usual set all tasks receive.
There are four kinds of nodes this array can have:

ztsave("variable") can be set equal to NULL or to a value; if
NULL, the current value of that variable is copied for the task,
otherwise the variable is created with the value assigned [for
example, ztsave("PSIN")=42]. The variable can be local or
global, and it can be a variable or an individual array node.

ZTSAVE("open array reference") can be set to NULL to declare
a set of nodes within an array to be input variables to the task
[for example, ZTSAVE("^UTILITY($J,")].

ZTSAVE("namespace*") can be set to NULL to save all local
variables in a certain namespace [for example,
ZTSAVE("LR*")].

ZTSAVE("*") can be used to save all local variables. Non-
namespaced variables (esp. %, X, Y, etc.) may or may not be
saved. Saving individual variables is more efficient. ZTSAVE
nodes are saved just as they are typed, so special variables like
$J have one value when used to save the variables, and a
different value when used to restore them for the task.

 TaskMan: Developer Tools

July 1995 Kernel 367
Revised September 2011 Developer's Guide
 Version 8.0

 ZTKIL: (optional) KEEP UNTIL. Set this to the first day the Task File
Cleanup can delete this task. It should be a date and time in
FileMan or $HOROLOG format. Use of this variable is
recommended when ZTDTH equals "@".

 ZTSYNC: (optional) Name of a SYNC FLAG. Using SYNC FLAGS
allows TaskMan to run the next task in a series of tasks only if
the preceding task in the series completed successfully.

You can choose any name for a SYNC FLAG. You should
namespace the name, however, and make it no longer than 30
characters in length.

To use SYNC FLAGs, the task must be queued to a device of
type resource (through the ZTIO variable).

 REF: For complete information on how to use SYNC
FLAGs, see the "Using SYNC FLAGs to Control
Sequences of Tasks" topic in this chapter.

Output Variables ZTSK: (Usually returned) The task number assigned to a task, returned
whenever a task is successfully created. It can be used as an
input variable to the other TaskMan application mode APIs.

 NOTE: If a task is queued to a volume set other than the
one where it was created, it is usually assigned a new task
number when it is moved.

If ztsk is not defined after calling ^%ZTLOAD, either ztrtn was
not set up or the user canceled the creation when prompted for a
start time. If a task is not created and if ^%ZTLOAD is being
called by a foreground job, then ^%ZTLOAD will display a
message to the user indicating that the task has been canceled.

 NOTE: ZTSK is not a system variable. It is KILLed and
manipulated in many places. If the software needs to
remember a task number, ztsk should be set into some
properly namespaced variable the application can protect.

 ZTSK("D"): START TIME (usually returned) contains the task's requested
start time in $HOROLOG format. It is returned whenever ztsk is
returned, and gives you a way to know the start time a user
requests.

TaskMan: Developer Tools

368 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

24.3.11.1 Interactive Use of ^%ZTLOAD

The VistA Standards and Conventions require that anywhere you let a user pick the output device you
also let the user choose to queue the output.

Often one part of the queuer is a call to ^%ZIS (the Device Handler). When you set up the variables for
your call, include a "Q" in the variable ^%ZIS so the Device Handler will let the user pick queuing. After
the Device Handler call (and after you check POP to ensure that a valid device was selected), you can
check $DATA(IO("Q")) to see whether the user chose to queue to that device. If so, then you must queue
the printout you were about to do directly, and your software should branch to the code to set up the task.
A sample of the code for this kind of print queuer looks something like this:

Figure 78. TaskMan: Print queuer sample code

SELECT ;select IO device for report
 S %ZIS="Q" D ^%ZIS
 I POP D CANCEL Q
 I $D(IO("Q")) D QUEUE Q
 D PRINT,^%ZISC Q
 ;
QUEUE ;queue the report
 S ZTRTN="PRINT^ZZREPORT"
 S ZTDESC="ZZ Application Daily Report 1"
 S ZTSAVE("ZZRANGE")=""
 D ^%ZTLOAD
 I $D(ZTSK)[0 W !!?5,"Report canceled!"
 E W !!?5,"Report queued!"
 D HOME^%ZIS Q

The code to set up the task after the call to ^%ZIS has four steps. First, it sets the ^%ZTLOAD input
variables to define the task. Second, it calls ^%ZTLOAD to queue the task. Third, it checks
$DATA(ZTSK)#2 to find out whether a task was really queued and provides appropriate feedback.
Fourth, it calls HOME^%ZIS to reset its IO variables.

NOTE: This queuer did not define the ZTIO variable. Print queuers can take advantage of the
fact that they directly follow a ^%ZIS call that sets up all the IO variables they need. Under
these conditions, the queuer code can rely on ^%ZTLOAD to identify the task's IO device from
the IO variables, thus, saving the developer the work of building the correct ZTIO string.

Notice also that when queuing output, we need not call ^%ZISC to close the IO device because when the
user chooses to queue output the Device Handler does not open the device. Thus, all we need to do here is
reset our IO variables with a HOME^%ZIS call.

As usual in these kinds of queuers, we did not define ZTDTH, but instead let ^%ZTLOAD ask the user
when the report should run.

Finally, notice that we tell the task to begin at PRINT, the same tag used by the trigger code to start the
foreground print when the user chooses not to queue. Under most circumstances, print queuers can use
most of the same code for their tasks that the foreground print uses.

 TaskMan: Developer Tools

July 1995 Kernel 369
Revised September 2011 Developer's Guide
 Version 8.0

24.3.11.2 Non-interactive Use of ^%ZTLOAD

Under certain conditions, queuers must create and schedule their tasks with no interaction with the user.
Examples include queuers operating out of tasks or queuers that need to run without the users' knowledge.
Only two items must be changed from interactive queuers to make non-interactive queuers work:

1. ZTDTH must be passed to ^%ZTLOAD, and must contain a valid date/time value.

2. If the code to queue the task does not follow a call to ^%ZIS, you must define the ZTIO variable
yourself. Either set it, or allow it to be built from the current I/O variables (if those I/O variables
describe the proper device).

After the call to ^%ZTLOAD, you may (or may not) want to issue feedback messages.

24.3.11.3 Queuing Tasks without an I/O Device

Certain tasks need no IO device. These include primarily tasks that rearrange large amounts of data but
produce no report, such as filing and compiling tasks. Two different kinds of non-IO tasks exist:

• Concurrent—Those that can run concurrently.

• Sequential—Those that must run sequentially.

Queuers for concurrent non-IO tasks need only set ZTIO to NULL, and TaskMan will run the task, with
no IO device.

For sequential non-IO tasks, queuers must set the ZTIO variable to the name of a resource type device.
TaskMan will then ensure that the tasks run single file, one after the other in order by requested start time.
Applications that need sequential non-IO tasks should instruct system managers in the Package
Installation Guide to create a resource device with the desired characteristics so that these queuers can
safely queue their tasks to them. Such devices should be namespaced by the software application that uses
them. SYNC FLAGs can also be used to allow the next task in a series to start only if the previous task in
the series completed successfully.

REF: For more information on SYNC FLAGs, see the "Using SYNC FLAGs to Control
Sequences of Tasks" topic in this chapter.

TaskMan: Developer Tools

370 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example

This example is a job that consists of gathering information and then printing it. Assume that the
gathering takes a few hours. We do not want the device that the user selects to be tied up for that time, so
we divide the job into two tasks. The first task gathers the information and the second task prints it. We
use the ^%ZIS: Standard Device Call API to select the device, the ^%ZTLOAD API to queue the print
task, and the ^%ZTLOAD API to schedule the gather task. We use the REQ^%ZTLOAD: Requeue a
Task API to schedule the print task when the gather task finishes.

NOTE: This process is made easier by using the $$QQ^XUTMDEVQ(): Double Queue—
Direct Queuing in a Single Call and $$REQQ^XUTMDEVQ(): Schedule Second Part of a
Task APIs.

Figure 79. ^%ZTLOAD example—Sample code

ARHBQQ ;SFVAMC/GB - Demo of 'gather' and 'print' in 2 tasks ;1/19/06 08:31
 ;;1.1
ZTLOAD ;
 N ARH,ARHZTSK,X,ZTSAVE,%ZIS,ZTSK,ZTDTH,ZTRTN,ZTDESC,ZTIO,POP
 W !,"Queue the second task (the print task) first.",!
 ;Let's deal with the second task first.
 ;The user doesn't know it, but he's actually queuing the second task,
 ;the "print" portion of the job. The only question the user will be
 ;asked is to select the device.
 ;
 S %ZIS="QM"
 S IOP="Q" ;Force queuing.
 D ^%ZIS Q:POP ; Select Device
 W !,"Finished with %ZIS."
 ;
 S ZTDTH="@" ;Don't schedule the task to run, we'll do it later
 ;If we didn't need to set ZTDTH, we could use EN^XUTMDEVQ, but that
 ;API 'new's ZTDTH, so we can't set it.
 ;
 ;BTW, Did you know that there's a 5th parameter in EN^XUTMDEVQ?
 ;Usually, EN^XUTMDEVQ will 'new' ZTSK, so you can't get to it.
 ;If you put "1" as the 5th parameter, ZTSK will exist when EN returns.
 ;D EN^XUTMDEVQ("PRINT^ARHBQQ","ARHB Print",.ZTSAVE,.%ZIS,1)
 ;
 S ZTRTN="PRINT^ARHBQQ"
 S ZTDESC="ARHB Print"
 D ^%ZTLOAD
 D HOME^%ZIS
 W !,"ZTSK=",$G(ZTSK)
 Q:'$D(ZTSK)
 S ARHZTSK=ZTSK
 ;
 N ZTSAVE,%ZIS,ZTSK,ZTDTH,ZTRTN,ZTDESC,ZTIO,IOP
 W !,"Now queue the first task (the gather task).",!
 ;Now queue the first task, the "gather" portion of the job.
 ;Since we don't need a device,
 ;the user will only be asked when to start the task.
 ;(I wasn't able to get EN^XUTMDEVQ to work for me. I tried setting
 ;IOP="Q;" to let it know that it should be queued and it didn't need
 ;a device, but it did nothing, and returned a null ZTSK.)
 F I="ARHZTSK" S ZTSAVE(I)="" ; Save the ZTSK of the "print" task.
 S ZTIO="" ; We don't need a device.
 S IOP="Q" ; Force queuing.
 S ZTRTN="GATHER^ARHBQQ"

 TaskMan: Developer Tools

July 1995 Kernel 371
Revised September 2011 Developer's Guide
 Version 8.0

 S ZTDESC="ARHB Gather"
 D ^%ZTLOAD
 D HOME^%ZIS
 W !,"ZTSK=",$G(ZTSK)
 Q
GATHER ;
 N ARHJ
 S ZTREQ="@"
 S ARHJ="ARHB-QQ"_"-"_$J_"-"_$H ; namespace + unique ID
 K ^XTMP(ARHJ) ; Use ^XTMP to pass a lot of data between tasks.
 S ^XTMP(ARHJ,0)=$$FMADD^XLFDT(DT,1)_U_DT ; Save-thru and create dates.
 S ^XTMP(ARHJ)="HI MOM!" ; Pretend this is a lot of data.
 D SPRINT
 Q
SPRINT ; Now schedule the "print" task to run.
 N ZTSK,ZTDTH,I,ZTRTN,ZTDESC,ZTIO,ZTSAVE ; Very important to NEW the
 ; input variables to REQ^%ZTLOAD, otherwise they retain the values of
 ; the currently running task, and you could unintentionally change the
 ; "print" task to rerun the "gather" task.
 F I="ARHJ" S ZTSAVE(I)="" ; Let the "print" task know the "$J" value.
 S ZTSK=ARHZTSK
 S ZTDTH=$H
 D REQ^%ZTLOAD
 ;Instead of the above 8 lines we could have simply:
 ;S X=$$REQQ^XUTMDEVQ(ARHZTSK,$H,"ARHJ")
 Q
PRINT ;
 S ZTREQ="@"
 U IO ; Don't need this if invoked using a ^XUTMDEVQ API.
 W !,"The secret message is: '",$G(^XTMP(ARHJ)),"'"
 K ^XTMP(ARHJ)
 Q

TaskMan: Developer Tools

372 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

24.3.11.4 Code Execution

Figure 80. ^%ZTLOAD example—Sample code execution

VAH>D ZTLOAD^ARHBQQ

Queue the second task (the print task) first.
QUEUE TO PRINT ON
DEVICE: HOME// P-MESS

 1 P-MESSAGE-ENGWO-HFS-VXD HFS FILE ==> MAILMESSAGE
 2 P-MESSAGE-HFS-VXD HFS FILE ==> MAILMESSAGE
Choose 1-2> 2 <Enter> P-MESSAGE-HFS-VXD HFS FILE ==> MAILMESSAGE

Subject: MY PRINT

 Select one of the following:

 M Me
 P Postmaster

From whom: Postmaster// <Enter>
Send mail to: XUUSER,ONE// <Enter> XUUSER,ONE
Select basket to send to: IN// <Enter>
And Send to: <Enter>
Finished with %ZIS.
ZTSK=2921497
Now queue the first task (the gather task).

Requested Start Time: NOW// <Enter> (JAN 25, 2005@11:30:35)
ZTSK=2921499

24.3.11.5 Output

Figure 81. ^%ZTLOAD example—Sample output

Subj: MY PRINT [#28881111] 01/25/05@11:30 2 lines
From: POSTMASTER (Sender: BEUSCHEL,GARY - COMPUTER SPECIALIST) In 'IN'
basket.
Page 1 *New*

The secret message is: 'HI MOM!'

Enter message action (in IN basket): Ignore//

 TaskMan: Developer Tools

July 1995 Kernel 373
Revised September 2011 Developer's Guide
 Version 8.0

24.3.12 $$ASKSTOP^%ZTLOAD: Stop TaskMan Task

Reference Type Supported

Category TaskMan

IA # 10063

Description This extrinsic function asks TaskMan to stop running a specified task. Also, it
checks for the ZTNAME variable, and if defined, it uses it instead of DUZ to
value the STOP FLAG field (#59.1). ZTNAME is supported by applications
calling this API to indicate the process that asked the task to stop.

Format $$ASKSTOP^%ZTLOAD(ztsk)

Input Parameters ztsk: (required) Task number of the TaskMan task to be stopped.

Output returns: Returns:
• 0—"Busy". If it returns "Busy", it could mean that the

task is locked, someone else is changing it, or TaskMan is
starting to run it.

• 1—"Task missing" or Task "Finished running". If it
returns "Task missing", it could mean that it was an
incorrect input task number, but it is most likely that the
task ran and was removed after running.

If it returns "Finished running", it means that the task was
finished running before the API request could go through,
so the API could not stop an already finished task.

• 2—"Asked to stop" or "Unscheduled". If it returns "Asked
to Stop", the task has started running and the stop flag has
been set, so if the application checks ($$S^%ZTLOAD) it
should stop.

If it returns "Unscheduled", it was successful and the task
is not scheduled any more.

TaskMan: Developer Tools

374 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

24.3.13 DESC^%ZTLOAD(): Find Tasks with a Description

Reference Type Supported

Category TaskMan

IA # 10063

Description This API finds tasks with a specific description.

Format DESC^%ZTLOAD(description,list)

Input Parameters description: (required) The TaskMan task description.

Output Parameters list: Returns a list of tasks with the specified description.

24.3.14 DQ^%ZTLOAD: Unschedule a Task

Reference Type Supported

Category TaskMan

IA # 10063

Description This API unschedules tasks. Unscheduling a task ensures that, after the call, it is
not scheduled or waiting for a device, computer link, or partition in memory.
Unscheduling is guaranteed to be successful as long as the task is currently
defined in the TASKS file (#14.4). However, unscheduling a task that has
already started running does not stop the task in any way.

Format DQ^%ZTLOAD

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variables ZTSK: (required) The number of the task to unschedule. This task must
currently be defined in the TASKS file (#14.4) or the call will
fail.

Output Variables ZTSK(0): Returns:
• 1—Task was unscheduled successfully.

• 0—Task was not unscheduled successfully.

 TaskMan: Developer Tools

July 1995 Kernel 375
Revised September 2011 Developer's Guide
 Version 8.0

24.3.15 ISQED^%ZTLOAD: Return Task Status

Reference Type Supported

Category TaskMan

IA # 10063

Description This API returns whether a task is currently pending. Pending means that the
task is scheduled, waiting for an I/O device, waiting for a volume set link, or
waiting for a partition in memory. It also returns the DUZ of the task's creator
and the time the task was scheduled to start.

Format ISQED^%ZTLOAD

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variables ZTSK: (required) Task number of the task to look up. The task
must be currently defined on the volume set to be searched,
or the lookup fails.

 ZTCPU: (optional) The volume set TaskMan should search for the
task being looked up. If not passed, TaskMan searches the
current volume set. Unlike ^%ZTLOAD's ZTCPU input
variable, this one does not accept a second :-piece
specifying the CPU. It only specifies a volume set to
search.

TaskMan: Developer Tools

376 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Output Variables ZTSK(0): ZTSK(0) is returned as follows:

• 1—Task ZTSK is currently scheduled or waiting
on volume set ZTCPU.

• 0—Task ZTSK is not currently scheduled or
waiting on volume set ZTCPU.

• NULL ("")—The lookup was unsuccessful.

 ZTSK("E"): (sometimes returned) The error code, returned when some
error condition prevented a successful lookup. The codes
and their values are:

• IT—The task number was not valid (0, negative, or
non-numeric).

• I—The task does not exist on the specified volume
set.

• IS—The volume set is not listed in the VOLUME
SET file (#14.5).

• LS—The link to that volume set is not available.

• U—An unexpected error arose (e.g., disk full,
protection, etc.).

 ZTSK("D"): (sometimes returned) The date and time the task was
scheduled to start, in $HOROLOG format. It is returned
only if ZTSK(0) equals zero (0) or 1.

 ZTSK("DUZ"): (sometimes returned) Holds the DUZ of the user who
created the task. It is returned only if ZTSK(0) equals zero
(0) or 1.

24.3.16 $$JOB^%ZTLOAD(): Return a Job Number for a Task

Reference Type Supported

Category TaskMan

IA # 10063

Description This extrinsic function was released with Kernel Patch XU*8.0*339. It returns
the job number for a running TaskMan task.

Format JOB^%ZTLOAD(ztsk)

Input Parameters ztsk: (required) Task number of the running TaskMan task. If the
specified task is not running, it returns null.

 TaskMan: Developer Tools

July 1995 Kernel 377
Revised September 2011 Developer's Guide
 Version 8.0

Output returns: Returns the job number for the specified running TaskMan task.

24.3.17 KILL^%ZTLOAD: Delete a Task

Reference Type Supported

Category TaskMan

IA # 10063

Description This API deletes a task. When a task is deleted by KILL^%ZTLOAD, the task
referenced by ZTSK will not be defined in the volume set's task file. If the task
was pending, it will not start, but if it had already started running, the effects of
deleting its record are unpredictable.

 NOTE: Tasks can delete their own records through the use of the ZTREQ
output variable.

Format KILL^%ZTLOAD

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variables ZTSK: (required) Task number of the TaskMan task to delete.

Output Variables ZTSK(0): Returns:
• 1—Successful deletion of the task.

• 0—Requested task number is invalid.

24.3.18 OPTION^%ZTLOAD(): Find Tasks for an Option

Reference Type Supported

Category TaskMan

IA # 10063

Description This API finds TaskMan tasks for a specific option.

Format OPTION^%ZTLOAD(option,list)

TaskMan: Developer Tools

378 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters option: (required) The name of the specific option.

Output Parameters list: Returns a list of TaskMan tasks for the specified option.

24.3.19 PCLEAR^%ZTLOAD(): Clear Persistent Flag for a Task

Reference Type Supported

Category TaskMan

IA # 10063

Description This API clears the persistent flag for a TaskMan task (clears the persistent node).

Format PCLEAR^%ZTLOAD(ztsk)

Input Parameters ztsk: (required) The TaskMan task number.

Output none

24.3.20 $$PSET^%ZTLOAD(): Set Task as Persistent

Reference Type Supported

Category TaskMan

IA # 10063

Description This extrinsic function sets a TaskMan task as persistent (sets the persistent node).
A task that is marked as persistent is restarted if TaskMan finds that the lock on
^%ZTSCH("TASK",tasknumber) has been removed. This adds the requirement
that the task only use incremental locks, that the entry in ^%ZTSK(task... be left in
place as this is used to restart the task, and that the task can be restarted from the
data that is in the ^%ZTSK(task,... global.

Format $$PSET^%ZTLOAD(ztsk)

Input Parameters ztsk: (required) The TaskMan task number.

Output returns: Returns:
• 1—Flag was set.

• 0—Flag was not set.

 TaskMan: Developer Tools

July 1995 Kernel 379
Revised September 2011 Developer's Guide
 Version 8.0

24.3.21 REQ^%ZTLOAD: Requeue a Task

Reference Type Supported

Category TaskMan

IA # 10063

Description This API unschedules, edits, and reschedules a task. Unscheduling ensures the
task is not pending but does not stop it from running. Editing is limited to the
API, start time, description, and I/O device. Rescheduling is optional. However,
if the task is not rescheduled, it is vulnerable to the Task File Cleanup option.
The entire procedure is referred to as requeuing.

 CAUTION: Because requeuing does not involve stopping a running
task, it is possible to wind up with the same task running in two
different partitions if the algorithm is not designed carefully. This
is not supported by TaskMan; thus, developers should use
requeuing very carefully. Queuing a new task is usually a better
way to accomplish the same goals.

 NOTE: Tasks can reschedule themselves through use of the ZTREQ
output variable.

Format REQ^%ZTLOAD

TaskMan: Developer Tools

380 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variables ZTSK: (required) The TaskMan task number of the task to edit. It must
be defined on the current volume set for the edit to succeed. It is
strongly recommended that this task not be currently running.

 ZTDESC: (optional) New description for the task. It should describe the
task and name the software application that created the task.

 ZTDTH: (optional) New start time for the task. Pass this as a date and
time in VA FileMan or $HOROLOG format. If not passed, the
original start time is used again. If passed as "@", the task will
not be rescheduled.

The ZTDTH input variable can also be passed as a rescheduling
code. This code is a number followed by an "S" (seconds), an
"H" (hours), or a "D" (days). This code represents an interval of
time (e.g., "60S" is 60 seconds) that is added to the current time
(for seconds or hours) or the original start time (for days) to
produce the new start time.

 ZTIO: (optional) New I/O device for the task. It is used to set IOP in
the ^%ZIS: Standard Device Call API, and can take all of IOP's
format specification strings. If the ZTIO variable is set to "@",
the task is rescheduled for no I/O device. If it is not passed, the
originally requested I/O device is used.

• ZTIO("H")—If not set, it is set to the value of the
IO("HFSIO") variable in the ^%ZIS: Standard Device
Call API.

• ZTIO("P")—If not set, it is set to the value of the
IOPAR variable in the ^%ZIS: Standard Device Call
API.

 ZTRTN: (optional) The API TaskMan will DO to start the task. You can
specify it as "LABEL^ROUTINE" or "^ROUTINE" or
"ROUTINE". If it is not passed, the original API is used.

 ZTSAVE: (optional) Input variable array. An array whose nodes specify
input variables to the task beyond the usual set all tasks receive.
It is set up in the same format as the ZTSAVE input variable for
the ^%ZTLOAD API.

 TaskMan: Developer Tools

July 1995 Kernel 381
Revised September 2011 Developer's Guide
 Version 8.0

Output Variables ZTSK(0): Returns:
• 1—Task is defined.

• 0—Task is not defined or ZTDTH was passed in a bad
format.

TaskMan: Developer Tools

382 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

24.3.21.1 Example

This example is a job that consists of gathering information and then printing it. Assume that the
gathering takes a few hours. We do not want the device that the user selects to be tied up for that time, so
we divide the job into two tasks. The first task gathers the information and the second task prints it. We
use the ^%ZIS: Standard Device Call API to select the device, the ^%ZTLOAD: Queue a Task API to
queue the print task, and the ^%ZTLOAD: Queue a Task API to schedule the gather task. We use the
REQ^%ZTLOAD API to schedule the print task when the gather task finishes.

NOTE: This process is made easier by using the $$QQ^XUTMDEVQ(): Double Queue—
Direct Queuing in a Single Call and $$REQQ^XUTMDEVQ(): Schedule Second Part of a
Task APIs.

Figure 82. REQ^%ZTLOAD example—Sample code

ARHBQQ ;SFVAMC/GB - Demo of 'gather' and 'print' in 2 tasks ;1/19/06 08:31
 ;;1.1
ZTLOAD ;
 N ARH,ARHZTSK,X,ZTSAVE,%ZIS,ZTSK,ZTDTH,ZTRTN,ZTDESC,ZTIO,POP
 W !,"Queue the second task (the print task) first.",!
 ;Let's deal with the second task first.
 ;The user doesn't know it, but he's actually queuing the second task,
 ;the "print" portion of the job. The only question the user will be
 ;asked is to select the device.
 ;
 S %ZIS="QM"
 S IOP="Q" ;Force queuing.
 D ^%ZIS Q:POP ; Select Device
 W !,"Finished with %ZIS."
 ;
 S ZTDTH="@" ;Don't schedule the task to run, we'll do it later
 ;If we didn't need to set ZTDTH, we could use EN^XUTMDEVQ, but that
 ;API 'new's ZTDTH, so we can't set it.
 ;
 ;BTW, Did you know that there's a 5th parameter in EN^XUTMDEVQ?
 ;Usually, EN^XUTMDEVQ will 'new' ZTSK, so you can't get to it.
 ;If you put "1" as the 5th parameter, ZTSK will exist when EN returns.
 ;D EN^XUTMDEVQ("PRINT^ARHBQQ","ARHB Print",.ZTSAVE,.%ZIS,1)
 ;
 S ZTRTN="PRINT^ARHBQQ"
 S ZTDESC="ARHB Print"
 D ^%ZTLOAD
 D HOME^%ZIS
 W !,"ZTSK=",$G(ZTSK)
 Q:'$D(ZTSK)
 S ARHZTSK=ZTSK
 ;
 N ZTSAVE,%ZIS,ZTSK,ZTDTH,ZTRTN,ZTDESC,ZTIO,IOP
 W !,"Now queue the first task (the gather task).",!
 ;Now queue the first task, the "gather" portion of the job.
 ;Since we don't need a device,
 ;the user will only be asked when to start the task.
 ;(I wasn't able to get EN^XUTMDEVQ to work for me. I tried setting
 ;IOP="Q;" to let it know that it should be queued and it didn't need
 ;a device, but it did nothing, and returned a null ZTSK.)
 F I="ARHZTSK" S ZTSAVE(I)="" ; Save the ZTSK of the "print" task.
 S ZTIO="" ; We don't need a device.
 S IOP="Q" ; Force queuing.
 S ZTRTN="GATHER^ARHBQQ"

 TaskMan: Developer Tools

July 1995 Kernel 383
Revised September 2011 Developer's Guide
 Version 8.0

 S ZTDESC="ARHB Gather"
 D ^%ZTLOAD
 D HOME^%ZIS
 W !,"ZTSK=",$G(ZTSK)
 Q
GATHER ;
 N ARHJ
 S ZTREQ="@"
 S ARHJ="ARHB-QQ"_"-"_$J_"-"_$H ; namespace + unique ID
 K ^XTMP(ARHJ) ; Use ^XTMP to pass a lot of data between tasks.
 S ^XTMP(ARHJ,0)=$$FMADD^XLFDT(DT,1)_U_DT ; Save-thru and create dates.
 S ^XTMP(ARHJ)="HI MOM!" ; Pretend this is a lot of data.
 D SPRINT
 Q
SPRINT ; Now schedule the "print" task to run.
 N ZTSK,ZTDTH,I,ZTRTN,ZTDESC,ZTIO,ZTSAVE ; Very important to NEW the
 ; input variables to REQ^%ZTLOAD, otherwise they retain the values of
 ; the currently running task, and you could unintentionally change the
 ; "print" task to rerun the "gather" task.
 F I="ARHJ" S ZTSAVE(I)="" ; Let the "print" task know the "$J" value.
 S ZTSK=ARHZTSK
 S ZTDTH=$H
 D REQ^%ZTLOAD
 ;Instead of the above 8 lines we could have simply:
 ;S X=$$REQQ^XUTMDEVQ(ARHZTSK,$H,"ARHJ")
 Q
PRINT ;
 S ZTREQ="@"
 U IO ; Don't need this if invoked using a ^XUTMDEVQ API.
 W !,"The secret message is: '",$G(^XTMP(ARHJ)),"'"
 K ^XTMP(ARHJ)
 Q

TaskMan: Developer Tools

384 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

24.3.21.2 Code Execution

Figure 83. ^%ZTLOAD example—Sample code execution

VAH>D ZTLOAD^ARHBQQ

Queue the second task (the print task) first.
QUEUE TO PRINT ON
DEVICE: HOME// P-MESS

 1 P-MESSAGE-ENGWO-HFS-VXD HFS FILE ==> MAILMESSAGE
 2 P-MESSAGE-HFS-VXD HFS FILE ==> MAILMESSAGE
Choose 1-2> 2 <Enter> P-MESSAGE-HFS-VXD HFS FILE ==> MAILMESSAGE

Subject: MY PRINT

 Select one of the following:

 M Me
 P Postmaster

From whom: Postmaster// <Enter>
Send mail to: XUUSER,ONE// <Enter> XUUSER,ONE
Select basket to send to: IN// <Enter>
And Send to: <Enter>
Finished with %ZIS.
ZTSK=2921497
Now queue the first task (the gather task).

Requested Start Time: NOW// <Enter> (JAN 25, 2005@11:30:35)
ZTSK=2921499

24.3.21.3 Output

Figure 84. ^%ZTLOAD example—Sample output

Subj: MY PRINT [#28881111] 01/25/05@11:30 2 lines
From: POSTMASTER (Sender: BEUSCHEL,GARY - COMPUTER SPECIALIST) In 'IN'
basket.
Page 1 *New*

The secret message is: 'HI MOM!'

Enter message action (in IN basket): Ignore//

 TaskMan: Developer Tools

July 1995 Kernel 385
Revised September 2011 Developer's Guide
 Version 8.0

24.3.22 RTN^%ZTLOAD(): Find Tasks that Call a Routine

Reference Type Supported

Category TaskMan

IA # 10063

Description This API finds TaskMan tasks that call a specific routine.

Format RTN^%ZTLOAD(routine,list)

Input Parameters routine: (required) The name of the specific routine called.

Output Parameters list: Returns a list of TaskMan tasks that call the specified routine.

24.3.23 $$S^%ZTLOAD(): Check for Task Stop Request

Reference Type Supported

Category TaskMan

IA # 10063

Description This extrinsic function is used within a task to determine if the task has been asked
to stop. Using the $$S^%ZTLOAD() function in longer tasks is highly
recommended. Tasks should test $$S^%ZTLOAD to check if the user who queued
the task has requested that the task be stopped. If the task has been asked to stop, it
should set the local variable ZTSTOP to 1 before quitting. This will alert the
submanager to set the task's status to STOPPED instead of FINISHED, to give the
user feedback that the task has obeyed their request.

You can use the optional message parameter to inform the user of the progress of a
job. It is displayed when the task is listed by one of the many options that list
tasks.

Format $$S^%ZTLOAD([message])

Input Parameters message: (optional) Allows you to leave a message for the creator of the
TaskMan task.

Output returns: Returns:
• 1—Creator of the task that has asked the task to stop.

• 0—For all other cases.

TaskMan: Developer Tools

386 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

24.3.24 STAT^%ZTLOAD: Task Status

Reference Type Supported

Category TaskMan

IA # 10063

Description This API looks up tasks and retrieves their current status. The status of a task
returned by STAT^%ZTLOAD is expressed in the general terms of whether the
task ran, is running, or will run. ZTSK(1) and (2) return the code and text of the
current status. This status is an abstraction based on the more complex system
used by TaskMan.

An active task is one that either is expected to start or is currently running. An
inactive task will not start in the future without outside intervention; this may be
because it has already completed, was never scheduled, or was interrupted. The
"running" status is not based on direct examination of the system tables but is
inferred from TaskMan's information about the task.

When interpreting the output of STAT^%ZTLOAD, consider that:

• If a task is transferred to another volume set, it becomes undefined on
the original volume set.

• A status of "running" is a guess.

• "Finished" does not necessarily mean the task accomplished what it set
out to do.

• An interrupted task may or may not run correctly if edited and
rescheduled.

Format STAT^%ZTLOAD

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variables ZTSK: (required) The TaskMan task number to look up. It must be
defined on the current volume set.

Output Variables ZTSK(0): Returns:
• 1—Task is defined.

• 0—Task is not defined.

 ZTSK(1): Numeric status code from 0 to 5 indicating the status of the task.

 TaskMan: Developer Tools

July 1995 Kernel 387
Revised September 2011 Developer's Guide
 Version 8.0

 ZTSK(2): Status text describing the status of the task. Its value
corresponds with the status code in ZTSK(1). The possible
values and their meanings are as follows:

• ZTSK(1) = 0 and ZTSK(2) = "Undefined" means the
task does not exist on this volume set.

• ZTSK(1) = 1 and ZTSK(2) = "Active: Pending" means
the task is scheduled, waiting for an I/O device, waiting
for a volume set link, or waiting for a partition in
memory.

• ZTSK(1) = 2 and ZTSK(2) = "Active: Running" means
the task has started running.

• ZTSK(1) = 3 and ZTSK(2) = "Inactive: Finished"
means the task quit normally after running.

• ZTSK(1) = 4 and ZTSK(2) = "Inactive: Available"
means the task was created without being scheduled or
was edited without being rescheduled.

• ZTSK(1) = 5 and ZTSK(2) = "Inactive: Interrupted"
means the task was interrupted before it would have
quit normally. Causes can include bad data, user
intervention, hard error, and many other possibilities.

24.3.25 $$TM^%ZTLOAD: Check if TaskMan is Running

Reference Type Supported

Category TaskMan

IA # 10063

Description This extrinsic function determines if TaskMan is running. Use this function if you
need to know the status of TaskMan.

Format $$TM^%ZTLOAD

Input Parameters none

Output returns: Returns:
• 1—TaskMan is running on the current volume set.

• 0—TaskMan is not running on the current volume set.

TaskMan: Developer Tools

388 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

24.3.26 ZTSAVE^%ZTLOAD(): Build ZTSAVE Array

Reference Type Supported

Category TaskMan

IA # 10063

Description This API stores a string of variables in the ZTSAVE array.

Format ZTSAVE^%ZTLOAD(string_of_variables[,kill_ztsave_flag])

Input Parameters string_of_variables: (required) Sting of variable names to be stored in the
ZTSAVE array.

 kill_ztsave_flag (optional) Any positive value will first KILL the
ZTSAVE array.

Output returns: Stores the string of input variables in the ZTSAVE array.

July 1995 Kernel 389
Revised September 2011 Developer's Guide
 Version 8.0

25 Toolkit: Developer Tools

25.1 Toolkit—Application Program Interface (API)

Several APIs are available for developers to work with Kernel Toolkit. These APIs are described below
by category.

25.2 Toolkit—Alerts APIs

25.2.1 DELSTAT^XQALBUTL(): Get Alert Status and Recipient
Information

Reference Type Supported

Category Toolkit—Alerts

IA # 3197

Description This API is used to obtain information on the recipients of the most recent alert
with a specified alert ID and the status of whether the alert has been deleted or not
for those recipients.

Format DELSTAT^XQALBUTL(xqaidval,values)

Input Parameter xqaidval: (required) This is a value that has been used as the XQAID value
for generating an alert by a software application. This value is
used to identify the most recent alert generated with this XQAID
value and that alert is used to generate the responses in terms of
recipients and deletion status of the alert for each of the recipients.

Output values: This variable is passed by reference and is returned as an array.
This value is KILLED prior to generation of the results for return.

Returned: The value of VALUES indicates the number of entries
in the array. The entries are then ordered in numerical
order in the VALUES array.

VALUES = 3
VALUES(1) = "146^0" User 146 - not deleted
VALUES(2) = "297^1" User 297 - deleted
VALUES(3) = "673^0" User 673 - not deleted

For the most recent alert with XQAIDVAL as the Package ID
passed in, on return array VALUES contains the DUZ for users in
VALUES along with an indicator of whether the alert has been
deleted or not (e.g., DUZ^0 if not deleted or DUZ^1 if deleted).
Note that contents of VALUES will be killed prior to building the
list.

Toolkit: Developer Tools

390 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example

>D DELSTAT^XQALBUTL("OR;14765;23",.RESULTS)

The value of RESULTS indicates the number of entries in the array. The entries are then ordered in
numerical order in the RESULTS array.

RESULTS = 3
RESULTS(1) = "146^0" User 146 - not deleted
RESULTS(2) = "297^1" User 297 - deleted
RESULTS(3) = "673^0" User 673 - not deleted

 Toolkit: Developer Tools

July 1995 Kernel 391
Revised September 2011 Developer's Guide
 Version 8.0

25.3 Toolkit—Data Standardization APIs

The following API set has been developed to support Data Standardization's effort to allow the mapping
of one term to another term. Mapping of terms is done via the REPLACED BY VHA STANDARD
TERM field (#99.97) and provides the high-level goals of the following:

• Non-standard terms inheriting standardized characteristics.

• Deprecating a term and replacing it with a new term.

The Data Standardization API set:

• Maps one term to another term.

• Obtains the term in which another term is mapped.

• Extracts field values from the term in which another term is mapped.

• Shows the mapping relationships that a term has with other terms.

Keywords:

• VHA Unique ID (VUID)

• Data Standardization

• Term

• Replacement Term

Toolkit: Developer Tools

392 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

25.3.1 Replacement Relationships

Use the following replacement relationships to map the Data Standardization API set in context. These
APIs are documented in this section:

Figure 85. Data standardization replacement relationships

 A --> B --> C --> D A is replaced by B G is replaced by C
 ^ ^ ^ ^ B is replaced by C H is replaced by C
 | \ | \ C is replaced by D I is replaced by F
 | \ | \ D has no replacement J is replaced by F
 | \ | \ E is replaced by A K is replaced by H
 | F | H F is replaced by A L is replaced by H
 | ^ ^ | ^ ^
 | / \ | / \
 E I J G K L

 $$GETRPLC(B) would return C

 $$RPLCMNT(B) would return D

 $$RPLCVALS(J) would return the requested field values from entry D

 $$RPLCTRL(G) in both directions would return D and the output array would
 be set as follows:

 OutArr("BY",A) = B OutArr("FOR",A,E) = ""
 OutArr("BY",B) = C OutArr("FOR",A,F) = ""
 OutArr("BY",C) = D OutArr("FOR",B,A) = ""
 OutArr("BY",D) = "" OutArr("FOR",C,B) = ""
 OutArr("BY",E) = A OutArr("FOR",C,G) = ""
 OutArr("BY",F) = A OutArr("FOR",C,H) = ""
 OutArr("BY",G) = C OutArr("FOR",D,C) = ""
 OutArr("BY",H) = C OutArr("FOR",F,I) = ""
 OutArr("BY",I) = F OutArr("FOR",F,J) = ""
 OutArr("BY",J) = F OutArr("FOR",H,K) = ""
 OutArr("BY",K) = H OutArr("FOR",H,L) = ""
 OutArr("BY",L) = H

 $$RPLCTRL(L) in the forward direction would return D and the output array
 would be set as follows:

 OutArr("BY",C) = D OutArr("FOR",C,H) = ""
 OutArr("BY",D) = "" OutArr("FOR",D,C) = ""
 OutArr("BY",H) = C OutArr("FOR",H,L) = ""
 OutArr("BY",L) = H

 $$RPLCTRL(B) in the backward direction would return D and the output array
 would be set as follows:

 OutArr("BY",A) = B OutArr("FOR",A,E) = ""
 OutArr("BY",E) = A OutArr("FOR",A,F) = ""
 OutArr("BY",F) = A OutArr("FOR",B,A) = ""
 OutArr("BY",I) = F OutArr("FOR",F,I) = ""
 OutArr("BY",J) = F OutArr("FOR",F,J) = ""

 $$RPLCLST(G) in both directions would return D and the output array would
 be set as follows:

 OutArr(1) = G ^ 0 OutArr("INDEX",A) = 8

 Toolkit: Developer Tools

July 1995 Kernel 393
Revised September 2011 Developer's Guide
 Version 8.0

 OutArr(2) = C ^ 0 OutArr("INDEX",B) = 7
 OutArr(3) = D ^ 1 OutArr("INDEX",C) = 2
 OutArr(4) = H ^ 0 OutArr("INDEX",D) = 3
 OutArr(5) = K ^ 0 OutArr("INDEX",E) = 9
 OutArr(6) = L ^ 0 OutArr("INDEX",F) = 10
 OutArr(7) = B ^ 0 OutArr("INDEX",G) = 1
 OutArr(8) = A ^ 0 OutArr("INDEX",H) = 4
 OutArr(9) = E ^ 0 OutArr("INDEX",I) = 11
 OutArr(10) = F ^ 0 OutArr("INDEX",J) = 12
 OutArr(11) = I ^ 0 OutArr("INDEX",K) = 5
 OutArr(12) = J ^ 0 OutArr("INDEX",L) = 6

 $$RPLCLST(L) in the forward direction would return D and the output array
 would be set as follows if the status history was also included:

 OutArr(1) = L ^ 0 OutArr("INDEX",C) = 3
 OutArr(1,3080101.0954) = 0 OutArr("INDEX",D) = 4
 OutArr(2) = H ^ 0 OutArr("INDEX",H) = 2
 OutArr(2,3080101.1308) = 1 OutArr("INDEX",L) = 1
 OutArr(2,3080105.09) = 0
 OutArr(3) = C ^ 0
 OutArr(3,3080105.0859) = 1
 OutArr(3,3080112.1722) = 0
 OutArr(4) = D ^ 1
 OutArr(4,3080112.1723) = 1

 $$RPLCLST(B) in the backward direction would return D and the output array
 would be set as follows:

 OutArr(1) = A ^ 0 OutArr("INDEX",A) = 1
 OutArr(2) = E ^ 0 OutArr("INDEX",E) = 2
 OutArr(3) = F ^ 0 OutArr("INDEX",F) = 3
 OutArr(4) = I ^ 0 OutArr("INDEX",I) = 4
 OutArr(5) = J ^ 0 OutArr("INDEX",J) = 5

25.3.2 $$GETRPLC^XTIDTRM(): Get Mapped Terms
(Term/Concept)

Reference Type Supported

Category Toolkit—Data Standardization

IA # 5078

Description This extrinsic function gets the REPLACED BY VHA STANDARD TERM field
(#99.97) for a given entry.

Format $$GETRPLC^XTIDTRM(File,IEN)

Input Parameters File: (required) File number

IEN: (required) Entry number

Toolkit: Developer Tools

394 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example

This extrinsic function sets X to IEN_";"_FileNumber of entry that replaces the input entry:

>S X=$$GETRPLC^XTIDTRM(File,IEN)

NOTE:

• Null is returned on error. This typically will occur when the input entry does not exist.

• If the input entry is not replaced by another term then a reference to the input term will
be returned.

25.3.3 $$RPLCLST^XTIDTRM(): Get List of Replacement Terms,
w/Optional Status Date and History (Term/Concept)

Reference Type Supported

Category Toolkit—Data Standardization

IA # 5078

Description This extrinsic function traverses the REPLACED BY VHA STANDARD TERM
field (#99.97) forwards and backwards to find all terms that are replacement terms
for the input entry and all terms for which the input entry is a replacement. This is
recursively done so that each potential branch of replacement terms forwards and
backwards is traversed.

Format $$RPLCLST^XTIDTRM(file,ien,drctn,statdate,stathst,outarr)

Input Parameters file: (required) File number

ien: (required) Entry number

drctn: (optional) Flags denoting which direction to follow the trail of
replacement terms. Possible flag values are:

• F (default)—Follow the trail forwards

• B—Follow the trail backwards

• *—Follow the trail in both directions (same as FB/BF)

statdate: (optional) VA FileMan date/time in which to return term's status.
Defaults to current date/time.

 stathst: (optional) Flag denoting if a term's full status history should be
included in the output:

• 0 (default)—No

• 1—Yes

 Toolkit: Developer Tools

July 1995 Kernel 395
Revised September 2011 Developer's Guide
 Version 8.0

Input/Output outarr: I: (required) Array to put trail of replacement terms into (closed
root).

O: The output array will contain the list terms to which the input
entry is somehow related.

• OutArr(1..n) = Term ^ StatusCode (based on
input StatDate)

• OutArr(1..n,StatusDateTime) - StatusCode on this
date/time

• This node is only returned if StatHst is set to "1" (Yes).

• OutArr("INDEX",Term) = 1..n

 NOTE: Term will be in the format IEN;FileNumber.

StatusCode:

• 1—Active

• 0—Inactive

StatusDateTime is in VA FileMan format.

Example

This extrinsic function sets X=IEN_";"_FileNumber of the entry that ultimately replaces the input entry:

>S X=$$RPLCLST^XTIDTRM(File,IEN,Drctn,StatDate,StatHst,OutArr)

NOTE:

• Null is returned on error. This typically will occur when the input entry does not exist.

• If the input entry is not replaced by another term then a reference to the input term will
be returned.

Toolkit: Developer Tools

396 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

25.3.4 $$RPLCMNT^XTIDTRM(): Map One Term to Another
(Term/Concept)

Reference Type Supported

Category Toolkit—Data Standardization

IA # 5078

Description This extrinsic function recursively traverses the REPLACED BY VHA
STANDARD TERM field (#99.97) until the final replacement term is reached.

Format $$RPLCMNT^XTIDTRM(FILE,IEN)

Input Parameters File: (required) File number

IEN: (required) Entry number

Example

This extrinsic function sets X to IEN_";"_FileNumber of the entry that ultimately replaces the input entry:

>S X=$$RPLCMNT^XTIDTRM(FILE,IEN)

NOTES:

• Null is returned on error. This typically will occur when the input entry does not exist.

• If the input entry is not replaced by another term then a reference to the input term will
be returned.

 Toolkit: Developer Tools

July 1995 Kernel 397
Revised September 2011 Developer's Guide
 Version 8.0

25.3.5 $$RPLCTRL^XTIDTRM(): Get Replacement Trail for Term,
with Replaced “BY” and Replacement "FOR" Terms
(Term/Concept)

Reference Type Supported

Category Toolkit—Data Standardization

IA # 5078

Description This extrinsic function traverses the REPLACED BY VHA STANDARD TERM
field (#99.97) forwards and backwards to find all terms that are replacement terms
for the input entry and all terms for which the input entry is a replacement. This is
recursively done so that each potential branch of replacement terms forwards and
backwards is traversed.

Format $$RPLCTRL^XTIDTRM(File,IEN,Drctn,OutArr)

Input Parameters File: (required) File number

IEN: (required) Entry number

Drctn: (optional) Flags denoting which direction to follow the trail of
replacement terms. Possible flag values are:

• F (default)—Follow the trail forwards

• B—Follow the trail backward

• *—Follow the trail in both directions (same as FB/BF)

Input/Output OutArr: I: (required) Array to put trail of replacement terms into (closed
root).

O: The output array will contain the trail of replacement terms.

• OutArr("BY",Term) = Replacement Term means: Entry
"Term" is replaced BY entry "Replacement Term"

• OutArr("FOR",Replacement Term, Term) = "" means:
Entry "Replacement Term" is a replacement FOR entry
"Term"

• Term and Replacement Term will be in the format
IEN;FileNumber

Toolkit: Developer Tools

398 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example

This extrinsic function sets X to IEN_";"_FileNumber of the entry that ultimately replaces the input entry:

>S X=$$RPLCTRL^XTIDTRM(File,IEN,Drctn,OutArr)

NOTES:

• Null is returned on error. This typically will occur when the input entry does not exist.

• If the input entry is not replaced by another term then a reference to the input term will
be returned.

25.3.6 $$RPLCVALS^XTIDTRM(): Get Field Values of Final
Replacement Term (Term/Concept)

Reference Type Supported

Category Toolkit—Data Standardization

IA # 5078

Description This extrinsic function retrieves one or more fields of data from an entry's final
replacement term. The REPLACED BY VHA STANDARD TERM field (#99.97)
is recursively traversed until the final replacement term is reached. The requested
fields of the final replacement term are returned. It effectively bundles
$$RPLCMNT^XTIDTRM and GETS^DIQ into a single call.

Format $$RPLCVALS^XTIDTRM(file,ien,fields,flags,outarr)

Input Parameters file: (required) File number

ien: (required) Entry number

fields: (required) Fields for which you wish to get values.

 REF: See definition of FIELD parameter in GETS^DIQ for
detailed description.

flags: (required) Flags that control output format.

 REF: See definition of FLAGS parameter in GETS^DIQ for
detailed description.

 Toolkit: Developer Tools

July 1995 Kernel 399
Revised September 2011 Developer's Guide
 Version 8.0

Input/Output outarr: • I: (required) Array to put output field values into
(closed root).

• O: The output array is in FDA format.

 REF: See GETS^DIQ for example output.

Example

This extrinsic function sets X to IEN_";"_FileNumber of the entry that ultimately replaces the input entry:

>S X=$$RPLCVALS^XTIDTRM(File,IEN,Fields,Flags,OutArr)

NOTES:

• Null is returned on error. This typically will occur when the input entry does not exist.

• If an error occurs when extracting the requested fields from the final replacement term
then a reference to the final replacement term will still be returned and OutArr will be
KILLed.

• If the input entry is not replaced by another term then a reference to the input term will
be returned and OutArr() will contain the field values for the input entry.

25.3.7 $$SETRPLC^XTIDTRM(): Set Replacement Terms
(Term/Concept)

Reference Type Supported

Category Toolkit—Data Standardization

IA # 5078

Description This extrinsic function sets the REPLACED BY VHA STANDARD TERM field
(#99.97).

Format $$SETRPLC^XTIDTRM(file,ien,rplcmnt)

Input Parameters file: (required) File number

ien: (required) Entry number

 rplcmnt (required) Entry number of replacement term.

Toolkit: Developer Tools

400 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example

This extrinsic function sets X to 1 if Pointer to replacement term stored (i.e., success) or 0 if Unable to
store pointer to replacement term (i.e., failure):

>S X=$$SETRPLC^XTIDTRM(File,IEN,Rplcmnt)

 Toolkit: Developer Tools

July 1995 Kernel 401
Revised September 2011 Developer's Guide
 Version 8.0

25.4 Toolkit—Duplicate Record Merge APIs

A file in which entries need to be merged can be entered in the DUPLICATE RESOLUTION file (#15.1).
This requires adding the file as one that can be selected as the variable pointer, and search criteria would
usually need to be specified to assist in identifying potential duplicate pairs (although an option can be
use by which selected pairs can be added directly to the DUPLICATE RECORD file (#15) as verified
duplicates). Verified duplicate pairs may be approved for merging, and a merge process generated for
those approved pairs. A DUPLICATE RECORD file (#15) entry will also have handle files that are not
associated as normal pointers identified in the PACKAGE file (#9.4) under the AFFECTS RECORD
MERGE subfile with special processing routines.

CAUTION: If a file has related files that are not normal pointers, they should be handled
only as entries in the duplicate record file and the Kernel Toolkit options used for
merges involving the file.

The merge utility of Kernel Toolkit as revised by Kernel Toolkit Patch XT*7.3*23 provides an entry
point that is available to developers for the merging of one or more pairs of records (a FROM record and
a TO record) in a specified file. The merge process merges the data of the FROM record into that of the
TO record and deletes the FROM record, restoring by a hard set only the zero node with the .01 value on
it until the merge process is completed (such that any references to that location via pointers will not error
out). Any files that contain entries DINUMed with the data pairs are then also merged (and any files that
are related to them by DINUM as well). Any pointers that can be identified rapidly by cross-references
are modified so that references for the FROM entry become references to the TO entry instead. Following
this, any files that contain other pointers are searched entry by entry to test for pointers to a FROM entry,
and when found are modified to reference the TO entry. This search for pointer values is the most time
consuming part of the entire process and may take an extended period depending upon the number of files
that must be searched, the number of entries in those files, and how many levels at which subfiles pointers
may be located. Since the search through these files will take the same period of time independent of the
number of pairs that are being merged, it is suggested that as many pairs as convenient be combined in
one process. At the end of the conversion of these pointers, the zero node stubs will be removed from the
primary file and all related DINUMed files.

The merge process is a single job that is tracked with frequent updates on location and status from start to
finish. The job can be stopped at any time if necessary using TaskMan utilities (or in the event of a
system crash, etc.) and restarted at the point of interruption at a later time.

The manner in which data is merged.

When a primary file or a DINUMed files entries are merged, any top level (single value) fields that are
present in the FROM entry that are not present in the TO entry will be merged into the TO entries data.
Any of these fields that contain cross-references will be entered using a VA FileMan utility (FILE^DIE)
so that the cross-references will be fired. Other fields (those without cross-references) will be directly set
into the data global.

If a subfile entry (Multiple) exists in the FROM record that is not present in the TO record (as identified
by the .01 value), that entry will be created with a VA FileMan utility (UPDATE^DIE) and the rest of the
subfile merged over into the TO record and the cross-references within the subfile and any descendent
subfiles run.

Toolkit: Developer Tools

402 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

If a subfile entry (Multiple) exists in the FROM record and an identical .01 value exists in the TO record,
the subfile in the FROM record will be searched for any descendent subfiles that are not present in the TO
record subfile. If such a subfile is found it will be merged into the subfile in the TO record and any cross-
references in the merged subfile run.

For fields that are simple pointers to the primary file (or any other file DINUMed to the primary file) the
reference to the FROM record will be changed to a reference to the TO record. If the field contains a
cross-reference this editing will be performed using a VA FileMan Utility call (FILE^DIE), otherwise it
will be set directly into the global node.

25.4.1 EN^XDRMERG(): Merge File Entries

Reference Type Supported

Category Toolkit—Duplicate Record Merge

IA # 2365

Description This API provides for merging of one or more pairs of records in a specified file.
This entry point takes two (2) arguments, the file number (a numeric value) and a
closed reference to the location where the program will find an array with
subscripts indicating the record pairs to be merged (a text value).

Format EN^XDRMERG(file,arraynam)

Input Parameters file: (required) Specifies the FILE NUMBER of the file in which the
indicated entries are to be merged.

arraynam: (required) This variable contains the name of the array as a closed
root under which the subscripts indicating the FROM and TO
entries will be found. The data may have either two or four
subscripts descendent from the array, which is passed.

 REF: For examples of its usage, see the introductory text
for this topic.

 Toolkit: Developer Tools

July 1995 Kernel 403
Revised September 2011 Developer's Guide
 Version 8.0

Examples

The following command would result in record pairs specified as subscripts in the array MYLOC to be
merged in a hypothetical file #999000014:

D EN^XDRMERG(999000014,"MYLOC")

The array MYLOC might have been set up prior to this call in the following manner (or any equivalent
way) where the subscripts represent the internal entry numbers of the FROM and TO records,
respectively.

S MYLOC(147,286)="",MYLOC(182,347)="",MYLOC(2047,192)=""
S MYLOC(837,492)="",MYLOC(298,299)=""

This would result in five record pairs being merged with record 147 (the FROM record) being merged
into record 286 (the TO record), record 182 being merged into record 347, etc., to record 298 being
merged into 299. Merges using the two subscript format will occur without a specific record of the entries
prior to the merge (The internal entry numbers merged would be recorded under the file number in XDR
REPOINTED ENTRY file [#15.3]) An alternative is a four subscript format for the data array that uses
variable pointer formats for the FROM and TO records as the third and fourth subscripts. If the merge is
performed with this four subscript array, then a premerge image of the data of both the FROM and TO
records in the primary file and all other merged files (those related by DINUM) and information on all
single value pointer values modified is stored in the MERGE IMAGE file (#15.4).

For the sample data above [assuming that the global root for the hypothetical file #999000014 is
^DIZ(999000014,] the four subscript array might be generated using the following code:

S MYROOT=";DIZ(99900014," <--- note the leading ^ is omitted
S MYLOC(147,286,147_MYROOT,286_MYROOT)=""
S MYLOC(182,347,182_MYROOT,347_MYROOT)=""
S MYLOC(2047,192,2047_MYROOT,192_MYROOT)=""
S MYLOC(837,492,837_MYROOT,492_MYROOT)=""
S MYLOC(298,299,298_MYROOT,299_MYROOT)=""
;
D EN^XDRMERG(99900014,"MYLOC")

Exclusion of Multiple Pairs For a Record—To insure that there are no unanticipated problems due to
relationships between a specific record in multiple merges, prior to actually merging any data the various
FROM and TO records included in the process are examined, and if one record is involved in more than
one merge, all except the first pair of records involving that one are excluded from the merge. If any pairs
are excluded for this reason, a mail message is generated to the individual responsible for the merge
process as indicated by the DUZ.

If the following entries were included in the MYLOC array:

MYLOC(128,247)
MYLOC(128,536) and
MYLOC(247,128)

Only the first of these entries (based on the numeric sorting of the array) would be permitted to remain in
the merge process, while the other two pairs would be omitted). And although it may seem unlikely that
someone would indicate that a record should be merged into two different locations, while another
location should be merged into one that was merged away, if the pairs are selected automatically and

Toolkit: Developer Tools

404 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

checks are not included to prohibit such behavior, they will show up. That is why the merge process will
not include more than one pair with a specific record in it.

25.4.1.1.1 Problems Related To Data Entry While Merging

The Merge Process has been designed to combine data associated with the two records in the manner
described above. On occasion, however, there are problems that cause VA FileMan to reject the data that
is being entered. This may happen for a number of reasons. Some examples that have been observed
include:

• Clinics that had been changed so they no longer were indicated as Clinics (so they would not add
to the number that people had to browse through to select a clinic), but were rejected since the
input transform checked that they be clinics.

• Pointer values that no longer had a valid value in the pointed to file (dangling pointers).

• Fields that have input transforms that prohibit data entry.

It is possible to use a validity checker on your data prior to initiating the actual merge process (this is the
action taken by merges working from the Potential Duplicate file). The data pairs are processed in a
manner similar to the actual merge, so only that data in any of the files that would be merged and for
which the data would be entered using VA FileMan utilities for the specific pair are checked to insure
they will pass the input transform. Any problems noted are incorporated into a mail message for
resolution prior to attempting to merge the pair again, and the pair is removed from the data array that was
passed in. Pairs that pass through this checking should not encounter any data problems while being
merged.

25.4.2 RESTART^XDRMERG(): Merge File Entries

Reference Type Supported

Category Toolkit—Duplicate Record Merge

IA # 2365

Description This API is used to restart a merge that has been stopped. The information
necessary for restarting can be viewed using the CHKLOCAL^XDRMERG2 API
(see LOCAL MERGE STATUS).

Format RESTART^XDRMERG(file,arraynam,phase,currfile,currien)

Input Parameters file: (required) Specifies the FILE NUMBER of the file in which the
indicated entries are to be merged.

arraynam: (required) This variable contains the name of the array as a closed
root under which the subscripts indicating the FROM and TO
entries will be found. The data may have either two or four
subscripts descendent from the array, which is passed. Please see
the overall description provided for examples of its usage.

 Toolkit: Developer Tools

July 1995 Kernel 405
Revised September 2011 Developer's Guide
 Version 8.0

phase: (required) This variable indicates the phase of the merge process
in which the merge should be restarted. The value is a number in
the range of 1 to 3, with no decimal places. Phase 1 is usually
quite short and is the merge of the specified entries in the primary
file. Phase 2 is the merging of entries in files that are DINUMed
to the primary file and changing pointers that can be identified
from cross-references. Phase 3 is finding pointer values by
searching each entry in a file. This will usually be the longest
phase of the merge process.

currfile: (required) This is the current file NUMBER on which the merge
process is operating.

currien: (required) This is the current internal entry number in the file on
which the merge process is operating.

25.4.3 SAVEMERG^XDRMERGB(): Save Image of Existing and
Merged Data

Reference Type Controlled Subscription

Category Toolkit—Duplicate Record Merge

IA # 2338

Description During special processing related to the Patient Merge, the routine IBAXDR needs
to call the entry point SAVEMERG^XDRMERGB. This API is used to save the
file image of an entry involved in the merge process when only one of the entries
(the entry being merged or the entry being merged into) is present in [FILENUM].
Normally, the merge process would handle when it can identify a FROM or a TO
entry that is not present based on the DINUMed values. For [FILENUM],
however, the internal entry numbers are determined from the "B"-cross- reference,
and missing entries need to be handled separately.

This API acts to save an image of the currently existing data for the merge entry
and merged into entry in the MERGE IMAGE file (#15.4).

Format SAVEMERG^XDRMERGB([filenum],ienfrom,iento)

Input Parameters filenum: (required) This is the file number for the file that is being merged
and for which the images are to be saved.

ienfrom: (required) The internal entry number of the FROM entry (the
entry being merged into another entry).

iento: (optional) The internal entry number of the TO entry (the entry
into which the entry is being merged).

Toolkit: Developer Tools

406 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Output image: Stored image.

25.5 Toolkit—HTTP Client APIs

The Kernel Toolkit Hypertext Transfer Protocol (HTTP) Client Helper software release adds a new tool
in a set of Infrastructure software tools that developers can use. HTTP is a fast and reliable way for an
application to collect data from another source. Kernel Toolkit Patch XT*7.3*123 allows VistA to tap
into this information and retrieve Web data.

This code was developed by another VistA application that had a pressing need for this capability. The
Kernel Toolkit development team is providing it as generic tool so that other developers may use its
functionality for their needs. For example:

• KIDS: Uses it to get the checksums from FORUM of patches that are sent in a Host File System
(HFS) file.

• Pharmacy: Uses it to request the printing of FDA data sheets.

NOTE: XTHC* routines are part of the HTTP Client Helper application for developers.

25.5.1 $$GETURL^XTHC10: Return URL Data Using HTTP

Reference Type Supported

Category Toolkit—HTTP Client Helper

IA # 5553

Description This extrinsic function returns the HTTP status code and description for the input
URL using the HTTP Client Helper 1.0 software. This API was introduced with
Kernel Toolkit Patch XT*7.3*123.

Format $$GETURL^XTHC10(url[,xt8flg][,xt8rdat][,.xt8rhdr][,xt8sdat][,.xt8sh
dr])

Input Parameters url: (required) Universal Resource Locator (URL):

http://host:port/path

xt8flg: (optional) Timeout and flags to control processing. If the value of
this parameter starts from a number then this number is used as a
value of the timeout (in seconds). Otherwise, the default value of
5 seconds is used.

xt8rdat: (optional) Closed root of the variable where the message body is
returned. Data is stored in consecutive nodes. If a line is longer
than 245 characters, only 245 characters are stored in the

 Toolkit: Developer Tools

July 1995 Kernel 407
Revised September 2011 Developer's Guide
 Version 8.0

corresponding node. After that, overflow sub-nodes are created.
For example:

@XT8DATA@(1)="<html>"
@XT8DATA@(2)="<head><title>VistA</title></head>"
@XT8DATA@(3)="<body>"
@XT8DATA@(4)="<p>"
@XT8DATA@(5)="Beginning of a very long line"
@XT8DATA@(5,1)="Continuation #1 of the long line"
@XT8DATA@(5,2)="Continuation #2 of the long line"
@XT8DATA@(5,...)=...
@XT8DATA@(6)="</p>"

 .xt8rhdr (optional) Reference to a local variable where the parsed headers
are returned. Header names are converted to uppercase; the values
are left "as is". The root node contains the status line. For
example:

XT8HDR="HTTP/1.0 200 OK"
XT8HDR("CACHE-CONTROL")="private"
XT8HDR("CONNECTION")="Keep-Alive"
XT8HDR("CONTENT-LENGTH")="2690"
XT8HDR("CONTENT-TYPE")="text/html"
XT8HDR("DATE")="Fri, 26 Sep 2003 16:04:10 GMT"
XT8HDR("SERVER")="GWS/2.1"

 xt8sdat (optional) Closed root of a variable containing the body of the
request message. Data should be formatted as described in the
xtT8rdat parameter.

 NOTE: If this parameter is defined (i.e., not empty) and the
referenced array contains data, then the POST request is
generated. Otherwise, the GET request is sent.

 .xt8shdr (optional) Reference to a local variable containing header values,
which will be added to the request.

Output Returns: Return values:

• <0—Error Descriptor (see the $$ERROR^XTERROR)

• >0—HTTP Status Code^Description

The most common HTTP status codes include:

Status Code Description

200 OK.

301 Moved Permanently.

The application should either automatically
update the URL with the new one from the
Location response header or instruct the user
on how to do this.

302 Moved Temporarily.

Toolkit: Developer Tools

408 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

The application should continue using the
original URL.

 NOTE: You will not see this code for
GET requests. They are redirected
automatically.

303 See Other.

The resource has moved to another URL given
by the Location response header, and should
be automatically retrieved by the client using
the GET method. This is often used by a CGI
script to redirect the client to an existing file.

 NOTE: You will not see this status code,
because it is handled automatically
inside the function.

400 Bad Request.

404 Not Found.

500 Server Error.

An unexpected server error. The most common
cause is a server-side script that has bad
syntax, fails, or otherwise cannot run correctly.

 REF: For more details, visit the following Website:

http://www.faqs.org/rfcs/rfc1945.html

25.5.2 $$ENCODE^XTHCURL: Encodes a Query String

Reference Type Supported

Category Toolkit—HTTP Client Helper

IA # 5554

Description This extrinsic function returns an encoded query string used by the
$$MAKEURL^XTHCURL: Creates a URL from Components API using the
HTTP Client Helper 1.0 software. This API was introduced with Kernel Toolkit
Patch XT*7.3*123.

Format $$ENCODEURL^XTHCURL(string)

Input Parameters string: (required) Query string used by the $$MAKEURL^XTHCURL:

http://www.faqs.org/rfcs/rfc1945.html

 Toolkit: Developer Tools

July 1995 Kernel 409
Revised September 2011 Developer's Guide
 Version 8.0

Creates a URL from Components API.

Output Returns: Returns encoded string.

Example

W $$ENCODE^XTHCURL("1301+clay+st.,Oakland,CA")
1301%2Bclay%2Bst.%2COakland%2CCA

25.5.3 $$MAKEURL^XTHCURL: Creates a URL from Components

Reference Type Supported

Category Toolkit—HTTP Client Helper

IA # 5554

Description This extrinsic function returns a URL created from input components using the
HTTP Client Helper 1.0 software. This API was introduced with Kernel Toolkit
Patch XT*7.3*123.

Format $$MAKEURL^XTHCURL(host[,port][,path][,.query])

Input Parameters host: (required) The Fully Qualified Domain Name (FQDN) or Internet
Protocol (IP) address of the system to which it connects.

 port (optional) The port to use is if not Port 80.

 path (optional) The path to the page.

 .query (optional) An array of query parameters.

Output Returns: Returns URL.

Example

S host="http://maps.google.com"
S path="maps/api/staticmap"
S query("center")="1301+clay+st.,Oakland,CA"
S query("zoom")=14
S query("size")="512x512"
S query("maptype")="roadmap"
S query("sensor")="false"
W $$MAKEURL^XTHCURL(host,,path,.query)

http://maps.google.com/maps/api/staticmap?center=1301%2Bclay%2Bst.%2COakland%2CCA&mapt
ype=roadmap&sensor=false&size=512x512&zoom=14

Toolkit: Developer Tools

410 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

25.5.4 $$PARSEURL^XTHCURL: Parses a URL

Reference Type Supported

Category Toolkit—HTTP Client Helper

IA # 5554

Description This extrinsic function parses a URL using the HTTP Client Helper 1.0 software.
This API was introduced with Kernel Toolkit Patch XT*7.3*123.

Format $$PARSEURL^XTHCURL(url)

Input Parameters url: (required) Input URL.

Output Returns: Returns parsed URL.

Example

D PARSEURL^XTHCURL("http://cgi.forum.va.gov:6100/tpl/PKGLST",.ZH,.ZP,.ZA)
W ZH,!,ZP,!,ZA

cgi.forum.va.gov
6100
/tpl/PKGLST

25.5.5 $$DECODE^XTHCUTL: Decodes a String

Reference Type Supported

Category Toolkit—HTTP Client Helper

IA # 5555

Description This extrinsic function returns a decoded string using the HTTP Client Helper 1.0
software. This API was introduced with Kernel Toolkit Patch XT*7.3*123.

Format $$DECODE^XTHCUTL(string)

Input Parameters string: (required) Input string to be decoded.

 Toolkit: Developer Tools

July 1995 Kernel 411
Revised September 2011 Developer's Guide
 Version 8.0

Output Returns: Returns decoded string. It replaces the following characters:

• < with <

• > with >

• & with &

• with " "

• ' with '

• " with "

• A with A

Toolkit: Developer Tools

412 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

25.6 Toolkit—KERMIT APIs

25.6.1 RECEIVE^XTKERMIT: Load a File into the Host

Reference Type Supported

Category Toolkit—KERMIT

IA # 10095

Description The API loads a file into the host.

Format RECEIVE^XTKERMIT

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Variables to call
from outside of
KERMIT

XTKDIC: (required) Set XTKDIC to VA FileMan type global root.

DWLC: (required) Set DWLC to last current data node.

Return DWLC to last data node, XTKDIC is KILLed.

TIREF: (optional) Set XTKMODE as follows to send/receive:
• 0—Send/Receive in IMAGE mode (no conversion).

• 1—Send/Receive in DATA mode (just convert control
character).

• 2—Send/Receive as TEXT (VA FileMan word-
processing). Text mode sends a carriage return (CR) after
each global node; makes a new global node for each CR
received. XTKMODE set to 2 would be normal for most
VistA applications.

 Toolkit: Developer Tools

July 1995 Kernel 413
Revised September 2011 Developer's Guide
 Version 8.0

25.6.2 RFILE^XTKERM4: Add Entries to Kermit Holding File

Reference Type Supported

Category Toolkit—KERMIT

IA # 2075

Description This API allows access to the KERMIT HOLDING file (#8980) and the API that
adds entries to it, RFILE^XTKERM4. The "AOK" cross-reference of the
KERMIT HOLDING file (#8980) can be checked to see if the user has an entry in
the KERMIT HOLDING file (#8980). If not, RFILE^XTKERM4 can be called to
add an entry to the file.

 NOTE: A call to RFILE^XTKERM4 will allow a user to add or select an
entry in the KERMIT HOLDING file (#8980).

Format RFILE^XTKERM4

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Output Variables XTKDIC: This variable returns the global root and is a calling variable used
by calls to RECEIVE^XTKERMIT: Load a File into the Host or
SEND^XTKERMIT: Send Data from Host.

XTMODE: This variable is returned, it is used as input to calls to
RECEIVE^XTKERMIT: Load a File into the Host or
SEND^XTKERMIT: Send Data from Host.

25.6.3 SEND^XTKERMIT: Send Data from Host

Reference Type Supported

Category Toolkit—KERMIT

IA # 10095

Description The API sends data from host.

Format SEND^XTKERMIT

Make sure to perform the following steps before calling this API:

Toolkit: Developer Tools

414 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Variables to call
from outside of
KERMIT

XTKDIC: (required) Set XTKDIC to VA FileMan type global root.

DWLC: (required) Set DWLC to last current data node.

Return DWLC to last data node, XTKDIC is KILLed.

TIREF: (optional) Set XTKMODE as follows to send/receive:
• 0—Send/Receive in IMAGE mode (no conversion).

• 1—Send/Receive in DATA mode (just convert control
character).

• 2—Send/Receive as TEXT (VA FileMan word-
processing). Text mode sends a carriage return (CR) after
each global node; makes a new global node for each CR
received. XTKMODE set to 2 would be normal for most
VistA applications.

 Toolkit: Developer Tools

July 1995 Kernel 415
Revised September 2011 Developer's Guide
 Version 8.0

25.7 Toolkit—Multi-Term Look-Up (MTLU) APIs

25.7.1 How to Override

If files are fully configured for the special Multi-Term Look-Up, all standard VA FileMan lookups invoke
MTLU. The following procedures can be taken to override MTLU:

• Users can enter an accent grave (`) as a prefix to request a lookup by the Internal Entry Number
(IEN).

• Users can enter a tilde (~) as a prefix to force a standard VA FileMan lookup.

NOTE: In the event that a search produces no matches, MTLU continues with a standard
VA FileMan search by default.

• Developers can override MTLU by setting the variable XTLKUT="" prior to referencing the file
and KILLing it upon exit, or set DIC(0) to include "I":

S DIC=81,DIC(0)="AEMQI",X="" D ^DIC

25.7.2 Application Program Interfaces

25.7.2.1 MTLU and VA FileMan Supported Calls

Developers can perform any supported VA FileMan calls on files fully configured for MTLU.

The preferred method of performing lookups from Programmer mode is to add the target file to the
LOCAL LOOKUP file (#8984.4) and call LKUP^XTLKMGR. However, Multi-Term Look-Ups can be
performed on any VA FileMan file, even if it has not been configured for use by MTLU. Using the
developer API, the lookup can be performed using any index contained within the file, such as a VA
FileMan KWIC cross-reference.

Entry Point: XTLKKWL

Required Input Variables: (XTLKGBL,
XTLKKSCH("GBL"))

This is the global root (same as DIC).

 XTLKKSCH("DSPLY") This variable displays the routine. For example:
DGEN^XTLKKWLD

 XTLKKSCH("INDEX"
)

Cross-reference selected by the developer for
performing a multi-term lookup.

 XTLKX This is the user input.

Toolkit: Developer Tools

416 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Optional Input Variables: XTLKSAY This variable equals 1 or 0. If XTLKSAY = 1,
MTLU displays details during the lookup.

 NOTE: The purpose of XTLKSAY is to
control the degree of output to the screen,
not the amount of "file information"
displayed.

 XTLKHLP Executable code to display custom help.

25.7.2.2 Kernel Toolkit Enhanced APIs

Programmer calls to MTLU-configured files return all standard VA FileMan variables (i.e., Y, DTOUT,
DUOUT, DIROUT, and DIRUT).

The programmer's API for performing a lookup has been enhanced functionally, simplified, and converted
to a procedure call.

Procedure calls provide full, non-interactive management of the following MTLU control files: LOCAL
KEYWORD (#8984.1), LOCAL SHORTCUT (#8984.2), LOCAL SYNONYM (#8984.3), and LOCAL
LOOKUP (#8984.4).

All procedure calls are contained in the routine ^XTLKMGR.

Errors are returned in the XTLKER() array. KILL this array before calling any of these new procedure
calls, and check the array after returning from the calls. All calls require that the target file be defined in
the LOCAL LOOKUP file (#8984.4). If removing an entry from the LOCAL LOOKUP file (#8984.4), all
shortcuts, synonyms, and keywords associated with that file must be deleted first.

25.7.3 XTLKKWL^XTLKKWL: Perform Supported VA FileMan
Calls on Files Configured for MTLU

Reference Type Supported

Category Toolkit—Multi-Term Look-Up (MTLU)

IA # 10122

Description This API lets developers perform any supported VA FileMan calls on files
configured for MTLU. To ignore the special lookup routine, XTLKDICL, be sure
that DIC(0) includes an "I." Alternatively, multi-term lookups can be performed
on any VA FileMan file, even if it has not been configured for primary use by
MTLU. Using the programmer API, the lookup can be performed using any index
contained within the file, such as a VA FileMan KWIC cross-reference.

Format XTLKKWL^XTLKKWL

 Toolkit: Developer Tools

July 1995 Kernel 417
Revised September 2011 Developer's Guide
 Version 8.0

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Variables XTLKGBL,
XTLKKSCH("GBL"):

(required) This is the global root (same as DIC).

XTLKKSCH("DSPLY"): (required) This variable displays the routine. For
example: DGEN^XTLKKWLD

XTLKKSCH("INDEX") (required) Cross-reference selected by the developer
for performing a MTLU.

XTLKX: (required) This is the user input.

XTLKSAY: (optional) XTLKSAY=1 or 0 (If 1, MTLU will
display details during lookup)

XTLKHLP (optional) XTLKHLP=Executable code to display
custom help

Output Variables XTLKSAY: Returns:
• 1—MTLU displays details during the lookup.

• 0

 NOTE: The purpose of XTLKSAY variable is
to control the degree of output to the screen, not
the amount of "file information" displayed.

 XTLKHLP: Executable code to display custom help.

25.7.4 DK^XTLKMGR(): Delete Keywords from the Local Keyword
File

Reference Type Supported

Category Toolkit—Multi-Term Look-Up (MTLU)

IA # 10153

Description This API deletes keywords from the LOCAL KEYWORD file (#8984.1).

Format DK^XTLKMGR(xtlk1,xtlk2)

Toolkit: Developer Tools

418 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters xtlk1: (required) File name.

xtlk2: (required) Leave undefined to delete all keywords for a given
target file or pass in an array for selected keywords.

25.7.5 DLL^XTLKMGR(): Delete an Entry from the Local Lookup
File

Reference Type Supported

Category Toolkit—Multi-Term Look-Up (MTLU)

IA # 10153

Description This API deletes an entry from the LOCAL LOOKUP file (#8984.4).

Format DLL^XTLKMGR(xtlk1)

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Parameter xtlk1: (required) The associated filename or number.

Output Variables XTLKER(1,
filename):

File is not in the LOCAL LOOKUP file (#8984.4).

XTLKER Entries exist for keywords, shortcuts, or synonyms for the
associated file. These must be deleted first.

25.7.6 DSH^XTLKMGR(): Delete Shortcuts from the Local Shortcut
File

Reference Type Supported

Category Toolkit—Multi-Term Look-Up (MTLU)

IA # 10153

Description This API deletes shortcuts from the LOCAL SHORTCUT file (#8984.2).

Format DSH^XTLKMGR(xtlk1,xtlk2)

 Toolkit: Developer Tools

July 1995 Kernel 419
Revised September 2011 Developer's Guide
 Version 8.0

Input Parameters xtlk1: (required) File name.

xtlk2: (required) Leave undefined to delete all shortcuts for a given
target file or pass in an array for selected shortcuts.

25.7.7 DSY^XTLKMGR(): Delete Synonyms from the Local
Synonym File

Reference Type Supported

Category Toolkit—Multi-Term Look-Up (MTLU)

IA # 10153

Description This API deletes synonyms from the LOCAL SYNONYM file (#8984.3).

Format DSY^XTLKMGR(xtlk1,xtlk2)

Input Parameters xtlk1: (required) File name.

xtlk2: (required) Leave this parameter undefined to delete all synonyms
for a given target file or pass in an array for selected synonyms.

25.7.8 K^XTLKMGR(): Add Keywords to the Local Keyword File

Reference Type Supported

Category Toolkit—Multi-Term Look-Up (MTLU)

IA # 10153

Description This API adds Keywords to the LOCAL KEYWORD file (#8984.1).

Format K^XTLKMGR(xtlk1,xtlk2,xtlk3)

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Toolkit: Developer Tools

420 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters xtlk1: (required) Associated file.

xtlk2: (required) Code in the associated file.

xtlk3: (required) Keyword.

Output Variables XTLKER(1,
filename):

File not defined in the LOCAL LOOKUP file (#8984.4).

XTLKER(2,
code):

The code is not in the associated file.

XTLKER(3,
synonym):

The keyword could not be added.

25.7.9 L^XTLKMGR(): Define a File in the Local Lookup File

Name L^XTLKMGR(): Define a file in the LOCAL LOOKUP file (#8984.4).

Reference Type Supported

Category Toolkit—Multi-Term Look-Up (MTLU)

IA # 10153

Description This API defines a file in the LOCAL LOOKUP file (8984.4). Adding the target
file here does not automatically place the special lookup routine, ^XTLKDICL, in
the file's Data Dictionary. Since use of this routine is at the discretion of the
developer, it should be manually added via the Edit File option under VA
FileMan's Utilities Menu.

 REF: For information on the Edit File option, see the "Utility Functions"
chapter in the VA FileMan User Manual.

Format L^XTLKMGR(xtlk1,xtlk2,xtlk3,xtlk4)

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

 Toolkit: Developer Tools

July 1995 Kernel 421
Revised September 2011 Developer's Guide
 Version 8.0

Input Parameters xtlk1: (required) File name or number.

xtlk2: (optional) Application-specific display protocol.

xtlk3: (required) MTLU index to use for lookups.

xtlk4: (required) Variable pointer prefix.

Output Variable XTLKER(1,
FILENAME):

File could not be added.

The following are examples (index and prefix can differ from actual
implementation).

• For the ICD DIAGNOSIS file (#80):

>K XTLKER
>D L^XTLKMGR(80,"DSPLYD^XTLKKWLD","AIHS","D")

• For the ICD OPERATION/PROCEDURE file (#80.1):

>K XTLKER
>D L^XTLKMGR(80.1,"DSPLYO^XTLKKWLD","KWIC","O")

25.7.10 LKUP^XTLKMGR(): General Lookup Facility for MTLU

Reference Type Supported

Category Toolkit—Multi-Term Look-Up (MTLU)

IA # 10153

Description This API adds terms and synonyms to the LOCAL SYNONYM file (#8984.3).

Format LKUP^XTLKMGR(fil,xtlkx[,xtlksay][,xtlkhlp][,xtlkmore])

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Parameters fil: (required) Target file (must be defined in the LOCAL LOOKUP
file (#8984.4).

xtlkx: (required) Word or phrase to use in lookup.

Toolkit: Developer Tools

422 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

xtlksay: (optional) -1, 0, or 1 (default=1). Set to "0" to minimize, "-1" to
prevent screen display, "1" or "" for full screen (normal) display.

 NOTE: The purpose of XTLKSAY is to control the degree
of output to the screen, not the amount of "file information"
displayed.

If screen displays are turned off, MTLU matches can be
processed by checking the count in
^TMP("XTLKHITS",$J).
^TMP("XTLKHITS",$J,count)=IEN of the entry in the
target file. ^TMP("XTLKHITS") should be killed after
processing.

xtlkhlp: (optional) The lookup was successful.

xtlkmore: (optional) Set to "1" to continue with FileMan search (default=1).

Output Variables Y=-1: File not defined in the LOCAL LOOKUP file (#8984.4).

Y=N^S: N is the internal entry number (IEN) of the entry in the file and S
is the value of the .01 field for that entry.

Y=N^S^1: N and S are defined as above and the 1 indicates that this entry
has just been added to the file.

 Toolkit: Developer Tools

July 1995 Kernel 423
Revised September 2011 Developer's Guide
 Version 8.0

Example 1

Figure 86. Standard Lookup—Single term entered

VAH,MTL>D LKUP^XTLKMGR(80,"MALIG")
(MALIG/MALIGNANT)
..
..
...

The following 443 matches were found:

 1: 140.1 (MAL NEO LOWER VERMILION)
 MALIGNANT NEOPLASM OF LOWER LIP, VERMILION BORDER

 2: 140.3 (MAL NEO UPPER LIP, INNER)
 MALIGNANT NEOPLASM OF UPPER LIP, INNER ASPECT

 3: 140.4 (MAL NEO LOWER LIP, INNER)
 MALIGNANT NEOPLASM OF LOWER LIP, INNER ASPECT

 4: 140.5 (MAL NEO LIP, INNER NOS)
 MALIGNANT NEOPLASM OF LIP, UNSPECIFIED, INNER ASPECT

 5: 140.6 (MAL NEO LIP, COMMISSURE)
 MALIGNANT NEOPLASM OF COMMISSURE OF LIP

Press <RET> or Select 1-5: ^
...Nothing selected. Attempting Fileman lookup.

NOTE: Pressing the <Enter> key continues listing the MTLU matches. If no selection is made,
MTLU initiates a standard VA FileMan lookup (using all available cross-references).

Toolkit: Developer Tools

424 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 2

Figure 87. Standard Lookup—Multiple terms entered

VAH,MTL>D LKUP^XTLKMGR(80,"MALIGNANCY OF THE LIP")

(LIP/LIPIDOSES/LIPODYSTROPHY/LIPOID/LIPOMA/LIPOPROTEIN/LIPOTROPIC/LIPS
MALIGNAN/MALIGNANT)

The following words were not used in this search:
 OF
 THE
............

The following 12 matches were found:

 1: 140.1 (MAL NEO LOWER VERMILION)
 MALIGNANT NEOPLASM OF LOWER LIP, VERMILION BORDER

 2: 140.3 (MAL NEO UPPER LIP, INNER)
 MALIGNANT NEOPLASM OF UPPER LIP, INNER ASPECT

 3: 140.4 (MAL NEO LOWER LIP, INNER)
 MALIGNANT NEOPLASM OF LOWER LIP, INNER ASPECT

 4: 140.5 (MAL NEO LIP, INNER NOS)
 MALIGNANT NEOPLASM OF LIP, UNSPECIFIED, INNER ASPECT

 5: 140.6 (MAL NEO LIP, COMMISSURE)
 MALIGNANT NEOPLASM OF COMMISSURE OF LIP

Press <RET> or Select 1-5: ^
...Nothing selected. Attempting Fileman lookup. ??

 Toolkit: Developer Tools

July 1995 Kernel 425
Revised September 2011 Developer's Guide
 Version 8.0

Example 3

Figure 88. Display minimized by setting the 3rd parameter = 0

VAH,MTL>S XTLKX="MALIGNANCY OF THE LIP"

VAH,MTL>D LKUP^XTLKMGR(80,XTLKX,0)

The following 12 matches were found:

 1: 140.1 (MAL NEO LOWER VERMILION)
 MALIGNANT NEOPLASM OF LOWER LIP, VERMILION BORDER

 2: 140.3 (MAL NEO UPPER LIP, INNER)
 MALIGNANT NEOPLASM OF UPPER LIP, INNER ASPECT

 3: 140.4 (MAL NEO LOWER LIP, INNER)
 MALIGNANT NEOPLASM OF LOWER LIP, INNER ASPECT

 4: 140.5 (MAL NEO LIP, INNER NOS)
 MALIGNANT NEOPLASM OF LIP, UNSPECIFIED, INNER ASPECT

 5: 140.6 (MAL NEO LIP, COMMISSURE)
 MALIGNANT NEOPLASM OF COMMISSURE OF LIP

Press <RET> or Select 1-5: ^ ??
VAH,MTL>

Example 4

Figure 89. MTLU with screen display turned off

VAH,MTL>D LKUP^XTLKMGR(80,XTLKX,-1)

VAH,MTL>D ^%G

Global ^TMP("XTLKHITS",$J
 TMP("XTLKHITS",$J
^TMP("XTLKHITS",591795907) = 12
^TMP("XTLKHITS",591795907,1) = 167
^TMP("XTLKHITS",591795907,2) = 168
^TMP("XTLKHITS",591795907,3) = 169
^TMP("XTLKHITS",591795907,4) = 170
^TMP("XTLKHITS",591795907,5) = 171
^TMP("XTLKHITS",591795907,6) = 172
^TMP("XTLKHITS",591795907,7) = 173
^TMP("XTLKHITS",591795907,8) = 220
^TMP("XTLKHITS",591795907,9) = 221
^TMP("XTLKHITS",591795907,10) = 8595
^TMP("XTLKHITS",591795907,11) = 8623
^TMP("XTLKHITS",591795907,12) = 8624

NOTE:

"167" is the IEN of the target file.
^ICD9(167,0) = 140.1^Y^MAL NEO LOWER VERMILION^^3^^^^
^ICD9(167,1) = MALIGNANT NEOPLASM OF LOWER LIP,
VERMILION
BORDER
^ICD9(167,"DRG") = 64^^ VERMILION^^3^^^^

Toolkit: Developer Tools

426 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

25.7.11 SH^XTLKMGR(): Add Shortcuts to the Local Shortcut File

Reference Type Supported

Category Toolkit—Multi-Term Look-Up (MTLU)

IA # 10153

Description This API adds Shortcuts to the LOCAL SHORTCUT file (#8984.2).

Format SH^XTLKMGR(xtlk1,xtlk2,xtlk3)

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Parameters xtlk1: (required) Associated file.

xtlk2: (required) Code in the associated file.

xtlk3: (required) Shortcut (word or phrase).

Output Variables XTLKER(1,
filename):

File not defined in the LOCAL LOOKUP file (#8984.4).

XTLKER(2,
code):

The code is not in the associated file.

XTLKER(3,
shortcut):

The shortcut could not be added.

25.7.12 SY^XTLKMGR(): Add Terms and Synonyms to the Local
Synonym File

Reference Type Supported

Category Toolkit—Multi-Term Look-Up (MTLU)

IA # 10153

Description This API adds Terms and Synonyms to the LOCAL SYNONYM file (#8984.3).

Format SY^XTLKMGR(xtlk1,xtlk2,xtlk3)

Make sure to perform the following steps before calling this API:

 Toolkit: Developer Tools

July 1995 Kernel 427
Revised September 2011 Developer's Guide
 Version 8.0

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Parameters xtlk1: (required) Associated file.

xtlk2: (required) Term.

xtlk3: (required) Synonym (or optional array for multiple synonyms per
term).

 NOTE: Use one-dimensional arrays wherever supported in
^XTLKMGR as in the following example:

SYN(1)=<first synonym>

SYN(2)=<second synonym>

SYN(3)=<third synonym>

>D SY^ROUTINE(XTLK1,XTLK2,.SYN)

Output Variables: XTLKER(1,
FILENAME):

File not defined in the LOCAL LOOKUP file (#8984.4).

XTLKER(2,
TERM):

The term could not be added.

XTLKER(3,
SYNONYM):

The synonym could not be added.

Toolkit: Developer Tools

428 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

25.8 Toolkit—Parameter Tools APIs

Parameter Tools is a generic method of handling parameter definitions, assignments, and retrieval. A
parameter may be defined for various entities where an entity is the level at which you want to allow the
parameter defined (e.g., package level, system level, division level, location level, user level, etc.). A
developer can then determine in which order the values assigned to given entities are interpreted.

REF: Integration Agreement (IA) #2263 defines the various callable entry points in the XPAR
routine.

IA #2336 defines the various callable entry points in the XPAREDIT routine.

25.8.1 Definitions

The following are some basic definitions used by Parameter Tools:

25.8.1.1 Entity

An entity is a level at which you can define a parameter. The entities allowed are stored in the
PARAMETER ENTITY file (#8989.518). The list of allowable entities at the time this utility was
released was as follows:

Table 23. Parameter Tool—Parameter entity levels

Entity Prefix Message Points to File

PKG Package PACKAGE (#9.4)

SYS System DOMAIN (#4.2)

DIV Division INSTITUTION (#4)

SRV Service SERVICE/SECTION (#49)

LOC Location HOSPITAL LOCATION (#44)

TEA Team TEAM (#404.51)

CLS Class USR CLASS (#8930)

USR User NEW PERSON (#200)

BED Room-Bed ROOM-BED (#405.4)

OTL Team (OE/RR) OE/RR LIST (#100.21)

DEV Device DEVICE (#3.5)

NOTE: Entries will be maintained via Kernel Toolkit patches. Entries existing in the file at the
time it is referenced are considered supported.

 Toolkit: Developer Tools

July 1995 Kernel 429
Revised September 2011 Developer's Guide
 Version 8.0

25.8.1.2 Parameter

A parameter is the actual name under which values are stored. The name of the parameter must be
namespaced and it must be unique. Parameters can be defined to store the typical package parameter data
(e.g., the default add order screen in OE/RR), but they can also be used to store GUI application screen
settings a user has selected (e.g., font or window width). When a parameter is defined, the entities that can
set that parameter are also defined. The definition of parameters is stored in the PARAMETER
DEFINITION file (#8989.51).

25.8.1.3 Value

A value may be assigned to every parameter for the entities allowed in the parameter definition. Values
are stored in the PARAMETERS file (#8989.5).

25.8.1.4 Instance

Most parameters will set instance to 1. Instances are used when more than one value may be assigned to a
given entity/parameter combination. An example of this would be lab collection times at a division. A
single division may have multiple collection times. Each collection time would be assigned a unique
instance.

25.8.1.5 Parameter Template

A parameter template is similar to an input template. It contains a list of parameters that can be entered
through an input session (e.g., option). Templates are stored in the PARAMETER TEMPLATE File
(#8989.52). Entries in this file must also be namespaced.

25.8.2 ADD^XPAR(): Add Parameter Value

Reference Type Supported

Category Toolkit—Parameter Tools

IA # 2263

Description This API can be called to add a new parameter value as an entry to the
PARAMETERS file (#8989.5) if the Entity/Parameter/Instance combination does
not already exist.

 REF: For descriptive information about the elements and how they are used
in the callable entry points into XPAR, see the "Toolkit—Parameter Tools"
topic.

Format ADD^XPAR(entity,parameter[,instance],value[,.error])

Input/Output For the definition of the input and output parameters used in this API, see the

Toolkit: Developer Tools

430 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Parameters EN^XPAR(): Add, Change, Delete Parameters API.

Example:

>D ADD^XPAR("PKG.KERNEL","XPAR TEST FREE TEXT",,"Today Good",.ERROR)

25.8.3 CHG^XPAR(): Change Parameter Value

Reference Type Supported

Category Toolkit—Parameter Tools

IA # 2263

Description This API can be called to change the value assigned to an existing parameter if the
Entity/Parameter/Instance combination already exists.

 REF: For descriptive information about the elements and how they are used
in the callable entry points into XPAR, see the "Toolkit—Parameter Tools"
topic.

Format CHG^XPAR(entity,parameter[,instance],value[,.error])

Input/Output
Parameters

For the definition of the input and output parameters used in this API, see the
EN^XPAR(): Add, Change, Delete Parameters API.

Example

>D CHG^XPAR("PKG.KERNEL","XPAR TEST FREE TEXT",,"Tomorrow Hot",.ERROR)

 Toolkit: Developer Tools

July 1995 Kernel 431
Revised September 2011 Developer's Guide
 Version 8.0

25.8.4 DEL^XPAR(): Delete Parameter Value

Reference Type Supported

Category Toolkit—Parameter Tools

IA # 2263

Description This API can be called to delete an existing parameter instance if the value
assigned is "@".

 REF: For descriptive information about the elements and how they are used
in the callable entry points into XPAR, see the "Toolkit—Parameter Tools"
topic.

Format DEL^XPAR(entity,parameter[,instance][,.error])

Input/Output
Parameters

For the definition of the input and output parameters used in this API, see the
EN^XPAR(): Add, Change, Delete Parameters API.

Example

>D DEL^XPAR("PKG.KERNEL","XPAR TEST FREE TEXT",),.ERROR) I ERROR>0 W !.ERROR

25.8.5 EN^XPAR(): Add, Change, Delete Parameters

Reference Type Supported

Category Toolkit—Parameter Tools

IA # 2263

Description This API performs any one of the following functions:

• Adds the value as a new entry to the PARAMETERS file (#8989.5) if
the Entity|Parameter|Instance combination does not already exist.

• Changes the value assigned to the parameter in the PARAMETERS file
(#8989.5) if the Entity|Parameter|Instance combination already exists.

• Deletes the parameter instance in the PARAMETERS file (#8989.5) if
the value assigned is "@".

Format EN^XPAR(entity,parameter[,instance],value[,.error])

Toolkit: Developer Tools

432 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters entity: (required) Entity can be set to the following:
• Internal variable pointer (nnn;GLO(123,)

• External format of the variable pointer using the three-
character prefix (prefix.entryname)

• Prefix alone to set the parameter based on the current
entity selected. This works for the following entities:

− "USR"—Uses current value of DUZ.

− "DIV"—Uses current value of DUZ(2).

− "SYS"—Uses system (domain).

− "PKG"—Uses the package to which the parameter
belongs.

parameter: (required) Can be passed in external or internal format. Identifies
the name or internal entry number (IEN) of the parameter as
defined in the PARAMETER DEFINITION file (#8989.51).

instance: (optional) Defaults to 1 if not passed. Can be passed in external or
internal format. Internal format requires that the value be preceded
by the grave accent (`) character.

value: (required) Can be passed in external or internal format. If using
internal format for a pointer type parameter, the value must be
preceded by the accent grave (`) character.

If the value is being assigned to a word-processing parameter, the
text can be passed in the subordinate nodes of Value
(e.g., Value(1,0)=Text) and the variable "Value" itself can be
defined as a title or description of the text.

Output Parameter .error: (optional) If used, must be passed in by reference. It returns any
error condition that may occur:

• 0 (Zero)—If no error occurs.

• #^errortext—If an error does occur.

The "#" is the number in the VA FileMan DIALOG file
(#.84) and the "errortext" describes the error.

Example

>D EN^XPAR("SYS","XPAR TEST FREE TEXT",0,"Good times",.ERROR)
>D EN^XPAR("SYS","XPAR TEST FREE TEXT",1,"to night",.ERROR)

 Toolkit: Developer Tools

July 1995 Kernel 433
Revised September 2011 Developer's Guide
 Version 8.0

25.8.6 ENVAL^XPAR(): Return All Parameter Instances

Reference Type Supported

Category Toolkit—Parameter Tools

IA # 2263

Description This API can be called to return all parameter instances.

 REF: For descriptive information about the elements and how they are used
in the callable entry points into XPAR, see the "Toolkit—Parameter Tools"
topic.

Format ENVAL^XPAR(.list,parameter,instance[,.error][,gbl])

Input/Output
Parameter

.list (required) If the gbl parameter is set to 1, then the .list parameter
becomes an input and holds the closed root of a global where the
GETLST^XPAR(): Return All Instances of a Parameter API
should put the output. For example:

$NA(^TMP($J,"XPAR"))

Input Parameters parameter: (required) For a description of this parameter, see the
EN^XPAR(): Add, Change, Delete Parameters API.

instance: (required) For a description of this parameter, see the
EN^XPAR(): Add, Change, Delete Parameters API.

gbl: (optional) If this optional parameter is set to 1, then the parameter
".list" must be set before the call to the closed global root where
the return data should be put. For example:

S LIST=$NA(^TMP($J))
ENVAL^XPAR(LIST,par,inst,.error,1

If this optional variable is set to 1. Then the parameter List must
be set before the call to the closed global root where the return
data should be put. For example:

GETLST^XPAR($NA(^TMP($J)),ent,par,fmt,.error,1)

Output
Parameter

.error: (optional) For a description of this parameter, see the
EN^XPAR(): Add, Change, Delete Parameters API.

Toolkit: Developer Tools

434 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

25.8.7 $$GET^XPAR(): Return an Instance of a Parameter

Reference Type Supported

Category Toolkit—Parameter Tools

IA # 2263

Description This extrinsic function retrieves the value of a parameter. The value is returned
from this call in the format defined by the input parameter named "format."

 REF: For descriptive information about the elements and how they are used
in the callable entry points into XPAR, see the "Toolkit—Parameter Tools"
topic.

Format $$GET^XPAR(entity,parameter,instance,format)

Input Parameters entity: (required) Entity is defined as the single entity or group of entities
you want to look at in order to retrieve the value. Entities may be
passed in internal or external format (e.g., LOC.PULMONARY or
LOC.'57 or 57;SC(). The list of entities in this variable may be
defined as follows:

• A single entity to look at (e.g., LOC.PULMONARY).

• The word "ALL" which will tell the utility to look for
values assigned to the parameter using the entity
precedence defined in the PARAMETER DEFINITION
file (#8989.51).

• A list of entities you want to search
(e.g., "USR^LOC^SYS^PKG"). The list is searched from
left to right with the first value found returned.

Items 2 or 3 with specific entity values referenced such as:
• ALL^LOC.PULMONARY—To look at the defined entity

precedence, but when looking at location, only look at the
PULMONARY location.

• USR^LOC.PULMONARY^SYS^PKG—To look for
values for all current user, PULMONARY location,
system, or package).

parameter: (required) For a description of this parameter, see the
EN^XPAR(): Add, Change, Delete Parameters API.

instance: (required) For a description of this parameter, see the
EN^XPAR(): Add, Change, Delete Parameters API.

format: (required) Format determines how the value is returned. It can be
set to the following:

• "I" - Internal, returns internal value.

 Toolkit: Developer Tools

July 1995 Kernel 435
Revised September 2011 Developer's Guide
 Version 8.0

• "Q" - returns the value in the quickest manner - internal
format.

• "E" - returns external value.

• "B" - returns internal^external value.

25.8.8 GETLST^XPAR(): Return All Instances of a Parameter

Reference Type Supported

Category Toolkit—Parameter Tools

IA # 2263

Description This API is similar to the ENVAL^XPAR(): Return All Parameter Instances API;
however, it returns all instances of a parameter.

 REF: For descriptive information about the elements and how they are used
in the callable entry points into XPAR, see the "Toolkit—Parameter Tools"
topic.

Format GETLST^XPAR(.list,entity,parameter,format[,.error][,gbl])

Input/Output
Parameter

.list: (required) The array passed as List will be returned with all of the
possible values assigned to the parameter.

 REF: To see how this data can be returned, see the "format"
parameter description below.

If the gbl parameter is set to 1, then the .list parameter becomes an
input and holds the closed root of a global where the
GETLST^XPAR(): Return All Instances of a Parameter API
should put the output [i.e., $NA(^TMP($J,"XPAR"))].

Input Parameters entity: (required) For a description of this parameter, see the EN^XPAR():
Add, Change, Delete Parameters API.

parameter: (required) For a description of this parameter, see the EN^XPAR():
Add, Change, Delete Parameters API.

instance: (required) For a description of this parameter, see the EN^XPAR():
Add, Change, Delete Parameters API.

format: (required) For a description of this parameter, see the
$$GET^XPAR(): Return an Instance of a Parameter API.

gbl: (optional) If this optional variable is set to 1. Then the parameter
".list" must be set before the call to the closed global root where the
return data should be put. For example:

Toolkit: Developer Tools

436 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

GETLST^XPAR($NA(^TMP($J)),ent,par,fmt,.error,1)

Output
Parameter

.error: (optional) For a description of this parameter, see the EN^XPAR():
Add, Change, Delete Parameters API.

Example:

>D GETLST^XPAR(.LIST,"SYS","XPAR TEST MULTI FREE TEXT",,.ERROR)

25.8.9 GETWP^XPAR(): Return Word-processing Text

Reference Type Supported

Category Toolkit—Parameter Tools

IA # 2263

Description This API returns word-processing text in the returnedtext parameter. The
returnedtext parameter itself contains the value field, which is free text that may
contain a title, description, etc. The word-processing text is returned in
returnedtext(#,0).

 REF: For descriptive information about the elements and how they are used
in the callable entry points into XPAR, see the "Toolkit—Parameter Tools"
topic.

Format GETWP^XPAR(returnedtext,entity,parameter[,instance][,.error])

Input/Output
Parameter

.returnedtext (required) This parameter is defined as the name of an array in
which you want the text returned. The .returnedtext parameter is
set to the title, description, etc. The actual word-processing text
will be returned in returnedtext(#,0). For example:

>returnedtext="Select Notes Help"
>returnedtext(1,0)="To select a progress note from
the list, "
>returnedtext(2,0)="click on the date/title of the
note."

Input Parameters entity: (required) For a description of this parameter, see the
EN^XPAR(): Add, Change, Delete Parameters API.

parameter: (required) For a description of this parameter, see the
EN^XPAR(): Add, Change, Delete Parameters API.

instance: (optional) For a description of this parameter, see the
EN^XPAR(): Add, Change, Delete Parameters API.

Output
Parameter

.error (optional) For a description of this parameter, see the
EN^XPAR(): Add, Change, Delete Parameters API.

 Toolkit: Developer Tools

July 1995 Kernel 437
Revised September 2011 Developer's Guide
 Version 8.0

Example:

>D GETWP^XPAR(.X,"PKG","ORW HELP","lstNotes",.ERROR)

25.8.10 NDEL^XPAR(): Delete All Instances of a Parameter

Reference Type Supported

Category Toolkit—Parameter Tools

IA # 2263

Description This API can be called to delete the value for all instances of a parameter for a
given entity.

 REF: For descriptive information about the elements and how they are used
in the callable entry points into XPAR, see the "Toolkit—Parameter Tools"
topic.

Format NDEL^XPAR(entity,parameter[,.error])

Input/Output
Parameters

For the definition of the input and output parameters used in this API, see the
EN^XPAR(): Add, Change, Delete Parameters API.

Example

>D NDEL^XPAR("SYS","XPAR TEST MULTI FREE TEXT",.ERROR)

25.8.11 PUT^XPAR(): Add/Update Parameter Instance

Reference Type Supported

Category Toolkit—Parameter Tools

IA # 2263

Description This API can be called to add or update a parameter instance and bypass the input
transforms.

 REF: For descriptive information about the elements and how they are used
in the callable entry points into XPAR, see the "Toolkit—Parameter Tools"
topic.

Format PUT^XPAR(entity,parameter[,instance],value[,.error])

Toolkit: Developer Tools

438 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input/Output
Parameters

For the definition of the input and output parameters used in this API, see the
EN^XPAR(): Add, Change, Delete Parameters API.

Example:

>D PUT^XPAR("SYS","XPAR TEST MULTI FREE TEXT",0,"Good times",.ERROR)

25.8.12 REP^XPAR(): Replace Instance Value

Reference Type Supported

Category Toolkit—Parameter Tools

IA # 2263

Description This API can be called to replace the value of an instance with another value.

 REF: For descriptive information about the elements and how they are
used in the callable entry points into XPAR, see the "Toolkit—Parameter
Tools" topic.

Format REP^XPAR(entity,parameter,currentinstance,newinstance[,.error])

Input Parameters entity: (required) For a description of this parameter, see the
EN^XPAR(): Add, Change, Delete Parameters API.

parameter: (required) For a description of this parameter, see the
EN^XPAR(): Add, Change, Delete Parameters API.

currentinstance: (required) The instance for which the value is currently
defined.

newinstance: (required) The instance to which you want to assign the value
that is currently assigned to currentinstance.

Output Parameter .error: (optional) For a description of this parameter, see the
EN^XPAR(): Add, Change, Delete Parameters API.

 Toolkit: Developer Tools

July 1995 Kernel 439
Revised September 2011 Developer's Guide
 Version 8.0

25.8.13 BLDLST^XPAREDIT(): Return All Entities of a Parameter

Reference Type Supported

Category Toolkit—Parameter Tools

IA # 2336

Description This API returns in the array "list" all entities allowed for the input parameter
named "parameter."

Format BLDLST^XPAREDIT(.list,parameter)

Input Parameters .list: (required) Name of array to receive output.

parameter: (required) Internal Entry Number (IEN) of entry in the
PARAMETER DEFINITION file (#8989.51).

Output
Parameter

.list: The array passed as "list" is returned with all of the possible
values assigned to the parameter.

Data is returned in the list(ent,inst)=val format.

25.8.14 EDIT^XPAREDIT(): Edit Instance and Value of a Parameter

Reference Type Supported

Category Toolkit—Parameter Tools

IA # 2336

Description This API interactively edits the instance (if multiple instances are allowed) and the
value for a parameter associated with a given entity.

Format EDIT^XPAREDIT(entity,parameter)

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

• Call the API.

Input Parameters entity: (required) Identifies the specific entity for which a parameter may
be edited. The entity must be in variable pointer format.

parameter: (required) Identifies the parameter that should be edited.
Parameter should contain two pieces:

Toolkit: Developer Tools

440 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

IEN^DisplayNameOfParameter

Output
Parameters

.LIST: The array passed as "list" is returned with all of the possible
values assigned to the parameter.

 REF: For a description of this parameter, see the "format"
parameter in the ENVAL^XPAR(): Return All Parameter
Instances API.

 .error (optional) For a description of this parameter, see the
EN^XPAR(): Add, Change, Delete Parameters API.

25.8.15 EDITPAR^XPAREDIT(): Edit Single Parameter

Reference Type Supported

Category Toolkit—Parameter Tools

IA # 2336

Description This API is used to edit a single parameter.

Format EDITPAR^XPAREDIT(parameter)

Input Parameter parameter: (required) For a description of this parameter, see the
EN^XPAR(): Add, Change, Delete Parameters API.

Output Returns requested parameter.

25.8.16 EN^XPAREDIT(): Parameter Edit Prompt

Reference Type Supported

Category Toolkit—Parameter Tools

IA # 2336

Description This API is called to prompt the user for a parameter to edit. This is provided as a
tool for developers and is not intended for exported calls as it allows editing of
any parameter.

Format EN^XPAREDIT

Input Parameter none

Output none

 Toolkit: Developer Tools

July 1995 Kernel 441
Revised September 2011 Developer's Guide
 Version 8.0

25.8.17 GETENT^XPAREDIT(): Prompt for Entity Based on
Parameter

Reference Type Supported

Category Toolkit—Parameter Tools

IA # 2336

Description This API interactively prompts for an entity, based on the definition of a
parameter.

Format GETENT^XPAREDIT(.entity,parameter[,.onlyone?])

Output .entity (required) Returns the selected entity in variable pointer format.

Input Parameter parameter: (required) Specifies the parameter for which an entity should be
selected. Parameter should contain two pieces:

IEN^DisplayNameOfParameter

Output Parameter onlyone? (optional) Returns "1" if there is only one possible entity for the
value. For example:

• 1—If the parameter can only be set for the system,
onlyone?

• 0—If the parameter could be set for any location,
onlyone?

25.8.18 GETPAR^XPAREDIT(): Select Parameter Definition File

Reference Type Supported

Category Toolkit—Parameter Tools

IA # 2336

Description This API allows the user to select the PARAMETER DEFINITION file
(#8989.51) entry.

Format GETPAR^XPAREDIT(.variable)

Make sure to perform the following steps before calling this API:

• NEW all non-namespaced variables.

• Set all input variables.

Toolkit: Developer Tools

442 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

• Call the API.

Input Parameter .variable: (required) The name of the variable where data is returned.

Output Variable .OUTPUTVALU: Returns the value Y in standard DIC lookup format.

25.8.19 TED^XPAREDIT(): Edit Template Parameters (No Dash
Dividers)

Reference Type Supported

Category Toolkit—Parameter Tools

IA # 2336

Description This API allows editing of parameters defined in a template. The parameters in the
template are prompted in VA FileMan style—prompt by prompt. No dashed line
dividers are displayed between each parameter.

Since the dashed line headers are suppressed, it is important to define the VALUE
TERM for each parameter in the template, as this is what is used to prompt for the
value.

Format TED^XPAREDIT(template[,reviewflags][,allentities])

Input Parameters template: (required) The Internal Entry Number (IEN) or NAME of an entry
in the PARAMETER TEMPLATE file (#8989.52).

reviewflags: (optional) There are two flags (A and B) that can be used
individually, together, or not at all:

• A—Indicates that the new values for the parameters in the
template are displayed after the prompting is done.

• B—Indicates that the current values of the parameters are
displayed before editing.

allentities: (optional) This is a variable pointer that should be used as the
entity for all parameters in the template. If left blank, prompting
for the entity is done as defined in the PARAMETER
TEMPLATE file (#8989.52).

 Toolkit: Developer Tools

July 1995 Kernel 443
Revised September 2011 Developer's Guide
 Version 8.0

25.8.20 TEDH^XPAREDIT(): Edit Template Parameters (with Dash
Dividers)

Reference Type Supported

Category Toolkit—Parameter Tools

IA # 2336

Description This API is similar to the TED^XPAREDIT(): Edit Template Parameters (No
Dash Dividers) API except that the dashed line headers are shown between each
parameter.

It allows editing of parameters defined in a template. The parameters in the
template are prompted in VA FileMan style—prompt by prompt.

Format TEDH^XPAREDIT(template[,reviewflags][,allentities])

Input Parameters template (required) For a description of this parameter, see the
TED^XPAREDIT(): Edit Template Parameters (No Dash
Dividers) API.

reviewflags (optional) For a description of this parameter, see the
TED^XPAREDIT(): Edit Template Parameters (No Dash
Dividers) API.

allentities (optional) For a description of this parameter, see the
TED^XPAREDIT(): Edit Template Parameters (No Dash
Dividers) API.

Output none

Toolkit: Developer Tools

444 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

25.9 Toolkit—Routine Tools

Kernel Toolkit provides developer utilities for working with M routines and globals. This topic describes
the routine tools exported with Kernel Toolkit. These tools are useful to IRM staff and VistA software
developers.

25.9.1 Direct Mode Utilities

Several Kernel Toolkit direct mode utilities are available for developers to use at the M prompt, usually
involving the DO command. They are not APIs and cannot be used in software application routines.

Table 24. Routine Tools: Direct Mode Utilities

Direct Mode Utility Description
>D ^XTFCR Generate a flow chart of an entire routine.
>D ^XTFCE Generate a flow chart of the processing performed

from a specified entry point to the termination of
processing resulting from that entry point.

>D ^%INDEX (obsolete) To run %INDEX.
>D ^XINDEX To run XINDEX.
>X ^%Z Invokes the ^%Z editor.
>D ^XTRGRPE Edit a group of routines.
>D ^XTVCHG Changes all occurrences of one variable to

another.
>D ^XTVNUM Update or set the version number into a set of

routines.
>D ^%ZTP1 A summary listing of the first, and optionally the

second, line of one or more routines can be
obtained.

>D ^%ZTPP Print a listing of entire routines.
>D ^XTRCMP Compare two routines with different names and

display the differences (using MailMan's PackMan
compare utilities).

>D TAPE^XTRCMP Compares routines in a Host File Server (HFS) file
to an installed routine and displays the differences.

 NOTE: While it is still called a "TAPE"
compare, it is actually comparing a routine in
an HFS file to an installed routine.

>D ^%ZTRDEL Delete one or more routines.

>D ^%RR (OS-specific) Loads routines from an external device, such as
magtape.

 Toolkit: Developer Tools

July 1995 Kernel 445
Revised September 2011 Developer's Guide
 Version 8.0

Direct Mode Utility Description

>D ^%RS (OS-specific) Output routines to an external device, such as a
magtape.

25.9.2 Routine Tools Menu

Most of these tools are available as options on the Routine Tools menu [XUPR-ROUTINE-TOOLS]
located on the Programmer Options menu [XUPROG], which is locked with the XUPROG security key.
Some subordinate menu options are locked with the XUPROGMODE or XUPROG security keys as an
extra level of security.

Routines can be edited, analyzed by flow-charting, printed, compared, deleted, and moved by using an
option or its corresponding direct mode utility.

REF: Kernel Toolkit APIs and direct mode utilities are documented in the "Toolkit: Developer
Tools" chapter in the Kernel Developer's Guide.

The Routine Tools menu is shown below:

Figure 90. Routine Tools menu options

SYSTEMS MANAGER MENU ... [EVE]
 Programmer Options ... <locked with XUPROG> [XUPROG]
 Routine Tools ... [XUPR-ROUTINE-TOOLS]
 %Index of Routines [XUINDEX]
 Compare local/national checksums report [XU CHECKSUM REPORT]
 Compare routines on tape to disk [XUPR-RTN-TAPE-CMP]
 Compare two routines [XT-ROUTINE COMPARE]
 Delete Routines <locked with XUPROGMODE> [XTRDEL]
 Flow Chart Entire Routine [XTFCR]
 Flow Chart from Entry Point [XTFCE]
 Group Routine Edit <locked with XUPROGMODE> [XTRGRPE]
 Input routines <locked with XUPROG> [XUROUTINE IN]
 List Routines [XUPRROU]
 Load/refresh checksum values into ROUTINE file [XU CHECKSUM LOAD]
 Output routines [XUROUTINE OUT]
 Routine Edit <locked with XUPROGMODE> [XUPR RTN EDIT]
 Routines by Patch Number [XUPR RTN PATCH]
 Variable changer <locked with XUPROGMODE> [XT-VARIABLE CHANGER]
 Version Number Update <locked with XUPROGMODE> [XT-VERSION NUMBER]

These options are documented in the topics that follow, grouped by routine type.

25.9.2.1 Analyzing Routines

25.9.2.1.1 XINDEX—%Index of Routines Option

Kernel Toolkit's XINDEX utility (formerly known as %INDEX utility), %Index of Routines option
[XUINDEX], is a verification tool for developers. It checks that M routine code conforms to the 1995

Toolkit: Developer Tools

446 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

ANSI M Standard and VA Programming Standards and Conventions (SAC). Everything that is prohibited
by the SAC is considered an error by XINDEX.

For more information on the Standards and Conventions Committee (SACC) and Standards and
Conventions (SAC) documentation, visit the following VA Intranet Website:

http://vista.med.va.gov/sacc/

XINDEX reports any errors that it finds. The reported error codes (error flags) are as follows:

• S—Standards violation (according to VA Standards)

• W—Warning violation (according to VA Conventions)

• F—Fatal M error (hard MUMPS error)

The XINDEX utility creates a cross-referenced list of global references and routines invoked by a
selected list of routines, a build, or a package. While XINDEX will show all routines that are called, it
will not identify all global references in the routines. After running XINDEX, use the %RFIND utility to
find entries that were missed by XINDEX.

XINDEX can also be used to verify parts of a software application that contain M code. Compiled
templates can be included. The M code used in data dictionaries, functions, and options can also be
reviewed. When using XINDEX to review an entire software application, it is best to queue the report for
an off-peak time since processing is intensive.

 Toolkit: Developer Tools

July 1995 Kernel 447
Revised September 2011 Developer's Guide
 Version 8.0

The XINDEX utility can be called directly (i.e., >D ^XINDEX; Figure 25-7) or via an option on the
Programmer Options menu [XUPROG].

Figure 91. XINDEX—%Index of Routines option; direct mode utilities sample user entries

>D ^XINDEX

 V. A. C R O S S R E F E R E N C E R 7.3
 UCI: NXT CPU: NXT JUL 06, 2006@15:14:12

All Routines? No => <Enter> No

Routine: XDRMAIN
Routine: <Enter>
1 routine

Select BUILD NAME: XT*7.3*102 <Enter> TOOLKIT
Include the compiled template routines: N// <Enter>

Print more than compiled errors and warnings? YES// <Enter>

Print summary only? NO// <Enter>

Print routines? YES// <Enter>

Print (R)egular,(S)tructured or (B)oth? R// <Enter>
Print the DDs, Functions, and Options? YES// <Enter>

Print errors and warnings with each routine? YES// <Enter>

Save parameters in ROUTINE file? NO// <Enter>
Index all called routines? NO// <Enter>

Enter the software name
you want to check with
XINDEX.

Or enter "S" for an
indented report.

Or enter YES to
store the
parameters.

Toolkit: Developer Tools

448 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

The following is a list of the error conditions that the XINDEX utility flags. The 1995 ANSI M Standard
is taken into account with new syntax and other checks.

Figure 92. XINDEX—List of the error conditions that the XINDEX utility flags

1 F - UNDEFINED COMMAND (rest of line not checked).
2 F - Non-standard (Undefined) 'Z' command.
3 F - Undefined Function.
4 F - Undefined Special Variable.
5 F - Unmatched Parenthesis.
6 F - Unmatched Quotation Marks.
7 F - ELSE Command followed by only one space.
8 F - FOR Command did not contain '='.
9 W - QUIT Command followed by only one space.
10 F - Unrecognized argument in SET command.
11 W - Invalid local variable name.
12 W - Invalid global variable name.
13 F - Blank(s) at end of line.
14 F - Missing LABEL, REFERENCED in this routine.
15 W - Duplicate label.
16 F - Error in pattern code.
17 W - First line tag NOT routine name.
18 W - Line contains a CONTROL (non-graphic) character.
19 S - Line is longer than 245 bytes.
20 S - View command used.
21 F - General Syntax Error.
22 S - Exclusive Kill.
23 S - Unargumented Kill.
24 S - Kill of an unsubscripted global.
25 S - Break command used.
26 S - Exclusive or Unargumented NEW command.
27 S - $View function used.
28 S - Non-standard $Z special variable used.
29 S - 'Close' command should be invoked through 'D ^%ZISC'.
30 S - TAG+OFFSET syntax.
31 S - Non-standard $Z function used.
32 S - 'HALT' command should be invoked through 'G ^XUSCLEAN'.
33 S - Read command doesn't have a timeout.
34 S - 'OPEN' command should be invoked through ^%ZIS.
35 S - Routine exceeds SACC maximum size of 5000 (|).
36 S - Should use 'TASKMAN' instead of 'JOB' command.
37 F - Tag is not valid.
38 F - Call to this MISSING LABEL (see INVOKED BY list).
39 S - Kill of a protected variable (|).
40 S - Space where a command should be.
41 S - Star or pound READ used.
42 F - Null line (no commands or comment).
43 F - Invalid or wrong number of arguments to a function.
44 S - Version number not found on 2nd line of routine.
45 S - Set to a '%' global.
46 F - Quoted string not followed by a separator.
47 S - Lowercase command(s) used in line.
48 F - Missing argument to a command post-conditional.
49 F - Command missing an argument.
50 S - Extended reference.
51 F - Block structure mismatch
52 F - Reference to routine '^|'. That isn't in this UCI.
53 F - Bad Number
54 S - Access to SSVN's restricted to Kernel.

Must be manually
checked by the
programmer.

 Toolkit: Developer Tools

July 1995 Kernel 449
Revised September 2011 Developer's Guide
 Version 8.0

25.9.2.1.2 Flow Chart Entire Routine Option

The Flow Chart Entire Routine option [XTFCR] generates a flow chart, showing the processing
performed within an entire routine.

The following corresponding direct mode utility can be used in programmer mode:

>D ^XTFCR

25.9.2.1.3 Flow Chart From Entry Point Option

The Flow Chart from Entry Point option [XTFCE] generates a flow chart of the processing performed
from a specified entry point to its termination of processing. It also allows the user to expand the code in
other routines or entry points referenced by DO or GOTO commands.

The following corresponding direct mode utility can be used in programmer mode:

>D ^XTFCE

25.9.2.2 Editing Routines

25.9.2.2.1 Group Routine Edit Option

The Group Routine Edit option [XTRGRPE] calls the XTRGRPE routine to edit a group of routines.
Once several routines are identified, the Kernel Toolkit ^%Z editor is called. This option is locked with
XUPROGMODE.

The corresponding direct mode utility can be used in programmer mode as follows:

>D ^XTRGRPE

25.9.2.2.2 Routine Edit Option

The Routine Edit option [XUPR RTN EDIT] invokes the ^%Z editor. The ^%Z editor can be used to edit
a group of routines with the Group Routine Edit option. This allows developers at an external site (e.g., on
the site manager's staff) to edit M routines. This option is locked with the XUPROGMODE security key.

The corresponding direct mode utility can be used in programmer mode as follows:

>X ^%Z

REF: For more information on the ^%Z Editor, see the "^%Z Editor" topic in Chapter 16,
"Miscellaneous: Developer Tools," in this manual.

25.9.2.2.3 Routines by Patch Number Option

The Routines by Patch Number option [XUPR RTN PATCH] allows users to print routines associated
with a patch. When prompted, enter a list of routines. The output is sorted by patch number.

Toolkit: Developer Tools

450 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

25.9.2.2.4 Variable Changer Option

The Variable Changer option [XT-VARIABLE CHANGER] runs the XTVCHG routine, which changes
all occurrences of one variable to another. This option is locked with the XUPROGMODE security key.

CAUTION: This option changes DOs and GOTOs also, but it does not change the target
of the DOs and GOTOs. For example, if you request to change all occurrences of "TAG"
to "TAGS", "DO TAG" would be changed to "DO TAGS". However, the actual Line Label
called TAG would not be changed.

The corresponding direct mode utility can be used in programmer mode as follows:

>D ^XTVCHG

25.9.2.2.5 Version Number Update Option

The Version Number Update option [XT-VERSION NUMBER] is used to update version numbers of one
or more routines. This option runs the XTVNUM routine to update or set the version number into a set of
routines. This option is locked with the XUPROGMODE security key.

The corresponding direct mode utility can be used in programmer mode as follows:

>D ^XTVNUM

25.9.2.3 Printing Routines

25.9.2.3.1 List Routines Option

The List Routines option [XUPRROU] uses the %ZTPP utility to print a listing of entire routines.

The corresponding direct mode utility can be used in programmer mode as follows:

>D ^%ZTPP

25.9.2.4 Comparing Routines

25.9.2.4.1 Compare local/national checksums report Option

The Compare local/national checksums report option [XU CHECKSUM REPORT] compares checksums
for routines to the values in the ROUTINE file (#9.8). It produces a report listing routines that differ by
the following criteria:

• Patch or version, where the version or patch may be correct but checksums are off

• Local routines being tracked

• Information is not on record for a patch (e.g., test patches)

Nationally released routine checksums are sent by Master File Updates to the local ROUTINE file (#9.8)
automatically. Local sites may also record checksums in the CHECKSUM VALUE field in the

 Toolkit: Developer Tools

July 1995 Kernel 451
Revised September 2011 Developer's Guide
 Version 8.0

ROUTINE file (#9.8). To compare local routines that are being tracked, the CHECKSUM REPORT field
should be set to "Local – report."

As of Kernel Patch XU*8.0*369, the integrity checking CHECK1^XTSUMBLD routine supports the
Compare local/national checksums report option [XU CHECKSUM REPORT]

As of Kernel Patch XU*8.0*393, KIDS was modified to send a message to a server on FORUM when a
KIDS build is sent to a Host File Server (HFS) device. This message contains the checksums for the
routines in the patch. The server on FORUM matches the message with a patch if the sending domain is
authorized on FORUM. There is no longer a need for developers to manually include routine checksums
(either CHECK^XTSUMBLD or CHECK1^XTSUMBLD routines) in the patch description. The patch
module will include the before and after CHECK1^XTSUMBLD values in the Routine Information
section at the end of the patch document.

With changes in the National Patch Module (NPM) on FORUM, when the patch is released the
checksums for the routines are moved to the ROUTINE file (#9.8) on FORUM. The checksum "before"
values will come from the FORUM ROUTINE file (#9.8) and are considered the GOLD standard for
released checksums. The local site's Compare local/national checksums report option [XU CHECKSUM
REPORT] uses the FORUM ROUTINE file (#9.8) as its source to create reports showing any routines
that do not match.

This patch also modified the KIDS BUILD file (#9.6) by adding the TRANSPORT BUILD NUMBER
field (#63) used to store a build number that is incremented each time a build is made. This build number
is added to the second line of each routine in the 7th ";" piece. This makes it easy to tell if a site is
running the current release during testing and afterword. The leading "B" found in the checksum tells the
code what checksum API to use.

25.9.2.4.2 Compare Routines on Tape to Disk Option

The Compare Routines on Tape to Disk option [XUPR-RTN-TAPE-CMP] compares routines and displays
the differences. This option reads a standard Caché %RO Host File Server (HFS) file and compares the
routines on the HFS file with a routine with the same name in the current account.

The corresponding direct mode utility can be used in programmer mode as follows:

>D TAPE^XTRCMP

NOTE: While it is still called a "TAPE" compare, it is actually comparing a routine in a Host
File Server (HFS) file to an installed routine.

25.9.2.4.3 Compare Two Routines Option

The Compare Two Routines option [XT-ROUTINE COMPARE] is used to compare two routines with
different names that are located in the same account and display/print the differences (using MailMan's
PackMan compare utilities).

The corresponding direct mode utility can be used in programmer mode as follows:

>D ^XTRCMP

Toolkit: Developer Tools

452 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

25.9.2.5 Deleting Routines

25.9.2.5.1 Delete Routines Option

The Delete Routines option [XTRDEL] can be used to delete one or more routine(s). The wildcard syntax
can be used to delete a set, such as ABC* to delete all those routines beginning with the letters ABC. This
option is locked with the XUPROGMODE security key.

The corresponding direct mode utility can be used in programmer mode as follows:

>D ^%ZTRDEL

25.9.2.6 Load and Save Routines

The Input Routines and Output Routines options can be used to move routines from one UCI to another.
These make use of operating system-specific utilities such as %RR for routine restore and %RS for
routine save.

25.9.2.6.1 Input Routines Option

The Input Routines option [XUROUTINE IN] loads routines from an external device. This option is
locked with the XUPROG security key.

The corresponding direct mode utility can be used in programmer mode as follows:

>D ^%RR (OS-specific)

25.9.2.6.2 Output Routines Option

The Output Routines option [XUROUTINE OUT] outputs routines to an external device, such as a host
file.

The corresponding direct mode utility can be used in programmer mode as follows:

>D ^%RS (OS-specific)

25.9.2.6.3 Load/refresh checksum values into ROUTINE file Option

The Load/refresh checksum values into ROUTINE file option [XU CHECKSUM LOAD] can be used to
update the ROUTINE file (#9.8) with the latest checksum values from FORUM.

REF: Kernel Toolkit Application Programming Interfaces (APIs) are documented in the
"Toolkit: Developer Tools" chapter in the Kernel Developer's Guide. Kernel and Kernel Toolkit
APIs are also available in HTML format at the following VA Intranet Website:

http://vista.med.va.gov/kernel/apis/index.shtml

 Toolkit: Developer Tools

July 1995 Kernel 453
Revised September 2011 Developer's Guide
 Version 8.0

25.10 Toolkit—Verification Tools

Kernel Toolkit provides an Application Programming Interface (API) that includes developer utilities for
working with routines and globals. This topic describes the verification tools exported with Kernel
Toolkit that are useful to Information Resource Management (IRM) staff and developers for reviewing
Veterans Health Information Systems and Technology Architecture (VistA) software.

Verification tools can be accessed through one of three methods:

• Direct Mode Utilities

• Programmer Options Menu

• Operations Management Menu

25.10.1 Direct Mode Utilities

Several Kernel Toolkit direct mode utilities are available for developers to use at the M prompt, usually
involving the DO command. They are not APIs and cannot be used in software application routines.
These direct mode utilities are described below by category.

The XINDEX utility can be used to check a routine or set of routines against standards such as the 1995
ANSI M Standard syntax and VA Programming Standards and Conventions (SAC).

REF: For more information on the XINDEX utility, see the "XINDEX—%Index of Routines
Option" topic in the "Toolkit—Routine Tools" topic in this chapter.

The corresponding direct mode utility can be used in Programmer mode:

>D ^XINDEX

Many of the options on the Programmer Options menu can also be run as direct mode utilities. Some are
not available as options, but only as direct mode utilities callable at the M prompt. Table 25-3 lists
examples on how to run these utilities when working in Programmer mode.

Toolkit: Developer Tools

454 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Table 25. Verification Tools: Direct Mode Utilities

Direct Mode Utility Description
>D CHCKSUM^XTSUMBLD Check the checksum value of a routine at any given

time.

This direct mode utility allows the developer to
choose from the old CHECK^XTSUMBLD
checksum routine or the new and more accurate
CHECK1^XTSUMBLD checksum routine.

 REF: For more information on the
CHECK^XTSUMBLD and
CHECK1^XTSUMBLD routines, see Chapters
23 and 24 in the Kernel Systems
Management Guide.

>D ^nsNTEG Check Integrity of namespace (ns) Package. For
example, D ^XTNTEG compares the Kernel Toolkit
namespace (XT) checksums with expected values.

>D ONE^nsNTEG Check Integrity Routine in namespace (ns)
Package.

>D ^%ZTER Record an Error.
>D ^XTER Display Error Trap.
>D ^XTERPUR Purge Error Log.
>D ^%INDEX (obsolete) To run %INDEX.

>D ^XINDEX To run XINDEX. XINDEX is similar to %INDEX but
supports the most current M standard.

NOTE: For information on the options associated with the routines associated with these
verification tools direct mode utilities, see the "Verification Tools" chapter in the "Toolkit"
section in the Kernel Systems Management Guide.

25.10.2 Verifier Tools Menu

The Verifier Tools Menu contains options that are available as tools for verification during program
development. These options are located on the Verifier Tools Menu [XTV MENU], which is located on
the Systems Manager Menu. These tools are useful for developers to:

• Record the text of the routines indicated in the file used to maintain changes in routines.

• Compare one or more current routines to previous versions.

 Toolkit: Developer Tools

July 1995 Kernel 455
Revised September 2011 Developer's Guide
 Version 8.0

The Verifier Tools Menu [XTV MENU] consists of the following options that are described below:

Figure 93. Verifier Tools Menu options

SYSTEMS MANAGER MENU ... [EVE]
 Verifier Tools Menu ... [XTV MENU]
 Update with current routines [XTVR UPDATE]
 Routine Compare - Current with Previous [XTVR COMPARE]

25.10.2.1 Update with Current Routines Option

The Update with Current Routines option [XTVR UPDATE] records the text of the routines indicated in
the file used to maintain changes in routines. Only the last version entered is kept intact; previous entries
reflect only the changes in lines added or deleted to make the next version. This option is used to record
the current routine structure so that it can be compared with future versions of the routine using the
Routine Compare - Current with Previous option [XTVR COMPARE].

After editing the routine, the Update with Current Routines option can again be used to store changes.
Rather than storing all minor changes, the user can choose to wait and use the Update with Current
Routines option only after extensive edits have been made. Lines are compared and changes, including
inserted or deleted lines, are recorded. (Alteration of the routine's second line is usually insignificant and
is ignored.) The Update with Current Routines option can be used whenever the developer would like a
new "snapshot" of the routine. The XTV ROUTINE CHANGES file (#8991) holds each new snapshot as
a new version. This filing method does not, however, alter the actual version number of the routine itself.

25.10.2.2 Routine Compare - Current with Previous Option

The Routine Compare - Current with Previous option [XTVR COMPARE] is used to compare one or
more current routines to previous versions. To use the routine compare utility, copies of the selected
routines must first be stored in the XTV ROUTINE CHANGES file (#8991), stored in the ^XTV(8991,
global. This is achieved by use of the Update with Current Routines option [XTVR UPDATE] on the
Verifier Tools Menu. Routines can be specified one by one or as a group with the wildcard syntax
(e.g., XQ*). Any initialize routines are automatically excluded. Differences between the current version
and the indicated number of prior versions are noted. The user is prompted for the number of previous
versions from which to begin the listing. An entire history or just a brief display of recent modifications
can be obtained.

Toolkit: Developer Tools

456 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

25.10.3 Programmer Options Menu

The Programmer Options menu [XUPROG] comprised of the following options:

Figure 94. Programmer Options menu options: Toolkit verification tools

SYSTEMS MANAGER MENU ... [EVE]
 Programmer Options ... [XUPROG]
 **> Locked with XUPROG
 KIDS Kernel Installation & Distribution System ... [XPD MAIN]
 **> Locked with XUPROG
 PG Programmer mode [XUPROGMODE]
 **> Locked with XUPROGMODE
 Calculate and Show Checksum Values [XTSUMBLD-CHECK]
 Delete Unreferenced Options [XQ UNREF'D OPTIONS]
 Error Processing ... [XUERRS]
 General Parameter Tools ... [XPAR MENU TOOLS]
 Global Block Count [XU BLOCK COUNT]
 List Global [XUPRGL]
 **> Locked with XUPROGMODE
 Routine Tools ... [XUPR-ROUTINE-TOOLS]
 Test an option not in your menu [XT-OPTION TEST]
 **> Locked with XUMGR

Tools found on the Programmer Options menu that can be of use for verification purposes include:

• Calculate and Show Checksum Values [XTSUMBLD-CHECK]

• Error Processing [XUERRS]

These options are described in the topics that follow.

25.10.3.1 Calculate and Show Checksum Values Option

The Calculate and Show Checksum Values option [XTSUMBLD-CHECK] gives developers the ability to
check the value of a routine at any given time. It does not regenerate NTEG routines and can safely be
used anytime.

This option calls the CHCKSUM^XTSUMBLD direct mode utility to calculate and show the checksum
value for one or more routines in the current account. This value is referenced in the Patch Module
description for routine patches.

Kernel Toolkit Patch XT*7.3*94, deployed the CHECK1^XTSUMBLD routine and the new
logic CheckSum: %^ZOSF("RSUM1"). Kernel Toolkit Patch XT*7.3*100 included the
CHECK1^XTSUMBLD routine into the Calculate and Show Checksum Values option
[XTSUMBLD-CHECK].

 Toolkit: Developer Tools

July 1995 Kernel 457
Revised September 2011 Developer's Guide
 Version 8.0

The CHECK1^XTSUMBLD routine is more accurate than the old integrity checking utility
(CHECK^XTSUMBLD). CHECK1^XTSUMBLD. It determines the current checksums for selected
routine(s), the functionality of which is shown as follows:

• Any comment line with a single semi-colon is presumed to be followed by comments and only
the line tag will be included.

• Line 2 will be excluded from the count.

• The total value of the routine is determined (excluding exceptions noted above) by multiplying
the ASCII value of each character by its position on the line and position of the line in the routine
being checked.

The corresponding direct mode utility can be used in programmer mode:

>D CHCKSUM^XTSUMBLD

The integrity checking utility CHCKSUM^XTSUMBLD supports the Compare local/national
checksums report option [XU CHECKSUM REPORT], as released with Kernel Patch
XU*8.0*369.

The modification, CHECK1^XTSUMBLD, to the integrity checking utility
CHCKSUM^XTSUMBLD fixes the problem in which the old CheckSum output is the same
CheckSum value, even if some lines were swapped within a routine.

25.10.3.2 Error Processing—Kernel Error Trapping and Reporting

Technical personnel who have entered programmer mode with D ^XUP, might choose to record an error
encountered with D ^%ZTER. The error log can be displayed with D ^XTER, or with the corresponding
option. Also, the error log can be purged with D ^XTERPUR. Errors can also be purged from within the
menu system with an option that is locked with the XUPROGMODE security key.

The corresponding direct mode utilities can be used in programmer mode as follows:

• Record an Error
>D ^%ZTER

• Display Error Trap
>D ^XTER

• Purge Error Log
>D ^XTERPUR

REF: For more information on Error Processing, see Chapter 13,"Error Processing," in the
Kernel Systems Management Guide.

Toolkit: Developer Tools

458 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

25.11 Toolkit—VistA XML Parser APIs

The Toolkit VistA XML Parser Application Program Interfaces (APIs) have been developed to assist you
in creating an XML document.

Integration agreement #3561 defines the various callable entry points in the MXMLDOM routine. These
APIs are based on the W3C's Document Object Model (DOM) specification. It first builds an "in-
memory" image of the fully parsed and validated document and then provides a set of methods to permit
structured traversal of the document and extraction of its contents. This API is actually layered on top of
the event-driven API. In other words, it is actually a client of the event-driven API that in turn acts as a
server to another client application.

REF: The VistA Extensible Markup Language (XML) Parser technical and user documentation
can be found on the VHA Software Document Library (VDL) located at the following Website:

http://www.va.gov/vdl/application.asp?appid=137

25.11.1 $$ATTRIB^MXMLDOM(): Retrieve First or Next Node
Attribute

Reference Type Supported

Category Toolkit—VistA XML Parser

IA # 3561

Description This extrinsic function retrieves the first or next attribute associated with the
specified node.

 REF: The VistA Extensible Markup Language (XML) Parser technical and
user documentation can be found on the VHA Software Document Library
(VDL) located at the following Website:

http://www.va.gov/vdl/application.asp?appid=137

Format $$ATTRIB^MXMLDOM(handle,node,attrib)

Input Parameters handle: (required) The value returned by the $$EN^MXMLDOM call that
created the in-memory document image.

node: (required) The node whose associated element name is being
retrieved.

http://www.va.gov/vdl/application.asp?appid=137
http://www.va.gov/vdl/application.asp?appid=137

 Toolkit: Developer Tools

July 1995 Kernel 459
Revised September 2011 Developer's Guide
 Version 8.0

Output attrib: The name of the last attribute retrieved by this API. If null or
missing, the first attribute associated with the specified node is
returned. Otherwise, the next attribute in the list is returned.

returns: Returns:
• Name of the first or next attribute associated with the

specified node.

• Null if there are none remaining.

25.11.2 $$CHILD^MXMLDOM(): Return Parent Node's First or Next
Child

Reference Type Supported

Category Toolkit—VistA XML Parser

IA # 3561

Description This extrinsic function returns the node of the first or next child of a given parent
node, or 0 if there are none remaining.

 REF: The VistA Extensible Markup Language (XML) Parser technical and
user documentation can be found on the VHA Software Document Library
(VDL) located at the following Website:

http://www.va.gov/vdl/application.asp?appid=137

Format $$CHILD^MXMLDOM(handle,parent[,child])

Input Parameters handle: (required) The value returned by the $$EN^MXMLDOM call that
created the in-memory document image.

parent: (required) The node whose children are being retrieved.

child: (optional) If specified, this is the last child node retrieved. The
function returns the next child in the list. If the parameter is zero
or missing, the first child is returned.

Output returns: Returns:
• Successful—The next child node.

• Unsuccessful—Zero if there are none remaining.

http://www.va.gov/vdl/application.asp?appid=137

Toolkit: Developer Tools

460 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

25.11.3 $$CMNT^MXMLDOM(): Extract Comment Text

Reference Type Supported

Category Toolkit—VistA XML Parser

IA # 3561

Description This extrinsic function extracts comment text associated with the specified node.

 REF: The VistA Extensible Markup Language (XML) Parser technical and
user documentation can be found on the VHA Software Document Library
(VDL) located at the following Website:

http://www.va.gov/vdl/application.asp?appid=137

Format $$CMNT^MXMLDOM(handle,node,text)

Input Parameters handle: (required) The value returned by the $$EN^MXMLDOM():
Perform Initial Processing of XML Document API that created
the in-memory document image.

node: (required) The node whose associated element name is being
retrieved.

Input/Output
Parameters

text: (required) This parameter must contain a closed local or global
array reference that is to receive the text. The specified array is
deleted before being populated.

Output returns: If called as an extrinsic function, returns:
• 1 (True)—If text was retrieved.

• 0 (False)—If text was not retrieved.

http://www.va.gov/vdl/application.asp?appid=137

 Toolkit: Developer Tools

July 1995 Kernel 461
Revised September 2011 Developer's Guide
 Version 8.0

25.11.4 CMNT^MXMLDOM(): Extract Comment Text

Reference Type Supported

Category Toolkit—VistA XML Parser

IA # 3561

Description This API extracts comment text associated with the specified node.

 REF: The VistA Extensible Markup Language (XML) Parser technical and
user documentation can be found on the VHA Software Document Library
(VDL) located at the following Website:

http://www.va.gov/vdl/application.asp?appid=137

Format CMNT^MXMLDOM(handle,node,text)

Input Parameters handle: (required) The value returned by the $$EN^MXMLDOM():
Perform Initial Processing of XML Document API that created
the in-memory document image.

node: (required) The node whose associated element name is being
retrieved.

Input/Output
Parameters

text: (required) This parameter must contain a closed local or global
array reference that is to receive the text. The specified array is
deleted before being populated.

25.11.5 DELETE^MXMLDOM(): Delete Specified Document Instance

Reference Type Supported

Category Toolkit—VistA XML Parser

IA # 3561

Description This API deletes the specified document instance. A client application should
always call this entry point when finished with a document instance.

 REF: The VistA Extensible Markup Language (XML) Parser technical and
user documentation can be found on the VHA Software Document Library
(VDL) located at the following Website:

http://www.va.gov/vdl/application.asp?appid=137

Format DELETE^MXMLDOM(handle)

http://www.va.gov/vdl/application.asp?appid=137
http://www.va.gov/vdl/application.asp?appid=137

Toolkit: Developer Tools

462 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameter handle: (required) The value returned by the $$EN^MXMLDOM():
Perform Initial Processing of XML Document API that created
the in-memory document image.

Output none

25.11.6 $$EN^MXMLDOM(): Perform Initial Processing of XML
Document

Reference Type Supported

Category Toolkit—VistA XML Parser

IA # 3561

Description This extrinsic function performs initial processing of the XML document. The
client application must first call this entry point to build the in-memory image of
the document before the remaining methods can be applied. The return value is a
handle to the document instance that was created and is used by the remaining API
calls to identify a specific document instance.

 REF: The VistA Extensible Markup Language (XML) Parser technical and
user documentation can be found on the VHA Software Document Library
(VDL) located at the following Website:

http://www.va.gov/vdl/application.asp?appid=137

Format $$EN^MXMLDOM(doc[,opt])

Input Parameters doc: (required) This is either a closed reference to a global root
containing the document or a file name and path reference
identifying the document on the host system. If a global root is
passed, the document either must be stored in standard VA
FileMan word-processing format or may occur in sequentially
numbered nodes below the root node. Thus, if the global reference
is "^XYZ", the global must be of one of the following formats:

• ^XYZ(1,0) = "LINE 1"

• ^XYZ(2,0) = "LINE 2" ...

OR

• ^XYZ(1) = "LINE 1"

• ^XYZ(2) = "LINE 2"...

opt: (optional) This is a list of option flags that control parser behavior.
Recognized option flags include:

• W—Do not report warnings to the client.

http://www.va.gov/vdl/application.asp?appid=137

 Toolkit: Developer Tools

July 1995 Kernel 463
Revised September 2011 Developer's Guide
 Version 8.0

• V—Validate the document. If not specified, the parser
only checks for conformance.

• 0—Terminate parsing on encountering a warning.

• 1—Terminate parsing on encountering a validation error.
(By default, the parser terminates only when a
conformance error is encountered.)

Output returns: Returns:
• Successful—A non-zero handle to the document instance

if parsing completed.

• Unsuccessful—Zero.

This handle is passed to all other API methods to indicate which
document instance is being referenced. This allows for multiple
document instances to be processed concurrently.

25.11.7 $$NAME^MXMLDOM(): Return Element Name at Specified
Node in Document Parse Tree

Reference Type Supported

Category Toolkit—VistA XML Parser

IA # 3561

Description This extrinsic function returns the name of the element at the specified node
within the document parse tree.

REF: The VistA Extensible Markup Language (XML) Parser technical and
user documentation can be found on the VHA Software Document Library
(VDL) located at the following Website:

http://www.va.gov/vdl/application.asp?appid=137

Format $$NAME^MXMLDOM(handle,node)

Input Parameters handle: (required) The value returned by the $$EN^MXMLDOM():
Perform Initial Processing of XML Document API that created
the in-memory document image.

node: (required) The node whose associated element name is being
retrieved.

Output returns: Returns the name of the element associated with the specified
node.

http://www.va.gov/vdl/application.asp?appid=137

Toolkit: Developer Tools

464 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

25.11.8 $$PARENT^MXMLDOM(): Return Parent Node

Reference Type Supported

Category Toolkit—VistA XML Parser

IA # 3561

Description This extrinsic function returns the parent node of the specified node, or 0 if there is
none.

 REF: The VistA Extensible Markup Language (XML) Parser technical and
user documentation can be found on the VHA Software Document Library
(VDL) located at the following Website:

http://www.va.gov/vdl/application.asp?appid=137

Format $$PARENT^MXMLDOM(handle,node)

Input Parameters handle: (required) The value returned by the $$EN^MXMLDOM():
Perform Initial Processing of XML Document API that created
the in-memory document image.

node: (required) The node whose associated element name is being
retrieved.

Output returns: Returns:
• Successful—The node corresponding to the parent of the

specified node.

• Unsuccessful—Zero, if there is none.

http://www.va.gov/vdl/application.asp?appid=137

 Toolkit: Developer Tools

July 1995 Kernel 465
Revised September 2011 Developer's Guide
 Version 8.0

25.11.9 $$SIBLING^MXMLDOM(): Return Sibling Node

Reference Type Supported

Category Toolkit—VistA XML Parser

IA # 3561

Description This extrinsic function returns the node of the specified node's immediate sibling,
or 0 if there is none.

 REF: The VistA Extensible Markup Language (XML) Parser technical and
user documentation can be found on the VHA Software Document Library
(VDL) located at the following Website:

http://www.va.gov/vdl/application.asp?appid=137

Format $$SIBLING^MXMLDOM(handle,node)

Input Parameters handle: (required) The value returned by the $$EN^MXMLDOM():
Perform Initial Processing of XML Document API that created
the in-memory document image.

node: (required) The node whose associated element name is being
retrieved.

Output returns: Returns:
• Successful—The node corresponding to the immediate

sibling of the specified node.

• Unsuccessful—Zero if there is none.

http://www.va.gov/vdl/application.asp?appid=137

Toolkit: Developer Tools

466 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

25.11.10 $$TEXT^MXMLDOM(): Extract Non-markup Text

Reference Type Supported

Category Toolkit—VistA XML Parser

IA # 3561

Description This extrinsic function extracts non-markup text associated with the specified
node. If called as an extrinsic function, the return value is true (1) if text was
retrieved, or false (0) if not.

 REF: The VistA Extensible Markup Language (XML) Parser technical and
user documentation can be found on the VHA Software Document Library
(VDL) located at the following Website:

http://www.va.gov/vdl/application.asp?appid=137

Format $$TEXT^MXMLDOM(handle,node,text)

Input Parameters handle: (required) The value returned by the $$EN^MXMLDOM():
Perform Initial Processing of XML Document API that created
the in-memory document image.

node: (required) The node whose associated element name is being
retrieved.

Input/Output
Parameters

text (required) This parameter must contain a closed local or global
array reference that is to receive the text. The specified array is
deleted before being populated.

Output returns: If called as an extrinsic function, returns:
• 1 (True)—If text was retrieved.

• 0 (False)—If text was not retrieved.

http://www.va.gov/vdl/application.asp?appid=137

 Toolkit: Developer Tools

July 1995 Kernel 467
Revised September 2011 Developer's Guide
 Version 8.0

25.11.11 TEXT^MXMLDOM(): Extract Non-markup Text

Reference Type Supported

Category Toolkit—VistA XML Parser

IA # 3561

Description This API extracts non-markup text associated with the specified node.

 REF: The VistA Extensible Markup Language (XML) Parser technical and
user documentation can be found on the VHA Software Document Library
(VDL) located at the following Website:

http://www.va.gov/vdl/application.asp?appid=137

Format TEXT^MXMLDOM(handle,node,text)

Input Parameters handle: (required) The value returned by the $$EN^MXMLDOM():
Perform Initial Processing of XML Document API that created
the in-memory document image.

node: (required) The node whose associated element name is being
retrieved.

Input/Output
Parameters

text: (required) This parameter must contain a closed local or global
array reference that is to receive the text. The specified array is
deleted before being populated.

25.11.12 $$VALUE^MXMLDOM(): Retrieve Value Associated with
Attribute

Reference Type Supported

Category Toolkit—VistA XML Parser

IA # 3561

Description This extrinsic function retrieves the value associated with the named attribute.

 REF: The VistA Extensible Markup Language (XML) Parser technical and
user documentation can be found on the VHA Software Document Library
(VDL) located at the following Website:

http://www.va.gov/vdl/application.asp?appid=137

Format $$VALUE^MXMLDOM(handle,node,attrib)

http://www.va.gov/vdl/application.asp?appid=137
http://www.va.gov/vdl/application.asp?appid=137

Toolkit: Developer Tools

468 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters handle: (required) The value returned by the $$EN^MXMLDOM call that
created the in-memory document image.

node: (required) The node whose associated element name is being
retrieved.

Output attrib: The name of the attribute whose value is being retrieved by this
call.

returns: Returns the value associated with the specified attribute.

25.11.13 EN^MXMLPRSE(): Event-Driven API Based on SAX
Interface

Reference Type Supported

Category Toolkit—VistA XML Parser

IA # 4149

Description This API is an event-driven interface that is modeled after the widely used SAX
interface specification. In this implementation, a client application provides a
special handler for each parsing event of interest. When the client invokes the
parser, it conveys not only the document to be parsed, but also the entry points for
each of its event handlers. As the parser progresses through the document, it
invokes the client's handlers for each parsing event for which a handler has been
registered.

 REF: The VistA Extensible Markup Language (XML) Parser technical and
user documentation can be found on the VHA Software Document Library
(VDL) located at the following Website:

http://www.va.gov/vdl/application.asp?appid=137

Format EN^MXMLPRSE(doc,cbk,opt)

Input Parameter doc: (required) This is either a closed reference to a global root
containing the document or a file name and path reference
identifying the document on the host system. If a global root is
passed, the document either must be stored in standard VA
FileMan word-processing format or may occur in sequentially
numbered nodes below the root node. Thus, if the global reference
is "^XYZ", the global must be of one of the following formats:

• ^XYZ(1,0) = "LINE 1"

• ^XYZ(2,0) = "LINE 2" ...

http://www.va.gov/vdl/application.asp?appid=137

 Toolkit: Developer Tools

July 1995 Kernel 469
Revised September 2011 Developer's Guide
 Version 8.0

OR

• ^XYZ(1) = "LINE 1"

• ^XYZ(2) = "LINE 2" ...

Input/Output
Parameter

cbk: (required) This is a local array, passed by reference that contains a
list of parse events and the entry points for the handlers of those
events. The format for each entry is:

CBK(<event type>) = <entry point>

The entry point must reference a valid entry point in an existing M
routine and should be of the format tag^routine. The entry should
not contain any formal parameter references. The application
developer is responsible for ensuring that the actual entry point
contains the appropriate number of formal parameters for the
event type. For example, client application might register its
STARTELEMENT event handler as follows:

CBK("STARTELEMENT") = "STELE^CLNT"

The actual entry point in the CLNT routine must include two
formal parameters as in the example:

STELE(ELE,ATR) <handler code>

For the types of supported events and their required parameters,
see the discussion on the pages that follows.

Input Parameter opt: (required) This is a list of option flags that control parser
behavior. Recognized option flags include:

• W—Do not report warnings to the client.

• V—Validate the document. If not specified, the parser
only checks for conformance.

• 0—Terminate parsing on encountering a warning.

• 1—Terminate parsing on encountering a validation error.
(By default, the parser terminates only when a
conformance error is encountered.)

Toolkit: Developer Tools

470 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Examples

Figure 95: VistA XML Parser Use Example—Create XML file

^TMP($J,1) = <?xml version='1.0'?>
^TMP($J,2) = <!DOCTYPE BOOK>
^TMP($J,3) = <BOOK>
^TMP($J,4) = <TITLE>Design Patterns</TITLE>
^TMP($J,5) = <AUTHOR>Author1</AUTHOR>
^TMP($J,6) = <AUTHOR>Author2</AUTHOR>
^TMP($J,7) = <AUTHOR>Author3</AUTHOR>
^TMP($J,8) = <AUTHOR>Author4</AUTHOR>
^TMP($J,9) = </BOOK>

Figure 96. VistA XML Parser Use Example—Simple API for XML (SAX) interface

D EN^MXMLTEST($NA(^TMP($J)),"V") <Enter>

Figure 97. VistA XML Parser Use Example—Check Document Object Model (DOM) interface

>S HDL=$$EN^MXMLDOM($NA(^TMP($J))) <Enter>

>W $$NAME^MXMLDOM(HDL,1) <Enter>
BOOK

>S CHD=$$CHILD^MXMLDOM(HDL,1) <Enter>

>W $$NAME^MXMLDOM(HDL,CHD) <Enter>
TITLE

>W $$TEXT^MXMLDOM(HDL,CHD,$NA(VV)) <Enter>
1

>ZW VV <Enter>
VV(1)=Design Patterns

Figure 98. VistA XML Parser Use Example—List all sibling nodes

>S CHD=$$CHILD^MXMLDOM(HDL,1) <Enter>

>S SIB=CHD <Enter>

>F S SIB=$$SIBLING^MXMLDOM(HDL,SIB) Q:SIB'>0 W !,SIB,?4,$$NAME^MXMLDOM(HDL,SIB)
<Enter>
3 AUTHOR
4 AUTHOR
5 AUTHOR
6 AUTHOR
>

Write the name of
the first node.

Get the child of
the node.

Get the text of
the child.

Write the child
name.

 Toolkit: Developer Tools

July 1995 Kernel 471
Revised September 2011 Developer's Guide
 Version 8.0

25.11.14 $$SYMENC^MXMLUTL(): Replace XML Symbols with
XML Encoding

Reference Type Supported

Category Toolkit—VistA XML Parser

IA # 4153

Description This extrinsic function replaces reserved Extensible Markup Language (XML)
symbols in a string with their XML encoding for strings used in an XML message.

 REF: The VistA Extensible Markup Language (XML) Parser technical and
user documentation can be found on the VHA Software Document Library
(VDL) located at the following Website:

http://www.va.gov/vdl/application.asp?appid=137

Format $$SYMENC^MXMLUTL(str)

Input Parameter str: (required) String to be encoded in an XML message.

Output returns: Returns the input string with XML encoding replacing reserved
XML symbols.

Example

>S X=$$SYMENC^MXMLUTL("This line isn't &""<XML>"" safe as is.")
>W X

http://www.va.gov/vdl/application.asp?appid=137

Toolkit: Developer Tools

472 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

25.11.15 $$XMLHDR^MXMLUTL: Return a Standard XML
Message Headers

Reference Type Supported

Category Toolkit—VistA XML Parser

IA # 4153

Description This extrinsic function returns a standard Extensible Markup Language (XML)
header for encoding XML messages.

 REF: The VistA Extensible Markup Language (XML) Parser technical and
user documentation can be found on the VHA Software Document Library
(VDL) located at the following Website:

http://www.va.gov/vdl/application.asp?appid=137

Format $$XMLHDR^MXMLUTL

Input Parameters none

Output returns: Returns the standard XML header.

Example

>S X=$$XMLHDR^MXMLUTL
>W X
<?xml version="1.0" encoding="utf-8" ?>

http://www.va.gov/vdl/application.asp?appid=137

 Toolkit: Developer Tools

July 1995 Kernel 473
Revised September 2011 Developer's Guide
 Version 8.0

25.12 Toolkit—VHA Unique ID (VUID) APIs

25.12.1 GETIREF^XTID(): Get IREF (Term/Concept)

Reference Type Supported

Category Toolkit—VHA Unique ID (VUID)

IA # 4631

Description This API searches and returns a list of terms/concepts for a given VHA Unique ID
(VUID; i.e., "vuid" input parameter). Filtering of the list is applied when the
following optional input parameters are defined:

• file

• field

• master

Format GETIREF^XTID([file][,field],vuid,array[,master])

Input Parameters file: (optional) VistA file/subfile number where term/concept is
defined.

• Defined—If defined, the search is limited to those
term/concepts that exist in that file and have the VUID
assigned to the "vuid" input parameter.

• Not Defined—If not defined, the search will include
term/concepts that have the VUID assigned to "vuid"
input parameter and may exist in both file terms and in
SET OF CODES terms.

field: (optional) Field number, in the "file" input parameter, where
term/concept is defined.

• Defined—The search will find those terms/concepts that
have the VUID assigned to the "vuid" input parameter and
will be limited to those terms/concepts that exist in the
given file/field combination.

− Entered as .01, it represents the terms defined in the
file entered in the "file" input parameter.

− Otherwise, the field number entered must be a SET
OF CODES data type field in the file entered in the
"file" input parameter.

• Not Defined—The search will find those terms/concepts
that have the VUID assigned to the "vuid" input
parameter and will be limited to those terms/concepts
found in the file defined in the "file" input parameter.

vuid: (required) The VHA Unique ID (VUID) value, which is specified

Toolkit: Developer Tools

474 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

to limit the search.

array (required) The name of the array (local or global) where results of
the search will be stored.

master: (optional) Flag to limit the search of terms based on the value of
the MASTER ENTRY FOR VUID field.

Returns:
• 0—Include all terms.

• 1—Include only those terms designated as MASTER
ENTRY FOR VUID.

Output array: Returns the given array populated as follows:
• @TARRAY = <list count>

@TARRAY@(<file#>,<field#>,<internalreference>) =
<status info>

Where the <status info> is defined as "<internal
value>^<VA FileMan effective
date/time>^<external value>^<master entry?>"

• Empty Array—Unpopulated array when no entries are
found.

• Error Array—When an error occurs, the array is
populated as follows:

@TARRAY("ERROR")="<error message>"

Example 1

>N array S array="MYARRAY"
>S file=16000009,field=.01,vuid=12343,master=0
>D GETIREF^XTID(file,field,vuid,array,master)
>ZW MYARRAY

MYARRAY=2
MYARRAY(16000009,.01,"1,")=1^3050202.153242^ACTIVE^0
MYARRAY(16000009,.01,"3,")=0^3050215.07584^INACTIVE^1

Example 2

When no entries are found, the named array is populated as follows.

>ZW MYARRAY

MYARRAY=0

 Toolkit: Developer Tools

July 1995 Kernel 475
Revised September 2011 Developer's Guide
 Version 8.0

Example 3

When an error occurs, the named array is populated as follows:

>ZW MYARRAY
MYARRAY("ERROR")=<error message>

25.12.2 $$GETMASTR^XTID(): Get Master VUID Flag
(Term/Concept)

Reference Type Supported

Category Toolkit—VHA Unique ID (VUID)

IA # 4631

Description This extrinsic function retrieves the value of the flag MASTER ENTRY FOR
VUID for a given term/concept reference.

Format $$GETMASTR^XTID(file[,field],iref)

Input Parameters file: (required) VistA file/subfile number where term/concept is
defined.

field: (optional) Field number in the "file" input parameter where
term/concept is defined.

• Not Defined—If not defined, this field defaults to the
.01 field number. It represents the terms defined in the
file entered in the "file" input parameter.

• Defined:

− Entered as .01; it represents the terms defined in the
file entered in the "file" input parameter.

− Otherwise, the field number entered must be a SET
OF CODES data type field in the file entered in the
"file" input parameter.

iref: (required) Internal reference for term/concept:

• File Entries—This will be an IENS. For example:

iref="5,"

• SET OF CODES—This will be the internal value of the
code. For example:

iref = 3 or
iref = "f" or
iref = "M"

Toolkit: Developer Tools

476 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Output returns: Returns results of operation as follows:
• Successful—Internal value of the MASTER ENTRY

FOR VUID field as follows:

0—NO

1—YES
• Unsuccessful—^<error message>

Example 1

For terms defined in fields that are SET OF CODES:

>S file=2,field=.02,iref="M"
>W $$GETMASTR^XTID(file,field,iref)
1

Example 2

For terms defined in a single file:

>S file=16000009,field=.01,iref="3,"
>W $$GETMASTR^XTID(file,field,iref)
0

25.12.3 $$GETSTAT^XTID(): Get Status Information
(Term/Concept)

Reference Type Supported

Category Toolkit—VHA Unique ID (VUID)

IA # 4631

Description This extrinsic function retrieves the status information for a given term/concept
reference and a specified date/time.

Format $$GETSTAT^XTID(file[,field],iref[,datetime])

Input Parameters file: (required) VistA file/subfile number where term/concept is
defined.

field: (optional) Field number, in the "file" input parameter where
term/concept is defined.

• Not Defined—If not defined, this field defaults to the .01
field number, and it represents terms defined in the file
"file" input parameter.

 Toolkit: Developer Tools

July 1995 Kernel 477
Revised September 2011 Developer's Guide
 Version 8.0

• Defined:

− Entered as .01, it represents the terms defined in the
file entered in the "file" input parameter.

− Otherwise, the field number entered must be a SET
OF CODES data type field in the file entered in the
"file" input parameter.

iref: (required) Internal reference for term/concept.

• File entries—This will be an IENS. For example:

iref = "5,"

• SETS OF CODES—This will be the internal value of the
code. For example:

iref = 3 or
iref = "f" or
iref = "M"

datetime: (optional) VA FileMan date/time. It defaults to NOW.

Output returns: Returns results of operation as follows:
• Successful—<internal value>^<VA FileMan effective

date/time>^<external value>

For example:

0^3050220.115720^INACTIVE
1^3050225.115711^ACTIVE

• Unsuccessful—^<error message>

 NOTE: The first piece is empty. This
differentiates it from the successful case, where the
first piece is either 0 or 1.

Example 1

For terms defined in fields that are SET OF CODES:

>S file=2,field=.02,iref="M",datetime=$$NOW^XLFDT
>W $$GETSTAT^XTID(file,field,iref,datetime)
1^3050121.154752^ACTIVE

Toolkit: Developer Tools

478 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 2

For terms defined in a single file:

>S file=16000009,field=.01,iref="3,",datetime=""
>W $$GETSTAT^XTID(file,field,iref,datetime)
0^3050122.154755^INACTIVE

25.12.4 $$GETVUID^XTID(): Get VUID (Term/Concept)

Reference Type Supported

Category Toolkit—VHA Unique ID (VUID)

IA # 4631

Description This extrinsic function retrieves the VHA Unique ID (VUID) for a given
term/concept reference.

Format $$GETVUID^XTID(file[,field],iref)

Input Parameters file: (required) VistA file/subfile number where term/concept is
defined.

field: (optional) Field number in the "file" input parameter where
term/concept is defined.

• Not Defined—If not defined, this field defaults to the .01
field number, and it represents terms defined in the file
entered in the "file" input parameter.

• Defined:

− Entered as .01, it represents the terms defined in the
file entered in the "file" input parameter.

− Otherwise, the field number entered must be a SET
OF CODES data type field in the file entered in the
"file" input parameter.

iref: (required) Internal reference for term/concept:

• File Entries—This will be an IENS. For example:

iref="5,"

• SET OF CODES—This will be the internal value of the
code. For example:

iref = 3 or
iref = "f" or
iref = "M"

 Toolkit: Developer Tools

July 1995 Kernel 479
Revised September 2011 Developer's Guide
 Version 8.0

Output returns: Returns results of operation as follows:
• Successful—VHA Unique ID (VUID)

• Unsuccessful—0^<error message>

Example 1

For terms defined in fields that are SET OF CODES:

>S file=2,field=.02,iref="M"
>W $$GETVUID^XTID(file,field,iref)
123456

Example 2

For terms defined in a single file:

>S file=16000009,field=.01,iref="3,"
>W $$GETVUID^XTID(file,field,iref)
123457

25.12.5 $$SCREEN^XTID(): Get Screening Condition
(Term/Concept)

Reference Type Supported

Category Toolkit—VHA Unique ID (VUID)

IA # 4631

Description As of Kernel Toolkit Patch XT*7.3*108, this extrinsic function retrieves the
screening condition for a given term/concept reference and specified date/time. It
returns whether or not a given entry should be screened out of selection lists. This
API should not be used to determine if the given entry is active/inactive, since the
API takes into consideration where in the standardization process the facility is. It
returns the following values:

• 0—If the given entry is selectable (i.e., "do not screen it out")

• 1—If the entry is not selectable (i.e., "screen it out")

Format $$SCREEN^XTID(file[,field],iref[,datetime][,.cached])

Input Parameters file: (required) VistA file/subfile number where term/concept is
defined.

field: (optional) Field number, in the "file" input parameter where
term/concept is defined.

• Not Defined—If not defined, this field defaults to the .01

Toolkit: Developer Tools

480 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

field number, and it represents terms defined in the file
entered in the "file" input parameter..

• Defined:

− Entered as .01, it represents the terms defined in the
file entered in the "file" input parameter.

− Otherwise, the field number entered must be a SET
OF CODES data type field in the file entered in the
"file" input parameter.

iref: (required) Internal reference for term/concept:

• File entries—This will be an IENS. For example:

iref = "5,"

• SET OF CODES—This will be the internal value of the
code. For example:

iref = 3 or
iref = "f" or
iref = "M"

datetime: (optional) VA FileMan date/time against which screening is
checked. It defaults to NOW.

 NOTE: If the value of the datetime parameter contains a
date and no time, no entries are returned for the first day.

.cached (optional) Flag to indicate caching. Used mainly when defining
the "screen" parameter [e.g., DIC("S")] while searching large
files. This will improve the speed of the search.

 NOTE: It must be KILLed before initiating each search
query (e.g., before calling the ^DIC).

Output returns: Returns the screening condition as follows:
• 0—When term/concept is selectable (i.e., do not screen it

out).

• 1—When term/concept is not selectable (i.e., screen it
out).

 Toolkit: Developer Tools

July 1995 Kernel 481
Revised September 2011 Developer's Guide
 Version 8.0

Example 1

For terms defined in fields that are SET OF CODES:

>S file=2,field=.02,iref="M",datetime=$$NOW^XLFDT
>W $$SCREEN^XTID(file,field,iref,datetime)
0

Example 2

For terms defined in a single file:

>S file=16000009,field=.01,iref="3,",datetime=""
>W $$SCREEN^XTID(file,field,iref,datetime)
0

Example 3

When searching a large file:

>S file=120.52,field=.01,datetime=""
>S SCREEN="I '$$SCREEN^XTID(file,field,Y_"","",datetime,.cached)"
>. . .
>K cached
>D LIST^DIC(file,,".01;99.99",,"*",,,,SCREEN,,"LIST","MSG")
>K cached

25.12.6 $$SETMASTR^XTID(): Set Master VUID Flag
(Term/Concept)

Reference Type Supported

Category Toolkit—VHA Unique ID (VUID)

IA # 4631

Description This extrinsic function stores (sets) the value of the MASTER ENTRY FOR VUID
flag for a given term/concept reference. The MASTER ENTRY FOR VUID flag is
used to distinguish references that might be duplicates.

Format $$SETMASTR^XTID(file[,field],iref,mstrflag)

Input Parameters file: (required) VistA file/subfile number where term/concept is
defined.

field: (optional) Field number in the "file" input parameter where
term/concept is defined.

• Not Defined—If not defined, this field defaults to the .01
field number. It represents the terms defined in the file

Toolkit: Developer Tools

482 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

entered in the "file" input parameter.

• Defined:

− Entered as .01; it represents the terms defined in the
file entered in the "file" input parameter.

− Otherwise, the field number entered must be a SET
OF CODES data type field in the file entered in the
"file" input parameter.

iref: (required) Internal reference for term/concept:

• File Entries—This will be an IENS. For example:

iref="5,"

• SET OF CODES—This will be the internal value of the
code. For example:

iref = 3 or
iref = "f" or
iref = "M"

mstrflag: (required) The internal value of the MASTER ENTRY FOR
VUID field. Possible values are as follows:

• 0—NO

• 1—YES

Output returns: Returns results of operation as follows:
• Successful—1

• Unsuccessful—0^<error message>

Example 1

For terms defined in fields that are SET OF CODES:

>S file=2,field=.02,iref="M",mstrflag=0
>W $$SETMASTR^XTID(file,field,iref,mstrflag)
1

Example 2

For terms defined in a single file:

>S file=16000009,field=.01,iref="3,",mstrflag=1
>W $$SETMASTR^XTID(file,field,iref,mstrflag)
1

 Toolkit: Developer Tools

July 1995 Kernel 483
Revised September 2011 Developer's Guide
 Version 8.0

Example 3

>S file=16000009,field=.01,iref="6,",mstrflag=1
>W $$SETMASTR^XTID(file,field,iref,mstrflag)
0^pre-existing master entry

25.12.7 $$SETSTAT^XTID(): Set Status Information (Term/Concept)

Reference Type Supported

Category Toolkit—VHA Unique ID (VUID)

IA # 4631

Description This extrinsic function stores (sets) the status and effective date/time for the given
term/concept.

Format $$SETSTAT^XTID(file[,field],iref,status[,datetime])

Input Parameters file: (required) VistA file/subfile number where term/concept is
defined.

field: (optional) Field number in the "file" input parameter where
term/concept is defined.

• Not Defined—If not defined, this field defaults to the .01
field number, and it represents terms defined in the file
entered in the "file" input parameter.

• Defined:

− Entered as .01, it represents the terms defined in the
file entered in the "file" input parameter.

− Otherwise, the field number entered must be a SET
OF CODES data type field in the file entered in the
"file" input parameter.

iref: (required) Internal reference for term/concept:

• File entries—This will be an IENS. For example:

iref = "5,"

• SET OF CODES—This will be the internal value of the
code. For example:

iref = 3 or
iref = "f" or
iref = "M"

status: (required) The status internal value. Possible values are as
follows:

Toolkit: Developer Tools

484 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

• 0—INACTIVE

• 1—ACTIVE

datetime: (optional) VA FileMan date/time. It defaults to NOW.

Output returns: Returns results of operation as follows:
• Successful—1

• Unsuccessful—0^<error message>

Example 1

For terms defined in fields that are SET OF CODES:

>S file=2,field=.02,iref="M",status=1,datetime=$$NOW^XLFDT
>W $$SETSTAT^XTID(file,field,iref,status,datetime)
1

Example 2

For terms defined in a single file:

>S file=16000009,field=.01,iref="3,",status=1,datetime=$$NOW^XLFDT
>W $$SETSTAT^XTID(file,field,iref,status,datetime)
1

25.12.8 $$SETVUID^XTID(): Set VUID (Term/Concept)

Reference Type Supported

Category Toolkit—VHA Unique ID (VUID)

IA # 4631

Description This extrinsic function populates (sets) the VHA Unique ID (VUID) for a given
term/concept reference.

It also automatically sets the MASTER ENTRY FOR VUID field to distinguish
references that might be duplicates. If this is the first reference assigned the VUID,
it sets the MASTER ENTRY FOR VUID equal to 1. If another entry already has
the given VUID, it sets the MASTER ENTRY FOR VUID equal to 0.

Format $$SETVUID^XTID(file[,field],iref,vuid)

Input Parameters file: (required) VistA file/subfile number where term/concept is
defined.

 Toolkit: Developer Tools

July 1995 Kernel 485
Revised September 2011 Developer's Guide
 Version 8.0

field: (optional) Field number in the "file" input parameter where
term/concept is defined.

• Not Defined—If not defined, this field defaults to the .01
field number, and it represents terms defined in the file
entered in the "file" input parameter.

• Defined:

− Entered as .01, it represents the terms defined in the
file entered in the "file" input parameter.

− Otherwise, the field number entered must be a SET
OF CODES data type field in the file entered in the
"file" input parameter.

iref: (required) Internal reference for term/concept.

• File entries—This will be an IENS. For example:

iref = "5"

• SET OF CODES—This will be the internal value of the
code. For example:

iref = 3 or
iref = "f" or
iref = "M"

vuid: (required) The VHA Unique ID (VUID) to assign the given
term/concept reference.

Output returns: Returns results of operation as follows:
• Successful—1

• Unsuccessful—0^<error message>

Example 1

For terms defined in fields that are SET OF CODES:

>S file=2,field=.02,iref="M",vuid=123456
>W $$SETVUID^XTID(file,field,iref,vuid)
1

Example 2

For terms defined in a single file:

>S file=16000009,field=.01,iref="3,",vuid=123457
>W $$SETVUID^XTID(file,field,iref,vuid)
1

Toolkit: Developer Tools

486 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

July 1995 Kernel 487
Revised September 2011 Developer's Guide
 Version 8.0

26 Unwinder: Developer Tools

26.1 Application Program Interface (API)

Several APIs are available for developers to work with Kernel Unwinder. These APIs are described
below.

26.1.1 EN^XQOR(): Navigating Protocols

Reference Type Supported

Category Unwinder

IA # 10101

Description This API is the main routine for navigating protocols. The routine processes the
initial protocol and the subordinate protocols. This processing of subordinate
protocols happens according to the type of protocol and the navigation variables
that get set along the way.

Format EN^XQOR(x)

Input Parameters x: (required) Identifies the initial protocol that EN^XQOR should
process. The "x" input parameter should be in variable pointer
format. For example:

x="1234;ORD(101,"

This would cause the processing to start with the protocol that has
an internal entry number (IEN) of 1234.

An alternative to using variable pointer format is to set x equal to
the name or number of the protocol and DIC equal to the number
or global reference of the file you are working in (generally the
PROTOCOL file [#101]).

Output none

Unwinder: Developer Tools

488 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

26.1.2 EN1^XQOR(): Navigating Protocols

Reference Type Supported

Category Unwinder

IA # 10101

Description This API is identical to the EN^XQOR(): Navigating Protocols API, except that
the entry and exit actions of the initial protocol are not executed. This API
provides backwards compatibility with the way Kernel 6 processed protocols that
were defined in the OPTION file (#19).

Format EN1^XQOR(x)

Input Parameters x: (required) Identifies the initial protocol that EN^XQOR should
process. The "x" input parameter should be in variable pointer
format. For example:

x="1234;ORD(101,"

This would cause the processing to start with the protocol that has
an internal entry number (IEN) of 1234.

An alternative to using variable pointer format is to set x equal to
the name or number of the protocol and DIC equal to the number
or global reference of the file you are working in (generally the
PROTOCOL file [#101]).

Output none

26.1.3 MSG^XQOR(): Enable HL7 Messaging

Reference Type Supported

Category Unwinder

IA # 10101

Description This API is used to enable Health Level Seven (HL7) messaging through the
XQOR Unwinder.

Format MSG^XQOR(protocol,.msgtext)

Input Parameters protocol: (required) The name of the protocol with which the HL7 message
will be associated.

 .msgtext (required) The array containing the HL7 message.

 Unwinder: Developer Tools

July 1995 Kernel 489
Revised September 2011 Developer's Guide
 Version 8.0

Output none

26.1.4 EN^XQORM(): Menu Item Display and Selection

Reference Type Supported

Category Unwinder

IA # 10140

Description This API handles the display of and selection from a menu; this routine
processes a single menu only. This is the call that the EN^XQOR(): Navigating
Protocols API uses to obtain menu selections. The caller is responsible to handle
any selections from the menu that are returned in the y array. If you want
navigation to the selected items handled for you, use the EN^XQOR():
Navigating Protocols API. The menus handled by this routine are the multiple
selection, multiple column menus that are typical in Order Entry/Results
Reporting (OE/RR).

Format EN^XQORM(xqorm,xqorm(0))

Input Parameters xqorm: (required) A variable pointer to the menu that should be
displayed (e.g. XQORM="1234;ORD(101,").

 xqorm(0) (required) A string of flags that control the display and
prompting of the menu:

• Numeric—Maximum number of selections allowed.

• A—Prompt for a selection from the menu.

• D—Display the menu.

Output Parameters y(): This array contains the items that the user selected from the
menu.

Unwinder: Developer Tools

490 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

26.1.5 XREF^XQORM(): Force Menu Recompile

Reference Type Supported

Category Unwinder

IA # 10140

Description This API forces a menu to recompile. Menus are compiled into the XUTL global.
This should happen automatically. However, you can use this API to force a menu
to recompile.

Format XREF^XQORM(xqorm)

Input Parameters xqorm: (required) Variable pointer to the protocol that should be
recompiled.

Output returns: Returns recompiled menu.

26.1.6 DISP^XQORM1(): Display Menu Selections From Help Code

Reference Type Supported

Category Unwinder

IA # 10102

Description This API displays menu selections from help code, if you have replaced the
standard help by setting XQORM("??"). This API should only be called from
within the code used by XQORM("??").

Format DISP^XQORM1(x)

Input Parameters x: (required) Must be "?".

Output returns: Returns menu selections.

July 1995 Kernel 491
Revised September 2011 Developer's Guide
 Version 8.0

27 User: Developer Tools

27.1 Application Program Interface (API)

Several APIs are available for developers to work with the user. These APIs are described below.

27.1.1 $$CODE2TXT^XUA4A72(): Get HCFA Text

Reference Type Supported

Category User

IA # 1625

Description This extrinsic function returns the three parts of the Health Care Financing
Administration (HCFA) text from the PERSON CLASS file (#8932.1) based on
passing in the Internal Entry Number (IEN) or the VA's Vcode.

Format $$CODE2RXT^XUA4A72(ien_or_vcode)

Input Parameters ien_or_vcode: (required) Pass in either the Internal Entry Number (IEN) or the
VA Vcode for the text that should be returned.

Output returns: Returns HCFA text.

27.1.2 $$GET^XUA4A72(): Get Specialty and Subspecialty for a
User

Reference Type Supported

Category User

IA # 1625

Description This extrinsic function returns the "IEN^Profession^Specialty^Sub-
specialty^Effect date^Expired date^VA code" for the person identified by the
DUZ in effect on the date passed in, in internal VA FileMan format (TODAY if no
date passed in). It returns:

• -1—If DUZ does not point to a valid user or user has never had a Person
Class assigned.

• -2—If no active Person Class on that date.

Format $$GET^XUA4A72(duz[,date])

User: Developer Tools

492 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters duz: (required) Internal Entry Number (IEN) for the person being
checked in the NEW PERSON file (#200).

 date: (optional) Date in internal VA FileMan format, to indicate
effective date for determination.

Output returns: Returns:
• -1—If DUZ does not point to a valid user or user has

never had a Person Class assigned.

• -2—If no active Person Class on that date.

27.1.3 $$IEN2CODE^XUA4A72(): Get VA Code

Reference Type Supported

Category User

IA # 1625

Description This extrinsic function returns the VA CODE from the PERSON CLASS file
(#8932.1) that corresponds to the Internal Entry Number (IEN) passed in. If the
IEN passed in does not match a valid entry in the PERSON CLASS file (#8932.1),
an empty string is returned.

Format $$IEN2CODE^XUA4A72(ien)

Input Parameters ien: (required) Internal Entry Number (IEN) in the PERSON CLASS
file (#8932.1).

Output returns: Returns the VA CODE.

 User: Developer Tools

July 1995 Kernel 493
Revised September 2011 Developer's Guide
 Version 8.0

27.1.4 $$DTIME^XUP(): Reset DTIME for USER

Reference Type Supported

Category User

IA # 4409

Description This extrinsic function resets the DTIME variable for the user identified by the
first parameter "DUZ" of this function. This extrinsic function accepts two
parameters:

• IEN or DUZ of the user in the NEW PERSON file (#200).

• IEN of the device in the DEVICE file (#3.5).

The return value should be assigned to the variable DTIME as shown in the
examples. This DTIME variable is used on all timed READS where interactive
responses are required for a given user.

Format $$DTIME^XUP([duz][,ios])

Input Parameters duz: (optional) The Internal Entry Number (IEN) or DUZ of the user in
the NEW PERSON file (#200).

 ios: (optional) The IEN of the device in the DEVICE file (#3.5). This
IEN should be the same value of IOS if present, and should reflect
the current sign-on device of the user.

Output returns: The return value will be based on the first available data found in
the following fields/files (listed in search order):

1. TIMED READ (# OF SECONDS) field (#200.1) of the
NEW PERSON file (#200).

2. TIMED READ (# OF SECONDS) field (#51.1) of the
DEVICE file (#3.5).

3. DEFAULT TIMED READ (SECONDS) field (#210) of
the KERNEL SYSTEM PARAMETERS file (#8989.3).

4. (default) If no data is available in any of the three fields
above, then the return value defaults to 300 seconds.

Example 1

Sending DUZ only, returns the value in Field #200.1, TIMED READ (# OF SECONDS), of the NEW
PERSON file (#200):

>S DTIME=$$DTIME^XUP(DUZ)

>W DTIME
1800

User: Developer Tools

494 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 2

Sending DUZ and IOS, returns the value in Field #200.1, TIMED READ (# OF SECONDS), of the NEW
PERSON file (#200):

>S DTIME=$$DTIME^XUP(DUZ,IOS)

>W DTIME
1800

Example 3

Sending IOS only, returns the value in Field #51.1, TIMED READ (# OF SECONDS), of the DEVICE
file (#3.5):

>S DTIME=$$DTIME^XUP(,IOS)

>W DTIME
500

Example 4

Not Sending DUZ or IOS, returns the value in Field #210, DEFAULT TIMED READ (SECONDS), of
the KERNEL SYSTEM PARAMETERS file (#8989.3):

>S DTIME=$$DTIME^XUP(,)

>W DTIME
400

Or

>S DTIME=$$DTIME^XUP()

>W DTIME
400

Example 5

Not Sending DUZ or IOS and no value is in Field #210, DEFAULT TIMED READ (SECONDS), of the
KERNEL SYSTEM PARAMETERS file (#8989.3):

>S DTIME=$$DTIME^XUP()

>W DTIME
300

 User: Developer Tools

July 1995 Kernel 495
Revised September 2011 Developer's Guide
 Version 8.0

27.1.5 $$ACTIVE^XUSER(): Status Indicator

Reference Type Supported

Category User

IA # 2343

Description This extrinsic function returns the active status indicator and latest signon
information of a user in the NEW PERSON file (#200).

Format $$ACTIVE^XUSER(ien)

Input Parameters ien: (required) Internal Entry Number (IEN) of the user to be checked
in the NEW PERSON file (#200).

Output returns: Returns any of the following codes:
• ""—Null, no user record found.

• 0—User cannot sign on.

• 0^DISUSER—User cannot sign on because of DISUSER
flag.

• 0^TERMINATED^FMDATE—User terminated on date
indicated.

• 1^NEW—A new user, can sign on.

• 1^ACTIVE^FMDATE—An active user, last signon date.

Example 1

This is an example of an Active User in the NEW PERSON file (#200):

>S X=$$ACTIVE^XUSER(1529)

>WRITE X
1^ACTIVE^3030321.093756

Example 2

This is an example of a Terminated User in the NEW PERSON file (#200):

>S X=$$ACTIVE^XUSER(957)

>WRITE X
0^TERMINATED^2980504

User: Developer Tools

496 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 3

This is an example of a User with no record in the NEW PERSON file (#200), returns a null string:

>S X=$$ACTIVE^XUSER(999999999)

>W X

>

Example 4

This is an example of a User in the NEW PERSON file (#200) with the DISUSER flag set:

>S X=$$ACTIVE^XUSER(111)

>W X
0^DISUSER

27.1.6 $$DEA^XUSER(): Get DEA Number

Reference Type Supported

Category Public Key Infrastructure (PKI)

IA # 2343

Description This extrinsic function returns a user's Drug Enforcement Agency (DEA) number,
if it exists in the DEA# field (#53.2) of the NEW PERSON file (#200). If the
DEA# field value is null, the value returned depends on the optional FLAG input
parameter (see below). This API was requested as part of the Public Key
Infrastructure (PKI) Project.

Format $$DEA^XUSER([flag][,userien])

 User: Developer Tools

July 1995 Kernel 497
Revised September 2011 Developer's Guide
 Version 8.0

Input Parameters flag: (optional) This flag controls what is returned when the user does
not have a value in the DEA# field (#53.2) of the NEW PERSON
file (#200).

• 1—This routine will check to see if the user has a value in
the VA# field (#53.3) of the NEW PERSON file (#200).
If a value is found in that field, this routine will return that
field value. Otherwise, this routine returns an empty
string.

• NULL or 0—This routine will check to see if the user has
values in the VA# field (#53.3) of the NEW PERSON file
(#200) and the (new) FACILITY DEA NUMBER field
(#52) of the INSTITUTION file (#4). If values are found
in both of those fields, this routine will return the
following:

FACILITY DEA NUMBER field (#52)_"-"_VA#
field(#53.3)

 userien: (optional) This value can be used to get the DEA# of some user
besides the one that signed in. In CPRS, to check that a student's
teacher has the required DEA#.

Output returns: Returns the DEA# field (#53.2) value or the value returned based
on the (optional) flag input parameter.

Example 1

The following are the data values for this example:

• IEN = "1000118"
• DEA# (#53.2) field = "AB1234567"

• FACILITY DEA NUMBER field (#52) = "VA7654321"

• VA# field (#53.3) = "789"

If the FLAG input parameter is null or "0", this API would return "AB1234567," since the user has a
DEA#:

>S X=$$DEA^XUSER(0,1000118)

>W X
AB1234567

If the FLAG input parameter is "1", this API would return "AB1234567," since the user has a DEA#:

>S X=$$DEA^XUSER(1,1000118)

>W X
AB1234567

User: Developer Tools

498 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 2

The following are the data values for this example:

• DEA# (#53.2) field = NULL
• FACILITY DEA NUMBER field (#52) = "VA7654321"

• VA# field (#53.3) = "789"

If the FLAG input parameter is NULL or "0", this API would return "VA7654321-789":

>S X=$$DEA^XUSER(0,)

>W X
VA7654321-789

If the FLAG input parameter is "1", this API would return "789":

>S X=$$DEA^XUSER(1,)

>W X
789

Example 3

The following are the data values for this example:

• DEA# (#53.2) field = NULL
• FACILITY DEA NUMBER field (#52) = "VA7654321"

• VA# field (#53.3) = NULL

If the FLAG input parameter is NULL or "0", this API would return "":

>S X=$$DEA^XUSER(0,)

>W X

If the FLAG input parameter is "1", this API would return "":

>S X=$$DEA^XUSER(1,)

>W X

In both cases, it returns an empty string.

 User: Developer Tools

July 1995 Kernel 499
Revised September 2011 Developer's Guide
 Version 8.0

27.1.7 DIV4^XUSER(): Get User Divisions

Reference Type Controlled Subscription

Category User

IA # 2533

Description This API returns all divisions for a user. It returns:
• 1—If the user has a Division entry in the NEW PERSON file (#200). It

indicates that the array of pointers to the Institution file has been
defined.

• 0—The array of pointers to the NSTITUTION file (#4) has not been
defined.

Format DIV4^XUSER(.array[,duz])

Input Parameters .array: (required) This parameter is a local variable (i.e., array name)
passed by reference.

 duz: (optional) The Internal Entry Number (IEN) of the user in the
NEW PERSON file (#200). If DUZ is not passed as a
parameter, the function defaults to the value of DUZ in the
application's partition.

Output Parameters .array: Returns:
• 1—If the user has a Division entry in the NEW

PERSON file (#200). It indicates that the array of
pointers to the Institution file has been defined.

The array includes all IENs for the INSTITUTION file
(#4) that have been assigned to the user.

The array is defined and left in the application's
partition, if the user indicated by the value of the DUZ
input parameter has divisions defined in the respective
NEW PERSON file (#200) entry. The format is:

ARRAY([^DIC(4 IEN])

• 0—The array of pointers to the NSTITUTION file (#4)
has not been defined.

Example

>S X=$$DIV4^XUSER(.ZZ,duz)

User: Developer Tools

500 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

27.1.8 $$LOOKUP^XUSER(): New Person File Lookup

Reference Type Supported

Category User

IA # 2343

Description This extrinsic function does a user lookup on the NEW PERSON file (#200)
screening out users that are terminated. You are first asked to enter a name of a
user in the NEW PERSON file (#200). By default, the function then asks if the
correct user name was selected. For example:

Select NEW PERSON NAME: XUUSER,THREE
Is XUUSER,THREE the one you want? YES//

If the optional input parameter is set to "Q" then the second, confirmation prompt
is suppressed. The return is in the same format as a call to DIC (i.e., IEN^NAME).
Adding new entries is <I>not</I> allowed.

Format $$LOOKUP^XUSER([""])

Input Parameters "": (optional) This optional input parameter does the following:
• Null—(default) Do not suppress the NEW PERSON file

(#200) name confirmation prompt for each entry selected.

• A—Screen out terminated users.

• Q—Suppress the NEW PERSON file (#200) name
confirmation prompt for each entry selected.

• AQ—Screen out terminated users and suppress the NEW
PERSON file (#200) name confirmation prompt for each
entry selected.

Output returns: Returns the Internal Entry Number (IEN) and NAME of the user
in the NEW PERSON file (#200) entered after the "Select NEW
PERSON NAME:" prompt (IEN^NAME).

 User: Developer Tools

July 1995 Kernel 501
Revised September 2011 Developer's Guide
 Version 8.0

Example 1

This is an example of a lookup of an active user when not passing in the optional "Q" parameter:

Figure 99. $$LOOKUP^XUSER: Example showing confirmation prompt

>S LRDOC=$$LOOKUP^XUSER("")

Select NEW PERSON NAME: ?
 Answer with NEW PERSON NAME, or INITIAL, or SSN, or VERIFY CODE, or
 NICK NAME, or SERVICE/SECTION, or DEA#, or ALIAS
 Do you want the entire 1601-Entry NEW PERSON List? N <Enter> (No)
Select NEW PERSON NAME: XUUSER,TWO E <Enter> TK COMPUTER SPECIALIST
Is XUUSER,TWO E the one you want? YES// <Enter>

>W LRDOC
1529^XUUSER,TWO E

Example 2

This is an example of a lookup of an active user when passing in the optional "Q" parameter:

Figure 100. $$LOOKUP^XUSER: Example suppressing confirmation prompt

>S LRDOC=$$LOOKUP^XUSER("Q")

Select NEW PERSON NAME: XUUSER,TWO E <Enter> TK COMPUTER SPECIALIST

>W LRDOC
1529^XUUSER,TWO E

Example 3

This is an example of a lookup of a terminated user when passing in the optional "A" parameter:

Figure 101. $$LOOKUP^XUSER: Example of a terminated user

>S LRDOC=$$LOOKUP^XUSER("A")

Select NEW PERSON NAME: XUUSER,EIGHT <Enter> EK
 This user was terminated on May 04, 1998
Select NEW PERSON NAME:

User: Developer Tools

502 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

27.1.9 $$NAME^XUSER(): Get Name of User

Reference Type Supported

Category User

IA # 2343

Description This extrinsic function returns the full name of the specified user in a mixed case
displayable format. The user's given name (i.e., First Last) is returned unless a
second parameter of "F" is passed in to get the Family name (i.e., Last,First).

Format $$NAME^XUSER(ien[,format])

Input Parameters ien: (required) Internal Entry Number (IEN) of the provider to be
checked in the NEW PERSON file (#200).

 format: (optional) This parameter indicates if the user's name should be
returned formatted by Family or Given name, respectively.
Possible values are:

• F—Family (e.g., "Xuuser,Two").

• G (default)—Given (e.g., "Two Xuuser").

Output returns: Returns user's family or given name.

Example 1

Retrieving the user name in Given format:

>S X=$$NAME^XUSER(1529)

>W X
Two E Xuuser

Example 2

Retrieving the user name in Family format:

>S X=$$NAME^XUSER(1529,"F")

>W X
Xuuser,Two E.

 User: Developer Tools

July 1995 Kernel 503
Revised September 2011 Developer's Guide
 Version 8.0

27.1.10 $$PROVIDER^XUSER(): Providers in New Person File

Reference Type Supported

Category User

IA # 2343

Description This extrinsic function was requested to be added by the Computerized Patient
Record System (CPRS) Development Team. It is used to indicate any provider in
the NEW PERSON file (#200). The definition of a provider is any entry in the
NEW PERSON file (#200) that does not have a termination date. Additional
parameters may be added in the future in order to perform other tests/checks.

Format $$PROVIDER^XUSER(ien)

Input Parameters ien: (required) Internal Entry Number (IEN) of the provider to be
checked in the NEW PERSON file (#200).

Output returns: Returns any of the following codes:
• 1—Provider has a record and no termination date.

• 0^TERMINATED^FMDATE—Provider terminated on
date indicated.

• ""—Null, no provider record found.

Example 1

This is an example of an Active Provider in the NEW PERSON file (#200):

>S X=$$PROVIDER^XUSER(1529)

>WRITE X
1

Example 2

This is an example of a Terminated Provider in the NEW PERSON file (#200):

>S X=$$PROVIDER^XUSER(957)

>W X
0^TERMINATED^2980504

User: Developer Tools

504 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 3

This is an example of a Provider with no record in the NEW PERSON file (#200), returns a null string:

>S X=$$PROVIDER^XUSER(000999999)

>W X

>

27.1.11 $$KCHK^XUSRB(): Check If User Holds Security Key

Reference Type Controlled Subscription

Category User

IA # 2120

Description This extrinsic function checks to see if a user holds a given security key.

Format $$KCHK^XUSRB(key[,ien])

Input Parameters key: (required) The name of the security key to be checked.

 ien: (optional) Internal Entry Number (IEN). It defaults to DUZ.

Output returns: Returns:
• 1—User holds security key.

• 0—User does not hold security key.

Example 1

The following example illustrates the results when a user holds a security key input:

>S X=$$KCHK^XUSRB("XUPROGMODE")

>W X
1

Example 2

The following example illustrates the results when a user does not hold the security key input:

>S X=$$KCHK^XUSRB("XUMGR")

>W X
0

 User: Developer Tools

July 1995 Kernel 505
Revised September 2011 Developer's Guide
 Version 8.0

Example 3

The following example illustrates the results when checking if another user holds a security key input by
including their IEN:

>S X=$$KCHK^XUSRB("XUPROGMODE",30)

>W X
1

27.1.12 DIVGET^XUSRB2(): Get Divisions for Current User

Reference Type Controlled Subscription

Category User

IA # 4055

Description This API retrieves the list of divisions for the current user.

(This was developed as a Broker RPC and all RPCs have as the first parameter
the return/output parameter.)

Format DIVGET^XUSRB2(ret,ien)

Input Parameters ret: (required) Name of the subscripted return array. In every API
that is used as an RPC, the first parameter is the return array.

ien: (required) The DUZ or user name of the user for whom you are
getting the division list.

Output Parameters ret(): Returns a subscripted output array. If + of the value at the first
level 0 subscript of the return value is false, then the user does
not have any divisions from which to select.

Otherwise, for each division that a user has, a node will be
present in the return value, at the first subscript level, starting at
zero (0) and incrementing from there. The value of the node is
three pieces:

ien^division name^station #

User: Developer Tools

506 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

27.1.13 DIVSET^XUSRB2(): Set Division for Current User

Reference Type Controlled Subscription

Category User

IA # 4055

Description This API sets the division for the current user.

(This was developed as a Broker RPC and all RPCs have as the first parameter
the return/output parameter.)

Format DIVSET^XUSRB2(ret,div)

Input Parameters ret: (required) Name of the subscripted return array. In every API
that is used as an RPC, the first parameter is the return array.

div: (required) This is the division to select. If passed with a leading
` an Internal Entry Number (IEN) is being passed and will be
processed as such.

Output Parameters ret(): Returns a Boolean value in the subscripted output array:
• True (non-zero)—Division selection is considered

successful.

• False (zero)—Division selection failed.

27.1.14 USERINFO^XUSRB2(): Get Demographics for Current User

Reference Type Controlled Subscription

Category User

IA # 4055

Description This API retrieves various user demographic information for the current user.

(This was developed as a Broker/VistALink RPC and all RPCs have as the first
parameter the return/output parameter.)

Format USERINFO^XUSRB2(ret)

Input Parameters ret: (required) Name of the subscripted return array. In every API
that is used as an RPC, the first parameter is the return array.

 User: Developer Tools

July 1995 Kernel 507
Revised September 2011 Developer's Guide
 Version 8.0

Output Parameters ret(): Returns a subscripted output array:
• RET(1)—User's name from the .01 field of the NEW

PERSON file (#200).

• RET(2)—Concatenated user name from the NAME
COMPONENTS file (#20).

• RE(3)—Logged on division:
• ien^name^number

• RET(4)—User's title from the NEW PERSON file
(#200).

• RET(5)—User's service section from NEW PERSON
file (#200, external format).

• RET(6)—User's language from the NEW PERSON file
(#200).

• RET(7)—User's timeout.

User: Developer Tools

508 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

July 1995 Kernel 509
Revised September 2011 Developer's Guide
 Version 8.0

28 XGF Function Library: Developer Tools

The XGF Function Library supports developers designing text-based applications. The functions in this
library support cursor positioning, overlapping text windows, video attribute control, and keyboard escape
processing, all in a text-mode environment.

If you intend to make simple interface enhancements for an existing text-mode application, then you may
find the XGF Function Library useful. The XGF Function Library provides the following functionality:

• Text-mode overlapping windows.

• Text-mode cursor positioning by screen coordinate.

• Text-mode video attribute control (bold, blink, etc.).

• Keyboard reader using M escape processing (thereby making use of keystrokes like <UP-
ARROW> ("↑"), <DOWN-ARROW> ("↓"), <PREV> ("←"), <NEXT> ("→"), etc.).

The XGF Function Library may not be appropriate if you need:

• A full graphical user interface (GUI) front end for your application.

• Support for non-ANSI VT-compatible display devices.

To use the XGF Function Library, your system must use an M implementation that complies with the
1995 ANSI M standard. At a minimum, the M implementation must support the following features to use
the XGF Function Library:

Table 26. Minimum M implementation features required for the XGF Function Library

Feature Example

SET into $EXTRACT S X="this is a string",$E(X,1,4)="that"

Reverse $ORDER S X=$O(^TMP(""),-1)

Two argument $GET K Y S X=$G(Y,"DEFAULT")

Skipping parameters D TAG^ROUTINE(,P2,,P4)

$NAME W $NA(^TMP($J))

SET $X and $Y S $X=10

This XGF Function Library supports terminals that are ANSI-compatible and at least VT100-compatible.
As a result, this software does not support QUME QVT102/QVT102A terminals.

The XGF Function Library Application Program Interfaces (APIs) are documented in the "XGF
Function Library: Developer Tools" chapter in the Kernel Developer's Guide. Kernel and Kernel
Toolkit APIs are also available in HTML format at the following VA Intranet Website:

http://vista.med.va.gov/kernel/apis/index.shtml

XGF Function Library: Developer Tools

510 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

28.1 Direct Mode Utilities

Several XGF Function Library direct mode utilities are available for developers to use at the M prompt.
They are not APIs and cannot be used in software application routines. These direct mode utilities are
described below.

28.1.1 ^XGFDEMO: Demo Program

To run an interactive demonstration showing the capabilities provided by the XGF Function Library, you
can run the XGF demo program. From the programmer prompt, type the following:

>D ^XGFDEMO

Table 27. XGF Function Library: Demo functional division

Demo Function Associated Direct Mode Utility

Cursor/Text Output IOXY^XGF, SAY^XGF, SAYU^XGF

Video Attributes CHGA^XGF, SETA^XGF

Text Windows CLEAR^XGF, FRAME^XGF, RESTORE^XGF, SAVE^XGF, WIN^XGF

Keyboard Reader $$READ^XGF

Setup/Cleanup CLEAN^XGF, INITKB^XGF, PREP^XGF, RESETKB^XGF

 XGF Function Library: Developer Tools

July 1995 Kernel 511
Revised September 2011 Developer's Guide
 Version 8.0

28.2 Application Program Interface (API)

Several APIs are available for developers to work with the XGF Function Library. These APIs are
described below.

28.2.1 CHGA^XGF(): Screen Change Attributes

Reference Type Supported

Category XGF Function Library

IA # 3173

Description This API changes individual video attributes for subsequent screen WRITEs.

Use this API to change individual video attributes for subsequent output. This
API is different from SETA^XGF in that individual video attributes can be set
without affecting all video attributes at once.

A call to the PREP^XGF(): Screen/Keyboard Setup API must be made at
some point prior to calling CHGA^XGF.

The attribute codes are not case sensitive. You can append them if you want to
set more than one attribute. If you include more than one attribute, their order
is not important.

B0 and B1 turn off and on the blink attribute; I0 and I1 turn off and on the
intensity attribute; R0 and R1 turn off and on the reverse attribute; U0 and U1
turn off and on the underline attribute. E1 turns off all attributes. G0 and G1
turn off and on recognition of an alternate graphics character set so that you
can use special graphic characters, in particular those set up by Kernel's
GSET^%ZISS API. To use graphics characters, be sure you turn on graphics
first (with G1) and turn graphics off afterwards (with G0).

The change in attribute remains in effect until another CHGA^XGF,
PREP^XGF(): Screen/Keyboard Setup, or SETA^XGF(): Screen Video
Attributes API call is made. If you want only a temporary change in attribute,
SAY^XGF may be a better function to use.

Format CHGA^XGF(atr_codes)

XGF Function Library: Developer Tools

512 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters atr codes: (required) Codes are as follows:

• B1—Blink on
B0—Blink off

• E1—Turn all off

• G1—Graphics on
G0—Graphics off

• I1—Intensity high
I0—Intensity normal

• R1—Reverse video on
R0—Reverse video off

• U1—Underline on
U0—Underline off

Output Parameters xgcuratr: This variable always holds the current screen attribute coded
as a single character, and is updated when you call
CHGA^XGF.

 $x,$y: Left unchanged.

REF: See also: SETA^XGF(): Screen Video Attributes API.

Example 1

To clear the screen in blinking, reverse video and high intensity, do the following:

>D CHGA^XGF("R1B1I1"),CLEAR^XGF(0,0,23,79)

Example 2

To print Hello World, do the following:

>D CHGA^XGF("I1"),SAY^XGF(,,"Hello ")
>D CHGA^XGF("U1"),SAY^XGF(,,"World")

Example 3

To draw the bottom of a small box, do the following:

>D CHGA^XGF("G1")
>D SAY^XGF(,,IOBLC_IOHL_IOHL_IOBRC)
>D CHGA^XGF("G0")

 XGF Function Library: Developer Tools

July 1995 Kernel 513
Revised September 2011 Developer's Guide
 Version 8.0

28.2.2 CLEAN^XGF: Screen/Keyboard Exit and Cleanup

Reference Type Supported

Category XGF Function Library

IA # 3173

Description This API exits the XGF screen and keyboard environments. It removes XGF
screen and keyboard variables and tables, turns all video attributes off, turns echo
on, turns the cursor on, and sets the keypad to numeric mode.

In addition, CLEAN^XGF does everything that the RESETKB^XGF: Exit XGF
Keyboard API does to exit the XGF keyboard environment, including turning
terminators and escape processing off. Subsequent READs are processed
normally. If you call CLEAN^XGF, a separate call to the RESETKB^XGF: Exit
XGF Keyboard API is not necessary.

Format CLEAN^XGF

Input Parameters none

Output none

REF: See also: PREP^XGF(): Screen/Keyboard Setup API.

XGF Function Library: Developer Tools

514 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

28.2.3 CLEAR^XGF(): Screen Clear Region

Reference Type Supported

Category XGF Function Library

IA # 3173

Description This API clears a rectangular region of the screen. It is useful to clear a portion
of the screen.

The CLEAR function works by printing spaces using the current screen attribute
in the specified region. If the screen attribute is changed and then the CLEAR
function is used, the rectangular region is cleared in the new attribute.

A call to the PREP^XGF(): Screen/Keyboard Setup API must be made at some
point prior to calling CLEAR^XGF.

Acceptable values for the top and bottom parameters range from 0 to IOSL-1.
Acceptable values for the left and right parameters range from 0 to IOM-1.

Format CLEAR^XGF(top,left,bottom,right)

Input Parameters top: (required) Top screen coordinate for box.

 left: (required) Left screen coordinate for box.

 bottom: (required) Bottom screen coordinate for box.

 right: (required) Right screen coordinate for box.

Output Parameters $x and $y: Set to the right and bottom specified as parameters.

REF: See also: RESTORE^XGF(): Screen Restore, SAVE^XGF(): Screen Save, and
WIN^XGF(): Screen Text Window APIs.

Example 1

For example, to clear the entire screen, do the following:

>D CLEAR^XGF(0,0,23,79)

Example 2

To clear a rectangular region in the center of the screen, do the following:

>D CLEAR^XGF(5,20,15,60)

 XGF Function Library: Developer Tools

July 1995 Kernel 515
Revised September 2011 Developer's Guide
 Version 8.0

28.2.4 FRAME^XGF(): Screen Frame

Reference Type Supported

Category XGF Function Library

IA # 3173

Description This API draws a box frame on the screen. It displays boxes on the screen.

The FRAME function does not clear or otherwise change the region that it
encompasses. If you need to open an empty framed window you should use the
WIN^XGF(): Screen Text Window API instead.

A call to the PREP^XGF(): Screen/Keyboard Setup API must be made at some
point prior to calling FRAME^XGF.

Acceptable values for the top and bottom parameters range from 0 to IOSL-1.
Acceptable values for the left and right parameters range from 0 to IOM-1.

Format FRAME^XGF(top,left,bottom,right)

Input Parameters top: (required) Top screen coordinate for box.

 left: (required) Left screen coordinate for box.

 bottom: (required) Bottom screen coordinate for box.

 right: (required) Right screen coordinate for box.

Output Parameters $x and $y: Set to the right and bottom specified as parameters.

REF: See also: RESTORE^XGF(): Screen Restore and WIN^XGF(): Screen Text Window
APIs.

Example

For example, to draw a box in the center of the screen, do the following:

>D FRAME^XGF(5,20,15,60)

XGF Function Library: Developer Tools

516 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

28.2.5 INITKB^XGF(): Keyboard Setup Only

Reference Type Supported

Category XGF Function Library

IA # 3173

Description This API sets up the XGF keyboard environment only. You should call
INITKB^XGF once, before you start making calls to the $$READ^XGF function.
This API turns on escape processing and any terminators that are passed.

Use this API only if you are using XGF's Keyboard Reader independently from
XGF's screen functions. Otherwise, a call to the PREP^XGF(): Screen/Keyboard
Setup API does everything to set up keyboard processing that INITKB^XGF does,
and a separate call to INITKB^XGF is not necessary.

Unlike the PREP^XGF(): Screen/Keyboard Setup API, INITKB^XGF does not set
the keypad to application mode.

INITKB does not call %ZISS. Thus, documented Kernel variables such as
IOKPAM and IOKPNM are not available for use without a separate call to the
ENS^%ZISS: Set Up Screen-handling Variables API.

Format INITKB^XGF([term_str])

Input Parameters term_str: (optional) String of characters that should terminate the READ.

This parameter can be one of two forms:
• A single asterisk ("*") character turns on all terminators.

• The string of terminating characters, such as
$C(9,13,127).

If this parameter is not passed, or if it is an empty string, the
terminators are not turned on.

Output none

REF: See also: RESETKB^XGF: Exit XGF Keyboard API.

 XGF Function Library: Developer Tools

July 1995 Kernel 517
Revised September 2011 Developer's Guide
 Version 8.0

28.2.6 IOXY^XGF(): Screen Cursor Placement

Reference Type Supported

Category XGF Function Library

IA # 3173

Description This API positions the cursor on the screen at a screen coordinate. This API is
similar to Kernel's X IOXY function. The row parameter must be between 0 and
IOSL-1; the column parameter must be between 0 and IOM- 1.

A call to the PREP^XGF(): Screen/Keyboard Setup API must be made at some
point prior to calling IOXY^XGF.

You can specify row and column parameters relative to the current $x and $y by
specifying "+" or "-" to increment or decrement $x or $y by 1. You can
increment or decrement by more than one if you add a number as well, such as
"-5" or "+10".

 NOTE: You must use quotes to pass a "+" or "-". Otherwise, to specify
exact locations for row and column, pass numbers.

Format IOXY^XGF(row,col)

Input Parameters row: (required) Row position to which the cursor is moved.

 col: (required) Column position to which the cursor is moved.

Output Parameters $x and $y: Set to the row and column specified as parameters.

REF: See also: SAY^XGF(): Screen String and SAYU^XGF(): Screen String with Attributes
APIs.

Example

For example, to position the cursor at row 12, column 39, do the following:

>D IOXY^XGF(12,39)

XGF Function Library: Developer Tools

518 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

28.2.7 PREP^XGF(): Screen/Keyboard Setup

Reference Type Supported

Category XGF Function Library

IA # 3173

Description This API sets up the XGF screen and keyboard environments.

Before using any XGF screen functions, you must call the PREP^XGF API.
PREP^XGF sets up screen control variables and tables. It also turns off all video
attributes, turns echo off, turns the cursor off, sets the keypad to application
mode, and clears the screen.

In addition, PREP^XGF does everything that the INITKB^XGF(): Keyboard
Setup Only API does to set up the XGF keyboard environment, including
turning escape processing and terminators on. If you call PREP^XGF, a call to
the INITKB^XGF(): Keyboard Setup Only API would be redundant.

Format PREP^XGF(xgcuratr)

Input Parameters none

Output Parameter xgcuratr: One-character parameter containing the state of the current
video attribute.

Also, the GSET^%ZISS: Set Up Graphic Variables API is
called, so all output variables for screen graphics from
GSET^%ZISS are defined.

REF: See also: CLEAN^XGF: Screen/Keyboard Exit and Cleanup API.

 XGF Function Library: Developer Tools

July 1995 Kernel 519
Revised September 2011 Developer's Guide
 Version 8.0

28.2.8 $$READ^XGF(): Read Using Escape Processing

Reference Type Supported

Category XGF Function Library

IA # 3173

Description This extrinsic function provides a way to perform READs using escape
processing. READs, when escape processing is turned on, are terminated by:
<UP-ARROW> ("↑"), <DOWN-ARROW> ("↓"), <PREV> ("←"),
<NEXT> ("→"), <TAB>, and other special keystrokes.

$$READ^XGF is a low-level reader compared to the VA FileMan reader. In
some respects it is as simple as using the M READ command. This READ
function incorporates escape processing, which puts the burden on the operating
system to READ the arrow, function, and all other keys.

A call to INITKB^XGF or PREP^XGF must be made at some point prior to
calling $$READ^XGF.

If the number of characters you request with the first parameter is not entered,
the READ does not terminate until some terminating character is pressed (or the
timeout period is reached).

If you do not pass the timeout parameter, DTIME is used for the timeout period.
If the READ times out, caret ("^") is returned and DTOUT is left defined.

The list of mnemonics for keys that can terminate READs is:

Table 28. XGF Function Library: Mnemonics for keys that terminate READs

Key Type Mnemonic

Control ^A, ^B, ^C, ^D, ^E, ^F, ^G, ^H, ^J, ^K,
^L, ^N, ^O, ^P, ^Q, ^R, ^S, ^T, ^U, ^V,
^W, ^X, ^Y, ^Z, ^\, ^], ^6, ^_

Cursor UP, DOWN, RIGHT, LEFT, PREV,
NEXT

Editing FIND, INSERT, REMOVE, SELECT

Function F6 to F14, HELP, DO, F17 to F20

Keyboard TAB, CR

Keypad KP0 to KP9, KP-, KP+, KP., KPENTER

PF PF1, PF2, PF3, PF4

Format $$READ^XGF([no_of_char][,timeout])

XGF Function Library: Developer Tools

520 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters no_of_char: (optional) Maximum number of characters to READ.

 timeout: (optional) Maximum duration of READ, in seconds.

Output Parameters returns: Returns the string READ from the user.

 XGRT: Set to the mnemonic of the key that terminated the READ.

 REF: For a list of possible values, see the list below or
the table in routine XGKB.

 DTOUT: If defined, signifies that the READ timed out.

Example 1

To READ a name (with a maximum length of 30) from input and display that name on the screen, do the
following:

Figure 102. SAY^XGF: Example to READ a name

D INITKB^XGF("*")
W "Name: " S NM=$$READ^XGF(30)
D SAY^XGF(10,20,"Hello " NM)

Example 2

To accept only <Up-Arrow> ("↑") or <Down-Arrow> ("↓") keys to exit a routine, do the following:

Figure 103. $$READ^XGF: Example to accept only Up-Arrow ("↑") and Down-Arrow ("↓") keys

;Only accept UP or DOWN arrow keys
F S %=$$READ^XGF(1) Q:XGRT="UP"!(XGRT="DOWN")

NOTE: When you set up the XGF keyboard environment using INITKB^XGF rather than
PREP^XGF, the keypad is not automatically set to application mode. For READs to be
terminated by the keypad keys (<KP0> to <KP9>, <KPENTER>, <KP+>, <KP->, and
<KP.>), the keypad must be in application mode. You can put the keypad in application mode
by using an M WRITE statement (W IOKPAM to set application mode, IOKPNM to set
numeric mode). Take care to preserve the value of $X when using a direct M WRITE, so that
relative positioning in XGF cursor/text output calls is not thrown off:

>S X=$X W IOKPAM S $X=X

 XGF Function Library: Developer Tools

July 1995 Kernel 521
Revised September 2011 Developer's Guide
 Version 8.0

28.2.9 RESETKB^XGF: Exit XGF Keyboard

Reference Type Supported

Category XGF Function Library

IA # 3173

Description This API exits the XGF keyboard environment. You should use the
RESETKB^XGF call once you finish making calls to the $$READ^XGF(): Read
Using Escape Processing function. The RESETKB^XGF API turns terminators
and escape processing off and removes any XGF keyboard environment variables.
Subsequent READs are processed normally.

Use this API only if you are using XGF's Keyboard Reader independently from
XGF's screen functions. Otherwise, a call to the CLEAN^XGF: Screen/Keyboard
Exit and Cleanup API does everything to clean up keyboard processing that the
RESETKB^XGF API does, and a separate call to the RESETKB^XGF API is not
necessary.

Unlike the CLEAN^XGF: Screen/Keyboard Exit and Cleanup API, the
RESETKB^XGF API does not set the keypad to numeric mode.

Format RESETKB^XGF

Input Parameters none

Output none

REF: See also: INITKB^XGF(): Keyboard Setup Only API.

XGF Function Library: Developer Tools

522 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

28.2.10 RESTORE^XGF(): Screen Restore

Reference Type Supported

Category XGF Function Library

IA # 3173

Description This API restores a previously saved screen region. You can save screen regions
using the WIN^XGF(): Screen Text Window and SAVE^XGF(): Screen Save
APIs. RESTORE^XGF restores the saved screen region in the same screen
position as the screen region was saved from.

A call to the PREP^XGF(): Screen/Keyboard Setup API must be made at some
point prior to calling RESTORE^XGF.

Specify the array node under which to save the overlaid screen region in closed
root and fully resolved form (i.e., closed right parenthesis and with variable
references such as $J fully resolved). Using M $NAME function is a quick way
to pass fully resolved node specifications.

Format RESTORE^XGF(save_root)

Input Parameters save_root: (required) Global/local array node, closed root form.

Output Parameters $x and $y: Set to the bottom right coordinate of the restored window.

REF: See also: CLEAR^XGF(): Screen Clear Region, SAVE^XGF(): Screen Save, and
WIN^XGF(): Screen Text Window APIs.

Example

To restore the screen contents saved to the local array SELECT to their original position, do the
following:

>D RESTORE^XGF("SELECT")

 XGF Function Library: Developer Tools

July 1995 Kernel 523
Revised September 2011 Developer's Guide
 Version 8.0

28.2.11 SAVE^XGF(): Screen Save

Reference Type Supported

Category XGF Function Library

IA # 3173

Description This API saves a screen region. In order to save and restore screen regions, you
must do all screen output using calls in the XGF Function Library output. If you
instead use the M WRITE command for output, the screen contents cannot be
saved and restored. Also, a call to the PREP^XGF(): Screen/Keyboard Setup
API must be made at some point prior to calling SAVE^XGF.

Specify the array node under which to save the overlaid screen region in closed
root and fully resolved form (i.e., closed right parenthesis and with variable
references such as $J fully resolved). Using M $NAME function is a quick way
to pass fully resolved node specifications.

Format SAVE^XGF(top,left,bottom,right,save_root)

Input Parameters top: (required) Top screen coordinate for box.

 left: (required) Left screen coordinate for box.

 bottom: (required) Bottom screen coordinate for box.

 right: (required) Right screen coordinate for box.

 save_root: (required) Global/local array node, closed root form.

Output Parameter $x and $y: Left unchanged.

REF: See also: CLEAR^XGF(): Screen Clear Region, RESTORE^XGF(): Screen Restore, and
WIN^XGF(): Screen Text Window APIs.

Example

For example, to save the screen contents between rows 5 and 15 and columns 20 and 60 in the SELECT
local array, do the following:

>D SAVE^XGF(5,20,15,60,"SELECT")

XGF Function Library: Developer Tools

524 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

28.2.12 SAY^XGF(): Screen String

Reference Type Supported

Category XGF Function Library

IA # 3173

Description This API outputs a string to the screen (with optional positioning and attribute
control).

Use this API rather than the M WRITE command to output strings to the screen.
The row and column parameters specify where to print the string. If omitted, the
current row and column positions are used. If specified, the row must be
between 0 and IOSL-1, and the column must be between 0 and IOM-1.

A call to the PREP^XGF(): Screen/Keyboard Setup API must be made at some
point prior to calling SAY^XGF.

You can specify row and column parameters relative to the current $x and $y by
specifying "+" or "-" to increment or decrement $x or $y by 1. You can
increment or decrement by more than 1 if you add a number as well (e.g., "-5" or
"+10").

 NOTE: You must use quotes to pass a "+" or "-". Otherwise, to specify
exact locations for row and column, pass numbers.

Without the fourth argument for video attribute, SAY^XGF displays the string
using the current video attribute. With the fourth argument, SAY^XGF displays
the string using the attributes you specify. SAY^XGF changes the video
attribute only for the output of the string; upon termination of the function, it
restores video attributes to their state prior to the function call.

 REF: For a discussion of valid video attribute codes for the video attribute
parameter, see the SETA^XGF(): Screen Video Attributes API.

Format SAY^XGF([row][,col,]str[,atr])

Input Parameters row: (optional) Row position to start WRITE.

 col: (optional) Column position to start WRITE.

 str: (required) String to WRITE.

 atr: (optional) Video attribute with which to WRITE string.

 REF: For description of atr codes, see the
$$READ^XGF(): Read Using Escape Processing API.

 XGF Function Library: Developer Tools

July 1995 Kernel 525
Revised September 2011 Developer's Guide
 Version 8.0

Output Parameters $x and $y: Set to position of the last character output.

REF: See also: IOXY^XGF(): Screen Cursor Placement and SAYU^XGF(): Screen String
with Attributes APIs.

Example 1

For example, to print "Hello, World" in the center of the screen, in the current video attribute, do the
following:

>D SAY^XGF(11,35,"Hello World")

Example 2

To print "ERROR!" at (row,col) position ($X+1,$Y+5), in reverse and bold video attributes, do the
following:

>D SAY^XGF("+","+5",0,"ERROR!","R1B1")

Example 3

To print "..." at the current cursor position, in the current video attribute, do the following:

>D SAY^XGF(,,"...")

XGF Function Library: Developer Tools

526 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

28.2.13 SAYU^XGF(): Screen String with Attributes

Reference Type Supported

Category XGF Function Library

IA # 3173

Description This API outputs a string to the screen (with optional position and attribute
control), including the ability to underline an individual character.

This API is similar to SAY^XGF. The difference is that the first ampersand
("&") character has a special meaning in the output string; it acts as a flag to
indicate that the next character should be underlined. You are only allowed one
underlined character per call. Typically you would use SAYU^XGF when
writing a menu option's text, in order to underline that option's speed key.

A call to the PREP^XGF(): Screen/Keyboard Setup API must be made at some
point prior to calling SAYU^XGF.

You can specify row and column parameters relative to the current $x and $y by
specifying "+" or "-" to increment or decrement $x or $y by 1. You can
increment or decrement by more than 1 if you add a number as well (e.g., "-5" or
"+10").

 NOTE: You must use quotes to pass a "+" or "-". Otherwise, to specify
exact locations for row and column, pass numbers.

If the first ampersand is followed by another ampersand, this initial "&&" is
interpreted and displayed as one ampersand character, "&", and you still have
the opportunity to use a single ampersand as an underlining flag.

Format SAYU^XGF([row][,col,]str[,atr])

Input Parameters row: (optional) Row position to start WRITE.

 col: (optional) Column position to start WRITE.

 str: (required) String to WRITE ("&" underlines next character).

 atr: (optional) Video attribute with which to WRITE a string.

 REF: For a description of atr codes, see the
$$READ^XGF(): Read Using Escape Processing API.

Output Parameters $x,$y: Set to the position of the last character output.

REF: See also: IOXY^XGF(): Screen Cursor Placement and SAY^XGF(): Screen String APIs.

 XGF Function Library: Developer Tools

July 1995 Kernel 527
Revised September 2011 Developer's Guide
 Version 8.0

Example

For example, to print Save at row 5, column 10, do the following:

>D SAYU^XGF(5,10,"&Save")

28.2.14 SETA^XGF(): Screen Video Attributes

Reference Type Supported

Category XGF Function Library

IA # 3173

Description This API sets all video attribute simultaneously, for subsequent screen output.
This API is different from the $$READ^XGF(): Read Using Escape Processing
API in that it takes a different form of the attribute argument, and, unlike the
CHGA^XGF(): Screen Change Attributes API, it sets all attributes. The change
in attribute remains in effect until you make another CHGA^XGF(): Screen
Change Attributes, CLEAN^XGF: Screen/Keyboard Exit and Cleanup, or
SETA^XGF API call. If you want only a temporary change in attribute, the
SAY^XGF(): Screen String API might be a better function to use.

A call to the PREP^XGF(): Screen/Keyboard Setup API must be made at some
point prior to calling the SETA^XGF API.

The value of the attribute parameter uses one bit for the value of each video
attribute. The format of the bits is not documented. The current setting of all
video attributes is accessible via the xgcuratr parameter, however. Rather than
trying to use the SETA^XGF API to control an individual video attribute's
setting, you should use it mainly to restore the screen attributes based on a
previously saved value of xgcuratr.

Format SETA^XGF(atr_code)

Input Parameters atr_code: (required) Single character containing the states of all video
attributes as the bit values. This argument itself should be
derived from a previous call to the PREP^XGF():
Screen/Keyboard Setup, CHGA^XGF(): Screen Change
Attributes, or SETA^XGF APIs.

Output Parameters xgcuratr: This variable always holds the current screen attribute coded
as a single character, and is updated when you call
SETA^XGF.

 $x and $y: Left unchanged.

XGF Function Library: Developer Tools

528 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

REF: See also: $$READ^XGF(): Read Using Escape Processing API.

Example

To save the initial screen attribute settings to variable SAVEATR, do a function called SOME^THING,
and then reset all the video attributes to their initial state, do the following:

>D PREP^XGF S SAVEATR=XGCURATR
>D SOME^THING
>D SETA^XGF(SAVEATR)

28.2.15 WIN^XGF(): Screen Text Window

Reference Type Supported

Category XGF Function Library

IA # 3173

Description This API opens a text window on the screen and optionally remember what it
overlays. If the save root parameter is not passed, you cannot restore the screen
behind the window.

In order to save the screen region that the window overlays it is absolutely
necessary that screen output is done using only the functions in the XGF
Function library. If you use the M WRITE command for output, the screen
contents cannot be saved.

A call to the PREP^XGF(): Screen/Keyboard Setup API must be made at some
point prior to calling WIN^XGF.

Specify the array node under which to save the overlaid screen region in closed
root and fully resolved form (i.e., closed right parenthesis and with variable
references such as $J fully resolved). Using the M $NAME function is a quick
way to pass fully resolved node specifications.

To restore screens you save with the WIN^XGF function, use the
RESTORE^XGF(): Screen Restore API.

Format WIN^XGF(top,left,bottom,right[,save_root])

Input Parameters top: (required) Top screen coordinate for box.

 left: (required) Left screen coordinate for box.

 bottom: (required) Bottom screen coordinate for box.

 XGF Function Library: Developer Tools

July 1995 Kernel 529
Revised September 2011 Developer's Guide
 Version 8.0

 right: (required) Right screen coordinate for box.

 save_root: (optional) Global/local array node, closed root form.

Output Parameters save_root: If you specify a node as a fifth parameter for save_root,
WIN^XGF saves the screen region you overlay in an array at
that node.

 $x and $y: Set to the right and bottom coordinates you specify as
parameters.

REF: See also: CLEAR^XGF(): Screen Clear Region, FRAME^XGF(): Screen Frame,
RESTORE^XGF(): Screen Restore, and SAVE^XGF(): Screen Save APIs.

Example 1

To draw an empty box in the center of the screen (and save the underlying screen region under array
SELECT), do the following:

>D WIN^XGF(5,20,15,60,"SELECT")

Example 2

To save the same window to a global array (to illustrate the use of $NAME to specify a fully resolved
root), do the following:

>D WIN^XGF(5,20,15,60,$NA(^TMP($J)))

XGF Function Library: Developer Tools

530 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

July 1995 Kernel 531
Revised September 2011 Developer's Guide
 Version 8.0

29 XLF Function Library: Developer Tools

29.1 Application Program Interface (API)

Several APIs are available for developers to work with the XLF Function Library. These APIs are
described below.

The XLF Function Library provides the following functions:

• Date

• Hyperbolic Trigonometric

• Mathematical

• Measurement

• String Computations

• Utilities

29.2 CRC Functions—XLFCRC

These functions are provided to help process strings.

29.2.1 $$CRC16^XLFCRC(): Cyclic Redundancy Code 16

Reference Type Supported

Category CRC Functions

IA # 3156

Description This extrinsic function computes a Cyclic Redundancy Code (CRC) of the 8-bit
character string, using X^16 + X^15 + X^2 + 1 as the polynomial. The optional
parameter "seed" may supply an initial value, which allows for running CRC
calculations on multiple strings. If the parameter "seed" is not specified, a default
value of zero (0) is assumed. The value of "seed" is limited to 0 <= seed <= 2^16.
The function value will be between 0 and 2^16.

Format $$CRC16^XLFCRC(string[,seed])

Input Parameters string: (required) String upon which to compute the CRC16.

 seed: (optional) Seed value. Needed to compute the CRC16 over
multiple strings.

Output returns: Returns the Cyclic Redundancy Code (CRC) 16 value.

XLF Function Library: Developer Tools

532 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example

SET CRC=$$CRC16^XLFCRC(string)

A checksum can also be calculated over multiple strings.

SET (I,C)=0
FOR SET I=$ORDER(X(I)) QUIT:'I DO
. SET C=$$CRC16^XLFCRC(X(I),C)

Or

SET I=0,C=4294967295
FOR SET I=$ORDER(X(I)) QUIT:'I DO
. SET C=$$CRC16^XLFCRC(X(I),C)

As long as the save method is used all the time.

Example 2

CRC162 ;Test call CRC16^XLFCRC multiple times
S TEXT="Now is the time for all good children",TEXT2="to come to the aid of their
country."
S CRC=0,CRC=$$CRC16^XLFCRC(TEXT,CRC)
If 23166=$$CRC16^XLFCRC(TEXT2,CRC) WRITE !,"CRC16 OK"
Q

NOTE: These have been approved for inclusion in a future ANSI M language standard as part
of the library.

 XLF Function Library: Developer Tools

July 1995 Kernel 533
Revised September 2011 Developer's Guide
 Version 8.0

29.2.2 $$CRC32^XLFCRC(): Cyclic Redundancy Code 32

Reference Type Supported

Category CRC Functions

IA # 3156

Description This extrinsic function computes a Cyclic Redundancy Code (CRC) of the 8-bit
character string, using X^32 + X^26 + X^23 + X^22 + X^16 + X^12 + X^11 +
X^10 + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1 as the polynomial. The optional
parameter "seed" may supply an initial value, which allows for running CRC
calculations on multiple strings. If the parameter "seed" is not specified, a default
value of 4,294,967,295 (2^32-1) is assumed. The value of "seed" is limited to 0 <=
seed <= 2^32. The function value will be between 0 and 2^32.

Format $$CRC32^XLFCRC(string[,seed])

Input Parameters string: (required) String upon which to compute the CRC32.

 seed: (optional) Seed value. Needed to compute the CRC32 over
multiple strings.

Output returns: Returns the Cyclic Redundancy Code (CRC) 32 value.

Example 1

SET CRC=$$CRC32^XLFCRC(string)

A checksum can also be calculated over multiple strings.

SET (I,C)=0
FOR SET I=$ORDER(X(I)) QUIT:'I DO
. SET C=$$CRC32^XLFCRC(X(I),C)

Or

SET I=0,C=4294967295
FOR SET I=$ORDER(X(I)) QUIT:'I DO
. SET C=$$CRC32^XLFCRC(X(I),C)

As long as the save method is used all the time.

XLF Function Library: Developer Tools

534 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 2

CRC322 ;Test call CRC32^XLFCRC multiple times
S TEXT="Now is the time for all good children",TEXT2="to come to the aid of their
country."
S CRC=0,CRC=$$CRC32^XLFCRC(TEXT,CRC)
If 715820230=$$CRC32^XLFCRC(TEXT2,CRC) WRITE !,"CRC32 OK"
Q

NOTE: These have been approved for inclusion in a future ANSI M language standard as part
of the library.

29.3 Date Functions—XLFDT

29.3.1 $$%H^XLFDT(): Convert Seconds to $H

Reference Type Supported

Category Date Functions

IA # 10103

Description This extrinsic function converts the number of seconds input to a $H formatted
date. It converts the output of the $$SEC^XLFDT(): Convert $H/VA FileMan date
to Seconds API back to a $H value.

Format $$%H^XLFD(seconds)

Input Parameters seconds: (required) Input seconds.

Output returns: Returns seconds in $H date format.

Example

>S X=$$%H^XLFDT(5108536020)

>W X
59126,49620

 XLF Function Library: Developer Tools

July 1995 Kernel 535
Revised September 2011 Developer's Guide
 Version 8.0

29.3.2 $$DOW^XLFDT(): Day of Week

Reference Type Supported

Category Date Functions

IA # 10103

Description This extrinsic function returns the corresponding day of the week from a date in
VA FileMan format.

Format $$DOW^XLFD(x[,y])

Input Parameters x: (required) VA FileMan date.

 y: (optional) 1 to return a day-of-week number.

Output returns: Returns the day of the week.

Example 1

>S X=$$DOW^XLFDT(2901231.111523)

>W X
Monday

Example 2

>S X=$$DOW^XLFDT(2901231.111523,1)

>W X
1

29.3.3 $$DT^XLFDT: Current Date (VA FileMan Date Format)

Reference Type Supported

Category Date Functions

IA # 10103

Description This extrinsic function returns the current date in VA FileMan format.

Format $$DT^XLFDT

Input Parameters none

Output returns: Returns the current date in VA FileMan format.

XLF Function Library: Developer Tools

536 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example

>S X=$$DT^XLFDT

>W X
3040126

29.3.4 $$FMADD^XLFDT(): VA FileMan Date Add

Reference Type Supported

Category Date Functions

IA # 10103

Description This extrinsic function returns the result of adding days, hours, minutes, and
seconds to a date in VA FileMan format.

Format $$FMADD^XLFDT(x,d,h,m,s)

Input Parameters x: (required) VA FileMan date (in quotes).

 d: (required) Days.

 h: (required) Hours.

 m: (required) Minutes.

 s: (required) Seconds.

Output returns: Returns the updated date and time in VA FileMan format.

Example

>S X=$$FMADD^XLFDT(2901231.01,2,2,20,15)

>W X
2910102.032015

 XLF Function Library: Developer Tools

July 1995 Kernel 537
Revised September 2011 Developer's Guide
 Version 8.0

29.3.5 $$FMDIFF^XLFDT(): VA FileMan Date Difference

Reference Type Supported

Category Date Functions

IA # 10103

Description This extrinsic function returns the difference between two VA FileMan format
dates.

Format $$FMDIFF^XLFDT(x1,x2[,x3])

Input Parameters x1: (required) VA FileMan date.

 x2: (required) VA FileMan date, to subtract from the x1 date.

 x3: (optional) If null ('$D(x3), return the difference in days.
Otherwise:

• If x3 = 1, return the difference in days.

• If x3 = 2, return the difference in seconds.

• If x3 = 3, return the difference in days
hours:minutes:seconds format (DD HH:MM:SS).

Output returns: Returns the date and/or time difference.

Example 1

The following example returns the difference between two dates/times in days (x3 = null or 1). In this
example, the first date is 2 days less than the second date:

>S X=$$FMDIFF^XLFDT(2901229,2901231.111523)

>W X
-2

>S X=$$FMDIFF^XLFDT(2901229,2901231.111523,1)

>W X
-2

XLF Function Library: Developer Tools

538 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 2

The following example returns the difference between two dates/times in seconds (x3 = 2). In this
example, the first date is 150,079 seconds greater than the second date:

>S X=$$FMDIFF^XLFDT(2901231.111523,2901229.173404,2)

>W X
150079

Example 3

The following example returns the difference between two dates/times in DD HH:MM:SS (x3 = 3). In
this example, the first date is 1 day, 1 hour, 24 minutes, and 2 seconds greater than the second date:

>S X=$$FMDIFF^XLFDT(2901231.024703,2901230.012301,3)

>W X
1 1:24:2

29.3.6 $$FMTE^XLFDT(): Convert VA FileMan Date to External
Format

Reference Type Supported

Category Date Functions

IA # 10103

Description This extrinsic function converts a VA FileMan formatted input date to an external
formatted date.

Format $$FMTE^XLFDT(x[,y])

Input Parameters x: (required) VA FileMan date.

 XLF Function Library: Developer Tools

July 1995 Kernel 539
Revised September 2011 Developer's Guide
 Version 8.0

 y: (optional) Affects output as follows:
• If null, '$D(y), return the written-out format.

• If '$D(y) then return standard VA FileMan format.

• If +y = 1 then return standard VA FileMan format.

• If +y = 2 then return MM/DD/YY@HH:MM:SS format.

• If +y = 3 then return DD/MM/YY@HH:MM:SS format.

• If +y = 4 then return YY/MM/DD@HH:MM:SS format.

• If +y = 5 then return MM/DD/YYYY@HH:MM:SS
format.

• If +y = 6 then return DD/MM/YYYY@HH:MM:SS
format.

• If +y = 7 then return YYYY/MM/DD@HH:MM:SS
format.

• If y contains a "D" then date only.

• If y contains an "F" then output date with leading spaces.

• If y contains an "M" then only output "HH:MM".

• If y contains a "P" then output "HH:MM:SS am/pm".

• If y contains an "S" then force seconds in the output.

• If y contains a "Z" then output date with leading zeroes.

Output returns: Returns the external formatted date.

Example 1

Return the date in the following format: Standard VA FileMan date format.

>S X=$$FMTE^XLFDT(2940629.105744,1)

>W X
Jun 29, 1994@10:57:44

Example 2

Return the date in the following format: Standard VA FileMan date format and include am/pm.

>S X=$$FMTE^XLFDT(2940629.1057,"1P")

>W X
Jun 29, 1994 10:57 am

XLF Function Library: Developer Tools

540 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 3

Return the date in the following format: MM/DD/YY@HH:MM:SS.

>S X=$$FMTE^XLFDT(2940629.105744,2)

>W X
6/29/94@10:57:44

Example 4

Return the date in the following format: MM/DD/YY@HH:MM.

>S X=$$FMTE^XLFDT(2940629.105744,"2M")

>W X
6/29/94@10:57

Example 5

Return the date in the following format: MM/DD/YY@HH:MM:SS and include am/pm.

>S X=$$FMTE^XLFDT(2940629.105744,"2P")

>W X
6/29/94 10:57:44 am

Example 6

Return the date in the following format: MM/DD/YY@HH:MM:SS, forcing seconds to display when no
seconds were included in the input parameter.

>S X=$$FMTE^XLFDT(2940629.1057,"2S")

>W X
6/29/94@10:57:00

Example 7

Return the date in the following format: MM/DD/YY@HH:MM:SS, forcing seconds to display when no
seconds were included in the input parameter, and include leading spaces.

>S X=$$FMTE^XLFDT(2940629.1057,"2SF")

>W X
 6/29/94@10:57:00

 XLF Function Library: Developer Tools

July 1995 Kernel 541
Revised September 2011 Developer's Guide
 Version 8.0

Example 8

Return the date in the following format: DD/MM/YY@HH:MM:SS and include leading spaces.

>S X=$$FMTE^XLFDT(2940629.105744,"3F")

>W X
29/ 6/94@10:57:44

Example 9

Return the date in the following format: YY/MM/DD, ignore the time values entered and only display the
date.

>S X=$$FMTE^XLFDT(2940629.1057,"4D")

>W X
94/6/29

Example 10

To output a really short date/time try the following, convert space to zero and remove slash, as shown
below:

>S X=$TR($$FMTE^XLFDT(2940629.1057,"4F")," /","0")

>W X
940629@10:57

Example 11

Return the date in the following format: MM/DD/YYYY@HH:MM:SS.

>S X=$$FMTE^XLFDT(3000229.110520,5)

>W X
2/29/2000@11:05:20

Example 12

Return the date in the following format: MM/DD/YYYY@HH:MM:SS and include leading spaces.

>S X=$$FMTE^XLFDT(3000229.110520,"5F")

>W X
 2/29/2000@11:05:20

XLF Function Library: Developer Tools

542 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 13

Return the date in the following format: MM/DD/YYYY@HH:MM:SS, forcing seconds.

>S X=$$FMTE^XLFDT(3000229.1105,"5S")

>W X
2/29/2000@11:05:00

Example 14

Return the date in the following format: MM/DD/YYYY HH:MM:SS, include leading zeroes, and
include am/pm.

>S X=$$FMTE^XLFDT(3000229.110520,"5ZP")

>W X
02/29/2000 11:05:20 am

Example 15

Return the date in the following format: DD/MM/YYYY@HH:MM:SS, with leading spaces.

>S X=$$FMTE^XLFDT(3000229.110520,"6F")

>W X
29/ 2/2000@11:05:20

Example 16

Return the date in the following format: DD/MM/YYYY@HH:MM:SS, with leading zeroes.

>S X=$$FMTE^XLFDT(3000229.1105,"6Z")

>W X
29/02/2000@11:05

Example 17

Return the date in the following format: YYYY/MM/DD@HH:MM:SS.

>S X=$$FMTE^XLFDT(3000301.1105,7)

>W X
2000/3/1@11:05

 XLF Function Library: Developer Tools

July 1995 Kernel 543
Revised September 2011 Developer's Guide
 Version 8.0

Example 18

Return the date in the following format: YYYY/MM/DD, ignore the time values entered and only display
the date.

>S X=$$FMTE^XLFDT(3000301.1105,"7D")

>W X
2000/3/1

29.3.7 $$FMTH^XLFDT(): Convert VA FileMan Date to $H

Reference Type Supported

Category Date Functions

IA # 10103

Description This extrinsic function converts a VA FileMan formatted input date to a $H
formatted date.

Format $$FMTH^XLFDT(x[,y])

Input Parameters x: (required) VA FileMan date.

 y: (optional) 1 to return the date portion only (no seconds).

Output returns: Returns the converted date in $H format.

Example 1

>S X=$$FMTH^XLFDT(2901231.111523)

>W X
54786,40523

Example 2

>S X=$$FMTH^XLFDT(2901231.111523,1)

>W X
54786

XLF Function Library: Developer Tools

544 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

29.3.8 $$FMTHL7^XLFDT(): Convert VA FileMan Date to HL7
Date

Reference Type Supported

Category Date Functions

IA # 10103

Description This extrinsic function converts a VA FileMan formatted input date/time into an
HL7 formatted date, including the time offset.

Format $$FMTHL7^XLFDT(fm_date_time)

Input Parameters fm_date_time: (required) VA FileMan date.

Output returns: Returns the converted date in HL7 format.

Example

>S X=$$FMTHL7^XLFDT(3001127.1525)

>W X
200011271525-0800

29.3.9 $$HADD^XLFDT(): $H Add

Reference Type Supported

Category Date Functions

IA # 10103

Description This extrinsic function returns the result of adding days, hours, minutes, and
seconds to a date in $H format.

Format $$HADD^XLFDT(x,d,h,m,s)

Input Parameters x: (required) $H date (in quotes).

 d: (required) Days.

 h: (required) Hours.

 m: (required) Minutes.

 s: (required) Seconds.

 XLF Function Library: Developer Tools

July 1995 Kernel 545
Revised September 2011 Developer's Guide
 Version 8.0

Output returns: Returns the resultant date in $H format.

Example

>S X=$$HADD^XLFDT("54786,3600",2,2,20,15)

>W X
54788,12015

29.3.10 $$HDIFF^XLFDT(): $H Difference

Reference Type Supported

Category Date Functions

IA # 10103

Description This extrinsic function returns the difference between two $H formatted dates.

Format $$HDIFF^XLFDT(x1,x2[,x3])

Input Parameters x1: (required) $H date (in quotes).

 x2: (required) $H date (in quotes) to subtract from the x1 date.

 x3: (optional) If null ('$D(x3), return the difference in days.
Otherwise:

• If x3 = 1, return the difference in days.

• If x3 = 2, return the difference in seconds.

• If x3 = 3, return the difference in days
hours:minutes:seconds format (DD HH:MM:SS).

Output returns: Returns the $H difference.

Example 1

Return the &H difference in days.

>S X=$$HDIFF^XLFDT("54789,40523","54786,25983",1)

>W X
3

XLF Function Library: Developer Tools

546 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 2

Return the &H difference in seconds.

>S X=$$HDIFF^XLFDT("54789,40523","54786,25983",2)

>W X
273740

Example 3

Return the &H difference in days hours:minutes:seconds format (DD HH:MM:SS).

>S X=$$HDIFF^XLFDT("54789,40523","54786,25983",3)

>W X
3 4:02:20

29.3.11 $$HL7TFM^XLFDT(): Convert HL7 Date to VA FileMan
Date

Reference Type Supported

Category Date Functions

IA # 10103

Description This extrinsic function converts an HL7 formatted input date/time into a VA
FileMan formatted date/time.

Format $$HL7TFM^XLFDT(hl7_date_time[,local_uct][,time_flag])

Input Parameters hl7_date_time: (required) HL7 formatted date and time.

 local_uct: (optional) This parameter controls if any time offset is applied to
the time. If a time offset is included, then time offset can be
applied to give Local time or Coordinated Universal Time (UTC,
a.k.a. GMT, or Greenwich Mean Time) time offset from the
MAILMAN TIME ZONE file (#4.4). The default is to return
Local time. Valid values are:

• L (default)—Local time.

• U—UTC time.

 time_flag: (optional) This parameter is set to 1 if the value in the
hl7_date_time input parameter is just a time value. The default
assumes that the hl7_date_time input parameter is a date and
time value.

Output returns: Returns the converted date in VA FileMan format.

 XLF Function Library: Developer Tools

July 1995 Kernel 547
Revised September 2011 Developer's Guide
 Version 8.0

Example 1

To get date with no offset:

>S X=$$HL7TFM^XLFDT("200011271525-0700")

>W X
3001127.1525

Example 2

To get UCT time offset:

>S X=$$HL7TFM^XLFDT("200011271525-0700","U")

>W X
3001127.2225

Example 3

To get Local time in PST offset:

>S X=$$HL7TFM^XLFDT("200011271525-0700","L")

>W X
3001127.1425

Example 4

To get Local time when only providing a time (no date) as the input parameter:

>S X=$$HL7TFM^XLFDT("1525-0700","L",1)

>W X
.1525

XLF Function Library: Developer Tools

548 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

29.3.12 $$HTE^XLFDT(): Convert $H to External Format

Reference Type Supported

Category Date Functions

IA # 10103

Description This extrinsic function converts a $H formatted input date to an external formatted
date.

Format $$HTE^XLFDT(x[,y])

Input Parameters x: (required) $H date (in quotes).

 y: (optional) Affects output as follows:
• If null ('$D(y)) return the written-out format.

• If '$D(y) then return standard VA FileMan format.

• If +y = 1 then return standard VA FileMan format.

• If +y = 2 then return MM/DD/YY@HH:MM:SS format.

• If +y = 3 then return DD/MM/YY@HH:MM:SS format.

• If +y = 4 then return YY/MM/DD@HH:MM:SS format.

• If +y = 5 then return MM/DD/YYYY@HH:MM:SS
format.

• If +y = 6 then return DD/MM/YYYY@HH:MM:SS
format.

• If +y = 7 then return YYYY/MM/DD@HH:MM:SS
format.

• If y contains a "D" then date only.

• If y contains an "F" then output date with leading blanks.

• If y contains an "M" then output "HH:MM" only.

• If y contains a "P" then output "HH:MM:SS am/pm".

• If y contains an "S" then force seconds in the output.

• If y contains a "Z" then output date with leading zeroes.

Output returns: Returns the external format of a $H date.

 XLF Function Library: Developer Tools

July 1995 Kernel 549
Revised September 2011 Developer's Guide
 Version 8.0

Example 1

Return the date in the following format: Standard external format.

>S X=$$HTE^XLFDT("54786,40523")

>W X
Dec 31, 1990@11:15:23

Example 2

Return the date in the following format: MM/DD/YY@HH:MM:SS.

>S X=$$HTE^XLFDT("54786,40523",2)

>W X
12/31/90@11:15:23

Example 3

Return the date in the following format: MM/DD/YY@HH:MM:SS, omitting the seconds.

>S X=$$HTE^XLFDT("57386,33723","2M")

>W X
2/12/98@09:22

Example 4

Return the date in the following format: MM/DD/YYYY@HH:MM:SS.

>S X=$$HTE^XLFDT("57351,27199",5)

>W X
1/8/1998@07:33:19

Example 5

Return the date in the following format: DD/MM/YYYY@HH:MM:SS.

>S X=$$HTE^XLFDT("57351,27199",6)

>W X
8/1/1998@07:33:19

XLF Function Library: Developer Tools

550 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 6

Return the date in the following format: YYYY/MM/DD@HH:MM:SS.

>S X=$$HTE^XLFDT("57351,27199",7)

>W X
1998/1/8@07:33:19

29.3.13 $$HTFM^XLFDT(): Convert $H to VA FileMan Date Format

Reference Type Supported

Category Date Functions

IA # 10103

Description This extrinsic function converts a $H formatted input date to a VA FileMan
formatted date.

Format $$HTFM^XLFDT(x[,y])

Input Parameters x: (required) $H date (in quotes).

 y: (optional) 1 to return the date portion only (no seconds).

Output returns: Returns the converted $H date in VA FileMan format.

Example 1

>S X=$$HTFM^XLFDT("54786,40523")

>W X
2901231.111523

Example 2

>S X=$$HTFM^XLFDT("54786,40523",1)

>W X
2901231

 XLF Function Library: Developer Tools

July 1995 Kernel 551
Revised September 2011 Developer's Guide
 Version 8.0

29.3.14 $$NOW^XLFDT: Current Date and Time (VA FileMan
Format)

Reference Type Supported

Category Date Functions

IA # 10103

Description This extrinsic function returns the current date and time in VA FileMan format.

Format $$NOW^XLFDT

Input Parameters none

Output returns: Returns the current date and time in VA FileMan format.

Example

>S X=$$NOW^XLFDT

>W X
3040126.103044

29.3.15 $$SCH^XLFDT(): Next Scheduled Runtime

Reference Type Supported

Category Date Functions

IA # 10103

Description This extrinsic function returns the next run-time based on Schedule code.

Format $$SCH^XLFDT(schedule_string,base_date[,force_future_flag])

Input Parameters schedule_string: (required) Interval to add to base_date, as follows:
• nS—Add n seconds to base_date.

• nH—Add n hours to base_date.

• nD—Add n days to base_date.

• nM—Add n months to base_date.

• $H;$H;$H—List of $H dates.

• nM(list)—Complex month increment. For example:
1M(15,L), which means schedule it to run every
month (1M) on the 15 and last day of the month

XLF Function Library: Developer Tools

552 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

(15,L).

− dd[@time]—Day of month (e.g., 12).

− nDay[@time]—day of week in month (e.g., 1M,
first Monday); (see "Day Code" list that follows).

− Day.

− L—Last day of month.

− LDay—Last specific day in month (e.g., LM [last
Monday],LT [last Tuesday],LW [last
Wednesday]...).

• Day[@time]—Day of week (see "Day Code" list that
follows).

− Day.

− D—Every weekday.

− E—Every weekend day (Saturday, Sunday).

 Day Code (used in schedule codes above)
• M—Monday

• T—Tuesday

• W—Wednesday

• R—Thursday

• F—Friday

• S—Saturday

• U—Sunday

 base_date: (required) VA FileMan date to which the interval is added.

 force_future_flag: (optional) If passed with a value of:

• 1—Forces returned date to be in future, by repeatedly
adding interval to base_date until a future date is
produced.

• Otherwise—Interval is added once.

Output returns: Returns the next run-time.

 XLF Function Library: Developer Tools

July 1995 Kernel 553
Revised September 2011 Developer's Guide
 Version 8.0

Example 1

To schedule something to run every month on the 15th of the month at 2:00 p.m. and on the last day of
every month at 6:00 p.m., you would enter the following:

• Middle of the Month:

>S X=$$SCH^XLFDT("1M(15@2PM,L@6PM)",2931003)

>W X
2931015.14

• End of the Month:

>S X=$$SCH^XLFDT("1M(15@2PM,L@6PM)",X)

>W X
2931031.18

Example 2

To schedule something to run every month on the 15th of the month at 11:00 p.m. and on the last day of
every month at 8:00 p.m., you would enter the following:

• Middle of the Month:

>S X=$$SCH^XLFDT("1M(15@11PM,L@8PM)",2931028)

>W X
2931031.2

• End of the Month:

>S X=$$SCH^XLFDT("1M(15@11PM,L@8PM)",X)

>W X
2931115.23

XLF Function Library: Developer Tools

554 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 3

To schedule something to run every 3 months on the last day of the month at 6:00 p.m., you would enter
the following:

• Middle of the Month:

>S X=$$SCH^XLFDT("3M(L@6PM)",2930927)

>W X
2930930.18

• End of the Month:

>S X=$$SCH^XLFDT("3M(L@6PM)",X)

>W X
2931231.18

29.3.16 $$SEC^XLFDT(): Convert $H/VA FileMan date to Seconds

Reference Type Supported

Category Date Functions

IA # 10103

Description This extrinsic function converts a $H or VA FileMan formatted input date to the
number of seconds. The input date can be entered as either a VA FileMan date or a
$H date. If entered as a VA FileMan date, the date is first converted to $H via the
$$FMTH^XLFDT(): Convert VA FileMan Date to $H API.

Format $$SEC^XLFDT(x)

Input Parameters x: (required) VA FileMan or $H date.

Output returns: Returns the $H date in seconds.

Example 1

Inputting a VA FileMan date/time:

>S X=$$SEC^XLFDT(3021118.1347)

>W X
5108536020

 XLF Function Library: Developer Tools

July 1995 Kernel 555
Revised September 2011 Developer's Guide
 Version 8.0

Example 2

Inputting a $H date:

>S X=$$SEC^XLFDT($H)

>W X
5146022146

29.3.17 $$TZ^XLFDT: Time Zone Offset (GMT)

Reference Type Supported

Category Date Functions

IA # 10103

Description This extrinsic function returns the Time Zone offset from Greenwich mean time
(GMT) based on a pointer from the TIME ZONE field (#1) in the MAILMAN
SITE PARAMETERS file (#4.3) to the MAILMAN TIME ZONE file (#4.4).

The accuracy of this value is dependent on IRM updating the TIME ZONE field
(#1) in the MAILMAN SITE PARAMETERS file (#4.3) to accurately point to the
site's correct time zone, including whether it is standard time (ST) or daylight
savings time (DST).

Format $$TZ^XLFDT

Input Parameters none

Output returns: Returns the Time Zone offset from GMT.

Example

For Pacific Daylight Savings Time (PDT), the offset from GMT is:

>S X = $$TZ^XLFDT

>W X
-0700

XLF Function Library: Developer Tools

556 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

29.3.18 $$WITHIN^XLFDT(): Checks Dates/Times within Schedule

Reference Type Supported

Category Date Functions

IA #

Description This extrinsic function returns whether or not a date/time is within a specified
schedule string.

Format $$WITHIN^XLFDT(schedule_string,base_date)

Input Parameters schedule_string: (required) Interval to add to base_date.

 REF: See the $$SCH^XLFDT(): Next Scheduled
Runtime API for alternate values.

 base_date: (required) VA FileMan date checked to determine if it is within
the input schedule string.

Output returns: Returns

 XLF Function Library: Developer Tools

July 1995 Kernel 557
Revised September 2011 Developer's Guide
 Version 8.0

29.4 Hyperbolic Trigonometric Functions—XLFHYPER

The following hyperbolic trigonometric functions provide an additional set of mathematical operations
beyond the math functions in XLFMTH.

NOTE: The optional second parameter in brackets [] denotes the precision for the function.
Precision means the detail of the result, in terms of number of digits.

29.4.1 $$ACOSH^XLFHYPER(): Hyperbolic Arc-cosine

Reference Type Supported

Category Hyperbolic Trigonometric Functions

IA # 10144

Description This extrinsic function returns the hyperbolic arc-cosine, with radians output.

Format $$ACOSH^XLFHYPER(x[,n])

Input Parameters x: (required) Number for which you want the hyperbolic arc-cosine.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the hyperbolic arc-cosine.

Example

>S X=$$ACOSH^XLFHYPER(3,12)

>W X
1.762747174

29.4.2 $$ACOTH^XLFHYPER(): Hyperbolic Arc-cotangent

Reference Type Supported

Category Hyperbolic Trigonometric Functions

IA # 10144

Description This extrinsic function returns the hyperbolic arc-cotangent, with radians output.

Format $$ACOTH^XLFHYPER(x[,n])

XLF Function Library: Developer Tools

558 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters x: (required) Number for which you want the hyperbolic arc-
cotangent.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the hyperbolic arc-cotangent.

Example

>S X=$$ACOTH^XLFHYPER(3,12)

>W X
.34657359025

29.4.3 $$ACSCH^XLFHYPER(): Hyperbolic Arc-cosecant

Reference Type Supported

Category Hyperbolic Trigonometric Functions

IA # 10144

Description This extrinsic function returns the hyperbolic arc-cosecant, with radians output.

Format $$ACSCH^XLFHYPER(x[,n])

Input Parameters x: (required) Number for which you want the hyperbolic arc-
cosecant.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the hyperbolic arc-cosecant.

Example

>S X=$$ACSCH^XLFHYPER(3,12)

>W X
.3274501502

 XLF Function Library: Developer Tools

July 1995 Kernel 559
Revised September 2011 Developer's Guide
 Version 8.0

29.4.4 $$ASECH^XLFHYPER(): Hyperbolic Arc-secant

Reference Type Supported

Category Hyperbolic Trigonometric Functions

IA # 10144

Description This extrinsic function returns the hyperbolic arc-secant, with radians output.

Format $$ASECH^XLFHYPER(x[,n])

Input Parameters x: (required) Number for which you want the hyperbolic arc-secant.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the hyperbolic arc-secant.

Example

>S X=$$ASECH^XLFHYPER(.3,12)

>W X
1.8738202425

29.4.5 $$ASINH^XLFHYPER(): Hyperbolic Arc-sine

Reference Type Supported

Category Hyperbolic Trigonometric Functions

IA # 10144

Description This extrinsic function returns the hyperbolic arc-sine, with radians output.

Format $$SINH^XLFHYPER(x[,n])

Input Parameters x: (required) Number for which you want the hyperbolic arc-sine.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns Returns the hyperbolic arc-sine.

XLF Function Library: Developer Tools

560 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example

>S X=$$SINH^XLFHYPER(3,12)

>W X
10.0178749273

29.4.6 $$ATANH^XLFHYPER(): Hyperbolic Arc-tangent

Reference Type Supported

Category Hyperbolic Trigonometric Functions

IA # 10144

Description This extrinsic function returns the hyperbolic arc-tangent, with radians output.

Format $$ATANH^XLFHYPER(x[,n])

Input Parameters x: (required) Number for which you want the hyperbolic arc-tangent.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the hyperbolic arc-tangent.

Example

>S X=$$ATANH^XLFHYPER(.3,12)

>W X
.3095196042

29.4.7 $$COSH^XLFHYPER(): Hyperbolic Cosine

Reference Type Supported

Category Hyperbolic Trigonometric Functions

IA # 10144

Description This extrinsic function returns the hyperbolic arc-cosine, with radians output.

Format $$COSH^XLFHYPER(x[,n])

 XLF Function Library: Developer Tools

July 1995 Kernel 561
Revised September 2011 Developer's Guide
 Version 8.0

Input Parameters x: (required) Number for which you want the hyperbolic cosine.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the hyperbolic cosine.

Example

>S X=$$COSH^XLFHYPER(3,12)

>W X
10.0676619957

29.4.8 $$COTH^XLFHYPER(): Hyperbolic Cotangent

Reference Type Supported

Category Hyperbolic Trigonometric Functions

IA # 10144

Description This extrinsic function returns the hyperbolic cotangent, with radians output.

Format $$COTH^XLFHYPER(x[,n])

Input Parameters x: (required) Number for which you want the hyperbolic cotangent.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the hyperbolic cotangent.

Example

>S X=$$COTH^XLFHYPER(3,12)

>W X
1.00496982332

XLF Function Library: Developer Tools

562 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

29.4.9 $$CSCH^XLFHYPER(): Hyperbolic Cosecant

Reference Type Supported

Category Hyperbolic Trigonometric Functions

IA # 10144

Description This extrinsic function returns the hyperbolic cosecant, with radians output.

Format $$CSCH^XLFHYPER(x[,n])

Input Parameters x: (required) Number for which you want the hyperbolic cosecant.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the hyperbolic cosecant.

Example

>S X=$$CSCH^XLFHYPER(3,12)

>W X
.09982156967

29.4.10 $$SECH^XLFHYPER(): Hyperbolic Secant

Reference Type Supported

Category Hyperbolic Trigonometric Functions

IA # 10144

Description This extrinsic function returns the hyperbolic secant, with radians output.

Format $$SECH^XLFHYPER(x[,n])

Input Parameters x: (required) Number for which you want the hyperbolic secant.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the hyperbolic secant.

 XLF Function Library: Developer Tools

July 1995 Kernel 563
Revised September 2011 Developer's Guide
 Version 8.0

Example

>S X=$$SECH^XLFHYPER(3,12)

>W X
.09932792742

29.4.11 $$SINH^XLFHYPER(): Hyperbolic Sine

Reference Type Supported

Category Hyperbolic Trigonometric Functions

IA # 10144

Description This extrinsic function returns the hyperbolic sine, with radians output.

Format $$SINH^XLFHYPER(x[,n])

Input Parameters x: (required) Number for which you want the hyperbolic sine.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the hyperbolic sine.

Example 1

>S X=$$SINH^XLFHYPER(.707)

>W X
.767388542

Example 2

>S X=$$SINH^XLFHYPER(.3,12)

>W X
.30452029345

XLF Function Library: Developer Tools

564 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

29.4.12 $$TANH^XLFHYPER(): Hyperbolic Tangent

Reference Type Supported

Category Hyperbolic Trigonometric Functions

IA # 10144

Description This extrinsic function returns the hyperbolic tangent of x (tan x = sin x/cos x),
with radians output.

Format $$TANH^XLFHYPER(x[,n])

Input Parameters x: (required) Number for which you want the hyperbolic tangent.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the hyperbolic tangent.

Example

>S X=$$TANH^XLFHYPER(3,12)

>W X
.99505475368

 XLF Function Library: Developer Tools

July 1995 Kernel 565
Revised September 2011 Developer's Guide
 Version 8.0

29.5 Mathematical Functions—XLFMTH

These calls are provided as an enhancement to what is offered in standard M. In addition, extended math
functions provide mathematical operations with adjustable and higher precision. Additional trigonometric
functions are available. Angles can be specified either in decimal format or in degrees:minutes:seconds.

NOTE: Each optional parameter in brackets [] denotes the maximum and default precision for
the function. Precision means the detail of the result, in terms of number of digits.

29.5.1 $$ABS^XLFMTH(): Absolute Value

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the absolute value of the number in x.

Format $$ABS^XLFMTH(x)

Input Parameters x: (required) Number for which you want the absolute value.

Output returns: Returns the absolute value of a number.

Example

>S X=$$ABS^XLFMTH(-42.45)

>W X
42.45

29.5.2 $$ACOS^XLFMTH(): Arc-cosine (Radians)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the arc-cosine, with radians output.

Format $$ACOS^XLFMTH(x[,n])

XLF Function Library: Developer Tools

566 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters x: (required) Number for which you want the arc-cosine in radians.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the arc-cosine of a number output in radians.

Example

>S X=$$ACOS^XLFMTH(.5)

>W X
1.047197551

29.5.3 $$ACOSDEG^XLFMTH(): Arc-cosine (Degrees)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the arc-cosine, with degrees output.

Format $$ACOSDEG^XLFMTH(x[,n])

Input Parameters x: (required) Number for which you want the arc-cosine in degrees.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the arc-cosine of a number output in degrees.

Example

>S X=$$ACOSDEG^XLFMTH(.5)

>W X
60

 XLF Function Library: Developer Tools

July 1995 Kernel 567
Revised September 2011 Developer's Guide
 Version 8.0

29.5.4 $$ACOT^XLFMTH(): Arc-cotangent (Radians)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the arc-cotangent, with radians output.

Format $$ACOT^XLFMTH(x[,n])

Input Parameters x: (required) Number for which you want the arc-cotangent in
radians.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the arc-cotangent of a number output in radians.

Example

>S X=$$ACOT^XLFMTH(.5)

>W X
1.107148718

29.5.5 $$ACOTDEG^XLFMTH(): Arc-cotangent (Degrees)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the arc-cotangent, with degrees output.

Format $$ACOTDEG^XLFMTH(x[,n])

Input Parameters x: (required) Number for which you want the arc-cotangent in
degrees.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the arc-cotangent of a number output in degrees.

XLF Function Library: Developer Tools

568 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example

>S X=$$ACOTDEG^XLFMTH(.5)

>W X
63.43494882

29.5.6 $$ACSC^XLFMTH(): Arc-cosecant (Radians)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the arc-cosecant, with radians output.

Format $$ACSC^XLFMTH(x[,n])

Input Parameters x: (required) Number for which you want the arc-cosecant in
radians.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the arc-cosecant of a number output in radians.

Example

>S X=$$ACSC^XLFMTH(1.5)

>W X
.729727656

29.5.7 $$ACSCDEG^XLFMTH(): Arc-cosecant (Degrees)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the arc-cosecant, with degrees output.

Format $$ACSCDEG^XLFMTH(x[,n])

 XLF Function Library: Developer Tools

July 1995 Kernel 569
Revised September 2011 Developer's Guide
 Version 8.0

Input Parameters x: (required) Number for which you want the arc-cosecant in
degrees.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the arc-cosecant of a number output in degrees.

Example

>S X=$$ACSCDEG^XLFMTH(1.5)

>W X
41.8103149

29.5.8 $$ASEC^XLFMTH(): Arc-secant (Radians)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the arc-secant, with radians output.

Format $$ASEC^XLFMTH(x[,n])

Input Parameters x: (required) Number for which you want the arc-secant in radians.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the arc-secant of a number output in radians.

Example

>S X=$$ASEC^XLFMTH(1.5)

>W X
.841068671

XLF Function Library: Developer Tools

570 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

29.5.9 $$ASECDEG^XLFMTH(): Arc-secant (Degrees)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the arc-secant, with degrees output.

Format $$ASECDEG^XLFMTH(x[,n])

Input Parameters x: (required) Number for which you want the arc-secant in degrees.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the arc-secant of a number output in degrees.

Example

>S X=$$ASECDEG^XLFMTH(1.5)

>W X
48.1896851

29.5.10 $$ASIN^XLFMTH(): Arc-sine (Radians)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the arc-sine, with radians output.

Format $$ASIN^XLFMTH(x[,n])

Input Parameters x: (required) Number for which you want the arc-sine in radians.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the arc-sine of a number output in radians.

 XLF Function Library: Developer Tools

July 1995 Kernel 571
Revised September 2011 Developer's Guide
 Version 8.0

Example

>S X=$$ASIN^XLFMTH(.5)

>W X
.523598776

29.5.11 $$ASINDEG^XLFMTH(): Arc-sine (Degrees)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the arc-sine, with degrees output.

Format $$ASINDEG^XLFMTH(x[,n])

Input Parameters x: (required) Number for which you want the arc-sine in degrees.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the arc-sine of a number output in degrees.

Example

>S X=$$ASINDEG^XLFMTH(.5)

>W X
30

29.5.12 $$ATAN^XLFMTH(): Arc-tangent (Radians)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the arc-tangent, with radians output.

Format $$ATAN^XLFMTH(x[,n])

XLF Function Library: Developer Tools

572 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters x: (required) Number for which you want the arc-tangent in radians.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the arc-tangent of a number output in radians.

Example

>S X=$$ATAN^XLFMTH(.5)

>W X
.463647609

29.5.13 $$ATANDEG^XLFMTH(): Arc-tangent (Degrees)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the arc-tangent, with degrees output.

Format $$ATANDEG^XLFMTH(x[,n])

Input Parameters x: (required) Number for which you want the arc-tangent in degrees.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the arc-tangent of a number output in degrees.

Example

>S X=$$ATANDEG^XLFMTH(.5)

>W X
26.56505118

 XLF Function Library: Developer Tools

July 1995 Kernel 573
Revised September 2011 Developer's Guide
 Version 8.0

29.5.14 $$COS^XLFMTH(): Cosine (Radians)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the cosine, with radians input.

Format $$COS^XLFMTH(x[,n])

Input Parameters x: (required) Radians input number for which you want the cosine.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the cosine of radians input number.

Example

>S X=$$COS^XLFMTH(1.5)

>W X
.070737202

29.5.15 $$COSDEG^XLFMTH(): Cosine (Degrees)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the cosine, with degrees input.

Format $$COSDEG^XLFMTH(x[,n])

Input Parameters x: (required) Degrees input number for which you want the cosine.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the cosine of degrees input number.

XLF Function Library: Developer Tools

574 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example

>S X=$$COSDEG^XLFMTH(45)

>W X
.707106781

29.5.16 $$COT^XLFMTH(): Cotangent (Radians)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the cotangent, with radians input.

Format $$COT^XLFMTH(x[,n])

Input Parameters x: (required) Radians input number for which you want the
cotangent.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the cotangent of radians input number.

Example

>S X=$$COT^XLFMTH(1.5)

>W X
.070914844

29.5.17 $$COTDEG^XLFMTH(): Cotangent (Degrees)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the cotangent, with degrees input.

Format $$COTDEG^XLFMTH(x[,n])

 XLF Function Library: Developer Tools

July 1995 Kernel 575
Revised September 2011 Developer's Guide
 Version 8.0

Input Parameters x: (required) Degrees input number for which you want the
cotangent.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the cotangent of degrees input number.

Example

>S X=$$COTDEG^XLFMTH(45)

>W X
1

29.5.18 $$CSC^XLFMTH(): Cosecant (Radians)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the cosecant, with radians input.

Format $$CSC^XLFMTH(x[,n])

Input Parameters x: (required) Radians input number for which you want the cosecant.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the cosecant of radians input number.

Example

>S X=$$CSC^XLFMTH(1.5)

>W X
1.002511304

XLF Function Library: Developer Tools

576 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

29.5.19 $$CSCDEG^XLFMTH(): Cosecant (Degrees)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the cosecant, with degrees input.

Format $$CSCDEG^XLFMTH(x[,n])

Input Parameters x: (required) Degrees input number for which you want the cosecant.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the cosecant of degrees input number.

Example

>S X=$$CSCDEG^XLFMTH(45)

>W X
1.414213562

29.5.20 $$DECDMS^XLFMTH(): Convert Decimals to
Degrees:Minutes:Seconds

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function converts a number from decimal to
degrees:minutes:seconds.

Format $$DECDMS^XLFMTH(x[,n])

Input Parameters x: (required) Decimal number to be converted to
degree:minutes:second.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the converted decimal input number to
degrees:minutes:seconds.

 XLF Function Library: Developer Tools

July 1995 Kernel 577
Revised September 2011 Developer's Guide
 Version 8.0

Example

>S X=$$DECDMS^XLFMTH(30.7)

>W X
30:42:0

29.5.21 $$DMSDEC^XLFMTH(): Convert Degrees:Minutes:Seconds
to Decimal

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function converts a number from degrees:minutes:seconds to a
decimal.

Format $$DMSDEC^XLFMTH(x[,n])

Input Parameters x: (required) Degrees:minutes:seconds input number to be converted
to decimal.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the converted degrees:minutes:seconds input number to
decimal.

Example

>S X=$$DMSDEC^XLFMTH("30:42:0")

>W X
30.7

XLF Function Library: Developer Tools

578 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

29.5.22 $$DTR^XLFMTH(): Convert Degrees to Radians

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function converts degrees to radians.

Format $$DTR^XLFMTH(x[,n])

Input Parameters x: (required) Degrees input number to be converted to radians.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the converted degrees input number to radians.

Example

>S X=$$DTR^XLFMTH(45)

>W X
.7853981634

29.5.23 $$E^XLFMTH(): e—Natural Logarithm

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns e (natural logarithm).

Format $$E^XLFMTH([n])

Input Parameters n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns e, natural logarithm.

 XLF Function Library: Developer Tools

July 1995 Kernel 579
Revised September 2011 Developer's Guide
 Version 8.0

Example

>S X=$$E^XLFMTH(12)

>W X
2.71828182846

29.5.24 $$EXP^XLFMTH(): e—Natural Logarithm to the Nth Power

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns e (natural logarithm) to the x power (exponent).

Format $$EXP^XLFMTH(x[,n])

Input Parameters x: (required) The power to which you want e raised.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the value of e to the specified power.

Example

>S X=$$EXP^XLFMTH(1.532)

>W X
4.6274224185

29.5.25 $$LN^XLFMTH(): Natural Log (Base e)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the natural log of x (Base e).

Format $$LN^XLFMTH(x[,n])

XLF Function Library: Developer Tools

580 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters x: (required) Number for which you want the natural log.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the natural log of a number.

Example

>S X=$$LN^XLFMTH(4.627426)

>W X
1.532000774

29.5.26 $$LOG^XLFMTH(): Logarithm (Base 10)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the logarithm (Base 10) of x.

Format $$LOG^XLFMTH(x[,n])

Input Parameters x: (required) Number for which you want the logarithm.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the logarithm (Base 10) of input number.

Example

>S X=$$LOG^XLFMTH(3.1415)

>W X
.4971370641

 XLF Function Library: Developer Tools

July 1995 Kernel 581
Revised September 2011 Developer's Guide
 Version 8.0

29.5.27 $$MAX^XLFMTH(): Maximum of Two Numbers

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the maximum value by comparing the number in x
with the number in y.

Format $$MAX^XLFMTH(x,y)

Input Parameters x: (required) First number to compare with second number in y to
determine which is higher in value.

 y (required) Second number to compare with first number in x to
determine which is higher in value.

Output returns: Returns the highest number.

Example

>S X=$$MAX^XLFMTH(53,24)

>W X
53

29.5.28 $$MIN^XLFMTH(): Minimum of Two Numbers

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the minimum value by comparing the number in x
with the number in y.

Format $$MIN^XLFMTH(x,y)

Input Parameters x: (required) First number to compare with second number in y to
determine which is lower in value.

 y (required) Second number to compare with first number in x to
determine which is lower in value.

Output returns: Returns the lowest number.

XLF Function Library: Developer Tools

582 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example

>S X=$$MIN^XLFMTH(53,24)

>W X
24

29.5.29 $$PI^XLFMTH(): PI

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns pi.

Format $$PI^XLFMTH([n])

Input Parameters n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns pi.

Example

>S X=$$PI^XLFMTH(12)

>W X
3.14159265359

29.5.30 $$PWR^XLFMTH(): X to the Y Power

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns x to the y power. This function makes use of LN
and EXP.

Format $$PWR^XLFMTH(x,y[,n])

 XLF Function Library: Developer Tools

July 1995 Kernel 583
Revised September 2011 Developer's Guide
 Version 8.0

Input Parameters x: (required) Number for which you want the exponent value.

 y: (required) The exponent to which the input number (x) should be
raised.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the exponent value.

Example

>S X=$$PWR^XLFMTH(3.2,1.5)

>W X
5.7243340224

29.5.31 $$RTD^XLFMTH(): Convert Radians to Degrees

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function converts radians to degrees.

Format $$RTD^XLFMTH(x[,n])

Input Parameters x: (required) Radians input number to be converted to degrees.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the converted radians input number to degrees.

Example

>S X=$$RTD^XLFMTH(1.5,12)

>W X
85.9436692696

XLF Function Library: Developer Tools

584 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

29.5.32 $$SD^XLFMTH(): Standard Deviation

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the standard deviation. Standard deviation is
defined as:

"A measure of variability equal to the square root of the arithmetic average of
the squares of the deviations from the mean in a frequency distribution."1

Format $$SD^XLFMTH(%s1,%s2,%n)

Input Parameters %s1: (required) Sum.

 %s2 (required) Sum of squares.

 %n (required) Count.

Output returns: Returns the standard deviation.

Example

>S X=$$SD^XLFMTH(5,25,2)

>W X
3.53553390593

29.5.33 $$SEC^XLFMTH(): Secant (Radians)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the secant of a number, with radians input.

Format $$SEC^XLFMTH(x[,n])

1 Definition as taken from: Webster's New World College Dictionary, Fourth Edition; Michael Agnes, Editor in
Chief; David B. Guralink, Editor in Chief Emeritus; Copyright 2001, 2000, 1999 by IDG Books Worldwide, Inc.;
ISBN 0-02-863118-8.

 XLF Function Library: Developer Tools

July 1995 Kernel 585
Revised September 2011 Developer's Guide
 Version 8.0

Input Parameters x: (required) Number in radians for which you want the secant.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the secant of radians input number.

Example

>S X=$$SEC^XLFMTH(1.5)

>W X
14.1368329

29.5.34 $$SECDEG^XLFMTH(): Secant (Degrees)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the secant of a number, with degrees input.

Format $$SECDEG^XLFMTH(x[,n])

Input Parameters x: (required) Number in degrees for which you want the secant.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the secant of degrees input number.

Example

>S X=$$SECDEG^XLFMTH(45)

>W X
1.414213562

XLF Function Library: Developer Tools

586 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

29.5.35 $$SIN^XLFMTH(): Sine (Radians)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the sine of a number, with radians input.

Format $$SIN^XLFMTH(x[,n])

Input Parameters x: (required) Number in radians for which you want the sine.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the sine of radians input number.

Example

>S X=$$SIN^XLFMTH(.7853982)

>W X
.707106807

29.5.36 $$SINDEG^XLFMTH(): Sine (Degrees)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the sine of a number, with degrees input.

Format $$SINDEG^XLFMTH(x[,n])

Input Parameters x: (required) Number in degrees for which you want the sine.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the sine of degrees input number.

 XLF Function Library: Developer Tools

July 1995 Kernel 587
Revised September 2011 Developer's Guide
 Version 8.0

Example

>S X=$$SINDEG^XLFMTH(45)

>W X
.707106781

29.5.37 $$SQRT^XLFMTH(): Square Root

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the square root of a number.

Format $$SQRT^XLFMTH(x[,n])

Input Parameters x: (required) Number for which you want the square root.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the square root of input number.

Example

>S X=$$SQRT^XLFMTH(153)

>W X
12.3693168769

29.5.38 $$TAN^XLFMTH(): Tangent (Radians)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the tangent of a number (tan x = sin x/cos x), with
radians input.

Format $$TAN^XLFMTH(x[,n])

XLF Function Library: Developer Tools

588 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters x: (required) Number in radians for which you want the tangent.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the tangent of radians input number.

Example

>S X=$$TAN^XLFMTH(.7853982)

>W X
1.000000073

29.5.39 $$TANDEG^XLFMTH(): Tangent (Degrees)

Reference Type Supported

Category Math Functions

IA # 10105

Description This extrinsic function returns the tangent of a number, with degrees input.

Format $$TANDEG^XLFMTH(x[,n])

Input Parameters x: (required) Number in degrees for which you want the tangent.

 n: (optional) The precision for the function. Precision means the
detail of the result, in terms of number of digits.

Output returns: Returns the tangent of degrees input number.

Example

>S X=$$TANDEG^XLFMTH(45)

>W X
1

 XLF Function Library: Developer Tools

July 1995 Kernel 589
Revised September 2011 Developer's Guide
 Version 8.0

29.6 Measurement Functions—XLFMSMT

This routine contains APIs to allow conversion between U.S. (English) and Metric units.

29.6.1 $$BSA^XLFMSMT(): Body Surface Area Measurement

Reference Type Supported

Category Measurement Functions

IA # 3175 & 10143

Description This extrinsic function returns the body surface area.

Format $$BSA^XLFMSMT(ht,wt)

Input Parameters ht: (required) Height in centimeters.

 wt: (required) Weight in kilograms.

Output returns: Returns the body surface area measurement.

Example 1

>S X=$$BSA^XLFMSMT(175,86)

>W X
2.02

Example 2

>S X=$$BSA^XLFMSMT($$LENGTH^XLFMSMT(69,"IN","CM"),$$WEIGHT^XLFMSMT(180,"LB","KG"))

>W X
1.98

XLF Function Library: Developer Tools

590 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

29.6.2 $$LENGTH^XLFMSMT(): Convert Length Measurement

Reference Type Supported

Category Measurement Functions

IA # 3175 & 10143

Description This extrinsic function converts U.S. length to Metric length and vice versa. It
returns the equivalent value with units.

Format $$LENGTH^XLFMSMT(value,from,to)

Input Parameters value: (required) A positive numeric value.

 from: (required) Unit of measure of the value input parameter (see Table
29-1).

 to: (required) Unit of measure to which the value input parameter is
converted (see Table 29-1).

Valid units in either uppercase or lowercase are:

Table 29. $$LENGTH^XLFMSMT: Valid units

Metric US

km—kilometers mi—miles

m—meters yd—yards

cm—centimeters ft—feet

mm—millimeters in—inches

Output returns: Returns the length measurement.

Example 1

Converting U.S. length to Metric length:

>S X=$$LENGTH^XLFMSMT(12,"IN","CM")

>W X
30.48 CM

 XLF Function Library: Developer Tools

July 1995 Kernel 591
Revised September 2011 Developer's Guide
 Version 8.0

Example 2

Converting Metric length to U.S. length:

>S X=$$LENGTH^XLFMSMT(30.48,"cm","in")

>W X
12 IN

29.6.3 $$TEMP^XLFMSMT(): Convert Temperature Measurement

Reference Type Supported

Category Measurement Functions

IA # 3175 & 10143

Description This extrinsic function converts U.S. temperature to Metric temperature and vice
versa. It returns the equivalent value with units.

Format $$TEMP^XLFMSMT(value,from,to)

Input Parameters value: (required) A positive numeric value.

 from: (required) Unit of measure of the value input parameter (see Table
29-2).

 to: (required) Unit of measure to which the value input parameter is
converted (see Table 29-2).

Valid units in either uppercase or lowercase are:

Table 30. $$TEMP^XLFMSMT: Valid units

Metric US

C—Celsius F—Fahrenheit

Output returns: Returns the temperature measurement.

Example 1

Converting Fahrenheit to Celsius:

>S X=$$TEMP^XLFMSMT(72,"F","C")

>W X
22.222 C

XLF Function Library: Developer Tools

592 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 2

Converting Celsius to Fahrenheit:

>S X=$$TEMP^XLFMSMT(0,"c","f")

>W X
32 F

29.6.4 $$VOLUME^XLFMSMT(): Convert Volume Measurement

Reference Type Supported

Category Measurement Functions

IA # 3175 & 10143

Description This extrinsic function converts U.S. volume to Metric volume and vice versa.
Converts milliliters to cubic inches or quarts or ounces. It returns the equivalent
value with units.

Format $$VOLUME^XLFMSMT(value,from,to)

Input Parameters value: (required) A positive numeric value.

 from: (required) Unit of measure of the value input parameter (see Table
29-3).

 to: (required) Unit of measure to which the value input parameter is
converted (see Table 29-3).

Valid units in either uppercase or lowercase are:

Table 31. $$VOLUME^XLFMSMT: Valid units

Metric US

kl— kiloliter cf—cubic feet

hl—hectoliter ci—cubic inch

dal—dekaliter gal—gallon

l—liters qt—quart

dl—deciliter pt—pint

cl—centiliter c—cup

ml—milliliter oz— ounce

Output returns: Returns the volume measurement.

 XLF Function Library: Developer Tools

July 1995 Kernel 593
Revised September 2011 Developer's Guide
 Version 8.0

Example 1

Converting U.S. volume to Metric volume:

>S X=$$VOLUME^XLFMSMT(12,"CF","ML")

>W X
339800.832 ML

Example 2

Converting Metric volume to U.S. volume:

>S X=$$VOLUME^XLFMSMT(339800.832,"ml","cf")

>W X
11.998 CF

29.6.5 $$WEIGHT^XLFMSMT(): Convert Weight Measurement

Reference Type Supported

Category Measurement Functions

IA # 3175 & 10143

Description This extrinsic function converts U.S. weights to approximate Metric weights and
vice versa. It returns the equivalent value with units.

Format $$WEIGHT^XLFMSMT(value,from,to)

XLF Function Library: Developer Tools

594 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters value: (required) A positive numeric value.

 from: (required) Unit of measure of the value input parameter (see Table
29-4).

 to: (required) Unit of measure to which the value input parameter is
converted (see Table 29-4).

Valid units in either uppercase or lowercase are:

Table 32. $$WEIGHT^XLFMSMT: Valid units

Metric US

t—metric tons tn— tons

kg—kilograms lb—pounds

g—grams oz—ounces

mg—milligram gr—grain

Output returns: Returns the weight measurement.

Example 1

Converting U.S. weight to Metric weight:

>S X=$$WEIGHT^XLFMSMT(12,"LB","G")

>W X
5448 G

Example 2

Converting Metric weight to U.S. weight:

>S X=$$WEIGHT^XLFMSMT(5448,"g","lb")

>W X
12.011 LB

 XLF Function Library: Developer Tools

July 1995 Kernel 595
Revised September 2011 Developer's Guide
 Version 8.0

29.7 String Functions—XLFSTR

These functions are provided to help process strings.

29.7.1 $$CJ^XLFSTR(): Center Justify String

Reference Type Supported

Category String Functions

IA # 10104

Description This extrinsic function returns a center justified character string.

Format $$CJ^XLFSTR(s,i[,p])

Input Parameters s: (required) Character string.

 i: (required) Field size. If this second parameter contains a trailing
"T", this extrinsic function returns the output truncated to the field
size specified.

 p: (optional) Pad character.

Output returns: Returns the Center justified string.

Example 1

>W "[",$$CJ^XLFSTR("SUE",10),"]"
[SUE]

Example 2

>W "[",$$CJ^XLFSTR("SUE",10,"-"),"]"
[---SUE----]

Example 3

>W $$CJ^XLFSTR("123456789",5)
123456789

Example 4

>W $$CJ^XLFSTR(123456789,"5T")
12345

XLF Function Library: Developer Tools

596 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

29.7.2 $$INVERT^XLFSTR(): Invert String

Reference Type Supported

Category String Functions

IA # 10104

Description This extrinsic function returns an inverted string. It inverts the order of the
characters in a string.

Format $$INVERT^XLFSTR(x)

Input Parameters x: (required) Character string.

Output returns: Returns the inverted string.

Example

>S X=$$INVERT^XLFSTR("ABC")

>W X
CBA

29.7.3 $$LJ^XLFSTR(): Left Justify String

Reference Type Supported

Category String Functions

IA # 10104

Description This extrinsic function returns a left justified character string.

Format $$LJ^XLFSTR(s,i[,p])

Input Parameters s: (required) Character string.

 i: (required) Field size. If this second parameter contains a trailing
"T", this extrinsic function returns the output truncated to the field
size specified.

 p: (optional) Pad character.

Output returns: Returns the left justified string.

 XLF Function Library: Developer Tools

July 1995 Kernel 597
Revised September 2011 Developer's Guide
 Version 8.0

Example 1

>W "[",$$LJ^XLFSTR("TOM",10),"]"
[TOM]

Example 2

>W "[",$$LJ^XLFSTR("TOM",10,"-"),"]"
[TOM-------]

Example 3

>W $$LJ^XLFSTR("123456789",5)
123456789

Example 4

>W $$LJ^XLFSTR(123456789,"5T")
12345

29.7.4 $$LOW^XLFSTR(): Convert String to Lowercase

Reference Type Supported

Category String Functions

IA # 10104

Description This extrinsic function returns an input string converted to all Lowercase.

Format $$LOW^XLFSTR(x)

Input Parameters x: (required) Character string.

Output returns: Returns the input string converted to all lowercase.

Example

>S X=$$LOW^XLFSTR("JUSTICE")

>W X
justice

XLF Function Library: Developer Tools

598 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

29.7.5 $$REPEAT^XLFSTR(): Repeat String

Reference Type Supported

Category String Functions

IA # 10104

Description This extrinsic function returns a string that repeats the value of x for y number of
times.

Format $$REPEAT^XLFSTR(x[,y])

Input Parameters x: (required) Character string to be repeated.

 y: (optional) Number of times to repeat the string in x.

Output returns: Returns the repeated string.

Example 1

>S X=$$REPEAT^XLFSTR("-",10)

>W X

Example 2

>S X=$$REPEAT^XLFSTR("blue water ",5)

>W X
blue water blue water blue water blue water blue water

29.7.6 $$REPLACE^XLFSTR(): Replace Strings

Reference Type Supported

Category String Functions

IA # 10104

Description This extrinsic function uses a multi-character $Translate to return a string with the
specified string replaced.

Format $$REPLACE^XLFSTR(in,.spec)

 XLF Function Library: Developer Tools

July 1995 Kernel 599
Revised September 2011 Developer's Guide
 Version 8.0

Input Parameters in: (required) Input string.

 .spec: (required) An array passed by reference.

Output returns: Returns the replaced string.

Example 1

>SET spec("aa")="a",spec("pqr")="alabama"
>S X=$$REPLACE^XLFSTR("aaaaaaapqraaaaaaa",.spec)

>W X
aaaaalabamaaaaa

Example 2

>SET spec("F")="VA File",spec("M")="Man"
>S X=$$REPLACE^XLFSTR("FM",.spec)

>W X
VA FileMan

29.7.7 $$RJ^XLFSTR(): Right Justify String

Reference Type Supported

Category String Functions

IA # 10104

Description This extrinsic function returns a right justified character string.

Format $$RJ^XLFSTR(s,i[,p])

Input Parameters s: (required) Character string.

 i: (required) Field size. If this second parameter contains a trailing
"T", this extrinsic function returns the output truncated to the field
size specified.

 p: (optional) Pad character.

Output returns: Returns the right justified string.

XLF Function Library: Developer Tools

600 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 1

>W "[",$$RJ^XLFSTR("TOM",10),"]"
[TOM]

Example 2

>W "[",$$RJ^XLFSTR("TOM",10,"-"),"]"
[-------TOM]

Example 3

>W $$RJ^XLFSTR("123456789",5)
123456789

Example 4

>W $$RJ^XLFSTR(123456789,"5T")
12345

29.7.8 $$SENTENCE^XLFSTR(): Convert String to Sentence Case

Reference Type Supported

Category String Functions

IA # 10104

Description Released with Kernel Patch XU*8.0*400, this extrinsic function returns an input
string converted to Sentence case. The initial character of each sentence in the
input string will be capitalized and the remaining characters in that sentence are
returned as all lowercase. The first character of the string begins a sentence.
Subsequent sentences are identified as beginning after a period (.), exclamation
point (!), or question mark (?).

Format $$SENTENCE^XLFSTR(x)

Input Parameters x: (required) Character string.

Output returns: Returns the string converted to Sentence case format.

 XLF Function Library: Developer Tools

July 1995 Kernel 601
Revised September 2011 Developer's Guide
 Version 8.0

Example

>S X=$$SENTENCE^XLFSTR("HELLO WORLD!!! THIS IS A CAPITALIZED SENTENCE. this
isn't.")

>W X
Hello world!!! This is a capitalized sentence. This isn't.

29.7.9 $$STRIP^XLFSTR(): Strip a String

Reference Type Supported

Category String Functions

IA # 10104

Description This extrinsic function returns a string stripped of all instances of a specified
character.

Format $$STRIP^XLFSTR(x,y)

Input Parameters x: (required) Character string.

 y: (required) The character to strip out of the string.

Output returns: Returns the string stripped of specified character.

Example 1

>S X=$$STRIP^XLFSTR("hello","e")

>W X
hllo

Example 2

>S X=$$STRIP^XLFSTR("Mississippi","i")

>W X
Msssspp

XLF Function Library: Developer Tools

602 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

29.7.10 $$TITLE^XLFSTR(): Convert String to Title Case

Reference Type Supported

Category String Functions

IA # 10104

Description Released with Kernel Patch XU*8.0*400, this extrinsic function returns an input
string converted to Title case. The initial letter of the first block of characters
(i.e., word) in the input string is capitalized and the remaining characters of that
first word are returned as all lowercase. Also, the initial letter of any subsequent
word in the input string is capitalized and the remaining characters in that word are
returned as all lowercase. A word is identified when it is preceded by at least one
space, except for the first word in the string.

Format $$TITLE^XLFSTR(x)

Input Parameters x: (required) Character string.

Output returns: Returns the string converted to Title case format.

Example

>S X=$$TITLE^XLFSTR("HELLO WORLD!!! THIS IS A title-form SENTENCE. so is this.")

>W X
Hello World!!! This Is A Title-form Sentence. So Is This.

29.7.11 $$TRIM^XLFSTR(): Trim String

Reference Type Supported

Category String Functions

IA # 10104

Description This extrinsic function trims spaces or other specified characters from the left,
right, or both ends of an input string.

Format $$TRIM^XLFSTR(s[,f][,c])

 XLF Function Library: Developer Tools

July 1995 Kernel 603
Revised September 2011 Developer's Guide
 Version 8.0

Input Parameters s: (required) Character string.

 f: (optional) This flag can have the following value:
• "LR" (default)—Trim characters from both ends of the

string.

• "L"—Trim characters from the left/beginning of the
string.

• "R"—Trim characters from the right/end of the string.

 c: (optional) Set this parameter to the character to trim from the
input string. This parameter defaults to a space.

Output returns: Returns the trimmed string.

Example 1

In this example, we are trimming the spaces from both the left and right end of the string (the brackets are
added to more clearly display the trimmed string):

>S X="["_$$TRIM^XLFSTR(" A B C ")_"]"

>W X
[A B C]

The second input parameter defaults to "LR" and the third input parameter defaults to spaces.

Example 2

In this example, we are trimming the slashes from both the left and right end of the string (the brackets
are added to more clearly display the trimmed string):

>S X="["_$$TRIM^XLFSTR("//A B C//",,"/")_"]"

>W X
[A B C]

The second input parameter defaults to "LR."

Example 3

In this example, we are trimming the slashes from the left end of the string (the brackets are added to
more clearly display the trimmed string):

>S X="["_$$TRIM^XLFSTR("//A B C//","L","/")_"]"

>W X
[A B C//]

XLF Function Library: Developer Tools

604 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example 4

In this example, we are trimming the slashes from the right end of the string (the brackets are added to
more clearly display the trimmed string):

>S X="["_$$TRIM^XLFSTR("//A B C//","r","/")_"]"

>W X
[//A B C]

29.7.12 $$UP^XLFSTR(): Convert String to Uppercase

Reference Type Supported

Category String Functions

IA # 10104

Description This extrinsic function returns an input string converted to all Uppercase.

Format $$UP^XLFSTR(x)

Input Parameters x: (required) Character string.

Output returns: Returns the string converted to all uppercase.

Example

>S X=$$UP^XLFSTR("freedom")

>W X
FREEDOM

 XLF Function Library: Developer Tools

July 1995 Kernel 605
Revised September 2011 Developer's Guide
 Version 8.0

29.8 Utility Functions—XLFUTL

These functions are provided to help with a variety of tasks.

29.8.1 $$BASE^XLFUTL(): Convert Between Two Bases

Reference Type Supported

Category Utility Functions

IA # 2622

Description This extrinsic function converts a number from one base to another. The base must
be between 2 and 16, both from and to.

Format $$BASE^XLFUTL(n,from,to)

Input Parameters n: (required) Number to convert.

 from: (required) Base of number being converted.

 to: (required) Base to which the number is to be converted.

Output returns: Returns the converted number from one base to another.

Example 1

>S X=$$BASE^XLFUTL(1111,2,16)

>W X
F

Example 2

>S X=$$BASE^XLFUTL(15,10,16)

>W X
F

Example 3

>S X=$$BASE^XLFUTL("FF",16,10)

>W X
255

XLF Function Library: Developer Tools

606 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

29.8.2 $$CCD^XLFUTL(): Append Check Digit

Reference Type Supported

Category Utility Functions

IA # 2622

Description This extrinsic function returns a number appended with a computed check digit.
To check if the original number corresponds with the appended check digit, use
the $$VCD^XLFUTL(): Verify Integrity API.

Format $$CCD^XLFUTL(x)

Input Parameters x: (required) Integer for which the check digit is computed.

 REF: See "The Taylor Report" in Computerworld
magazine, 1975, for the algorithm.

Output returns: Returns the number with appended check digit.

Example 1

>S X=$$CCD^XLFUTL(99889)

>W X
998898

Example 2

>S X=$$CCD^XLFUTL(7654321)

>W X
76543214

29.8.3 $$CNV^XLFUTL(): Convert Base 10 to Another Base

Reference Type Supported

Category Utility Functions

IA # 2622

Description This extrinsic function converts a number from Base 10 to another base, which
must be between 2 and 16.

Format $$CNV^XLFUTL(n,base)

 XLF Function Library: Developer Tools

July 1995 Kernel 607
Revised September 2011 Developer's Guide
 Version 8.0

Input Parameters n: (required) Base 10 number to convert.

 base: (required) The base to which the number is to be converted.

Output returns: Returns the converted number to specified base.

Example 1

>S X=$$CNV^XLFUTL(15,2)

>W X
1111

Example 2

>S X=$$CNV^XLFUTL(255,2)

>W X
11111111

Example 3

>S X=$$CNV^XLFUTL(255,8)

>W X
377

29.8.4 $$DEC^XLFUTL(): Convert Another Base to Base 10

Reference Type Supported

Category Utility Functions

IA # 2622

Description This extrinsic function converts a number from a specified base, which must be
between 2 and 16, to Base 10.

Format $$DEC^XLFUTL(n,base)

Input Parameters n: (required) Number to convert.

 base: (required) Base of number being converted.

Output returns: Returns the converted number in Base 10.

XLF Function Library: Developer Tools

608 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Example

>S X=$$DEC^XLFUTL("FF",16)

>W X
255

29.8.5 $$VCD^XLFUTL(): Verify Integrity

Reference Type Supported

Category Utility Functions

IA # 2622

Description This extrinsic function verifies the integrity of a number with an appended check
digit. The check digit must be appended by the $$CCD^XLFUTL(): Append
Check Digit API.

Format $$VCD^XLFUTL(number)

Input Parameters number: (required) Number to verify, including appended check digit.

Output returns: Returns:
• 1—Number corresponds to check digit.

• 0—Number does not correspond to check digit.

Example 1

>S X=$$VCD^XLFUTL(76543214)

>W X
1

Example 2

Transposing "32" to "23":

>S X=$$VCD^XLFUTL(76542314)

>W X
0

July 1995 Kernel 609
Revised September 2011 Developer's Guide
 Version 8.0

30 XML: Developer Tools

30.1 Application Program Interface (API)

Several APIs are available for developers to work with the EXtensible Markup Language (XML). These
APIs are described below.

30.1.1 $$ATTRIB^MXMLDOM(): XML—Get Attribute Name

Reference Type Supported

Category XML

IA # 3561

Description This extrinsic function retrieves the first or next attribute associated with the
specified node.

Format $$ATTRIB^MXMLDOM(handle,node[,attrib])

Input Parameters handle: (required) The value (integer) returned by the

$$EN^MXMLDOM(): XML—Initial Processing, Build In-
memory Image API, which created the in-memory document
image.

 node: (required) The node (integer) whose attribute name is being
retrieved.

 attrib: (optional) The name (string) of the last attribute retrieved by this
call. If null or missing, the first attribute associated with the
specified node is returned. Otherwise, the next attribute in the list
is returned.

Output returns: Returns the name (string) of the first or next attribute associated
with the specified node, or null if there are none remaining.

XML: Developer Tools

610 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

30.1.2 $$CHILD^MXMLDOM(): XML—Get Child Node

Reference Type Supported

Category XML

IA # 3561

Description This extrinsic function retrieves the node of the first or next child of a given parent
node, or zero (0) if there are none remaining.

Format $$CHILD^MXMLDOM(handle,parent[,child])

Input Parameters handle: (required) The value (integer) returned by the

$$EN^MXMLDOM(): XML—Initial Processing, Build In-
memory Image API, which created the in-memory document
image.

 parent: (required) The node (integer) whose children are being retrieved.

 child: (optional) If specified, this is the last child node (integer)
retrieved. The function will return the next child in the list. If the
parameter is zero or missing, the first child is returned.

Output returns: Returns:
• Child Node—The next child node (integer).

• Zero (0)—If there are none remaining.

30.1.3 $$CMNT^MXMLDOM(): XML—Extract Comment Text
(True/False)

Reference Type Supported

Category XML

IA # 3561

Description This extrinsic function extracts comment text associated with the specified node.

Format $$CMNT^MXMLDOM(handle,node,text)

 XML: Developer Tools

July 1995 Kernel 611
Revised September 2011 Developer's Guide
 Version 8.0

Input Parameters handle: (required) The value (integer) returned by the

$$EN^MXMLDOM(): XML—Initial Processing, Build In-
memory Image API, which created the in-memory document
image.

 node: (required) The node (integer) in the document tree that is being
referenced by this API.

 text: (required) This input parameter (string) must contain a closed
local or global array reference that is to receive the text. The
specified array is deleted before being populated.

Output returns: Returns a Boolean value:
• True (non-zero)—Text was retrieved.

• False (zero)—Text was not retrieved.

30.1.4 CMNT^MXMLDOM(): XML—Extract Comment Text
(True/False)

Reference Type Supported

Category XML

IA # 3561

Description This API extracts comment text associated with the specified node.

Format $$CMNT^MXMLDOM(handle,node,text)

Input Parameters handle: (required) The value (integer) returned by the

$$EN^MXMLDOM(): XML—Initial Processing, Build In-
memory Image API, which created the in-memory document
image.

 node: (required) The node (integer) in the document tree that is being
referenced by this API.

 text: (required) This input parameter (string) must contain a closed
local or global array reference that is to receive the text. The
specified array is deleted before being populated.

Output returns: Returns a Boolean value:
• True (non-zero)—Text was retrieved.

• False (zero)—Text was not retrieved.

XML: Developer Tools

612 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

30.1.5 DELETE^MXMLDOM(): XML—Delete Document Instance

Reference Type Supported

Category XML

IA # 3561

Description This API deletes the specified document instance. A client application should
always call this API when finished with a document instance.

Format DELETE^MXMLDOM(handle)

Input Parameters handle (required) The value (integer) returned by the

$$EN^MXMLDOM(): XML—Initial Processing, Build In-
memory Image API, which created the in-memory document
image.

Output none

30.1.6 $$EN^MXMLDOM(): XML—Initial Processing, Build In-
memory Image

Reference Type Supported

Category XML

IA # 3561

Description This extrinsic function performs initial processing of the XML document. The
client application must first call this entry point to build the in-memory image of
the document before the remaining methods can be applied. The return value is a
handle to the document instance that was created and is used by the remaining API
calls to identify a specific document instance. The parameters for this entry point
are listed by type, requirement (yes or no), and description.

Format $$EN^MXMLDOM(doc[,opt])

 XML: Developer Tools

July 1995 Kernel 613
Revised September 2011 Developer's Guide
 Version 8.0

Input Parameters doc: (required) This string is either a closed reference to a global root
containing the document or a filename and path reference
identifying the document on the host system. If a global root is
passed, the document either must be stored in standard VA
FileMan word-processing format or may occur in sequentially
numbered nodes below the root node. Thus, if the global reference
is "^XYZ", the global must be of one of the following formats:

• ^XYZ(1,0) = "LINE 1"

^XYZ(2,0) = "LINE 2" ...

Or

• ^XYZ(1) = "LINE 1"

^XYZ(2) = "LINE 2" ...

 opt: (optional) This string is a list of option flags that control parser
behavior. Recognized option flags are:

• W—Do not report warnings to the client.

• V—Do not validate the document. If specified, the parser
only checks for conformance.

• 1—Terminate parsing on encountering a validation error.
(By default, the parser terminates only when a
conformance error is encountered.)

• 0—Terminate parsing on encountering a warning.

Output returns: Returns:
• Non-zero Handle of Document Instance—Parsing

completed successfully.

• ZeroHandle of Document Instance.

This handle is passed to all other API methods to indicate which
document instance is being referenced. This allows for multiple
document instances to be processed concurrently.

XML: Developer Tools

614 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

30.1.7 $$NAME^MXMLDOM(): XML—Get Element Name

Reference Type Supported

Category XML

IA # 3561

Description This extrinsic function retrieves the name of the element at the specified node
within the document parse tree.

Format $$NAME^MXMLDOM(handle,node)

Input Parameters handle: (required) The value (integer) returned by the

$$EN^MXMLDOM(): XML—Initial Processing, Build In-
memory Image API, which created the in-memory document
image.

 node: (required) The node (integer) for which the associated element
name is being retrieved.

Output returns: Returns the name (string) of the element associated with the
specified node.

30.1.8 $$PARENT^MXMLDOM(): XML—Get Parent Node

Reference Type Supported

Category XML

IA # 3561

Description This extrinsic function retrieves the parent node of the specified node, or zero (0)
if there is none.

Format $$PARENT^MXMLDOM(handle,node)

Input Parameters handle: (required) The value (integer) returned by the

$$EN^MXMLDOM(): XML—Initial Processing, Build In-
memory Image API, which created the in-memory document
image.

 node: (required) The node (integer) in the document tree whose parent is
being retrieved.

 XML: Developer Tools

July 1995 Kernel 615
Revised September 2011 Developer's Guide
 Version 8.0

Output returns: Returns:
• Parent Node—The parent node (string) of the specified

node.

• Zero (0)—If there is no parent.

30.1.9 $$SIBLING^MXMLDOM(): XML—Get Sibling Node

Reference Type Supported

Category XML

IA # 3561

Description This extrinsic function retrieves the node of the specified node's immediate
sibling, or zero (0) if there is none.

Format $$SIBLING^MXMLDOM(handle,node)

Input Parameters handle: (required) The value (integer) returned by the

$$EN^MXMLDOM(): XML—Initial Processing, Build In-
memory Image API, which created the in-memory document
image.

 node: (required) The node (integer) in the document tree whose sibling
is being retrieved.

Output returns: Returns:
• Node—The node (integer) corresponding to the

immediate sibling of the specified node.

• Zero (0)—If there is no node (integer) corresponding to
the immediate sibling of the specified node.

30.1.10 $$TEXT^MXMLDOM(): XML—Get Text (True/False)

Reference Type Supported

Category XML

IA # 3561

Description This extrinsic function extracts non-markup text associated with the specified
node.

Format $$TEXT^MXMLDOM(handle,node,text)

XML: Developer Tools

616 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters handle: (required) The value (integer) returned by the

$$EN^MXMLDOM(): XML—Initial Processing, Build In-
memory Image API, which created the in-memory document
image.

 node: (required) The node (integer) in the document tree that is being
referenced by this API.

 text: (required) This input parameter (string) must contain a closed
local or global array reference that is to receive the text. The
specified array is deleted before being populated.

Output returns: Returns a Boolean value:
• True (non-zero)—Text was retrieved.

• False (zero)—Text was not retrieved.

30.1.11 TEXT^MXMLDOM(): XML—Get Text (True/False)

Reference Type Supported

Category XML

IA # 3561

Description This API extracts non-markup text associated with the specified node.

Format TEXT^MXMLDOM(handle,node,text)

Input Parameters handle: (required) The value (integer) returned by the

$$EN^MXMLDOM(): XML—Initial Processing, Build In-
memory Image API, which created the in-memory document
image.

 node: (required) The node (integer) in the document tree that is being
referenced by this API.

 text: (required) This input parameter (string) must contain a closed
local or global array reference that is to receive the text. The
specified array is deleted before being populated.

Output returns: Returns a Boolean value:
• True (non-zero)—Text was retrieved.

• False (zero)—Text was not retrieved.

 XML: Developer Tools

July 1995 Kernel 617
Revised September 2011 Developer's Guide
 Version 8.0

30.1.12 $$VALUE^MXMLDOM(): XML—Get Attribute Value

Reference Type Supported

Category XML

IA # 3561

Description This extrinsic function retrieves the value associated with the named attribute.

Format $$VALUE^MXMLDOM(handle,node[,attrib])

Input Parameters handle: (required) The value (integer) returned by the

$$EN^MXMLDOM(): XML—Initial Processing, Build In-
memory Image API, which created the in-memory document
image.

 node: (required) The node (integer) whose attribute value is being
retrieved.

 attrib: (optional) The name of the attribute (string) whose value is being
retrieved by this API.

Output returns: Returns the value associated with the specified attribute.

30.1.13 EN^MXMLPRSE(): XML—Event Driven API

Reference Type Supported

Category XML

IA # 4149

Description This API is based on the well-established Simple API for XML (SAX) interface
employed by many XML parsers. This API has a single method.

Format EN^MXMLPRSE(doc[,cbk][,opt])

XML: Developer Tools

618 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Input Parameters doc: (required) This string is either a closed reference to a global root
containing the document or a filename and path reference
identifying the document on the host system. If a global root is
passed, the document either must be stored in standard VA
FileMan word-processing format or may occur in sequentially
numbered nodes below the root node. Thus, if the global reference
is "^XYZ", the global must be of one of the following formats:

• ^XYZ(1,0) = "LINE 1"

^XYZ(2,0) = "LINE 2"...

Or
• ^XYZ(1) = "LINE 1"

^XYZ(2) = "LINE 2"...

 cbk: (optional) This is a local array, passed by reference that contains a
list of parse events and the entry points for the handlers of those
events. The format for each entry is:

CBK(<event type>) = <entry point>

The entry point must reference a valid entry point in an existing M
routine and should be of the format tag^routine. The entry should
not contain any formal parameter references. The application
developer is responsible for ensuring that the actual entry point
contains the appropriate number of formal parameters for the
event type. For example, client application might register its
STARTELEMENT event handler as follows:

CBK("STARTELEMENT") = "STELE^CLNT"

The actual entry point in the CLNT routine must include two
formal parameters as in the following example:

STELE(ELE,ATR) <handler code>

For the types of supported events and their required parameters,
see the "Details" topic that follows.

 XML: Developer Tools

July 1995 Kernel 619
Revised September 2011 Developer's Guide
 Version 8.0

 opt: (optional) This is a list of option flags (string) that control parser
behavior. Recognized option flags are:

• W—Do not report warnings to the client.

• V—Validate the document. If not specified, the parser
only checks for conformance.

• 1—Terminate parsing on encountering a validation error.
(By default, the parser terminates only when a
conformance error is encountered.)

• 0—Terminate parsing on encountering a warning.

Output returns: Returns the XML parsed string.

Details

The VistA XML Parser recognizes the following event types:

Table 33. XML Parser even types

Event Type Parameters Description

STARTDOCUMENT None Notifies the client that document
parsing has commenced.

ENDDOCUMENT None Notifies the client that document
parsing has completed.

DOCTYPE ROOT
PUBID
SYSID

Notifies the client that a
DOCTYPE declaration has been
encountered. The name of the
document root is given by
ROOT. The public and system
identifiers of the external
document type definition are
given by PUBID and SYSID,
respectively.

STARTELEMENT NAME
ATTRLIST

An element (tag) has been
encountered. The name of the
element is given in NAME. The
list of attributes and their values
is provided in the local array
ATTRLST in the format:

ATTRLST(<name>) = <value>

ENDELEMENT NAME A closing element (tag) has been
encountered. The name of the
element is given in NAME.

CHARACTERS TEXT Non-markup content has been
encountered. TEXT contains the
text. Line breaks within the
original document are

XML: Developer Tools

620 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Event Type Parameters Description
represented as carriage
return/line feed character
sequences. The parser does not
necessarily pass an entire line of
the original document to the
client with each event of this
type.

PI TARGET
TEXT

The parser has encountered a
processing instruction. TARGET
is the target application for the
processing instruction. TEXT is a
local array containing the
parameters for the instruction.

EXTERNAL SYSID
PUBID
GLOBAL

The parser has encountered an
external entity reference whose
system and public identifiers are
given by SYSID and PUBID,
respectively. If the event handler
elects to retrieve the entity rather
than allowing the parser to do
so, it should pass the global root
of the retrieved entity in the
GLOBAL parameter. If the event
handler wishes to suppress
retrieval of the entity altogether,
it should set both SYSID and
PUBID to null.

NOTATION NAME
SYSID
PUBIC

The parser has encountered a
notation declaration. The
notation name is given by
NAME. The system and public
identifiers associated with the
notation are given by SYSID and
PUBIC, respectively.

COMMENT TEXT The parser has encountered a
comment. TEXT is the text of the
comment.

ERROR ERR The parser has encountered an
error during the processing of a
document. ERR is a local array
containing information about the
error. The format is:

• ERR("SEV") = Severity of
the error where zero (0) is a
warning, 1 is a validation
error, and 2 is a
conformance error.

• ERR("MSG")—Brief text
description of the error.

• ERR("ARG")—The token

 XML: Developer Tools

July 1995 Kernel 621
Revised September 2011 Developer's Guide
 Version 8.0

Event Type Parameters Description
value the triggered the error
(optional).

• ERR("LIN")—The number of
the line being processed
when the error occurred.

• ERR("POS")—The character
position within the line where
the error occurred.

• ERR("XML")—The original
document text of the line
where the error occurred.

Example

A sample client of the event-driven API is provided in the routine MXMLTEST. This routine has an entry
point EN(DOC,OPT), where DOC and OPT are the same parameters as described above in for the parser
entry point. This sample application simply prints a summary of the parsing events as they occur.

30.1.14 $$SYMENC^MXMLUTL(): XML—Encoded Strings in
Messages

Reference Type Supported

Category XML

IA # 4153

Description This extrinsic function replaces reserved XML symbols in a string with their XML
encoding for strings used in an extensible markup language (XML) message.

Format $$SYMENC^MXMLUTL(str)

Input Parameters str: (required) String to be encoded in an XML message.

Output returns: Returns the input string with XML encoding replacing reserved
XML symbols.

Example

>S X=$$SYMENC^MXMLUTL("This line isn't &""<XML>"" safe as is.")

>W X
This line isn't &"<XML>" safe as is.

XML: Developer Tools

622 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

30.1.15 $$XMLHDR^MXMLUTL: XML—Message Headers

Reference Type Supported

Category XML

IA # 4153

Description This extrinsic function returns a standard extensible markup language (XML)
header for encoding XML messages.

Format $$XMLHDR^MXMLUTL

Input Parameters none

Output returns: Returns a standard XML header.

Example

>S X=$$XMLHDR^MXMLUTL

>W X
<?xml version="1.0" encoding="utf-8" ?>

July 1995 Kernel 623
Revised September 2011 Developer's Guide
 Version 8.0

Glossary

ALERTS An alert notifies one or more users of a matter requiring immediate
attention. Alerts function as brief notices that are distinct from mail
messages or triggered bulletins.

Alerts are designed to provide interactive notification of pending
computing activities (e.g., the need to reorder supplies or review a
patient's clinical test results). Along with the alert message is an
indication that the View Alerts common option should be chosen to take
further action.

An alert includes any specifications made by the developer when
designing the alert. This minimally includes the alert message and the
list of recipients (an information-only alert). It can also include an alert
action, software application identifier, alert flag, and alert data. Alerts are
stored in the ALERT file (#8992).

ALERT ACTION The computing activity that can be associated with an alert (i.e., an
option [XQAOPT input variable] or routine [XQAROU input variable]).

ALERT DATA An optional string that the developer can define when creating the alert.
This string is restored in the XQADATA input variable when the alert
action is taken.

ALERT FLAG An optional tool currently controlled by the Alert Handler to indicate
how the alert should be processed (XQAFLG input variable).

ALERT HANDLER The name of the mechanism by which alerts are stored, presented to the
user, processed, and deleted. The Alert Handler is a part of Kernel, in the
XQAL namespace.

ALERT IDENTIFIER A three-semicolon piece identifier, composed of the original Package
Identifier (described below) as the first piece; the DUZ of the alert
creator as the second piece; and the date and time (in VA FileMan
format) when the alert was created as the third piece. The Alert Identifier
is created by the Alert Handler and uniquely identifies an alert.

ALERT MESSAGE One line of text that is displayed to the user (the XQAMSG input
variable).

ALPHA TESTING In VA terminology, Alpha testing is when a VistA test software
application is running in a site's account.

AUDIT ACCESS A user's authorization to mark the information stored in a computer file
to be audited.

Glossary

624 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

AUDITING Monitoring computer usage such as changes to the database and other
user activity. Audit data can be logged in a number of VA FileMan and
Kernel files.

AUTO MENU An indication to Menu Manager that the current user's menu items
should be displayed automatically. When AUTO MENU is not in effect,
the user must enter a question mark at the menu's select prompt to see the
list of menu items.

BETA TESTING In VA terminology, Beta testing is when a VistA test software
application is running in a Production account.

CAPACITY MANAGEMENT The process of assessing a system's capacity and evaluating its efficiency
relative to workload in an attempt to optimize system performance.
Kernel provides several utilities.

CARET A symbol expressed as ^ (caret). In many M systems, a caret is used as
an exiting tool from an option. Also referred to as the "up-arrow"
symbol.

CHECKSUM A numeric value that is the result of a mathematical computation
involving the characters of a routine or file.

CIPHER A system that arbitrarily represents each character as one or more other
characters.

(See also: ENCRYPTION.)

COMMON MENU Options that are available to all users. Entering two question marks
("??") at the menu's select prompt will display any SECONDARY
MENU OPTIONS available to the signed-on user along with the
common options available to all users.

COMPILED MENU SYSTEM
(^XUTL GLOBAL)

Job-specific information that is kept on each CPU so that it is readily
available during the user's session. It is stored in the ^XUTL global,
which is maintained by the menu system to hold commonly referenced
information. The user's place within the menu trees is stored, for
example, to enable navigation via menu jumping.

COMPUTED FIELD This field takes data from other fields and performs a predetermined
mathematical function (e.g., adding two columns together). You will not,
however, see the results of the mathematical function on the screen. Only
when you are printing or displaying information on the screen will you
see the results for this type of field.

DEVICE HANDLER The Kernel module that provides a mechanism for accessing peripherals
and using them in controlled ways (e.g., user access to printers or other
output devices).

 Glossary

July 1995 Kernel 625
Revised September 2011 Developer's Guide
 Version 8.0

DIFROM VA FileMan utility that gathers all software components and changes
them into routines (namespaceI* routines) so that they can be exported
and installed in another VA FileMan environment.

DOUBLE QUOTE (") A symbol used in front of a Common option's menu text or synonym to
select it from the Common menu. For example, the five character string
"TBOX selects the User's Toolbox Common option.

DR STRING The set of characters used to define the DR variable when calling VA
FileMan. Since a series of parameters may be included within quotes as a
literal string, the variable's definition is often called the DR string. To
define the fields within an edit sequence, for example, the developer may
specify the fields using a DR string rather than an INPUT template.

DUZ(0) A local variable that holds the FILE MANAGER ACCESS CODE of the
signed-on user.

ENCRYPTION Scrambling data or messages with a cipher or code so that they are
unreadable without a secret key. In some cases encryption algorithms are
one directional, that is, they only encode and the resulting data cannot be
unscrambled (e.g., Access and Verify codes).

FILE ACCESS SECURITY
SYSTEM

Formerly known as Part 3 of the Kernel Inits. If the File Access Security
conversion has been run, file-level security for VA FileMan files is
controlled by Kernel's File Access Security system, not by VA FileMan
Access codes (i.e., FILE MANAGER ACCESS CODE field).

FORCED QUEUING A device attribute indicating that the device can only accept queued
tasks. If a job is sent for foreground processing, the device will reject it
and prompt the user to queue the task instead.

GO-HOME JUMP A menu jump that returns the user to the primary menu presented at
signon. It is specified by entering two carets ("^^") at the menu's select
prompt. It resembles the Rubber-band Jump but without an option
specification after the carets.

HELP PROCESSOR A Kernel module that provides a system for creating and displaying
online documentation. It is integrated within the menu system so that
help frames associated with options can be displayed with a standard
query at the menu's select prompt.

HOST FILE SERVER (HFS) A procedure available on layered systems whereby a file on the host
system can be identified to receive output. It is implemented by the
Device Handler's HFS device type.

HUNT GROUP An attribute of an entry in the DEVICE file (#3.5) that allows several
devices to be used interchangeably; useful for sending network mail or
printing reports. If the first hunt group member is busy, another member
can stand in as a substitute.

Glossary

626 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

INIT Initialization of a software application. INIT* routines are built by VA
FileMan's DIFROM and, when run, recreate a set of files and other
software components.

JUMP In VistA applications, the Jump command allows you to go from a
particular field within an option to another field within that same option.
You can also Jump from one menu option to another menu option
without having to respond to all the prompts in between. To jump, type a
caret ("^", uppercase-6 key on most keyboards) and then type the name
of the field or option you wish to jump to.

(See also GO-HOME JUMP, PHANTOM JUMP, RUBBER-BAND
JUMP, or UP-ARROW JUMP.)

JUMP START A logon procedure whereby the user enters the "Access code;Verify
code;option" to go immediately to the target option, indicated by its
menu text or synonym. The jump syntax can be used to reach an option
within the menu trees by entering "Access;Verify;^option".

KERMIT A standard file transfer protocol. It is supported by Kernel and can be set
up as an alternate editor.

MANAGER ACCOUNT A UCI that can be referenced by non-manager accounts (e.g., production
accounts). Like a library, the MGR UCI holds percent routines and
globals (e.g., ^%ZOSF) for shared use by other UCIs.

MENU CYCLE The process of first visiting a menu option by picking it from a menu's
list of choices and then returning to the menu's select prompt. Menu
Manager keeps track of information (e.g., the user's place in the menu
trees) according to the completion of a cycle through the menu system.

MENU MANAGER The Kernel module that controls the presentation of user activities
(e.g., menu choices or options). Information about each user's menu
choices is stored in the Compiled Menu System, the ^XUTL global, for
easy and efficient access.

MENU SYSTEM The overall Menu Manager logic as it functions within the Kernel
framework.

MENU TEMPLATE An association of options as pathway specifications to reach one or more
final destination options. The final options must be executable activities
and not merely menus for the template to function. Any user can define
user-specific MENU templates via the corresponding Common option.

MENU TREES The menu system's hierarchical tree-like structures that can be traversed
or navigated, like pathways, to give users easy access to various options.

PAC Programmer Access Code. An optional user attribute that can function as
a second level password into Programmer mode.

 Glossary

July 1995 Kernel 627
Revised September 2011 Developer's Guide
 Version 8.0

PACKAGE IDENTIFIER An optional identifier that the developer can use to identify the alert for
such purposes as subsequent lookup and deletion (XQAID input
variable).

PART 3 OF THE KERNEL
INIT

See FILE ACCESS SECURITY SYSTEM.

PATTERN MATCH A preset formula used to test strings of data. Refer to your system's M
Language Manuals for information on Pattern Match operations.

PHANTOM JUMP Menu jumping in the background. Used by the menu system to check
menu pathway restrictions.

PRIMARY MENUS The list of options presented at signon. Each user must have a
PRIMARY MENU OPTION in order to sign on and reach Menu
Manager. Users are given primary menus by IRM. This menu should
include most of the computing activities the user will need.

PROGRAMMER ACCESS Privilege to become a programmer on the system and work outside many
of the security controls of Kernel. Accessing Programmer mode from
Kernel's menus requires having the developer's at-sign security code,
which sets the variable DUZ(0/)=@.

PROTOCOL An entry in the PROTOCOL file (#101). Used by the Order
Entry/Results Reporting (OE/RR) software to support the ordering of
medical tests and other activities. Kernel includes several protocol-type
options for enhanced menu displays within the OE/RR software.

PURGE INDICATOR Checked by the Alert Handler (in the XQAKILL input variable) to
determine whether an alert should be deleted, and whether deletion
should be for the current user or for all users who might receive the alert.

QUEUING Requesting that a job be processed in the background rather than in the
foreground within the current session. Kernel's TaskMan module handles
the queuing of tasks.

QUEUING REQUIRED An option attribute that specifies that the option must be processed by
TaskMan (the option can only be queued). The option can be invoked
and the job prepared for processing, but the output can only be generated
during the specified time periods.

RESOURCE A method that enables sequential processing of tasks. The processing is
accomplished with a RES device type designed by the application
developer and implemented by IRM. The process is controlled via the
RESOURCE file (#3.54).

Glossary

628 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

RUBBER-BAND JUMP A menu jump used to go out to an option and then return, in a bouncing
motion. The syntax of the jump is two carets ("^^", uppercase-6 on most
keyboards) followed by an option's menu text or synonym (e.g., ^^Print
Option File). If the two carets are not followed by an option
specification, the user is returned to the primary menu.

(See also: GO-HOME JUMP.)

SCHEDULING OPTIONS A way of ordering TaskMan to run an option at a designated time with a
specified rescheduling frequency (e.g., once per week).

SCROLL/NO SCROLL The Scroll/No Scroll button (also called Hold Screen) allows the user to
"stop" (No Scroll) the terminal screen when large amounts of data are
displayed too fast to read and "restart" (Scroll) when the user wishes to
continue.

SECONDARY MENU
OPTIONS

Options assigned to individual users to tailor their menu choices. If a
user needs a few options in addition to those available on the primary
menu, the options can be assigned as secondary options. To facilitate
menu jumping, secondary menus should be specific activities, not
elaborate and deep menu trees.

SECURE MENU
DELEGATION (SMD)

A controlled system whereby menus and keys can be allocated by people
other than IRM staff (e.g., application coordinators) who have been so
authorized. SMD is a part of Menu Manager.

SERVER OPTION In VistA, an entry in the OPTION file (#19). An automated mail
protocol that is activated by sending a message to the server with the
"S.server" syntax. A server option's activity is specified in the OPTION
file (#19) and can be the running of a routine or the placement of data
into a file.

SIGNON/SECURITY The Kernel module that regulates access to the menu system. It performs
a number of checks to determine whether access can be permitted at a
particular time. A log of signons is maintained.

SPECIAL QUEUEING An option attribute indicating that TaskMan should automatically run the
option whenever the system reboots.

SPOOLER An entry in the DEVICE file (#3.5). It uses the associated operating
system's spool facility, whether it is a global, device, or host file. Kernel
manages spooling so that the underlying OS mechanism is transparent.
In any environment, the same method can be used to send output to the
spooler. Kernel will subsequently transfer the text to a global for
subsequent despooling (printing).

SYNONYM In VistA, a field in the OPTION file (#19). Options can be selected by
their menu text or synonym.

(See also: MENU TEXT.)

 Glossary

July 1995 Kernel 629
Revised September 2011 Developer's Guide
 Version 8.0

TASKMAN The Kernel module that schedules and processes background tasks (also
called Task Manager).

TIMED READ The amount of time Kernel will wait for a user response to an interactive
READ command before starting to halt the process.

UP-ARROW JUMP In the menu system, entering a caret ("^") followed by an option name
accomplishes a jump to the target option without needing to take the
usual steps through the menu pathway.

XINDEX A Kernel utility used to verify routines and other M code associated with
a software application. Checking is done according to current ANSI
MUMPS standards and VistA programming standards. This tool can be
invoked through an option or from direct mode (>D ^XINDEX).

Z EDITOR (^%Z) A Kernel tool used to edit routines or globals. It can be invoked with an
option, or from direct mode after loading a routine with >X ^%Z.

ZOSF GLOBAL (^%ZOSF) The Operating System File—a manager account global distributed with
Kernel to provide an interface between VistA software and the
underlying operating system. This global is built during Kernel
installation when running the manager setup routine (ZTMGRSET). The
nodes of the global are filled-in with operating system-specific code to
enable interaction with the operating system. Nodes in the ^%ZOSF
global can be referenced by VistA application developers so that separate
versions of the software need not be written for each operating system.

REF: For a comprehensive list of commonly used infrastructure- and security-related terms and
definitions, please visit the Glossary VA Intranet Website:

http://vaww.vista.med.va.gov/iss/glossary.asp

For a comprehensive list of acronyms, please visit the Acronyms VA Intranet Website:

http://vaww.vista.med.va.gov/iss/acronyms/index.asp

Glossary

630 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

July 1995 Kernel 631
Revised September 2011 Developer's Guide
 Version 8.0

Index

$
$$%H^XLFDT, 534
$$ABS^XLFMTH, 565
$$ACCESS^XQCHK, 237
$$ACOS^XLFMTH, 565
$$ACOSDEG^XLFMTH, 566
$$ACOSH^XLFHYPER, 557
$$ACOT^XLFMTH, 567
$$ACOTDEG^XLFMTH, 567
$$ACOTH^XLFHYPER, 557
$$ACSC^XLFMTH, 568
$$ACSCDEG^XLFMTH, 568
$$ACSCH^XLFHYPER, 558
$$ACTIVE^XUAF4, 135
$$ACTIVE^XUSER, 495
$$ACTJ^%ZOSV, 291
$$ADD^XPDMENU, 233
$$ADD^XUSERNEW, 323
$$ADDRESS^XLFNSLK, 97
$$ASEC^XLFMTH, 569
$$ASECDEG^XLFMTH, 570
$$ASECH^XLFHYPER, 559
$$ASIN^XLFMTH, 570
$$ASINDEG^XLFMTH, 571
$$ASINH^XLFHYPER, 559
$$ASKSTOP^%ZTLOAD, 373
$$ATAN^XLFMTH, 571
$$ATANDEG^XLFMTH, 572
$$ATANH^XLFHYPER, 560
$$ATTRIB^MXMLDOM, 458, 609
$$AVJ^%ZOSV, 291
$$BASE^XLFUTL, 605
$$BLDNAME^XLFNAME, 255
$$BSA^XLFMSMT, 589
$$CCD^XLFUTL, 606
$$CHECKAV^XUSRB, 325
$$CHECKAV^XUVERIFY, 332
$$CHILD^MXMLDOM, 459, 610
$$CHKDGT^XUSNPI, 281
$$CHKSUM^XUSESIG1, 100
$$CIRN^XUAF4, 137
$$CJ^XLFSTR, 595
$$CLEANC^XLFNAME, 258
$$CMNT^MXMLDOM, 460, 610
$$CMP^XUSESIG1, 100
$$CNV^XLFUTL, 606

$$CODE2TXT^XUA4A72, 491
$$COMCP^XPDUTL, 215
$$COS^XLFMTH, 573
$$COSDEG^XLFMTH, 573
$$COSH^XLFHYPER, 560
$$COT^XLFMTH, 574
$$COTDEG^XLFMTH, 574
$$COTH^XLFHYPER, 561
$$CRC16^XLFCRC, 531
$$CRC32^XLFCRC, 533
$$CREATE^XUSAP, 320
$$CSC^XLFMTH, 575
$$CSCDEG^XLFMTH, 576
$$CSCH^XLFHYPER, 562
$$CURCP^XPDUTL, 216
$$CURRSURO^XQALSURO, 43
$$DE^XUSESIG1, 101
$$DEA^XUSER, 496
$$DEC^XLFUTL, 607
$$DECDMS^XLFMTH, 576
$$DECODE^XTHCUTL, 410
$$DECRYP^XUSRB1, 329
$$DEFDIR^%ZISH, 125
$$DEL^%ZISH, 126
$$DELETE^XPDMENU, 233
$$DEV^XUTMDEVQ, 350
$$DMSDEC^XLFMTH, 577
$$DOW^XLFDT, 535
$$DT^XLFDT, 535
$$DTIME^XUP, 493
$$DTR^XLFMTH, 578
$$E^XLFMTH, 578
$$EC^%ZOSV, 105
$$EN^MXMLDOM, 462, 612
$$EN^XUA4A71, 247
$$EN^XUSESIG1, 101
$$EN^XUWORKDY, 250
$$ENCODE^XTHCURL, 408
$$ENCRYP^XUSRB1, 329
$$ESBLOCK^XUSESIG1, 102
$$EXP^XLFMTH, 579
$$FIPS^XIPUTIL, 4
$$FIPSCHK^XIPUTIL, 4
$$FMADD^XLFDT, 536
$$FMDIFF^XLFDT, 537
$$FMNAME^XLFNAME, 260
$$FMTE^XLFDT, 538

Index

632 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

$$FMTH^XLFDT, 543
$$FMTHL7^XLFDT, 544
$$FTG^%ZISH, 127
$$GATF^%ZISH, 128
$$GET^XPAR, 434
$$GET^XUA4A72, 491
$$GET^XUPARAM, 314
$$GET1^DID, 191
$$GETMASTR^XTID, 475
$$GETRPLC^XTIDTRM, 393
$$GETSTAT^XTID, 476
$$GETSURO^XQALSURO, 44
$$GETURL^XTHC10, 406
$$GETVUID^XTID, 478
$$GTF^%ZISH, 129
$$HADD^XLFDT, 544
$$HANDLE^XUSRB4, 330
$$HDIFF^XLFDT, 545
$$HL7TFM^XLFDT, 546
$$HLNAME^XLFNAME, 262
$$HTE^XLFDT, 548
$$HTFM^XLFDT, 550
$$ID^XUAF4, 139
$$IDX^XUAF4, 139
$$IEN^XUAF4, 140
$$IEN^XUMF, 151
$$IEN^XUPS, 51
$$IEN2CODE^XUA4A72, 492
$$INHIBIT^XUSRB, 326
$$INSTALDT^XPDUTL, 216
$$INVERT^XLFSTR, 596
$$JOB^%ZTLOAD, 376
$$KCHK^XUSRB, 504
$$KSP^XUPARAM, 314
$$LAST^XPDUTL, 217
$$LEGACY^XUAF4, 140
$$LENGTH^XLFMSMT, 590
$$LGR^%ZOSV, 293
$$LIST^%ZISH, 130
$$LJ^XLFSTR, 596
$$LKOPT^XPDMENU, 234
$$LKUP^XPDKEY, 300
$$LKUP^XUAF4, 141
$$LKUP^XUPARAM, 315
$$LN^XLFMTH, 579
$$LOG^XLFMTH, 580
$$LOOKUP^XUSER, 500
$$LOW^XLFSTR, 597
$$MADD^XUAF4, 142
$$MAKEURL^XTHCURL, 409
$$MAX^XLFMTH, 581

$$MIN^XLFMTH, 581
$$MV^%ZISH, 131
$$NAM^XUSER, 502
$$NAME^MXMLDOM, 463, 614
$$NAME^XUAF4, 143
$$NAMEFMT^XLFNAME, 267
$$NEWCP^XPDUTL, 220
$$NEWERR^%ZTER, 108
$$NNT^XUAF4, 143
$$NODEV^XUTMDEVQ, 354
$$NOW^XLFDT, 551
$$NPI^XUSNPI, 282
$$NS^XUAF4, 144
$$O99^XUAF4, 144
$$OPTDE^XPDUTL, 221
$$OS^%ZOSV, 294
$$PADD^XUAF4, 145
$$PARCP^XPDUTL, 222
$$PARENT^MXMLDOM, 464, 614
$$PARSEURL^XTHCURL, 410
$$PATCH^XPDUTL, 222
$$PENDING^XQALBUTL, 19
$$PI^XLFMTH, 582
$$PKG^XPDUTL, 223
$$PKGPAT^XPDIP, 214
$$PKGPEND^XQALBUTL, 20
$$PRNT^XUAF4, 147
$$PROD^XUPROD, 317
$$PRODE^XPDUTL, 223
$$PROVIDER^XUSER, 503
$$PSET^%ZTLOAD, 378
$$PWD^%ZISH, 133
$$PWR^XLFMTH, 582
$$QI^XUSNPI, 283
$$QQ^XUTMDEVQ, 356
$$RENAME^XPDKEY, 301
$$REPEAT^XLFSTR, 598
$$REPLACE^XLFSTR, 598
$$REQQ^XUTMDEVQ, 360
$$RES^XUDHSET, 58
$$REWIND^%ZIS, 74
$$RF^XUAF4, 147
$$RJ^XLFSTR, 599
$$RPLCLST^XTIDTRM, 394
$$RPLCMNT^XTIDTRM, 396
$$RPLCTRL^XTIDTRM, 397
$$RPLCVALS^XTIDTRM, 398
$$RT^XUAF4, 148
$$RTD^XLFMTH, 583
$$RTNUP^XPDUTL, 224
$$S^%ZTLOAD, 385

 Index

July 1995 Kernel 633
Revised September 2011 Developer's Guide
 Version 8.0

$$SCH^XLFDT, 551
$$SCREEN^XTID, 479
$$SD^XLFMTH, 584
$$SEC^XLFDT, 554
$$SEC^XLFMTH, 584
$$SECDEG^XLFMTH, 585
$$SECH^XLFHYPER, 562
$$SENTENCE^XLFSTR, 600
$$SETMASTR^XTID, 481
$$SETSTAT^XTID, 399, 483
$$SETUP1^XQALERT, 35
$$SETVUID^XTID, 484
$$SIBLING^MXMLDOM, 465, 615
$$SIN^XLFMTH, 586
$$SINDEG^XLFMTH, 586
$$SINH^XLFHYPER, 563
$$SQRT^XLFMTH, 587
$$STA^XUAF4, 150
$$STATUS^%ZISH, 133
$$STRIP^XLFSTR, 601
$$SYMENC^MXMLUTL, 471, 621
$$TAN^XLFMTH, 587
$$TANDEG^XLFMTH, 588
$$TANH^XLFHYPER, 564
$$TAXIND^XUSTAX, 284
$$TAXORG^XUSTAX, 285
$$TEMP^XLFMSMT, 591
$$TEXT^MXMLDOM, 466, 615
$$TF^XUAF4, 150
$$TITLE^XLFSTR, 602
$$TM^%ZTLOAD, 387
$$TRIM^XLFSTR, 602
$$TYPE^XPDMENU, 235
$$TZ^XLFDT, 555
$$UP^XLFSTR, 604
$$UPCP^XPDUTL, 225
$$VALUE^MXMLDOM, 467, 617
$$VCD^XLFUTL, 608
$$VER^XPDUTL, 225
$$VERCP^XPDUTL, 226
$$VERSION^%ZOSV, 297
$$VERSION^XPDUTL, 226
$$VOLUME^XLFMSMT, 592
$$VPID^XUPS, 51
$$WEIGHT^XLFMSMT, 593
$$WHAT^XUAF4, 151
$$WITHIN^XLFDT, 556
$$WORKDAY^XUWORKDY, 251
$$WORKPLUS^XUWORKDY, 252
$$XMLHDR^MXMLUTL, 472, 622

%
%G Utility, 242
%Index of Routines Option, 445
%RFIND Utility, 446
%RR Routine, 452
%RS Routine, 452
%ZTPP Utility, 450
%ZTRDEL Routine, 452

^
^ %RR Direct Mode Utility, 444
^ %RS Direct Mode Utility, 445
^%G (OS-specific)

Direct Mode Utility, 242
^%G Direct Mode Utility, 241
^%INDEX Direct Mode Utility, 444, 454
^%RR Direct Mode Utility, 452
^%RS Direct Mode Utility, 452
^%Z Direct Mode Utility, 444, 449
^%Z Editor, 243, 245, 449

User Interface, 243
^%Z Global, 243
^%ZIS, 59
^%ZISC, 75
^%ZOSF

Global, 288
Nodes, 287, 288

ACTJ, 288
AVJ, 288
BRK, 288
DEL, 288
EOFF, 288
EON, 288
EOT, 288
ERRTN, 288
ETRP, 288
GD, 289
GSEL, 289
JOBPARAM, 289
LABOFF, 289
LOAD, 289
LPC, 289
MAGTAPE, 289
MAXSIZ, 289
MGR, 287, 289
MTBOT, 289
MTERR, 289
MTONLINE, 289
MTWPROT, 289
NBRK, 289

Index

634 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

NO-PASSALL, 289
NO-TYPE-AHEAD, 289
OS, 289
PASSALL, 289
PRIINQ, 290
PRIORITY, 290
PROD, 287, 290
PROGMODE, 290
RD, 290
RESJOB, 290
RM, 290
RSEL, 290
RSUM, 290
RSUM1, 290
SAVE, 290
SIZE, 290
SS, 290
TEST, 290
TMK, 290
TRAP, 290
TRMOFF, 290
TRMON, 290
TRMRD, 290
TYPE-AHEAD, 290
UCI, 290
UCICHECK, 290
UPPERCASE, 290
VOL, 287, 290
XY, 290
ZD, 290

^%ZTBKC Direct Mode Utility, 287
^%ZTER, 106
^%ZTER Direct Mode Utility, 454, 457
^%ZTLOAD, 341
^%ZTP1 Direct Mode Utility, 444
^%ZTPP Direct Mode Utility, 444, 450
^%ZTRDEL Direct Mode Utility, 444, 452
^nsNTEG Direct Mode Utility, 454
^XGF Direct Mode Utilities, 510
^XGFDEMO Direct Mode Utility, 510
^XINDEX Direct Mode Utility, 444, 447, 453,

454
^XQ1 Direct Mode Utility, 232
^XQDATE, 248
^XTER Direct Mode Utility, 454, 457
^XTERPUR, 457
^XTERPUR Direct Mode Utility, 454, 457
^XTFCE Direct Mode Utility, 444, 449
^XTFCR Direct Mode Utility, 444, 449
^XTRCMP Direct Mode Utility, 444, 451
^XTRGRPE Direct Mode Utility, 444, 449

^XTVCHG Direct Mode Utility, 444, 450
^XTVNUM Direct Mode Utility, 444, 450
^XUP Direct Mode Utility, 309, 457
^XUP Routine, 232
^XUS Direct Mode Utility, 309
^XUSCLEAN, 310
^XUSCLEAN Direct Mode Utility, 310
^XUSEC Global, 299
^XUSESIG, 99
^XUVERIFY, 331
^XUWORKDY, 249
^ZTEDIT Direct Mode Utility, 243
^ZTMGRSET Direct Mode Utility, 287
^ZU Direct Mode Utility, 310

A
Aborting an Installation During the Pre-Install

Routine (KIDS), 191
Aborting Installations During the Environment

Check (KIDS), 186
Accessing Questions and Answers (KIDS), 196
Acronyms

Intranet Website, Glossary, 629
ACTION Menu, 245
ACTION^XQALERT, 25
ACTION^XQH4, 121
Actual Usage of Alpha/Beta Test Options

Option, 210
ADD^XPAR, 429
Adding New Users

$$ADD^XUSERNEW, 323
ADDRESS FOR USAGE REPORTING Field

(#22), 207, 211
Address Hygiene

$$FIPS^XIPUTIL, 4
$$FIPSCHK^XIPUTIL, 4
APIs, 2
CCODE^XIPUTIL, 2
Developer Tools, 2
POSTAL^XIPUTIL, 5
POSTALB^XIPUTIL, 7

Advanced Build Techniques (KIDS), 184
AHISTORY^XQALBUTL, 14
AK.Keyname Cross-reference, 299
ALERT File (#8992), 11, 13, 25, 31, 35, 42, 49,

623
Alert Identifier, 12
ALERT TRACKING File (#8992.1), 12, 14, 15,

16, 22, 23, 24, 28, 35
ALERTDAT^XQALBUTL, 16
Alerts

 Index

July 1995 Kernel 635
Revised September 2011 Developer's Guide
 Version 8.0

$$CURRSURO^XQALSURO, 43
$$GETSURO^XQALSURO, 44
$$PENDING^XQALBUTL, 19
$$PKGPEND^XQALBUTL, 20
$$SETUP1^XQALERT, 35
ACTION^XQALERT, 25
AHISTORY^XQALBUTL, 14
Alert Identifier, 12
ALERTDAT^XQALBUTL, 16
APIs, 14
DELETE^XQALERT, 25, 27
DELSTAT^XQALBUTL, 18
Developer Tools, 11
FORWARD^XQALFWD, 42
GETACT^XQALERT, 28
Glossary, 13
NOTIPURG^XQALBUTL, 19
Package Identifier, 12
PATIENT^XQALERT, 29
PTPURG^XQALBUTL, 21
RECIPURG^XQALBUTL, 22
REMVSURO^XQALSURO, 46
SETSURO1^XQALSURO, 47
SETUP^XQALERT, 30
SUROFOR^XQALSURO, 48
SUROLIST^XQALSURO, 49
Toolkit APIs, 389
USER^XQALERT, 40
USERDATA^XQALBUTL, 22
USERLIST^XQALBUTL, 24

ALERTS File (#8992), 37
ALPHA,BETA TEST OPTION Multiple Field

(#33), 206, 212
Alpha/Beta Test Option Usage Menu, 209
ALPHA/BETA TEST PACKAGE Multiple

Field (#32), 206, 212
ALPHA/BETA TESTING Field (#20), 207, 212
Alpha/Beta Tracking

Initiating (KIDS), 207
Build Entry, 207

Local Option Counting, 206
Monitoring (KIDS), 209
Purging of the Option Counts, 211
Send Alpha/Beta Usage to Programmers

Option, 210
Sending a Summary Message, 208, 210
Terminating (KIDS), 211
Terminating Tracking

Local Test Software Option Usage, 211
National Release Software Option Usage,

212

Usage Reports (KIDS), 209
Alpha/Beta Tracking (KIDS), 206
Analyzing Routines

Routine Tools, 445
APIs

CHKLOCAL^XDRMERG2, 404
LKUP^XTLKMGR, 415
Obsolete

XRT0 Output Parameter, Start Time, 296
XRTN Input Parameter, Routine Name, 297

APP PROXY ALLOWED Field (#.11), 320
Appending Text to a Server Request Bulletin or

Mailman Reply, 306
Application Program Interface (API)

Address Hygiene, 2
Alerts, 14
Common Services, 51
Device Handler, 55
DNS, 97
Electronic Signatures, 99
Error Processing, 105
Field Monitoring, 111
Help Processor, 120
Host Files, 123
Institution File, 135
Menu Manager, 233
Miscellaneous, 246
Name Standardization, 255
National Provider Identifier (NPI), 281
Operating System, 288
Security Keys, 300
Signon/Security, 314
Spooling, 336
TaskMan, 350
Toolkit, 389
Unwinder, 487
User, 491
XGF Function Library, 511
XLF Function Library, 531
XML, 609

Application Programming Interface (API)
KIDS, 213

Application Proxy User, 320, 321
Ask if Production Account Option, 317
Ask Installation Questions, How to (KIDS), 194
Assumptions

About the Reader, xlvi
AUTO MENU, 230
AVHLPTXT^XUS2, 319

Index

636 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

B
BLDLST^XPAREDIT, 439
BMES^XPDUTL, 215
Build Entries (KIDS), 160
BUILD File (#9.6), 160, 165, 185, 190, 192,

202, 207, 211, 212, 223, 225, 226, 451
Build Name (KIDS), 165
Build Screens (KIDS), 163

C
Calculate and Show Checksum Values Option

Programmer Options Menu, 456
CALL^%ZISTCP, 85
Callable Entry Points

XTLKKWL, 415
Calling

^%ZTLOAD to Create Tasks (TaskMan), 338
^%ZTLOAD within a Task (TaskMan), 344
Device Handler (^%ZIS) within a Task

(TaskMan), 344
EN^XUTMDEVQ to Create Tasks

(TaskMan), 338
Callout Boxes, xliv
CAN DELETE WITHOUT PROCESSING

Field (#.1), 31, 35
Capacity Management

Response Time Measures (Obsolete)
APIs

XRT0 Output Parameter, Start Time, 296
XRTN Input Parameter, Routine Name,

297
Capacity Planning

National Database, 294
CCODE^XIPUTIL, 2
CDSYS^XUAF4, 135
CHCKSUM^XTSUMBLD Direct Mode Utility,

454, 456, 457
CHECK^XTSUMBLD Routine, 451, 454, 457
CHECK1^XTSUMBLD Routine, 451, 454, 456,

457
Checking

For Background Execution
ZTQUEUED (TaskMan), 343

For Stop Requests (TaskMan), 341
Checkpoint Parameter Node, 199
Checkpoints with Callbacks, 198
Checkpoints without Callbacks (Data Storage),

201
CHECKSUM REPORT Field, 451
CHECKSUM VALUE Field, 450

Checksums, 245, 452, 456
CHG^XPAR, 430
CHGA^XGF, 511
CHILDREN^XUAF4, 136
CHKLOCAL^XDRMERG2 API, 404
Choosing What Data to Send with a File

(KIDS), 170
Clean Error Trap Option, 105
CLEAN^XGF, 513
CLEAR^XGF, 514
CLOSE^%ZISH, 124
CLOSE^%ZISTCP, 86
CLOSE^%ZISUTL, 87
CLOSEST PRINTER Field, 68
CMNT^MXMLDOM, 461, 611
Common Services

$$IEN^XUPS, 51
$$VPID^XUPS, 51
APIs, 51
Developer Tools, 51
EN1^XUPSQRY, 52

Compare local/national checksums report
Option, 450, 451, 457

Compare Routines on Tape to Disk Option, 451
Compare Two Routines Option, 451
Comparing Routines

Routine Tools, 450
Contents, xvii
Controlling

The Disable Options/Protocols Prompt
(KIDS), 188

The Move Routines to Other CPUs Prompt
(KIDS), 188

The Queueing of the Install Prompt (KIDS),
187

Convert
$H to External Format, 548
$H to VA FileMan Date Format, 550
$H/VA FileMan date to Seconds, 554
Another Base to Base 10, 607
Base 10 to Another Base, 606
Between Two Bases, 605
Decimals to Degrees:Minutes:Seconds, 576
Degrees to Radians, 578
Degrees:Minutes:Seconds to Decimal, 577
Domain Name to IP Addresses, 97
HL7 Date to VA FileMan Date, 546
HL7 Formatted Name to Name, 260
Length Measurement, 590
Name to HL7 Formatted Name, 262
Radians to Degrees, 583

 Index

July 1995 Kernel 637
Revised September 2011 Developer's Guide
 Version 8.0

Seconds to $H, 534
String to Lowercase, 597
String to Soundex, 247
String to Uppercase, 604
Temperature Measurement, 591
VA FileMan Date to $H, 543
VA FileMan Date to External Format, 538
VA FileMan Date to HL7 Date, 544
Volume Measurement, 592
Weight Measurement, 593

Copy Build to Build (KIDS), 162
COUNTY CODE File (#5.13), 6, 8
CRC Functions

$$CRC16^XLFCRC, 531
$$CRC32^XLFCRC, 533

CRC Functions (XLF), 531
Create a Build Using Namespace (KIDS), 161
Creating

Tasks Using Scheduled Options (TaskMan),
338

Creating a Package-specific User Termination
Action, 312

Creating Builds (KIDS), 160
Creating Options, 229
Creating Transport Globals that Install

Efficiently (KIDS), 182
Customizing a Server Request Bulletin, 306
CVC^XUSRB, 325

D
Data Dictionary

Data Dictionary Utilities Menu, xlvi
Listings, xlvi

Data Dictionary Cleanup (KIDS), 174
Data Dictionary Update (KIDS), 165
Data Standardization

Replacement Relationships, 392
Toolkit APIs, 391

Databases
Capacity Planning National Database, 294

Date Functions
$$$H^XLFDT, 534
$$DOW^XLFDT, 535
$$DT^XLFDT, 535
$$FMADD^XLFDT, 536
$$FMDIFF^XLFDT, 537
$$FMTE^XLFDT, 538
$$FMTH^XLFDT, 543
$$FMTHL7^XLFDT, 544
$$HADD^XLFDT, 544
$$HDIFF^XLFDT, 545

$$HL7TFM^XLFDT, 546
$$HTE^XLFDT, 548
$$HTFM^XLFDT, 550
$$NOW^XLFDT, 551
$$SCH^XLFDT, 551
$$SEC^XLFDT, 554
$$TZ^XLFDT, 555
$$WITHIN^XLFDT, 556

Date Functions (XLF), 534
Dates

Miscellaneous Developer Tools, 248
DAYS FOR BACKUP REVIEWER Field

(#.15), 37
DE^XUSHSHP, 102
DEA# Field (#53.2), 496
DEFAULT TIMED READ (SECONDS) Field

(#210), 493
DEL^XPAR, 431
DEL^XPDKEY, 300
DELCOMP^XLFNAME2, 276
Delete a Routine or Skip Installing (KIDS), 186
Delete Old (>14d) Alerts Option, 32, 37
Delete Routines Option, 452
Delete Unreferenced Options Option, 241
DELETE^MXMLDOM, 461, 612
DELETE^XQALERT, 25
DELETEA^XQALERT, 27
Deleting

Routines
Routine Tools, 452

DELSTAT^XQALBUTL, 18, 389
DESC^%ZTLOAD, 374
Determining How Data is Installed at the

Receiving Site (KIDS), 171
Developer Tools

Address Hygiene, 2
Alerts, 11
Common Services, 51
Device Handler, 55
Domain Name Service (DNS), 97
Electronic Signatures, 99
Error Processing, 105
Field Monitoring, 111
File Access Security, 115
Help Processor, 119
Host Files, 123
Institution File, 135
KIDS, 159
Menu Manager, 229
Miscellaneous, 241

Date Conversions and Calculations, 248

Index

638 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Lookup Utility, 247
Progress Bar Emulator, 246

Name Standardization, 255
National Provider Identifier (NPI), 281
Operating System Interface, 287
Public Key Infrastructure (PKI), 496
Security Keys, 299
Server Options, 305
Signon/Security, 309
Spooling, 335
TaskMan, 337
Toolkit, 389
Unwinder, 487
User, 491
XGF Function Library, 509
XLF Function Library, 531
XML, 609

DEVICE File (#3.5), 42, 59, 61, 62, 63, 66, 67,
68, 69, 73, 123, 428, 493

Device Handler
$$RES^XUDHSET, 58
$$REWIND^%ZIS, 74
$I, 64
^%ZIS, 59
^%ZISC, 75
APIs, 55
CALL^%ZISTCP, 85
CLOSE^%ZISTCP, 86
CLOSE^%ZISUTL, 87
Developer Tools, 55
Device Type, 67
DEVICE^XUDHGUI, 55
ENDR^%ZISS, 77
ENS^%ZISS, 78
GKILL^%ZISS, 83
GSET^%ZISS, 83
Help Frames, 72
HLP1^%ZIS, 72
HLP2^%ZIS, 72
HOME^%ZIS, 73
KILL^%ZISS, 85
Multiple Devices and ^%ZIS, 71
OPEN^%ZISUTL, 87
PKILL^%ZISP, 75
RMDEV^%ZISUTL, 90
SAVDEV^%ZISUTL, 90
Subtype, 67
USE^%ZISUTL, 91

DEVICE^XUDHGUI, 55
Devices

Rewinding, 74

Dialog Entries (KIDS), 177
DIALOG File (#.84), 177, 178, 432
DIFROM, 160, 168, 184, 191, 192
DIFROM Variable, 186, 192
DINUM, 401, 402, 405
Direct Mode Utilities

^%G, 241
^%G (OS-specific), 242
^%INDEX, 454
^%ZTER, 454
^nsNTEG, 454
^XGF, 510
^XGFDEMO, 510
^XINDEX, 453, 454
^XTER, 105, 454
^XTERPUR, 105, 454
^XTLKKWL, 415
^XUSCLEAN, 310
^ZTEDIT, 243
^ZTMB, 349
^ZTMCHK, 349
^ZTMGRSET, 287
^ZTMON, 349
^ZU, 310
CHCKSUM^XTSUMBLD, 454, 456, 457
Check Environment (TaskMan), 349
Error Processing, 105
H^XUS, 310
Menu Manager, 232

^XQ1, 232
Miscellaneous Programmer

^%ZTER, 457
^XUP, 457

Monitor TaskMan, 349
ONE^nsNTEG, 454
Operating System Interface, 287

^%ZTBKC, 287
Global Block Count, 287
Update ^%ZOSF Nodes, 287

Place Taskman in a WAIT State, 349
Remove Taskman from WAIT State Option,

349
Restart TaskMan, 349
RESTART^ZTM, 349
Routine Tools

^ %RR (OS-specific), 444
^ %RS (OS-specific), 445
^%INDEX, 444
^%RR (OS-specific), 452
^%RS (OS-specific), 452
^%Z, 444, 449

 Index

July 1995 Kernel 639
Revised September 2011 Developer's Guide
 Version 8.0

^%ZTP1, 444
^%ZTPP, 444, 450
^%ZTRDEL, 444, 452
^XINDEX, 444, 447
^XTFCE, 444, 449
^XTFCR, 444, 449
^XTRCMP, 444, 451
^XTRGRPE, 444, 449
^XTVCHG, 444, 450
^XTVNUM, 444, 450
TAPE^XTRCMP, 444, 451

RUN^ZTMKU, 349
Signon/Security, 309

^XUP, 309
^XUS, 309
^XUSCLEAN, 310
^ZU, 310
H^XUS, 310

Starting TaskMan, 349
STOP^ZTMKU, 349
Stopping TaskMan, 349
TaskMan, 349
Toolkit

Miscellaneous Tools, 241
Routine Tools, 444
Verification Tools, 453

Verification Tools
^%ZTER, 457
^XTER, 457
^XTERPUR, 457
^XTTER, 457

WAIT^ZTMKU, 349
XGF Function Library

^XGFDEMO, 510
DISABLE, 188
Disclaimers, xliii
Discontinuation

USER TERMINATE ROUTINE, 312
DISP^XQORM1, 490
DISP^XUTMOPT, 361
DIV4^XUSER, 499
DIVGET^XUSRB2, 505
DIVSET^XUSRB2, 506
DK^XTLKMGR, 417
DLAYGO

^DIC Calls, 116
^DIE Calls, 117
When Navigating to Files, 116

DLL^XTLKMGR, 418
DNS

APIs, 97

DNS IP Field (#8989.3,51), 97
Documentation

History, iii
Symbols, xliv

Documentation Conventions, xliv
DOLRO^%ZOSV, 291
Domain, 315
DOMAIN File (#4.2), 315, 428
Domain Name Service (DNS)

$$ADDRESS^XLFNSLK, 97
Developer Tools, 97
MAIL^XLFNSLK, 98

DQ^%ZTLOAD, 374
DSD^ZISPL, 336
DSDOC^ZISPL, 336
DSH^XTLKMGR, 418
DSY^XTLKMGR, 419
DUPLICATE RECORD File (#15), 401
Duplicate Record Merge

Toolkit APIs, 401
DUPLICATE RESOLUTION File (#15.1), 401
DUZ("AG"),, 309
DUZ(0), 115
DUZ(2), 309

E
Edit a Build

Components
Dialog entries, 177
Forms, 178
Options, 175
Protocols, 175
Routines, 176
Templates, 178

Components (KIDS), 174
File List

Data Dictionary Update (KIDS), 165
DD (Full or Partial) (KIDS), 167
Sending Security Codes (KIDS), 166

Files (KIDS), 165
Name & Version, Build Information (KIDS),

164
Edit a Build (KIDS), 162
Edit a Build—Screen 4 (KIDS), 194
EDIT HISTORY Multiple, 243
Edit Options, 230
EDIT^XPAREDIT, 439
EDIT^XUTMOPT, 362
Editing in Line Mode

Help, 244
Editing Routines

Index

640 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Routine Tools, 449
Editors

^%Z, 243, 245, 449
User Interface, 243

EDITPAR^XPAREDIT, 440
Electronic Signatures

$$CHKSUM^XUSESIG1, 100
$$CMP^XUSESIG1, 100
$$DE^XUSESIG1, 101
$$EN^XUSESIG1, 101
$$ESBLOCK^XUSESIG1, 102
^XUSESIG, 99
APIs, 99
DE^XUSHSHP, 102
Developer Tools, 99
EN^XUSHSHP, 103
HASH^XUSHSHP, 104
SIG^XUSEIG, 99

EN^MXMLPRSE, 468, 617
EN^XDRMERG, 402
EN^XPAR, 431
EN^XPAREDIT, 440
EN^XPDIJ, 214
EN^XQH, 120
EN^XQOR, 487
EN^XQORM, 489
EN^XUSHSHP, 103
EN^XUTMDEVQ, 352
EN^XUTMTP, 364
EN1^XQH, 120
EN1^XQOR, 488
EN1^XUPSQRY, 52
ENDR^%ZISS, 77
ENS^%ZISS, 78
Enter/Edit Kernel Site Parameters Option, 212
Entity

Parameter Tools
Toolkit APIs, 428

Entry Action Options, 230
Entry and Exit Execute Statements, 119
ENVAL^XPAR, 433
Environment Check is Run Twice (KIDS), 185
Environment Check Routine (KIDS), 184
Error

Log, 457
ERROR LOG File (#3.075), 106
ERROR MESSAGES File (#3.076), 107
Error Processing

$$NEWERR^%ZTER, 108
^%ZTER, 106
^XTER, 105

^XTERPUR, 105
APIs, 105
Developer Tools, 105
Direct Mode Utilities, 105
UNWIND^%ZTER, 108

Error Trap Display Option, 105
Errors

Log, 457
Processing Kernel Error Trapping and

Reporting, 457
Reporting, 457
Tracking Alpha/Beta Software Errors (KIDS),

208
Trapping, 457

Errors Logged in Alpha/Beta Test (QUEUED)
Option, 207, 208

EVE Menu, 159
Exit Action Options, 230
EXIT^XPDID, 247
Exporting Globals (KIDS), 182

F
F4^XUAF4, 137
Field Level Protection, 115
Field Monitoring

APIs, 111
Developer Tools, 111
OPKG^XUHUI, 111

Fields
ADDRESS FOR USAGE REPORTING

(#22), 207, 211
ALPHA,BETA TEST OPTION Multiple

(#33), 206, 212
ALPHA/BETA TEST PACKAGE Multiple

(#32), 206, 212
ALPHA/BETA TESTING (#20), 207, 212
APP PROXY ALLOWED (#.11), 320
CAN DELETE WITHOUT PROCESSING

(#.1), 31, 35
CHECKSUM REPORT, 451
CHECKSUM VALUE, 450
CLOSEST PRINTER, 68
DAYS FOR BACKUP REVIEWER (#.15),

37
DEA# (#53.2), 496
DEFAULT TIMED READ (SECONDS)

(#210), 493
DNS IP (#8989.3,51), 97
EDIT HISTORY Multiple, 243
INSTALLATION MESSAGE (#21), 207

 Index

July 1995 Kernel 641
Revised September 2011 Developer's Guide
 Version 8.0

MASTER ENTRY FOR VUID, 474, 475,
476, 481, 482

OPEN PARAMETERS, 61, 66
PACKAGE FILE LINK, 203, 205
PACKAGE NAMESPACE OR PREFIX

(#23), 207
PATCH APPLICATION HISTORY (#1105,

Multiple), 214
PRE-TRANSPORTATION ROUTINE

f(#900), 190
Protection, 115
STATION NUMBER (#99), 150, 152
SURROGATE END DATE/TIME (#.04), 49
SURROGATE FOR ALERTS (#.02), 49
SURROGATE START DATE/TIME (#.03),

49
TIME ZONE (#1), 555
TIMED READ (# OF SECONDS) (#200.1),

493
TIMED READ (# OF SECONDS) (#51.1),

493
TRANSPORT BUILD NUMBER (#63), 451
TYPE (#4), 235, 236
USE PARAMETERS, 66
USER CLASS (#9.5), 320
USER TERMINATE ROUTINE, 312
USER TERMINATE TAG, 312
VERSION (#22, Multiple), 214

Figures, xxxvii
File Access Security

Developer Tools, 115
DLAYGO

^DIC Calls, 116
^DIE Calls, 117
When Navigating to Files, 116

Field Level Protection, 115
File Navigation, 115

File Navigation, 115
Files

ALERT (#8992), 11, 13, 25, 31, 35, 42, 49,
623

ALERT TRACKING (#8992.1), 12, 14, 15,
16, 22, 23, 24, 28, 35

ALERTS(#8992), 37
BUILD (#9.6), 160, 165, 185, 190, 192, 202,

207, 211, 212, 223, 225, 226, 451
COUNTY CODE (#5.13), 6, 8
DEVICE (#3.5), 428
DEVICE (#3.5), 42, 59, 61, 62, 63, 66, 67, 68,

69, 73, 123
DEVICE (#3.5), 493

DEVICE (#3.5), 493
DIALOG (#.84), 177, 178, 432
DOMAIN (#4.2), 315, 428
DUPLICATE RECORD (#15), 401
DUPLICATE RESOLUTION (#15.1), 401
ERROR LOG (#3.075), 106
ERROR MESSAGES (#3.076), 107
FORUM ROUTINE (#9.8), 451
HELP FRAME (#9.2), 119, 120, 121
HL7 MESSAGE TEXT (#772), 153
HOLIDAY (#40.5), 249, 250, 251, 252
HOSPITAL LOCATION (#44), 428
ICD DIAGNOSIS (#80), 421
ICD OPERATION/PROCEDURE (#80.1),

421
INDEX (#.11), 278
INSTALL (#9.7), 213, 214, 215, 219, 220,

222, 225
INSTITUTION (#4), 135, 137, 139, 140, 141,

142, 143, 144, 145, 147, 148, 150, 151,
152, 282, 285, 315, 428, 497, 499

INSTITUTION ASSOCIATION TYPES
(#4.05), 146, 149

KERMIT HOLDING (#8980), 413
KERNEL PARAMETERS (#8989.2), 314,

315, 316
KERNEL SYSTEM PARAMETERS

(#8989.3), 97, 125, 206, 211, 212, 315,
323, 493

LOCAL KEYWORD (#8984.1), 416, 417,
419

LOCAL LOOKUP (#8984.4), 415, 416, 418,
420, 421, 422, 426, 427

LOCAL SHORTCUT (#8984.2), 416, 418,
426

LOCAL SYNONYM (#8984.3), 416, 419,
421, 426

MAILMAN SITE PARAMETERS (#4.3),
555

MAILMAN TIME ZONE (#4.4), 546, 555
MERGE IMAGE (#15.4), 403, 405
MUMPS OPERATING SYSTEM (#.7), 172
NAME COMPONENTS (#20), 257, 263,

265, 267, 271, 277, 278, 279, 280
NAME COMPONENTS File (#20), 255, 276
NEW PERSON (#200), 19, 20, 22, 42, 44, 45,

46, 47, 48, 50, 51, 52, 99, 102, 103, 104,
112, 113, 257, 265, 271, 278, 282, 284,
299, 300, 311, 312, 320, 321, 323, 428,
492, 493, 495, 496, 497, 499, 500, 502,
503, 504

Index

642 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

OBJECT (#2005), 119
OE/RR LIST (#100.21), 428
OPTION (#19), 111, 175, 206, 230, 231, 234,

235, 236, 242, 322, 339, 362, 363, 488
OPTION SCHEDULING (#19.2), 175, 337,

339, 362
PACKAGE (#9.4), 160, 194, 202, 203, 204,

205, 214, 227, 312, 401, 428
PARAMETER DEFINITION (#8989.51),

429, 432, 434, 439, 441
PARAMETER ENTITY (#8989.518), 428
PARAMETER TEMPLATE (#8989.52), 429,

442
PARAMETERS (#8989.5), 429, 431
PATIENT (#2), 12, 21, 29
PERSON CLASS (#8932.1), 491, 492
PROTOCOL (#101), 111, 487, 488
REMOTE PROCEDURE (#8994), 320
ROOM-BED (#405.4), 428
ROUTINE (#9.8), 176, 243, 450, 451, 452
SECURITY KEY (#19.1), 299, 300
SERVICE/SECTION (#49), 428
SIGN-ON LOG (#3.081), 310
SPOOL DATA (#3.519), 336
SPOOL DOCUMENT (#3.51), 336
STATE (#5), 2, 6, 8
TASK SYNC FLAG (#14.8), 348
TASKS (#14.4), 341, 342, 374
TEAM (#404.51), 428
TERMINAL TYPE (#3.2), 61, 67, 76, 77, 78
USER CLASS (#201), 320
USR CLASS (#8930), 428
VOLUME SET (#14.5), 376
XDR REPOINTED ENTRY (#15.3), 403
XQAB ERRORS LOGGED (#8991.5), 207
XTV ROUTINE CHANGES (#8991), 455
XTV ROUTINE CHANGES File (#8991),

455
Flow Chart Entire Routine Option, 449
Flow Chart from Entry Point Option, 449
Forced Queuing, 70
Form Feeds, 66, 75
Forms (KIDS), 178
FORUM ROUTINE File (#9.8), 451
FORWARD^XQALFWD, 42
FRAME^XGF, 515
Full DD (All Fields) (KIDS), 167

G
GETACT^XQALERT, 28
GETENT^XPAREDIT, 441

GETENV^%ZOSV, 292
GETIREF^XTID, 473
GETLST^XPAR, 435
GETPAR^XPAREDIT, 441
GETPEER^%ZOSV, 333
GETWP^XPAR, 436
GKILL^%ZISS, 83
Global

^%Z, 243
Global Block Count option, 287
Global Block Count Option, 241
Globals

^%ZOSF, 288
^%ZRTL

Obsolete, 297
^XTV, 206
^XUSEC, 299, 300, 301
Block Count, 287
XTMP, 179, 180, 187, 292, 293, 330, 345
XUTL, 490

Glossary, 623
Alerts, 13
Intranet Website, Glossary, 629

Group Routine Edit Option, 449
GSET^%ZISS, 83

H
H^XUS, 310, 317
H^XUS Direct Mode Utility, 310
HASH^XUSHSHP, 104
Header Options, 230
Help

At Prompts, xlv
Line Mode Editing, 244
Online, xlv
Question Marks, xlv

HELP FRAME File (#9.2), 119, 120, 121
Help processor

ACTION^XQH4, 121
EN^XQH, 120
EN1^XQH, 120

Help Processor
APIs, 120
Developer Tools, 119
Entry and Exit Execute Statements, 119
Link to the OBJECT File, 119

History, Revisions to Documentation and
Patches, iii

HL7 MESSAGE TEXT File (#772), 153
HLP1^%ZIS, 72
HLP2^%ZIS, 72

 Index

July 1995 Kernel 643
Revised September 2011 Developer's Guide
 Version 8.0

HOLIDAY File (#40.5), 249, 250, 251, 252
Home Pages

Acronyms Intranet Website, Glossary, 629
Adobe Website, xlvii
Glossary Intranet Website, Glossary, 629
Kernel Website, xlvi
VHA Software Document Library (VDL)

Website, xlvii
VistA Development Website, xliii

HOME^%ZIS, 73
HOSPITAL LOCATION File (#44), 428
Host Files

$$DEFDIR^%ZISH, 125
$$DEL^%ZISH, 126
$$FTG^%ZISH, 127
$$GATF^%ZISH, 128
$$GTF^%ZISH, 129
$$LIST^%ZISH, 130
$$MV^%ZISH, 131
$$PWD^%ZISH, 133
$$STATUS^%ZISH, 133
APIs, 123
CLOSE^%ZISH, 124
Developer Tools, 123
OPEN^%ZISH, 132

How KIDS Matches Incoming Entries with
Existing Entries, 172

How to
Ask Installation Questions (KIDS), 194
Obtain Technical Information Online, xlv
Override MTLU, 415
Use this Manual, xliii
Write Code to Queue Tasks, 337

HTTP Client
Toolkit APIs, 406

Hunt Groups, 59, 66
Hyperbolic Trigonometric Functions

$$ACOSH^XLFHYPER, 557
$$ACOTH^XLFHYPER, 557
$$ACSCH^XLFHYPER, 558
$$ASECH^XLFHYPER, 559
$$ASINH^XLFHYPER, 559
$$ATANH^XLFHYPER, 560
$$COSH^XLFHYPER, 560
$$COTH^XLFHYPER, 561
$$CSCH^XLFHYPER, 562
$$SECH^XLFHYPER, 562
$$SINH^XLFHYPER, 563
$$TANH^XLFHYPER, 564

Hyperbolic Trigonometric Functions (XLF), 557

I
ICD DIAGNOSIS File (#80), 421
ICD OPERATION/PROCEDURE File (#80.1),

421
INDEX File (#.11), 278
INIT^XPDID, 246
Initiating

Alpha/Beta Tracking (KIDS), 207
Build Entry, 207

INITKB^XGF, 516
Input Routines Option, 452
INSTALL File (#9.7), 213, 214, 215, 219, 220,

222, 225
Install Package(s) Option, 185
INSTALLATION MESSAGE Field (#21), 207
Instance

Parameter Tools
Toolkit APIs, 429

Institution, 315
INSTITUTION ASSOCIATION TYPES File

(#4.05), 146, 149
Institution File

$$ACTIVE^XUAF4, 135
$$CIRN^XUAF4, 137
$$ID^XUAF4, 139
$$IDX^XUAF4, 139
$$IEN^XUAF4, 140
$$IEN^XUMF, 151
$$LEGACY^XUAF4, 140
$$LKUP^XUAF4, 141
$$MADD^XUAF4, 142
$$NAME^XUAF4, 143
$$NNT^XUAF4, 143
$$NS^XUAF4, 144
$$O99^XUAF4, 144
$$PADD^XUAF4, 145
$$PRNT^XUAF4, 147
$$RF^XUAF4, 147
$$RT^XUAF4, 148
$$STA^XUAF4, 150
$$TF^XUAF4, 150
$$WHAT^XUAF4, 151
APIs, 135
CDSYS^XUAF4, 135
CHILDREN^XUAF4, 136
Developer Tools, 135
F4^XUAF4, 137
LOOKUP^XUAF4, 142
MAIN^XUMFI, 152
MAIN^XUMFP, 153

Index

644 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

PARENT^XUAF4, 146
SIBLING^XUAF4, 149

INSTITUTION File (#4), 135, 137, 139, 140,
141, 142, 143, 144, 145, 147, 148, 150, 151,
152, 282, 285, 315, 428, 497, 499

Intended Audience, xliii
INTRO^XUSRB, 326
Introduction, 1
IOXY^XGF, 517
ISQED^%ZTLOAD, 375

K
K^XTLKMGR, 419
KERMIT

Toolkit APIs, 412
KERMIT HOLDING File (#8980), 413
Kernel

Error Trapping and Reporting, 457
Website, xlvi

Kernel Installation & Distribution System Menu,
159

Kernel Management Menu, 212, 317
KERNEL PARAMETERS File (#8989.2), 314,

315, 316
KERNEL SYSTEM PARAMETERS File

(#8989.3), 97, 125, 206, 211, 212, 315, 323,
493

Key Lookup, 299
Key Variables

KIDS, 185, 192
Server Options, 305
Tasks, 340

KIDS
$$PKG^XPDUTL, 223
$$PKGPAT^XPDIP, 214
$$VER^XPDUTL, 225
$$VERSION^XPDUTL, 226
Alpha/Beta Tracking, 206
APIs, 213
Build Entries, 160
Build Name, 165
Build Screens, 163
Checkpoint Parameter Node, 199
Checkpoints with Callbacks, 198
Checkpoints without Callbacks (Data

Storage), 201
Choosing What Data to Send with a File, 170
Copy Build to Build, 162
Create a Build Using Namespace, 161
Creating Builds, 160
Data Dictionary Cleanup, 174

Data Dictionary Update, 165
Determining How Data is Installed at the

Receiving Site, 171
Developer Tools, 159

Advanced Build Techniques, 184
Edit a Build, 162

Components, 174
Dialog Entries, 177
File List

DD (Full or Partial), 167
Files, 165
Forms, 178
Name & Version, Build Information, 164
Options and Protocols, 175
Routines, 176
Templates, 178

Edit a Build—Screen 4, 194
EN^XPDIJ, 214
Environment Check, 184

$$PATCH^XPDUTL, 222
$$RTNUP^XPDUTL, 224
Aborting Installations, 186
DIFROM Variable, 186
DISABLE Scheduled Options, Options,

and Protocols Prompt, 188
Key Variables, 185
Move routines to other CPUs Prompt, 188
Queueing the Install Prompt, 187
Routine Install Options, 186
Run Twice, 185
Sample Routine, 189
Self-Contained Routine, 184
Verifying Patch Installation, 186
Version Numbers, 186
XPDENV Variable, 185
XPDNM Variable, 185
XPDNM("SEQ"), 185, 192
XPDNM("TST"), 185, 192

Exporting Globals, 182
Full DD (All Fields), 167
How KIDS Matches Incoming Entries with

Existing Entries, 172
How to Ask Installation Questions, 194
Initiating Alpha/Beta Tracking, 207

Build Entry, 207
Installation Questions

M Code, 195
Questions and answers, 196
Skipping, 196
Subscripts, 195
Where Asked, 197

 Index

July 1995 Kernel 645
Revised September 2011 Developer's Guide
 Version 8.0

Limited Resolution of Pointers, 173
M Code in Questions, 195
Monitoring Alpha/Beta Tracking, 209
Multi-Package Builds, 181
NEW the DIFROM Variable When Calling

MailMan, 192
Options, 159
Package File Link, 203
Partial DD (Some Fields), 168

File Number Level, 168
Multiple Level, 168

Pre- and Post-Install
Aborting installations, 191

Pre- and Post-Install Routines
$$COMCP^XPDUTL, 215
$$CURCP^XPDUTL, 216
$$LAST^XPDUTL, 217
$$NEWCP^XPDUTL, 220
$$OPTDE^XPDUTL, 221
$$PARCP^XPDUTL, 222
$$PRODE^XPDUTL, 223
$$UPCP^XPDUTL, 225
$$VERCP^XPDUTL, 226
BMES^XPDUTL, 215
Checkpoint Parameter Node, 199
Checkpoints without Callbacks, 201
DIFROM Variable, 192
Key Variables, 192
MES^XPDUTL, 219
Sample Routine, 200
XPDNM Variable, 192
ZTQUEUED Variable, 192

Pre- and Post-Install Routines:Special
Features, 191

PRE-TRANSPORTATION ROUTINE Field
(#900), 190

Question Subscripts, 195
Re-Indexing Files, 174
Required Build, 202
Return All Install Dates/Times

$$CURCP^INSTALDT, 216
Send Alpha/Beta Usage to Programmers

Option, 210
Sending Security Codes, 166
Setting a File's Package Revision Data Node

(Post-Install), 191
Skipping Installation Questions, 196
Terminating Alpha/Beta Tracking, 211

Local Test Software Option Usage, 211
National Release Software Option Usage,

212

Track Package Nationally, 205
Tracking Alpha/Beta Software Errors, 208
Transporting a distribution

Efficient builds, 182
Transporting a Distribution, 179
Update the Status Bar During Pre- and Post-

Install Routines, 193
UPDATE^XPDID, 213
Usage Reports for Alpha/Beta Tracking, 209
Using Checkpoints (Pre- and Post-Install

Routines), 198
When to Transport More than One Transport

Global in a Distribution, 181
Where Questions Are Asked During

Installations, 197
KILL^%ZISS, 85
KILL^%ZTLOAD, 341, 342, 377
KILL^XUSCLEAN, 322
KWIC Cross-reference, 415, 416

L
L^XTLKMGR, 420
Legal Requirements, xliii
Limited Resolution of Pointers (KIDS), 173
Line Mode Editing Help, 244
Link

Package File Link, 203
Link to the OBJECT File, 119
List File Attributes Option, xlvi
List Global Option, 242
List Routines Option, 450
LKUP^XTLKMGR, 421
LKUP^XTLKMGR API, 415
Load Routines, 452
Load/refresh checksum values into ROUTINE

file Option, 452
LOCAL KEYWORD File (#8984.1), 416, 417,

419
LOCAL LOOKUP File (#8984.4), 415, 416,

418, 420, 421, 422, 426, 427
LOCAL SHORTCUT File (#8984.2), 416, 418,

426
LOCAL SYNONYM File (#8984.3), 416, 419,

421, 426
LOGOUT^XUSRB, 327
LOGRSRC^%ZOSV, 293
Logs

Error Log, 457
Long Running Tasks

Writing Two-step Tasks (TaskMan), 345
Lookup Utility

Index

646 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Miscellaneous Developer Tools, 247
LOOKUP^XUAF4, 142
Low Usage of Alpha/Beta Test Options Option,

210
Lowercase

$$LOW^XLFSTR, 597

M
M Code in Questions (KIDS), 195
MAIL^XLFNSLK, 98
MAILMAN SITE PARAMETERS File (#4.3),

555
MAILMAN TIME ZONE File (#4.4), 546, 555
MAIN^XUMFI, 152
MAIN^XUMFP, 153
MASTER ENTRY FOR VUID Field, 474, 475,

476, 481, 482
Math Functions

$$ABS^XLFMTH, 565
$$ACOS^XLFMTH, 565
$$ACOSDEG^XLFMTH, 566
$$ACOT^XLFMTH, 567
$$ACOTDEG^XLFMTH, 567
$$ACSC^XLFMTH, 568
$$ACSCDEG^XLFMTH, 568
$$ASEC^XLFMTH, 569
$$ASECDEG^XLFMTH, 570
$$ASIN^XLFMTH, 570
$$ASINDEG^XLFMTH, 571
$$ATAN^XLFMTH, 571
$$ATANDEG^XLFMTH, 572
$$COS^XLFMTH, 573
$$COSDEG^XLFMTH, 573
$$COT^XLFMTH, 574
$$COTDEG^XLFMTH, 574
$$CSC^XLFMTH, 575
$$CSCDEG^XLFMTH, 576
$$DECDMS^XLFMTH, 576
$$DMSDEC^XLFMTH, 577
$$DTR^XLFMTH, 578
$$E^XLFMTH, 578
$$EXP^XLFMTH, 579
$$LN^XLFMTH, 579
$$LOG^XLFMTH, 580
$$MAX^XLFMTH, 581
$$MIN^XLFMTH, 581
$$PI^XLFMTH, 582
$$PWR^XLFMTH, 582
$$RTD^XLFMTH, 583
$$SD^XLFMTH, 584
$$SEC^XLFMTH, 584

$$SECDEG^XLFMTH, 585
$$SIN^XLFMTH, 586
$$SINDEG^XLFMTH, 586
$$SQRT^XLFMTH, 587
$$TAN^XLFMTH, 587
$$TANDEG^XLFMTH, 588

Math Functions (XLF), 565
Measurement Functions

$$BSA^XLFMSMT, 589
$$LENGTH^XLFMSMT, 590
$$TEMP^XLFMSMT, 591
$$VOLUME^XLFMSMT, 592
$$WEIGHT^XLFMSMT, 593

Measurement Functions (XLF), 589
Menu Manager

$$ACCESS^XQCHK, 237
$$DELETE^XPDMENU, 233
$$LKOPT^XPDMENU, 234
$$TYPE^XPDMENU, 235
APIs, 233
Creating Options, 229
Developer Tools, 229
Direct Mode Utilities, 232

^XQ1, 232
NEXT^XQ92, 236
OP^XQCHK, 239
Option Types, 229
OUT^XPDMENU, 234
RENAME^XPDMENU, 235
SSADD^XPDMENU, 233
Variables for Developer Use, 230
XQ1, 232
XQMM("A") Variable, 231
XQMM("B") Variable, 231
XQMM("J") Variable, 231
XQMM("N") Variable, 232
XQUIT Variable, 230

Menus
ACTION, 245
Alpha/Beta Test Option Usage Menu, 209
Data Dictionary Utilities, xlvi
EVE, 159
Kernel Installation & Distribution System,

159
Kernel Management Menu, 212, 317
Operations Management, 209
Programmer Options, 159, 241, 242, 445,

447, 453, 456
Routine Tools, 445
Systems Manager Menu, 159, 454
Verifier Tools, 454

 Index

July 1995 Kernel 647
Revised September 2011 Developer's Guide
 Version 8.0

Verifier Tools Menu, 454, 455
XPD MAIN, 159
XQAB MENU, 209
XTV MENU Menu, 454, 455
XUKERNEL, 212, 317
XUPROG, 159, 445, 447, 456
XUPR-ROUTINE-TOOLS, 445
XUSITEMGR, 209
ZTMQUEUABLE OPTIONS, 208

MERGE IMAGE File (#15.4), 403, 405
MES^XPDUTL, 219
Miscellaneous

$$EN^XUA4A71, 247
$$EN^XUWORKDY, 250
$$WORKDAY^XUWORKDY, 251
$$WORKPLUS^XUWORKDY, 252
^XQDATE, 248
^XUWORKDY, 249
APIs, 246
Developer Tools, 241

Date Conversions and Calculations, 248
Lookup Utility, 247
Progress Bar Emulator, 246

Direct Mode Utilities, 241
EXIT^XPDID, 247
INIT^XPDID, 246
TITLE^XPDID, 246

Miscellaneous Programmer Tools
^%Z Editor, 243
Delete Unreferenced Options Option, 241
Global Block Count Option, 241
List Global Option, 242
Test an option not in your menu Option, 242

Miscellaneous Tools
^%G Direct Mode Utility, 241

Monitor Taskman Option, 349
Monitoring

Alpha/Beta Tracking (KIDS), 209
Move routines to other CPUs Prompt (KIDS),

188
MSG^XQOR, 488
Multi-Package Builds (KIDS), 181
Multi-Term Look-Up (MTLU)

Callable Entry Point
XTLKKWL, 415

Direct Mode Utilities
^XTLKKWL, 415

How to Override, 415
LOCAL LOOKUP File (#8984.4), 415
MTLU and VA FileMan lookups, 415
MTLU and VA FileMan Supported Calls, 415

MTLU, How to Override
VA FileMan lookups and MTLU, 415

Supported Calls, 415
Toolkit APIs, 415
VA FileMan Supported Calls, 415

MUMPS OPERATING SYSTEM File (#.7),
172

MXMLDOM
$$ATTRIB^MXMLDOM, 458, 609
$$CHILD^MXMLDOM, 459, 610
$$CMNT^MXMLDOM, 460, 610
$$EN^MXMLDOM, 462, 612
$$NAME^MXMLDOM, 463, 614
$$PARENT^MXMLDOM, 464, 614
$$SIBLING^MXMLDOM, 465, 615
$$TEXT^MXMLDOM, 466, 615
$$VALUE^MXMLDOM, 467, 617
CMNT^MXMLDOM, 461, 611
DELETE^MXMLDOM, 461, 612
EN^MXMLPRSE, 617
TEXT^MXMLDOM, 467, 616

MXMLDOM Routine, 458
MXMLPRSE

EN^MXMLPRSE, 468
MXMLUTL

$$SYMENC^MXMLUTL, 471, 621
$$XMLHDR^MXMLUTL, 472, 622

N
NAME COMPONENTS File (#20), 255, 257,

263, 265, 267, 271, 276, 277, 278, 279, 280
Name Standardization

$$BLDNAME^XLFNAME, 255
$$CLEANC^XLFNAME, 258
$$FMNAME^XLFNAME, 260
$$HLNAME^XLFNAME, 262
$$NAMEFMT^XLFNAME, 267
APIs, 255
DELCOMP^XLFNAME2, 276
Developer Tools, 255
NAMECOMP^XLFNAME, 266
STDNAME^XLFNAME, 271
UPDCOMP^XLFNAME2, 278

NAMECOMP^XLFNAME, 266
Namespaces

XU, 210
National Database

Capacity Planning, 294
National Provider Identifier (NPI)

$$CHKDGT^XUSNPI, 281
$$NPI^XUSNPI, 282

Index

648 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

$$QI^XUSNPI, 283
$$TAXIND^XUSTAX, 284
$$TAXORG^XUSTAX, 285
APIs, 281
Developer Tools, 281

Navigation
DLAYGO, 116
Files, 115

NDEL^XPAR, 437
NEW PERSON File (#200), 19, 20, 22, 42, 44,

45, 46, 47, 48, 50, 51, 52, 99, 102, 103, 104,
112, 113, 257, 265, 271, 278, 282, 284, 299,
300, 311, 312, 320, 321, 323, 428, 492, 493,
495, 496, 497, 499, 500, 502, 503, 504

NEW the DIFROM Variable When Calling
MailMan (KIDS), 192

NEXT^XQ92, 236
Nodes

^%ZOSF, 287
ACTJ, 288
AVJ, 288
BRK, 288
DEL, 288
EOFF, 288
EOT, 288
ERRTN, 288
ETRP, 288
GSEL, 289
JOBPARAM, 289
LABOFF, 289
LOAD, 289
LPC, 289
MAGTAPE, 289
MAXSIZ, 289
MGR, 287, 289
MTBOT, 289
MTERR, 289
MTONLINE, 289
MTWPROT, 289
NBRK, 289
NO-PASSALL, 289
NO-TYPE-AHEAD, 289
OS, 289
PASSALL, 289
PRIINQ, 290
PRIORITY, 290
PROD, 287, 290
PROGMODE, 290
RD, 290
RESJOB, 290
RM, 290

RSEL, 290
RSUM, 290
RSUM1, 290
SAVE, 290
SIZE, 290
SS, 290
TEST, 290
TMK, 290
TRAP, 290
TRMOFF, 290
TRMON, 290
TRMRD, 290
UCI, 290
UCICHECK, 290
UPPERCASE, 290
VOL, 287, 290
XY, 290
ZD, 290

NOTIPURG^XQALBUTL, 19
Number of Workdays Calculation, 250

O
OBJECT File (#2005), 119
Obsolete

$$NEWERR^%ZTER, 108
^XQDATE, 248
^XUWORKDY, 249
D H^XUS, 310
T0^%ZOSV, 296
T1^%ZOSV, 297
USER TERMINATE ROUTINE Option, 312

Obtaining
Data Dictionary Listings, xlvi

OE/RR LIST File (#100.21), 428
ONE^nsNTEG Direct Mode Utility, 454
Online

Documentation, xlv
Technical Information, How to Obtain, xlv

OP^XQCHK, 239
OPEN PARAMETERS Field, 61, 66
OPEN^%ZISH, 132
OPEN^%ZISUTL, 87
Operating System

APIs, 288
Operating System Interface

$$ACTJ^%ZOSV, 291
$$AVJ^%ZOSV, 291
$$EC^%ZOSV, 105
$$LGR^%ZOSV, 293
$$OS^%ZOSV, 294
$$VERSION^%ZOSV, 297

 Index

July 1995 Kernel 649
Revised September 2011 Developer's Guide
 Version 8.0

Developer Tools, 287
Direct Mode Utilities, 287
DOLRO^%ZOSV, 291
GETENV^%ZOSV, 292
Global Block Count, 287
LOGRSRC^%ZOSV, 293
SETENV^%ZOSV, 294
SETNM^%ZOSV, 295
T0^%ZOSV, 296
T1^%ZOSV, 297
Update ^%ZOSF Nodes, 287

Operations Management Menu, 209
OPKG^XUHUI, 111
OPTION File (#19), 111, 175, 206, 230, 231,

234, 235, 236, 242, 322, 339, 362, 363, 488
Entry Action, 230
Exit Action, 230
Header, 230

OPTION SCHEDULING File (#19.2), 175, 337,
339, 362

OPTION^%ZTLOAD, 377
Options

%Index of Routines, 445
ACTION, 245
Actual Usage of Alpha/Beta Test Options,

210
Alpha/Beta Test Option Usage Menu, 209
Ask if Production Account Option, 317
Calculate and Show Checksum Values

Programmer Options Menu, 456
Clean Error Trap, 105
Compare local/national checksums report,

450, 451, 457
Compare Routines on Tape to Disk, 451
Compare Two Routines, 451
Creating, 229, 230
Data Dictionary Utilities, xlvi
Delete Old (>14d) Alerts, 32, 37
Delete Routines, 452
Delete Unreferenced Options, 241
Enter/Edit Kernel Site Parameters option, 212
Error Trap Display Option, 105
Errors Logged in Alpha/Beta Test

(QUEUED), 207, 208
EVE, 159
Flow Chart Entire Routine, 449
Flow Chart from Entry Point, 449
Global Block Count, 241, 287
Group Routine Edit, 449
Input Routines, 452
Install Package(s), 185

Kernel Installation & Distribution System,
159

Kernel Management Menu, 212, 317
KIDS, 159, 175
List File Attributes, xlvi
List Global, 242
List Routines, 450
Load/refresh checksum values into ROUTINE

file, 452
Low Usage of Alpha/Beta Test Options, 210
Monitor Taskman, 349
Operations Management, 209
Output Routines, 452
Place Taskman in a WAIT State, 349
Print Alpha/Beta Errors

(Date/Site/Num/Rou/Err), 210
Programmer Options, 159, 241, 242, 445,

447, 453, 456
Regularly Scheduled, 230
Remove Taskman from WAIT State, 349
Routine Compare - Current with Previous,

455
Routine Edit, 449
Routine Tools, 445
Routines by Patch Number, 449
Send Alpha/Beta Usage to Programmers, 208,

210
Startup PROD check, 317
Stop Task Manager, 349
Systems Manager Menu, 159, 454
Test an option not in your menu, 242
Types, 229
Update with Current Routines, 455
USER TERMINATE ROUTINE (Obsolete),

312
Variable Changer, 450
Verifier Tools, 454
Verifier Tools Menu, 454, 455
Version Number Update, 450
XPD BUILD NAMESPACE, 161
XPD COPY BUILD, 162
XPD INSTALL BUILD, 185
XPD MAIN, 159
XQ UNREF'D OPTIONS, 241
XQAB ACTUAL OPTION USAGE, 210
XQAB AUTO SEND, 208, 210
XQAB ERR DATE/SITE/NUM/ROU/ERR,

210
XQAB ERROR LOG SERVER, 207
XQAB ERROR LOG XMIT, 207, 208
XQAB LIST LOW USAGE OPTS, 210

Index

650 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

XQAB MENU, 209
XQUIT (Menu Manager), 230
XTFCE, 449
XTFCR, 449
XT-OPTION TEST, 242
XTRDEL, 452
XTRGRPE, 449
XT-ROUTINE COMPARE, 451
XTSUMBLD-CHECK

Programmer Options Menu, 456
XTV MENU Menu, 454, 455
XT-VARIABLE CHANGER, 450
XT-VERSION NUMBER, 450
XTVR COMPARE, 455
XTVR UPDATE, 455
XU BLOCK COUNT, 241, 287
XU CHECKSUM LOAD, 452
XU CHECKSUM REPORT, 450, 451, 457
XU SID ASK, 317
XU SID STARTUP, 317
XU USER SIGN-ON, 311
XU USER TERMINATE, 312
XUEDITOPT, 230
XUINDEX, 445
XUKERNEL, 212, 317
XUPR RTN EDIT, 449
XUPR RTN PATCH, 449
XUPRGL, 242
XUPROG, 159, 445, 447, 456
XUPRROU, 450
XUPR-ROUTINE-TOOLS, 445
XUPR-RTN-TAPE-CMP, 451
XUROUTINE IN, 452
XUROUTINE OUT, 452
XUSITEMGR, 209
XUSITEPARM, 212
ZTMQUEUABLE OPTIONS, 208

OPTSTAT^XUTMOPT, 362
Orientation, xliii
OUT^XPDMENU, 234
Output Routines Option, 452
OWNSKEY^XUSRB, 302

P
PACKAGE file (#9.4), 401
PACKAGE File (#9.4), 160, 194, 202, 203, 204,

205, 214, 227, 312, 428
Package File Link (KIDS), 203
PACKAGE FILE LINK Field, 203, 205
Package Identifier

Alert Identifier, 12

Conventions, 12
PACKAGE NAMESPACE OR PREFIX Field

(#23), 207
Package Revision Data Node, 191
PackMan Compare Utilities, 451
Page Length, 67
Parameter

Parameter Tools
Toolkit APIs, 429

PARAMETER DEFINITION File (#8989.51),
429, 432, 434, 439, 441

PARAMETER ENTITY File (#8989.518), 428
Parameter Template

Parameter Tools
Toolkit APIs, 429

PARAMETER TEMPLATE file (#8989.52),
429

PARAMETER TEMPLATE File (#8989.52),
442

Parameter Tools
Toolkit APIs, 428

Entity Definition, 428
Instance Definition, 429
Parameter Definition, 429
Parameter Template Definition, 429
Value Definition, 429

PARAMETERS File (#8989.5), 429, 431
Parameters, Site, 314
PARENT^XUAF4, 146
Part 3 of Kernel Install, 115
Partial DD (Some Fields) (KIDS), 168

File Number Level, 168
Multiple Level, 168

PATCH APPLICATION HISTORY Field
(#1105, Multiple), 214

Patches
History, xv

PATIENT File (#2), 12, 21, 29
PATIENT^XQALERT, 29
PCLEAR^%ZTLOAD, 378
PERSON CLASS File (#8932.1), 491, 492
Phantom Jump, 231
PKI

$$DEA^XUSER, 496
PKILL^%ZISP, 75
Place Taskman in a WAIT State Option, 349
POSTAL^XIPUTIL, 5
POSTALB^XIPUTIL, 7
Post-Execution Commands

ZTREQ (TaskMan), 343
Post-execution commands - ZTREQ, 343

 Index

July 1995 Kernel 651
Revised September 2011 Developer's Guide
 Version 8.0

PRD^DILFD, 191
Pre- and Post-Install Routines

Special Features (KIDS), 191
PREP^XGF, 518
PRE-TRANSPORTATION ROUTINE Field

(#900), 190
Print Alpha/Beta Errors

(Date/Site/Num/Rou/Err) Option, 210
Printing Routines

Routine Tools, 450
Problems Related To Data Entry While

Merging, 404
Programmer Options Menu, 159, 241, 242, 445,

447, 453, 456
Progress Bar Emulator

Miscellaneous Developer Tools, 246
PROTOCOL File (#101), 111, 487, 488
Protocols

KIDS, 175
Proxy

Application Proxy User, 320, 321
PS Anonymous Directories, xlvii
PSET^%ZISP, 76
PTPURG^XQALBUTL, 21
Public Key Infrastructure (PKI)

Developer Tools, 496
Purging

Alpha/Beta Tracking Data (KIDS), 211
Purging the Task Record (TaskMan), 342
PUT^XPAR, 437

Q
Question Mark Help, xlv
Question Subscripts (KIDS), 195
Queueing the Install Prompt (KIDS), 187
Queuers

Non-interactive, 369
Queuers (TaskMan), 337

^%ZTLOAD, 338
EN^XUTMDEVQ, 338
Scheduled Options, 338

Queuing, 59, 63, 65
Spooler), 335

R
READ^XGF, 519
Reader, Assumptions about the, xlvi
RECEIVE^XTKERMIT, 412
RECIPURG^XQALBUTL, 22
Reference Materials, xlvi

Reference Type
Controlled Subscription

$$CHECKAV^XUSRB, 325
$$CHKDGT^XUSNPI, 281
$$CREATE^XUSAP, 320
$$KCHK^XUSRB, 504
$$NPI^XUSNPI, 282
$$QI^XUSNPI, 283
$$TAXIND^XUSTAX, 284
$$TAXORG^XUSTAX, 285
^XUSESIG, 99
AVHLPTXT^XUS2, 319
CVC^XUSRB, 325
DELCOMP^XLFNAME2, 276
DIV4^XUSER, 499
DIVGET^XUSRB2, 505
DIVSET^XUSRB2, 506
DOLRO^%ZOSV, 291
DSD^ZISPL, 336
DSDOC^ZISPL, 336
EN^XPDIJ, 214
EN^XUTMTP, 364
EN1^XUPSQRY, 52
GETPEER^%ZOSV, 333
INTRO^XUSRB, 326
LOGOUT^XUSRB, 327
MAIN^XUMFI, 152
MAIN^XUMFP, 153
SAVEMERG^XDRMERGB, 405
SETUP^XUSRB, 327
UPDCOMP^XLFNAME2, 278
USERINFO^XUSRB2, 506
VALIDAV^XUSRB, 328
WITNESS^XUVERIFY, 332

Supported
$$%H^XLFDT, 534
$$ABS^XLFMTH, 565
$$ACCESS^XQCHK, 237
$$ACOS^XLFMTH, 565
$$ACOSDEG^XLFMTH, 566
$$ACOSH^XLFHYPER, 557
$$ACOT^XLFMTH, 567
$$ACOTDEG^XLFMTH, 567
$$ACOTH^XLFHYPER, 557
$$ACSC^XLFMTH, 568
$$ACSCDEG^XLFMTH, 568
$$ACSCH^XLFHYPER, 558
$$ACTIVE^XUAF4, 135
$$ACTIVE^XUSER, 495
$$ACTJ^%ZOSV, 291
$$ADD^XUSERNEW, 323

Index

652 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

$$ADDRESS^XLFNSLK, 97
$$ASEC^XLFMTH, 569
$$ASECDEG^XLFMTH, 570
$$ASECH^XLFHYPER, 559
$$ASIN^XLFMTH, 570
$$ASINDEG^XLFMTH, 571
$$ASINH^XLFHYPER, 559
$$ASKSTOP^%ZTLOAD, 373
$$ATAN^XLFMTH, 571
$$ATANDEG^XLFMTH, 572
$$ATANH^XLFHYPER, 560
$$ATTRIB^MXMLDOM, 458, 609
$$AVJ^%ZOSV, 291
$$BASE^XLFUTL, 605
$$BLDNAME^XLFNAME, 255
$$BSA^XLFMSMT, 589
$$CCD^XLFUTL, 606
$$CHECKAV^XUVERIFY, 332
$$CHILD^MXMLDOM, 459, 610
$$CHKSUM^XUSESIG1, 100
$$CIRN^XUAF4, 137
$$CJ^XLFSTR, 595
$$CLEANC^XLFNAME, 258
$$CMNT^MXMLDOM, 460, 610
$$CMP^XUSESIG1, 100
$$CNV^XLFUTL, 606
$$CODE2TXT^XUA4A72, 491
$$COMCP^XPDUTL, 215
$$COS^XLFMTH, 573
$$COSDEG^XLFMTH, 573
$$COSH^XLFHYPER, 560
$$COT^XLFMTH, 574
$$COTDEG^XLFMTH, 574
$$COTH^XLFHYPER, 561
$$CRC16^XLFCRC, 531
$$CRC32^XLFCRC, 533
$$CSC^XLFMTH, 575
$$CSCDEG^XLFMTH, 576
$$CSCH^XLFHYPER, 562
$$CURCP^XPDUTL, 216
$$CURRSURO^XQALSURO, 43
$$DE^XUSESIG1, 101
$$DEA^XUSER, 496
$$DEC^XLFUTL, 607
$$DECDMS^XLFMTH, 576
$$DECODE^XTHCUTL, 410
$$DECRYP^XUSRB1, 329
$$DEFDIR^%ZISH, 125
$$DEL^%ZISH, 126
$$DELETE^XPDMENU, 233
$$DEV^XUTMDEVQ, 350

$$DMSDEC^XLFMTH, 577
$$DOW^XLFDT, 535
$$DT^XLFDT, 535
$$DTIME^XUP, 493
$$DTR^XLFMTH, 578
$$E^XLFMTH, 578
$$EC^%ZOSV, 105
$$EN^MXMLDOM, 462, 612
$$EN^XUSESIG1, 101
$$EN^XUWORKDY, 250
$$ENCODE^XTHCURL, 408
$$ENCRYP^XUSRB1, 329
$$ESBLOCK^XUSESIG1, 102
$$EXP^XLFMTH, 579
$$FIPS^XIPUTIL, 4
$$FIPSCHK^XIPUTIL, 4
$$FMADD^XLFDT, 536
$$FMDIFF^XLFDT, 537
$$FMNAME^XLFNAME, 260
$$FMTE^XLFDT, 538
$$FMTH^XLFDT, 543
$$FMTHL7^XLFDT, 544
$$FTG^%ZISH, 127
$$GATF^%ZISH, 128
$$GET^XPAR, 434
$$GET^XUA4A72, 491
$$GET^XUPARAM, 314
$$GETMASTR^XTID, 475
$$GETRPLC^XTIDTRM(), 393
$$GETSTAT^XTID, 476
$$GETSURO^XQALSURO, 44
$$GETURL^XTHC10, 406
$$GETVUID^XTID, 478
$$GTF^%ZISH, 129
$$HADD^XLFDT, 544
$$HANDLE^XUSRB4, 330
$$HDIFF^XLFDT, 545
$$HL7TFM^XLFDT, 546
$$HLNAME^XLFNAME, 262
$$HTE^XLFDT, 548
$$HTFM^XLFDT, 550
$$ID^XUAF4, 139
$$IDX^XUAF4, 139
$$IEN^XUAF4, 140
$$IEN^XUMF, 151
$$IEN^XUPS, 51
$$IEN2CODE^XUA4A72, 492
$$INHIBIT^XUSRB, 326
$$INSTALDT^XPDUTL, 216
$$INVERT^XLFSTR, 596
$$JOB^%ZTLOAD, 376

 Index

July 1995 Kernel 653
Revised September 2011 Developer's Guide
 Version 8.0

$$KSP^XUPARAM, 314
$$LAST^XPDUTL, 217
$$LEGACY^XUAF4, 140
$$LENGTH^XLFMSMT, 590
$$LGR^%ZOSV, 293
$$LIST^%ZISH, 130
$$LJ^XLFSTR, 596
$$LKOPT^XPDMENU, 234
$$LKUP^XPDKEY, 300
$$LKUP^XUAF4, 141
$$LKUP^XUPARAM, 315
$$LN^XLFMTH, 579
$$LOG^XLFMTH, 580
$$LOOKUP^XUSER, 500
$$LOW^XLFSTR, 597
$$MADD^XUAF4, 142
$$MAKEURL^XTHCURL, 409
$$MAX^XLFMTH, 581
$$MIN^XLFMTH, 581
$$MV^%ZISH, 131
$$NAM^XUSER, 502
$$NAME^MXMLDOM, 463, 614
$$NAME^XUAF4, 143
$$NAMEFMT^XLFNAME, 267
$$NEWCP^XPDUTL, 220
$$NEWERR^%ZTER, 108
$$NNT^XUAF4, 143
$$NODEV^XUTMDEVQ, 354
$$NOW^XLFDT, 551
$$NS^XUAF4, 144
$$O99^XUAF4, 144
$$OPTDE^XPDUTL, 221
$$OS^%ZOSV, 294
$$PADD^XUAF4, 145
$$PARCP^XPDUTL, 222
$$PARENT^MXMLDOM, 464, 614
$$PARSEURL^XTHCURL, 410
$$PATCH^XPDUTL, 222
$$PENDING^XQALBUTL, 19
$$PI^XLFMTH, 582
$$PKG^XPDUTL, 223
$$PKGPAT^XPDIP, 214
$$PKGPEND^XQALBUTL, 20
$$PRNT^XUAF4, 147
$$PROD^XUPROD, 317
$$PRODE^XPDUTL, 223
$$PROVIDER^XUSER, 503
$$PSET^%ZTLOAD, 378
$$PWD^%ZISH, 133
$$PWR^XLFMTH, 582
$$QQ^XUTMDEVQ, 356

$$RENAME^XPDKEY, 301
$$REPEAT^XLFSTR, 598
$$REPLACE^XLFSTR, 598
$$REQQ^XUTMDEVQ, 360
$$RES^XUDHSET, 58
$$REWIND^%ZIS, 74
$$RF^XUAF4, 147
$$RJ^XLFSTR, 599
$$RPLCLST^XTIDTRM, 394
$$RPLCMNT^XTIDTRM, 396
$$RPLCTRL^XTIDTRM, 397
$$RPLCVALS^XTIDTRM, 398
$$RT^XUAF4, 148
$$RTD^XLFMTH, 583
$$RTNUP^XPDUTL, 224
$$S^%ZTLOAD, 385
$$SCH^XLFDT, 551
$$SCREEN^XTID, 479
$$SD^XLFMTH, 584
$$SEC^XLFDT, 554
$$SEC^XLFMTH, 584
$$SECDEG^XLFMTH, 585
$$SECH^XLFHYPER, 562
$$SENTENCE^XLFSTR, 600
$$SETMASTR^XTID, 481
$$SETRPLC^XTIDTRM, 399
$$SETSTAT^XTID, 483
$$SETUP1^XQALERT, 35
$$SETVUID^XTID, 484
$$SIBLING^MXMLDOM, 465, 615
$$SIN^XLFMTH, 586
$$SINDEG^XLFMTH, 586
$$SINH^XLFHYPER, 563
$$SQRT^XLFMTH, 587
$$STA^XUAF4, 150
$$STATUS^%ZISH, 133
$$STRIP^XLFSTR, 601
$$SYMENC^MXMLUTL, 471, 621
$$TAN^XLFMTH, 587
$$TANDEG^XLFMTH, 588
$$TANH^XLFHYPER, 564
$$TEMP^XLFMSMT, 591
$$TEXT^MXMLDOM, 466, 615
$$TF^XUAF4, 150
$$TITLE^XLFSTR, 602
$$TM^%ZTLOAD, 387
$$TRIM^XLFSTR, 602
$$TYPE^XPDMENU, 235
$$TZ^XLFDT, 555
$$UP^XLFSTR, 604
$$UPCP^XPDUTL, 225

Index

654 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

$$VALUE^MXMLDOM, 467, 617
$$VCD^XLFUTL, 608
$$VER^XPDUTL, 225
$$VERCP^XPDUTL, 226
$$VERSION^%ZOSV, 297
$$VERSION^XPDUTL, 226
$$VOLUME^XLFMSMT, 592
$$VPID^XUPS, 51
$$WEIGHT^XLFMSMT, 593
$$WHAT^XUAF4, 151
$$WITHIN^XLFDT, 556
$$WORKDAY^XUWORKDY, 251
$$WORKPLUS^XUWORKDY, 252
$$XMLHDR^MXMLUTL, 472, 622
^%ZIS, 59
^%ZISC, 75
^%ZTER, 106
^%ZTLOAD, 365
^XQDATE, 248
^XUP, 309
^XUS, 309
^XUSCLEAN, 310
^XUVERIFY, 331
^XUWORKDY, 249
^ZU, 310
ACTION^XQALERT, 25
ACTION^XQH4, 121
ADD^XPAR, 429
AHISTORY^XQALBUTL, 14
ALERTDAT^XQALBUTL, 16
BLDLST^XPAREDIT, 439
BMES^XPDUTL, 215
CALL^%ZISTCP, 85
CCODE^XIPUTIL, 2
CDSYS^XUAF4, 135
CHG^XPAR, 430
CHGA^XGF, 511
CHILDREN^XUAF4, 136
CLEAN^XGF, 513
CLEAR^XGF, 514
CLOSE^%ZISH, 124
CLOSE^%ZISTCP, 86
CLOSE^%ZISUTL, 87
CMNT^MXMLDOM, 461, 611
DE^XUSHSHP, 102
DEL^XPAR, 431
DEL^XPDKEY, 300
DELETE^MXMLDOM, 461, 612
DELETE^XQALERT, 25
DELETEA^XQALERT, 27
DELSTAT^XQALBUTL, 18, 389

DESC^%ZTLOAD, 374
DEVICE^XUDHGUI, 55
DISP^XQORM1, 490
DISP^XUTMOPT, 361
DK^XTLKMGR, 417
DLL^XTLKMGR, 418
DQ^%ZTLOAD, 374
DSH^XTLKMGR, 418
DSY^XTLKMGR, 419
EDIT^XPAREDIT, 439
EDIT^XUTMOPT, 362
EDITPAR^XPAREDIT, 440
EN^MXMLPRSE, 468, 617
EN^XDRMERG, 402
EN^XPAR, 431
EN^XPAREDIT, 440
EN^XQH, 120
EN^XQOR, 487
EN^XQORM, 489
EN^XUA4A71, 247
EN^XUSHSHP, 103
EN^XUTMDEVQ, 352
EN1^XQH, 120
EN1^XQOR, 488
ENDR^%ZISS, 77
ENS^%ZISS, 78
ENVAL^XPAR, 433
EXIT^XPDID, 247
F4^XUAF4, 137
FORWARD^XQALFWD, 42
FRAME^XGF, 515
GETACT^XQALERT, 28
GETENT^XPAREDIT, 441
GETENV^%ZOSV, 292
GETIREF^XTID, 473
GETLST^XPAR, 435
GETPAR^XPAREDIT, 441
GETWP^XPAR, 436
GKILL^%ZISS, 83
GSET^%ZISS, 83
H^XUS, 310, 317
HASH^XUSHSHP, 104
HLP1^%ZIS, 72
HLP2^%ZIS, 72
HOME^%ZIS, 73
INIT^XPDID, 246
INITKB^XGF, 516
IOXY^XGF, 517
ISQED^%ZTLOAD, 375
K^XTLKMGR, 419
KILL^%ZISS, 85

 Index

July 1995 Kernel 655
Revised September 2011 Developer's Guide
 Version 8.0

KILL^%ZTLOAD, 377
KILL^XUSCLEAN, 322
L^XTLKMGR, 420
LKUP^XTLKMGR, 421
LOGRSRC^%ZOSV, 293
LOOKUP^XUAF4, 142
MAIL^XLFNSLK, 98
MES^XPDUTL, 219
MSG^XQOR, 488
NAMECOMP^XLFNAME, 266
NDEL^XPAR, 437
NOTIPURG^XQALBUTL, 19
OP^XQ92, 236
OP^XQCHK, 239
OPEN^%ZISH, 132
OPEN^%ZISUTL, 87
OPKG^XUHUI, 111
OPTION^%ZTLOAD, 377
OPTSTAT^XUTMOPT, 362
OUT^XPDMENU, 234
OWNSKEY^XUSRB, 302
PARENT^XUAF4, 146
PATIENT^XQALERT, 29
PCLEAR^%ZTLOAD, 378
PKILL^%ZISP, 75
POSTAL^XIPUTIL, 5
POSTALB^XIPUTIL, 7
PREP^XGF, 518
PSET^%ZISP, 76
PTPURG^XQALBUTL, 21
PUT^XPAR, 437
READ^XGF, 519
RECEIVE^XTKERMIT, 412
RECIPURG^XQALBUTL, 22
REMVSURO^XQALSURO, 46
RENAME^XPDMENU, 235
REP^XPAR, 438
REQ^%ZTLOAD, 379
RESCH^XUTMOPT, 363
RESETKB^XGF, 521
RESTART^XDRMERG, 404
RESTORE^XGF, 522
RFILE^XTKERM4, 413
RMDEV^%ZISUTL, 90
RTN^%ZTLOAD, 385
SAVDEV^%ZISUTL, 90
SAVE^XGF, 523
SAY^XGF, 524
SAYU, 526
SEND^XTKERMIT, 413
SET^XUPARAM, 316

SET^XUS1A, 318
SETA^XGF, 527
SETENV^%ZOSV, 294
SETNM^%ZOSV, 295
SETSURO1^XQALSURO, 47
SETUP^XQALERT, 30
SH^XTLKMGR, 426
SIBLING^XUAF4, 149
SIG^XUSESIG, 99
SSADD^XPDMENU, 233
STAT^%ZTLOAD, 386
STDNAME^XLFNAME, 271
SUROFOR^XQALSURO, 48
SUROLIST^XQALSURO, 49
SY^XTLKMGR, 426
T0^%ZOSV, 296
T1^%ZOSV, 297
TED^XPAREDIT, 442
TEDH^XPAREDIT, 443
TEXT^MXMLDOM, 467, 616
TITLE^XPDID, 246
UNWIND^%ZTER, 108
UPDATE^XPDID, 213
USE^%ZISUTL, 91
USER^XQALERT, 40
USERDATA^XQALBUTL, 22
USERLIST^XQALBUTL, 24
WIN^XGF, 528
XREF^XQORM, 490
XTLKKWL^XTLKKWL, 416
ZTSAVE^%ZTLOAD, 388

Regularly Scheduled Options, 230
Re-Indexing Files (KIDS), 174
REMOTE PROCEDURE File (#8994), 320
Remove Taskman from WAIT State Option, 349
REMVSURO^XQALSURO, 46
RENAME^XPDMENU, 235
REP^XPAR, 438
REQ^%ZTLOAD, 379
Required Builds (KIDS), 202
Requirements

Legal, xliii
RESCH^XUTMOPT, 363
RESETKB^XGF, 521
Resource Devices

SYNC FLAGs, 95
RESTART^XDRMERG, 404
RESTART^ZTMB Direct Mode Utility, 349
RESTORE^XGF, 522
Revision History, iii

Documentation, iii

Index

656 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

Patches, xv
Rewinding Devices, 74
RFILE^XTKERM4, 413
Right Margin, 66, 70
RMDEV^%ZISUTL, 90
ROOM-BED File (#405.4), 428
Routine Compare - Current with Previous

Option, 455
Routine Edit Option, 449
Routine Editor, 243, 245
ROUTINE File (#9.8), 176, 243, 450, 451, 452
Routine Install Options (KIDS), 186
Routine Tools, 444

^ %RR Direct Mode Utility, 444
^ %RS Direct Mode Utility, 445
^%INDEX Direct Mode Utility, 444
^%Z Direct Mode Utility, 444
^%ZTP1 Direct Mode Utility, 444
^%ZTPP Direct Mode Utility, 444
^%ZTRDEL Direct Mode Utility, 444
^XINDEX Direct Mode Utility, 444
^XTFCE Direct Mode Utility, 444
^XTFCR Direct Mode Utility, 444
^XTRCMP Direct Mode Utility, 444
^XTRGRPE Direct Mode Utility, 444
^XTVCHG Direct Mode Utility, 444
^XTVNUM Direct Mode Utility, 444
Analyzing Routines, 445
Compare local/national checksums report

Option, 450, 451
Compare Routines on Tape to Disk Option,

451
Compare Two Routines Option, 451
Comparing Routines, 450
Delete Routines Option, 452
Deleting

Routines, 452
Direct Mode Utilities, 444
Flow Chart Entire Routine Option, 449
Flow Chart from Entry Point Option, 449
Group Routine Edit Option, 449
Input Routines Option, 452
List Routines option, 450
Load Routines, 452
Load/refresh checksum values into ROUTINE

file Option, 452
Output Routines Option, 452
Printing Routines, 450
Routine Edit Option, 449
Routine Tools

Editing Routines, 449

Routines by Patch Number Option, 449
Save Routines, 452
TAPE^XTRCMP Direct Mode Utility, 444
Variable Changer Option, 450
Version Number Update Option, 450

Routine Tools Menu, 445
Routines

%RR, 452
%RS, 452
%ZTRDEL, 452
^XUP, 232
CHCEK1^XTSUMBLD, 457
CHECK^XTSUMBLD, 451, 454, 457
CHECK1^XTSUMBLD, 451, 454, 456, 457
KIDS, 176
Load, 452
MXMLDOM, 458
Save, 452
XQ1, 232
XTRCMP, 451
XTVCHG, 450
XTVNUM, 450
ZTMGRSET, 243

Routines by Patch Number Option, 449
RPCs

XUPS PERSONQUERY, 52
XUS KEY CHECK, 302

RT logging, 296
RTN^%ZTLOAD, 385
RUM, 293, 294
RUN^ZTMKU Direct Mode Utility, 349

S
S^%ZTLOAD, 341
SAVDEV^%ZISUTL, 90
Save Routines, 452
SAVE^XGF, 523
SAVEMERG^XDRMERGB, 405
SAY^XGF, 524
SAYU^XGF, 526
SECURITY KEY File (#19.1), 299, 300
Security Keys

$$KCHK^XUSRB, 504
$$LKUP^XPDKEY, 300
$$RENAME^XPDKEY, 301
APIs, 300
DEL^XPDKEY, 300
Developer Tools, 299
Key Lookup, 299
OWNSKEY^XUSRB, 302
Person Lookup, 299

 Index

July 1995 Kernel 657
Revised September 2011 Developer's Guide
 Version 8.0

XUMGR, 242
XUPROG, 159, 242, 445, 452
XUPROGMODE, 242, 445, 449, 450, 452,

457
Selecting Templates (KIDS), 178
Self-Contained Routine (KIDS), 184
Send Alpha/Beta Usage to Programmers Option,

208, 210
SEND^XTKERMIT, 413
Sending Security Codes (KIDS), 166
Server Options

Appending Text to a Server Request Bulletin
or Mailman Reply, 306

Customizing a Server Request Bulletin, 306
Developer Tools, 305
Key Variables, 305
Tools for Processing Server Requests, 305

SERVICE/SECTION File (#49), 428
SET^XUPARAM, 316
SET^XUS1A, 318
SETA^XGF, 527
SETENV^%ZOSV, 294
SETNM^%ZOSV, 295
SETSURO1^XQALSURO, 47
Setting a File's Package Revision Data Node

(Post-Install) (KIDS), 191
SETUP^XQALERT, 30
SETUP^XUSRB, 327
SH^XTLKMGR, 426
SIBLING^XUAF4, 149
SIG^XUSESIG, 99
SIGN-ON LOG File (#3.081), 310
Signon/Security

$$PROD^XUPROD, 317
$$ADD^XUSERNEW, 323
$$CHECKAV^XUSRB, 325
$$CHECKAV^XUVERIFY, 332
$$CREATE^XUSAP, 320
$$DECRYP^XUSRB1, 329
$$ENCRYP^XUSRB1, 329
$$GET^XUPARAM, 314
$$HANDLE^XUSRB4, 330
$$INHIBIT^XUSRB, 326
$$KSP^XUPARAM, 314
$$LKUP^XUPARAM, 315
^XUP Direct Mode Utility, 309
^XUS Direct Mode Utility, 309
^XUSCLEAN Direct Mode Utility, 310
^XUVERIFY, 331
^ZU Direct Mode Utility, 310
APIs, 314

AVHLPTXT^XUS2, 319
Creating a Package-specific User Termination

Action, 312
CVC^XUSRB, 325
Developer Tools, 309
Direct Mode Utilities, 309

^XUP, 309
^XUS, 309
^XUSCLEAN, 310
^ZU, 310
H^XUS, 310

GETPEER^%ZOSV, 333
H^XUS, 317
H^XUS Direct Mode Utility, 310
INTRO^XUSRB, 326
KILL^XUSCLEAN, 322
LOGOUT^XUSRB, 327
SET^XUPARAM, 316
SET^XUS1A, 318
SETUP^XUSRB, 327
VALIDAV^XUSRB, 328
WITNESS^XUVERIFY, 332
XU USER SIGN-ON Option, 311
XU USER TERMINATE Option, 312

Signon/security Functions
SIG^XUSESIG, 99

Site Parameters, 314
Skip Installing or Delete a Routine (KIDS), 186
Skipping Installation Questions (KIDS), 196
Slave Printers, 65
Software-wide Variables, Protecting, 322
Soundex

$$EN^XUA4A71, 247
SPOOL DATA File (#3.519), 336
SPOOL DOCUMENT File (#3.51), 336
Spooling

APIs, 336
Developer Tools, 335
DSD^ZISPL, 336
DSDOC^ZISPL, 336
Site Parameters, 314
Spool Device, 65

Startup PROD check Option, 317
STAT^%ZTLOAD, 386
STATE File (#5), 2, 6, 8
STATION NUMBER Field (#99), 150, 152
STDNAME^XLFNAME, 271
Stop Requests, Checking for (TaskMan), 341
Stop Task Manager Option, 349
STOP^ZTMKU Direct Mode Utility, 349
Stopping tasks, 385

Index

658 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

String Functions
$$CJ^XLFSTR, 595
$$INVERT^XLFSTR, 596
$$LJ^XLFSTR, 596
$$LOW^XLFSTR, 597
$$REPEAT^XLFSTR, 598
$$REPLACE^XLFSTR, 598
$$RJ^XLFSTR, 599
$$SENTENCE^XLFSTR, 600
$$STRIP^XLFSTR, 601
$$TITLE^XLFSTR, 602
$$TRIM^XLFSTR, 602
$$UP^XLFSTR, 604

String Functions (XLF), 595
Subtype, 67
SUROFOR^XQALSURO, 48
SUROLIST^XQALSURO, 49
SURROGATE END DATE/TIME Field (#.04),

49
SURROGATE FOR ALERTS Field(#.02), 49
SURROGATE START DATE/TIME Field

(#.03), 49
SY^XTLKMGR, 426
Symbols

Found in the Documentation, xliv
SYNC FLAG, 348
SYNC FLAGs, 95
SYNC FLAGs to Control Sequences of Tasks,

347
Systems Manager Menu, 159, 454

T
T0^%ZOSV, 296
T1^%ZOSV, 297
Table of Contents, xvii
Tables, xl
TAPE^XTRCMP Direct Mode Utility, 444, 451
TASK SYNC FLAG File (#14.8), 348
TaskMan

$$ASKSTOP^%ZTLOAD, 373
$$DEV^XUTMDEVQ, 350
$$JOB^%ZTLOAD, 376
$$NODEV^XUTMDEVQ, 354
$$PSET^%ZTLOAD, 378
$$QQ^XUTMDEVQ, 356
$$REQQ^XUTMDEVQ, 360
$$S^%ZTLOAD, 385
$$TM^%ZTLOAD, 387
^%ZTLOAD, 95, 365
APIs, 350
Checking Environment, 349

DESC^%ZTLOAD, 374
Developer Tools, 337
Direct Mode Utilities, 349

^ZTMB, 349
^ZTMCHK, 349
^ZTMON, 349
Check Environment, 349
Remove Taskman from WAIT State

Option, 349
Restart, 349
RESTART^ZTMB, 349
RUN^ZTMKU, 349
Starting, 349
STOP^ZTMKU, 349
Stopping, 349
WAIT^ZTMKU, 349

DISP^XUTMOPT, 361
DQ^%ZTLOAD, 374
EDIT^XUTMOPT, 362
EN^XUTMDEVQ, 352
EN^XUTMTP, 364
How to Write Code to Queue Tasks, 337
ISQED^%ZTLOAD, 375
KILL^%ZTLOAD, 377
Monitoring, 349
OPTION^%ZTLOAD, 377
OPTSTAT^XUTMOPT, 362
PCLEAR^%ZTLOAD, 378
Placing in a WAIT State, 349
Queuers, 337
Removing from WAIT State, 349
REQ^%ZTLOAD, 379
RESCH^XUTMOPT, 363
Restarting, 349
RTN^%ZTLOAD, 385
Starting, 349
Stopping, 349
SYNC FLAGs, 95
Task Status, 386
Tasks, 339
ZTSAVE^%ZTLOAD, 388

TaskMan (DCL context), 366
Tasks

^%ZIS Call within a Task, 344
^%ZTLOAD call within a task, 344
Destination, 340
Device, 340
DT Variable, 340
DUZ Array, 340
Error Trap, 341
IO* Array, 340

 Index

July 1995 Kernel 659
Revised September 2011 Developer's Guide
 Version 8.0

Post-execution commands, 343
Priority, 341
Purging the Task Record, 342
Queuing with no I/O device, 369
S^%ZTLOAD, 341
Saved Variables, 341
Stop Requests, 341
SYNC FLAGs, 347
TaskMan, 339
Tools, 341
Two-step tasks

Long Running Tasks, 345
ZTDESC Variable, 340
ZTDTH Variable, 340
ZTIO Variable, 340
ZTQUEUED variable, 343
ZTQUEUED Variable, 340
ZTREQ, 343
ZTREQ Variable, 342
ZTRTN Variable, 340
ZTSK Variable, 340
ZTSTAT Variable, 348
ZTSTOP Variable, 341

TASKS File (#14.4), 341, 342, 374
TEAM File (#404.51), 428
TED^XPAREDIT, 442
TEDH^XPAREDIT, 443
Templates (KIDS), 178
Terminal Server, 59, 65
TERMINAL TYPE File (#3.2), 61, 67, 76, 77,

78
Terminating

Alpha/Beta Tracking
Local Test Software Option Usage, 211
National Release Software Option Usage,

212
Alpha/Beta Tracking (KIDS), 211

Termination Action, Creating, 312
Test an option not in your menu Option, 242
TEXT^MXMLDOM, 467, 616
TIME ZONE field (#1), 555
TIMED READ (# OF SECONDS) Field

(#200.1), 493
TIMED READ (# OF SECONDS) Field (#51.1),

493
TITLE^XPDID, 246
Toolkit

Alerts
DELSTAT^XQALBUTL, 389

Alerts APIs, 389
APIs, 389

Data Standardization APIs, 391
Developer Tools, 389
Direct Mode Utilities

Miscellaneous Tools, 241
Routine Tools, 444
Verification Tools, 453

Duplicate Record Merge
RESTART^XDRMERG, 404
SAVEMERG^XDRMERGB, 405

Duplicate Record Merge APIs, 401
Get Field Values of Final Replacement Term

(Term/Concept)
$$RPLCVALS^XTIDTRM, 398

Get List of Replacement Terms, w/Optional
Status Date and History (Term/Concept)
$$RPLCLST^XTIDTRM, 394

Get Mapped Terms (Term/Concept)
GETRPLC^XTIDTRM, 393

Get Replacement Trail for Term, with
Replaced “BY” and Replacement “FOR”
Terms (Term/Concept)
$$RPLCTRL^XTIDTRM, 397

HTTP Client APIs, 406
HTTP Client Helper

$$DECODE^XTHCUTL, 410
$$ENCODE^XTHCURL, 408
$$GETURL^XTHC10, 406
$$MAKEURL^XTHCURL, 409
$$PARSEURL^XTHCURL, 410

Kermit
RECEIVE^XTKERMIT, 412
RFILE^XTKERM4, 413
SEND^XTKERMIT, 413

KERMIT APIs, 412
Map One Term to Another (Term/Concept)

$$RPLCMNT^XTIDTRM, 396
Multi-Term Look-Up (MTLU)

APIs, 415
DK^XTLKMGR, 417
DLL^XTLKMGR, 418
DSH^XTLKMGR, 418
DSY^XTLKMGR, 419
K^XTLKMGR, 419
L^XTLKMGR, 420
LKUP^XTLKMGR, 421
SH^XTLKMGR, 426
SY^XTLKMGR, 426
XTLKKWL^XTLKKWL, 416

Multi-Term Look-Up (MTLU) APIs, 415
Parameter Tools

$$GET^XPAR, 434

Index

660 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

ADD^XPAR, 429
BLDLST^XPAREDIT, 439
CHG^XPAR, 430
DEL^XPAR, 431
EDIT^XPAREDIT, 439
EDITPAR^XPAREDIT, 440
EN^XDRMERG, 402
EN^XPAR, 431
EN^XPAREDIT, 440
Entity Definition, 428
ENVAL^XPAR, 433
GETENT^XPAREDIT, 441
GETLST^XPAR, 435
GETPAR^XPAREDIT, 441
GETWP^XPAR, 436
Instance Definition, 429
NDEL^XPAR, 437
Parameter Definition, 429
Parameter Template Definition, 429
PUT^XPAR, 437
REP^XPAR, 438
TED^XPAREDIT, 442
TEDH^XPAREDIT, 443
Value Definition, 429

Parameter Tools APIs, 428
Replacement Relationships, 392
Set Replacement Terms (Term/Concept)

SETRPLC^XTIDTRM, 399
VHA Unique ID (VUID)

$$GETMASTR^XTID, 475
$$GETSTAT^XTID, 476
$$GETVUID^XTID, 478
$$SCREEN^XTID, 479
$$SETMASTR^XTID, 481
$$SETSTAT^XTID, 483
$$SETVUID^XTID, 484
GETIREF^XTID, 473

VHA Unique ID (VUID) APIs, 473
VistA XML Parser

$$ATTRIB^MXMLDOM, 458
$$CHILD^MXMLDOM, 459
$$CMNT^MXMLDOM, 460
$$EN^MXMLDOM, 462
$$NAME^MXMLDOM, 463
$$PARENT^MXMLDOM, 464
$$SIBLING^MXMLDOM, 465
$$SYMENC^MXMLUTL, 471
$$TEXT^MXMLDOM, 466
$$VALUE^MXMLDOM, 467
$$XMLHDR^MXMLUTL, 472
CMNT^MXMLDOM, 461

DELETE^MXMLDOM, 461
EN^MXMLPRSE, 468
TEXT^MXMLDOM, 467

VistA XML Parser APIs, 458
Toolkit Queuable Options menu

Errors Logged in Alpha/Beta Test (QUEUED)
Option, 207, 208

Tools for Processing Server Requests, 305
Track Package Nationally (KIDS), 205
TRANSPORT BUILD NUMBER Field (#63),

451
Transporting a Distribution (KIDS), 179
Troubleshooting

Errors
KIDS

Tracking Alpha/Beta Software Errors,
208

KIDS
Tracking Alpha/Beta Software Errors, 208

TYPE Field (#4), 235, 236
Types

Options, 229

U
UNWIND^%ZTER, 108
Unwinder

APIs, 487
Developer Tools, 487
DISP^XQORM1, 490
EN^XQOR, 487
EN^XQORM, 489
EN1^XQOR, 488
MSG^XQOR, 488
XREF^XQORM, 490

Update ^%ZOSF Nodes, 287
Update the Status Bar During Pre- and Post-

Install Routines (KIDS), 193
Update with Current Routines Option, 455
UPDATE^XPDID, 213
UPDCOMP^XLFNAME2, 278
URLs

Acronyms Intranet Website, Glossary, 629
Adobe Website, xlvii
Glossary Intranet Website, Glossary, 629
Kernel Website, xlvi
VHA Software Document Library (VDL)

Website, xlvii
VistA Development Website, xliii

Usage Reports
Alpha/Beta Tracking (KIDS), 209

Use of

 Index

July 1995 Kernel 661
Revised September 2011 Developer's Guide
 Version 8.0

DIDEL in ^DIE Calls, 117
DLAYGO in ^DIC Calls, 116
DLAYGO When Navigating to Files, 116

USE PARAMETERS, 62
USE PARAMETERS Field, 66
Use this Manual, How to, xliii
USE^%ZISUTL, 91
User

$$ACTIVE^XUSER, 495
$$CODE2TXT^XUA4A72, 491
$$DTIME^XUP, 493
$$GET^XUA4A72, 491
$$IEN2CODE^XUA4A72, 492
$$LOOKUP^XUSER, 500
$$NAM^XUSER, 502
$$PROVIDER^XUSER, 503
APIs, 491
Developer Tools, 491
DIV4^XUSER, 499
DIVGET^XUSRB2, 505
DIVSET^XUSRB2, 506
USERINFO^XUSRB2, 506

USER CLASS Field (#9.5), 320
USER CLASS File (#201), 320
User Interface

^%Z Editor, 243
USER TERMINATE ROUTINE Field, 312
USER TERMINATE ROUTINE Option

(Obsolete), 312
USER TERMINATE TAG Field, 312
User Termination Action, Creating, 312
USER^XQALERT, 40
USERDATA^XQALBUTL, 22
USERINFO^XUSRB2, 506
USERLIST^XQALBUTL, 24
Using Checkpoints (Pre- and Post-Install

Routines), 198
Using SYNC FLAGs to Control Sequences of

Tasks (TaskMan), 347
USR CLASS File (#8930), 428
Utilities

%G, 242
%RFIND, 446
%ZTPP, 450
^XUP, 206
^XUS, 206
Lookup Utility

Miscellaneous Developer Tools, 247, 248
PackMan Compare, 451
XINDEX, 445, 446, 447, 453

Error Codes, 446, 448

Utility Functions
$$BASE^XLFUTL, 605
$$CCD^XLFUTL, 606
$$CNV^XLFUTL, 606
$$DEC^XLFUTL, 607
$$VCD^XLFUTL, 608

Utility Functions (XLF), 605

V
VA FileMan lookups and MTLU, 415
VA FileMan Supported Calls

Multi-Term Look-Up (MTLU), 415
VA Programming Standards and Conventions

(SAC), 446, 453
VALIDAV^XUSRB, 328
Value

Parameter Tools
Toolkit APIs, 429

Variable Changer Option, 450
Variables

Developer Use in Menu Manager, 230
DIFROM, 186
DIFROM (KIDS), 192
KIDS, 185, 192
Server Options, 305
Tasks, 340
XPDENV, 185
XPDNM, 185
XPDNM (KIDS), 192
XPDNM("SEQ"), 185, 192
XPDNM("TST"), 185, 192
XQABTST, 206
XQMM("A") (Menu Manager), 231
XQMM("B") (Menu Manager), 231
XQMM("J") (Menu Manager), 231
XQMM("N") (Menu Manager), 232
XQUIT (Menu Manager), 230
ZTQUEUED (KIDS), 192

Verification Tools, 453
^%INDEX Direct Mode Utility, 454
^%ZTER Direct Mode Utility, 454
^nsNTEG Direct Mode Utility, 454
^XINDEX Direct Mode Utility, 454
^XPDCPU Direct Mode Utility, 453
^XTER Direct Mode Utility, 454
^XTERPUR Direct Mode Utility, 454
Calculate and Show Checksum Values Option

Programmer Options Menu, 456
CHCKSUM ^XTSUMBLD Direct Mode

Utility, 454, 456, 457
Direct Mode Utilities, 453

Index

662 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

ONE^nsNTEG Direct Mode Utility, 454
Routine Compare - Current with Previous

option, 455
Update with Current Routines option, 455
Update with Current Routines Option, 455

Verifier Tools Menu, 454, 455
Verifying Patch Installation (KIDS), 186
VERSION Field (#22, Multiple), 214
Version Number Update Option, 450
Version Numbers (KIDS), 186
VHA Software Document Library (VDL)

Website, xlvii
VHA Unique ID (VUID)

Toolkit APIs, 473
VistA XML Parser

Toolkit APIs, 458
VOLUME SET File (#14.5), 376

W
WAIT^ZTMKU Direct Mode utility, 349
Websites

Acronyms Intranet Website, Glossary, 629
Adobe Website, xlvii
Glossary Intranet Website, Glossary, 629
Kernel Website, xlvi
VHA Software Document Library (VDL)

Website, xlvii
VistA Development Website, xliii

When to Transport More than One Transport
Global in a Distribution (KIDS), 181

Where Questions Are Asked During
Installations (KIDS), 197

WIN^XGF, 528
WITNESS^XUVERIFY, 332
Workday Calculation, 249
Workday Offset Calculation, 252
Workday Validation, 251
Writing Two-step Tasks (TaskMan)

Long Running Tasks, 345

X
XDR REPOINTED ENTRY File (#15.3), 403
XDRMERG

EN^XDRMERG, 402
RESTART^XDRMERG, 404

XDRMERGB
SAVEMERG^XDRMERGB, 405

XGF Direct Mode Utilities, 510
XGF Function Library

$$READ^XGF, 519

^XGFDEMO, 510
^XGFDEMO Direct Mode Utility, 510
APIs, 511
CHGA^XGF, 511
CLEAN^XGF, 513
CLEAR^XGF, 514
Demo Program, 510
Developer Tools, 509
FRAME^XGF, 515
INITKB^XGF, 516
IOXY^XGF, 517
PREP^XGF, 518
RESETKB^XGF, 521
RESTORE^XGF, 522
SAVE^XGF, 523
SAY^XGF, 524
SAYU^XGF, 526
SETA^XGF, 527
System Requirements, 509
WIN^XGF, 528

XGFDEMO
^XGFDEMO, 510

XINDEX, 454
XINDEX Utility, 445, 446, 447, 453

Error Codes, 446, 448
XIPUTIL

$$FIPS^XIPUTIL, 4
$$FIPSCHK^XIPUTIL, 4
CCODE^XIPUTIL, 2
POSTAL^XIPUTIL, 5
POSTALB^XIPUTIL, 7

XLF Function Library
$$%H^XLFDT, 534
$$ABS^XLFMTH, 565
$$ACOS^XLFMTH, 565
$$ACOSDEG^XLFMTH, 566
$$ACOSH^XLFHYPER, 557
$$ACOT^XLFMTH, 567
$$ACOTDEG^XLFMTH, 567
$$ACOTH^XLFHYPER, 557
$$ACSC^XLFMTH, 568
$$ACSCDEG^XLFMTH, 568
$$ACSCH^XLFHYPER, 558
$$ASEC^XLFMTH, 569
$$ASECDEG^XLFMTH, 570
$$ASECH^XLFHYPER, 559
$$ASIN^XLFMTH, 570
$$ASINDEG^XLFMTH, 571
$$ASINH^XLFHYPER, 559
$$ATAN^XLFMTH, 571
$$ATANDEG^XLFMTH, 572

 Index

July 1995 Kernel 663
Revised September 2011 Developer's Guide
 Version 8.0

$$ATANH^XLFHYPER, 560
$$BASE^XLFUTL, 605
$$BSA^XLFMSMT, 589
$$CCD^XLFUTL, 606
$$CJ^XLFSTR, 595
$$CNV^XLFUTL, 606
$$COS^XLFMTH, 573
$$COSDEG^XLFMTH, 573
$$COSH^XLFHYPER, 560
$$COT^XLFMTH, 574
$$COTDEG^XLFMTH, 574
$$COTH^XLFHYPER, 561
$$CRC16^XLFCRC, 531
$$CRC32^XLFCRC, 533
$$CSC^XLFMTH, 575
$$CSCDEG^XLFMTH, 576
$$CSCH^XLFHYPER, 562
$$DEC^XLFUTL, 607
$$DECDMS^XLFMTH, 576
$$DMSDEC^XLFMTH, 577
$$DOW^XLFDT, 535
$$DT^XLFDT, 535
$$DTR^XLFMTH, 578
$$E^XLFMTH, 578
$$EXP^XLFMTH, 579
$$FMADD^XLFDT, 536
$$FMDIFF^XLFDT, 537
$$FMTE^XLFDT, 538
$$FMTH^XLFDT, 543
$$FMTHL7^XLFDT, 544
$$HADD^XLFDT, 544
$$HDIFF^XLFDT, 545
$$HL7TFM^XLFDT, 546
$$HTE^XLFDT, 548
$$HTFM^XLFDT, 550
$$INVERT^XLFSTR, 596
$$LENGTH^XLFMSMT, 590
$$LJ^XLFSTR, 596
$$LN^XLFMTH, 579
$$LOG^XLFMTH, 580
$$LOW^XLFSTR, 597
$$MAX^XLFMTH, 581
$$MIN^XLFMTH, 581
$$NOW^XLFDT, 551
$$PI^XLFMTH, 582
$$PWR^XLFMTH, 582
$$REPEAT^XLFSTR, 598
$$REPLACE^XLFSTR, 598
$$RJ^XLFSTR, 599
$$RTD^XLFMTH, 583
$$SCH^XLFDT, 551

$$SEC^XLFDT, 554
$$SEC^XLFMTH, 584
$$SECDEG^XLFMTH, 585
$$SECH^XLFHYPER, 562
$$SENTENCE^XLFSTR, 600
$$SIN^XLFMTH, 586
$$SINDEG^XLFMTH, 586
$$SINH^XLFHYPER, 563
$$SQRT^XLFMTH, 587
$$STRIP^XLFSTR, 601
$$TAN^XLFMTH, 587
$$TANDEG^XLFMTH, 588
$$TANH^XLFHYPER, 564
$$TEMP^XLFMSMT, 591
$$TITLE^XLFSTR, 602
$$TRIM^XLFSTR, 602
$$TZ^XLFDT, 555
$$UP^XLFSTR, 604
$$VCD^XLFUTL, 608
$$VOLUME^XLFMSMT, 592
$$WEIGHT^XLFMSMT, 593
$$WITHIN^XLFDT, 556
APIs, 531
CRC Functions, 531
Date Functions, 534
Developer Tools, 531
Hyperbolic Trigonometric Functions, 557
Math Functions, 565
Measurement Functions, 589
String Functions, 595
Utility Functions, 605

XLFCRC
$$CRC16^XLFCRC, 531
$$CRC32^XLFCRC, 533
CRC Functions, 531

XLFDT
$$%H^XLFDT, 534
$$DOW^XLFDT, 535
$$DT^XLFDT, 535
$$FMADD^XLFDT, 536
$$FMDIFF^XLFDT, 537
$$FMTE^XLFDT, 538
$$FMTH^XLFDT, 543
$$FMTHL7^XLFDT, 544
$$HADD^XLFDT, 544
$$HDIFF^XLFDT, 545
$$HL7TFM^XLFDT, 546
$$HTE^XLFDT, 548
$$HTFM^XLFDT, 550
$$NOW^XLFDT, 551
$$SCH^XLFDT, 551

Index

664 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

$$SEC^XLFDT, 554
$$TZ^XLFDT, 555
$$WITHIN^XLFDT, 556
Date Functions), 534

XLFHYPER
$$ACOSH^XLFHYPER, 557
$$ACOTH^XLFHYPER, 557
$$ACSCH^XLFHYPER, 558
$$ASECH^XLFHYPER, 559
$$ASINH^XLFHYPER, 559
$$ATANH^XLFHYPER, 560
$$COSH^XLFHYPER, 560
$$COTH^XLFHYPER, 561
$$CSCH^XLFHYPER, 562
$$SECH^XLFHYPER, 562
$$SINH^XLFHYPER, 563
$$TANH^XLFHYPER, 564
Hyperbolic Trigonometric Functions), 557

XLFMSMT
$$BSA^XLFMSMT, 589
$$LENGTH^XLFMSMT, 590
$$TEMP^XLFMSMT, 591
$$VOLUME^XLFMSMT, 592
$$WEIGHT^XLFMSMT, 593
Measurement Functions), 589

XLFMTH
$$ABS^XLFMTH, 565
$$ACOS^XLFMTH, 565
$$ACOSDEG^XLFMTH, 566
$$ACOT^XLFMTH, 567
$$ACOTDEG^XLFMTH, 567
$$ACSC^XLFMTH, 568
$$ACSCDEG^XLFMTH, 568
$$ASEC^XLFMTH, 569
$$ASECDEG^XLFMTH, 570
$$ASIN^XLFMTH, 570
$$ASINDEG^XLFMTH, 571
$$ATAN^XLFMTH, 571
$$ATANDEG^XLFMTH, 572
$$COS^XLFMTH, 573
$$COSDEG^XLFMTH, 573
$$COT^XLFMTH, 574
$$COTDEG^XLFMTH, 574
$$CSC^XLFMTH, 575
$$CSCDEG^XLFMTH, 576
$$DECDMS^XLFMTH, 576
$$DMSDEC^XLFMTH, 577
$$DTR^XLFMTH, 578
$$E^XLFMTH, 578
$$EXP^XLFMTH, 579
$$LN^XLFMTH, 579

$$LOG^XLFMTH, 580
$$MAX^XLFMTH, 581
$$MIN^XLFMTH, 581
$$PI^XLFMTH, 582
$$PWR^XLFMTH, 582
$$RTD^XLFMTH, 583
$$SD^XLFMTH, 584
$$SEC^XLFMTH, 584
$$SECDEG^XLFMTH, 585
$$SIN^XLFMTH, 586
$$SINDEG^XLFMTH, 586
$$SQRT^XLFMTH, 587
$$TAN^XLFMTH, 587
$$TANDEG^XLFMTH, 588
Math Functions), 565

XLFNAME
$$BLDNAME^XLFNAME, 255
$$CLEANC^XLFNAME, 258
$$FMNAME^XLFNAME, 260
$$HLNAME^XLFNAME, 262
$$NAMEFMT^XLFNAME, 267
NAMECOMP^XLFNAME, 266
STDNAME^XLFNAME, 271

XLFNAME2
DELCOMP^XLFNAME2, 276
UPDCOMP^XLFNAME2, 278

XLFNSLK
$$ADDRESS^XLFNSLK, 97
MAIL^XLFNSLK, 98

XLFSTR
$$CJ^XLFSTR, 595
$$INVERT^XLFSTR, 596
$$LJ^XLFSTR, 596
$$LOW^XLFSTR, 597
$$REPEAT^XLFSTR, 598
$$REPLACE^XLFSTR, 598
$$RJ^XLFSTR, 599
$$SENTENCE^XLFSTR, 600
$$STRIP^XLFSTR, 601
$$TITLE^XLFSTR, 602
$$TRIM^XLFSTR, 602
$$UP^XLFSTR, 604
String Functions), 595

XLFUTL
$$BASE^XLFUTL, 605
$$CCD^XLFUTL, 606
$$CNV^XLFUTL, 606
$$DEC^XLFUTL, 607
$$VCD^XLFUTL, 608
Utility Functions), 605

XML

 Index

July 1995 Kernel 665
Revised September 2011 Developer's Guide
 Version 8.0

$$ATTRIB^MXMLDOM, 609
$$CHILD^MXMLDOM, 610
$$CMNT^MXMLDOM, 610
$$EN^MXMLDOM, 612
$$NAME^MXMLDOM, 614
$$PARENT^MXMLDOM, 614
$$SIBLING^MXMLDOM, 615
$$SYMENC^MXMLUTL, 621
$$TEXT^MXMLDOM, 615
$$VALUE^MXMLDOM, 617
$$XMLHDR^MXMLUTL, 622
APIs, 609
CMNT^MXMLDOM, 611
DELETE^MXMLDOM, 612
Developer Tools, 609
EN^MXMLPRSE, 617
TEXT^MXMLDOM, 616

XPAR
$$GET^XPAR, 434
ADD^XPAR, 429
CHG^XPAR, 430
DEL^XPAR, 431
EN^XPAR, 431
ENVAL^XPAR, 433
GETLST^XPAR, 435
GETWP^XPAR, 436
NDEL^XPAR, 437
PUT^XPAR, 437
REP^XPAR, 438

XPAREDIT
BLDLST^XPAREDIT, 439
EDIT^XPAREDIT, 439
EDITPAR^XPAREDIT, 440
EN^XPAREDIT, 440
GETENT^XPAREDIT, 441
GETPAR^XPAREDIT, 441
TED^XPAREDIT, 442
TEDH^XPAREDIT, 443

XPD BUILD NAMESPACE Option, 161
XPD COPY BUILD Option, 162
XPD INSTALL BUILD Option, 185
XPD MAIN Menu, 159
XPDENV Variable, 185
XPDID

EXIT^XPDID, 247
INIT^XPDID, 246
TITLE^XPDID, 246
UPDATE^XPDID, 213

XPDIJ
EN^XPDIJ, 214

XPDIP

$$PKGPAT^XPDIP, 214
XPDKEY

$$LKUP^XPDKEY, 300
$$RENAME^XPDKEY, 301
DEL^XPDKEY, 300

XPDMENU
$$ADD^XPDMENU, 233
$$DELETE^XPDMENU, 233
$$LKOPT^XPDMENU, 234
$$TYPE^XPDMENU, 235
OUT^XPDMENU, 234
RENAME^XPDMENU, 235

XPDNM Variable, 185, 192
XPDNM("SEQ") Variable, 185, 192
XPDNM("TST") Variable, 185, 192
XPDUTL

$$COMCP^XPDUTL, 215
$$CURCP^XPDUTL, 216
$$INSTALDT^XPDUTL, 216
$$LAST^XPDUTL, 217
$$NEWCP^XPDUTL, 220
$$OPTDE^XPDUTL, 221
$$PARCP^XPDUTL, 222
$$PATCH^XPDUTL, 222
$$PKG^XPDUTL, 223
$$PRODE^XPDUTL, 223
$$RTNUP^XPDUTL, 224
$$UPCP^XPDUTL, 225
$$VER^XPDUTL, 225
$$VERCP^XPDUTL, 226
$$VERSION^XPDUTL, 226
BMES^XPDUTL, 215
MES^XPDUTL, 219

XQ UNREF'D OPTIONS Option, 241
XQ1 Routine, 232
XQ92

NEXT^XQ92, 236
XQAB ACTUAL OPTION USAGE Option,

210
XQAB AUTO SEND Option, 208, 210
XQAB ERR DATE/SITE/NUM/ROU/ERR

Option, 210
XQAB ERROR LOG SERVER Option, 207
XQAB ERROR LOG XMIT Option, 207, 208
XQAB ERRORS LOGGED File (#8991.5), 207
XQAB LIST LOW USAGE OPTS Option, 210
XQAB MENU Menu, 209
XQABTST Variable, 206
XQALBUTL

$$PENDING^XQALBUTL, 19
$$PKGPEND^XQALBUTL, 20

Index

666 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

AHISTORY^XQALBUTL, 14
ALERTDAT^XQALBUTL, 16
DELSTAT^XQALBUTL, 18, 389
NOTIPURG^XQALBUTL, 19
PTPURG^XQALBUTL, 21
RECIPURG^XQALBUTL, 22
USERDATA^XQALBUTL, 22
USERLIST^XQALBUTL, 24

XQALERT
$$SETUP1^XQALERT, 35
ACTION^XQALERT, 25
DELETE^XQALERT, 25
DELETEA^XQALERT, 27
GETACT^XQALERT, 28
PATIENT^XQALERT, 29
SETUP^XQALERT, 30
USER^XQALERT, 40

XQALFWD
FORWARD^XQALFWD, 42

XQALSURO
$$CURRSURO^XQALSURO, 43
$$GETSURO^XQALSURO, 44
REMVSURO^XQALSURO, 46
SETSURO1^XQALSURO, 47
SUROFOR^XQALSURO, 48
SUROLIST^XQALSURO, 49

XQCHK
$$ACCESS^XQCHK, 237
OP^XQCHK, 239

XQDATE
^XQDATE, 248

XQH
EN^XQH, 120
EN1^XQH, 120

XQH4
ACTION^XQH4, 121

XQOR
EN^XQOR, 487
EN1^XQOR, 488
MSG^XQOR, 488

XQORM
EN^XQORM, 489
XREF^XQORM, 490

XQORM1
DISP^XQORM1, 490

XQUIT Variable, 230
XREF^XQORM, 490
XTER Direct Mode Utility, 105
XTERPUR Direct Mode Utility, 105
XTFCE, 449
XTFCR Option, 449

XTHC10
$$GETURL^XTHC10, 406

XTHCURL
$$ENCODE^XTHCURL, 408
$$MAKEURL^XTHCURL, 409
$$PARSEURL^XTHCURL, 410

XTHCUTL
$$DECODE^XTHCUTL, 410

XTID
$$GETMASTR^XTID, 475
$$GETSTAT^XTID, 476
$$GETVUID^XTID, 478
$$SCREEN^XTID, 479
$$SETMASTR^XTID, 481
$$SETSTAT^XTID, 483
$$SETVUID^XTID, 484
GETIREF^XTID, 473

XTIDTRM
$$GETRPLC^XTIDTRM, 393
$$RPLCLST^XTIDTRM, 394
$$RPLCMNT^XTIDTRM, 396
$$RPLCTRL^XTIDTRM, 397
$$RPLCVALS^XTIDTRM, 398
$$SETRPLC^XTIDTRM, 399

XTKERM4
RFILE^XTKERM4, 413

XTKERMIT
RECEIVE^XTKERMIT, 412
SEND^XTKERMIT, 413

XTLKKWL
XTLKKWL^XTLKKWL, 416

XTLKKWL^XTLKKWL, 416
XTLKMGR

DK^XTLKMGR, 417
DLL^XTLKMGR, 418
DSH^XTLKMGR, 418
DSY^XTLKMGR, 419
K^XTLKMGR, 419
L^XTLKMGR, 420
LKUP^XTLKMGR, 421
SH^XTLKMGR, 426
SY^XTLKMGR, 426

XTMP Global, 179, 180, 187, 292, 293, 330,
345

XT-OPTION TEST Option, 242
XTRCMP Routine, 451
XTRDEL Option, 452
XTRGRPE Option, 449
XT-ROUTINE COMPARE Option, 451
XTSUMBLD-CHECK Option

Programmer Options Menu, 456

 Index

July 1995 Kernel 667
Revised September 2011 Developer's Guide
 Version 8.0

XTV Global, 206
XTV MENU Menu, 454, 455
XTV ROUTINE CHANGES File (#8991), 455
XT-VARIABLE CHANGER Option, 450
XTVCHG Routine, 450
XT-VERSION NUMBER Option, 450
XTVNUM Routine, 450
XTVR COMPARE Option, 455
XTVR UPDATE Option, 455
XU BLOCK COUNT Option, 241, 287
XU CHECKSUM LOAD Option, 452
XU CHECKSUM REPORT Option, 450, 451,

457
XU Namespace, 210
XU SID ASK Option, 317
XU SID STARTUP Option, 317
XU USER SIGN-ON Extended Action, 318
XU USER SIGN-ON Option, 311

Package-specific Signon Actions, 311
XU USER TERMINATE Option, 312
XUA4A71

$$EN^XUA4A71, 247
XUA4A72

$$CODE2TXT^XUA4A72, 491
$$GET^XUA4A72, 491
$$IEN2CODE^XUA4A72, 492

XUAF4
$$ACTIVE^XUAF4, 135
$$CIRN^XUAF4, 137
$$ID^XUAF4, 139
$$IDX^XUAF4, 139
$$IEN^XUAF4, 140
$$LEGACY^XUAF4, 140
$$LKUP^XUAF4, 141
$$MADD^XUAF4, 142
$$NAME^XUAF4, 143
$$NNT^XUAF4, 143
$$NS^XUAF4, 144
$$O99^XUAF4, 144
$$PADD^XUAF4, 145
$$PRNT^XUAF4, 147
$$RF^XUAF4, 147
$$RT^XUAF4, 148
$$STA^XUAF4, 150
$$TF^XUAF4, 150
$$WHAT^XUAF4, 151
CDSYS^XUAF4, 135
CHILDREN^XUAF4, 136
F4^XUAF4, 137
LOOKUP^XUAF4, 142
PARENT^XUAF4, 146

SIBLING^XUAF4, 149
XUDHGUI

DEVICE^XUDHGUI, 55
XUDHSET

$$RES^XUDHSET, 58
XUEDITOPT Option, 230
XUHUI

OPKG^XUHUI, 111
XUINDEX Option, 445
XUKERNEL Menu, 212, 317
XUMF

$$IEN^XUMF, 151
XUMFI

MAIN^XUMFI, 152
XUMFP

MAIN^XUMFP, 153
XUMGR Security Key, 242
XUP

$$DTIME^XUP, 493
^XUP Direct Mode Utility, 309

XUP Routine, 232
XUP Utility, 206
XUPARAM

$$GET^XUPARAM, 314
$$KSP^XUPARAM, 314
$$LKUP^XUPARAM, 315
SET^XUPARAM, 316

XUPR RTN EDIT, 449
XUPR RTN PATCH Option, 449
XUPRGL Option, 242
XUPROD

$$PROD^XUPROD, 317
XUPROG Menu, 159, 445, 447, 456
XUPROG Security Key, 159, 242, 445, 452
XUPROGMODE Security Key, 242, 445, 449,

450, 452, 457
XUPRROU Option, 450
XUPR-ROUTINE-TOOLS Menu, 445
XUPR-RTN-TAPE-CMP Option, 451
XUPS

$$IEN^XUPS, 51
$$VPID^XUPS, 51

XUPS PERSONQUERY RPC, 52
XUPSQRY

EN1^XUPSQRY, 52
XUROUTINE IN Options, 452
XUROUTINE OUT Option, 452
XUS

^XUS Direct Mode Utility, 309
H^XUS, 317
H^XUS Direct Mode Utility, 310

Index

668 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

XUS KEY CHECK RPC, 302
XUS Utility, 206
XUS1A

SET^XUS1A, 318
XUS2

AVHLPTXT^XUS2, 319
XUSCLEAN

$$CREATE^XUSAP, 320
^XUSCLEAN Direct Mode Utility, 310
KILL^XUSCLEAN, 322

XUSEC Global, 300, 301
XUSER

$$ACTIVE^XUSER, 495
$$DEA^XUSER, 496
$$LOOKUP^XUSER, 500
$$NAM^XUSER, 502
$$PROVIDER^XUSER, 503
DIV4^XUSER, 499

XUSERNEW
$$ADD^XUSERNEW, 323

XUSESIG
^XUSESIG, 99
SIG^XUSESIG, 99

XUSESIG1
$$CHKSUM^XUSESIG1, 100
$$CMP^XUSESIG1, 100
$$DE^XUSESIG1, 101
$$EN^XUSESIG1, 101
$$ESBLOCK^XUSESIG1, 102

XUSHSHP
DE^XUSHSHP, 102
EN^XUSHSHP, 103
HASH^XUSHSHP, 104

XUSITEMGR Menu, 209
XUSITEPARM Option, 212
XUSNPI

$$CHKDGT^XUSNPI, 281
$$NPI^XUSNPI, 282
$$QI^XUSNPI, 283

XUSPF200 Key, 323
XUSRB

$$CHECKAV^XUSRB, 325
$$INHIBIT^XUSRB, 326
$$KCHK^XUSRB, 504
CVC^XUSRB, 325
INTRO^XUSRB, 326
LOGOUT^XUSRB, 327
OWNSKEY^XUSRB, 302
SETUP^XUSRB, 327
VALIDAV^XUSRB, 328

XUSRB1

$$DECRYP^XUSRB1, 329
$$ENCRYP^XUSRB1, 329

XUSRB2
DIVGET^XUSRB2, 505
DIVSET^XUSRB2, 506
USERINFO^XUSRB2, 506

XUSRB4
$$HANDLE^XUSRB4, 330

XUSTAX
$$TAXIND^XUSTAX, 284
$$TAXORG^XUSTAX, 285

XUTL Global, 490
XUTMDEVQ

$$DEV^XUTMDEVQ, 350
$$NODEV^XUTMDEVQ, 354
$$QQ^XUTMDEVQ, 356
$$REQQ^XUTMDEVQ, 360
EN^XUTMDEVQ, 352

XUTMOPT
DISP^XUTMOPT, 361
EDIT^XUTMOPT, 362
OPTSTAT^XUTMOPT, 362
RESCH^XUTMOPT, 363

XUTMTP
EN^XUTMTP, 364

XUVERIFY
$$CHECKAV^XUVERIFY, 332
^XUVERIFY, 331
WITNESS^XUVERIFY, 332

XUWORKDY
$$EN^XUWORKDY, 250
$$WORKDAY ^XUWORKDY, 251
$$WORKPLUS ^XUWORKDY, 252
^XUWORKDY, 249

Z
ZIS

$$REWIND^%ZIS, 74
^%ZIS, 59
HLP1^%ZIS, 72
HLP2^%ZIS, 72
HOME^%ZIS, 73

ZISC
^%ZISC, 75

ZISH
$$DEFDIR^%ZISH, 125
$$DEL^%ZISH, 126
$$FTG^%ZISH, 127
$$GATF^%ZISH, 128
$$GTF^%ZISH, 129
$$LIST^%ZISH, 130

 Index

July 1995 Kernel 669
Revised September 2011 Developer's Guide
 Version 8.0

$$MV^%ZISH, 131
$$PWD^%ZISH, 133
$$STATUS^%ZISH, 133
CLOSE^%ZISH, 124
OPEN^%ZISH, 132

ZISP
PKILL^%ZISP, 75
PSET^%ZISP, 76

ZISPL
DSD^ZISPL, 336
DSDOC^ZISPL, 336

ZISS
ENDR^%ZISS, 77
ENS^%ZISS, 78
GKILL^%ZISS, 83
GSET^%ZISS, 83
KILL^%ZISS, 85

ZISTCP
CALL^%ZISTCP, 85
CLOSE^%ZISTCP, 86

ZISUTL
CLOSE^%ZISUTL, 87
OPEN^%ZISUTL, 87
RMDEV^%ZISUTL, 90
SAVDEV^%ZISUTL, 90
USE^%ZISUTL, 91

ZOSV
$$ACTJ^%ZOSV, 291
$$AVJ^%ZOSV, 291
$$EC^%ZOSV, 105
$$LGR^%ZOSV, 293
$$OS^%ZOSV, 294
$$VERSION^%ZOSV, 297
DOLRO^%ZOSV, 291
GETENV^%ZOSV, 292
GETPEER^%ZOSV, 333
LOGRSRC^%ZOSV, 293
SETENV^%ZOSV, 294
SETNM^%ZOSV, 295
T0^%ZOSV, 296

T1^%ZOSV, 297
ZRTL Global

Obsolete, 297
ZSTOP, 341
ZTER

$$NEWERR^%ZTER, 108
^%ZTER, 106
UNWIND^%ZTER, 108

ZTLOAD, 95
$$ASKSTOP^%ZTLOAD, 373
$$JOB^%ZTLOAD, 376
$$S^%ZTLOAD, 385
$$TM^%ZTLOAD, 387
^%ZTLOAD, 365
DESC^%ZTLOAD, 374
DQ^%ZTLOAD, 374
ISQED^%ZTLOAD, 375
KILL^%ZTLOAD, 377
OPTION^%ZTLOAD, 377
PCLEAR^%ZTLOAD, 378
REQ^%ZTLOAD, 379
RTN^%ZTLOAD, 385
STAT^%ZTLOAD, 386
ZTSAVE^%ZTLOAD, 388

ZTMB Direct Mode Utility, 349
ZTMCHK Direct Mode Utility, 349
ZTMGRSET Routine, 243
ZTMON Direct Mode Utility, 349
ZTMQUEUABLE OPTIONS Menu, 208
ZTQUEUED variable, 343
ZTQUEUED Variable, 192, 341
ZTREQ, 343
ZTREQ variable, 341
ZTREQ Variable, 342
ZTSAVE^%ZTLOAD, 388
ZTSTAT Variable, 348
ZTSTOP Variable, 341
ZU

^ZU Direct Mode Utility, 310

Index

670 Kernel July 1995
 Developer's Guide Revised September 2011
 Version 8.0

	Title Page
	Revision History
	Contents
	Figures and Tables
	Orientation
	1 Introduction
	2 Address Hygiene: Developer Tools
	2.1 Application Program Interface (API)
	2.1.1 CCODE^XIPUTIL(): FIPS Code Data
	2.1.2 $$FIPS^XIPUTIL(): FIPS Code for ZIP Code
	2.1.3 $$FIPSCHK^XIPUTIL(): Check for FIPS Code
	2.1.4 POSTAL^XIPUTIL(): ZIP Code Information
	2.1.5 POSTALB^XIPUTIL(): Active ZIP Codes

	3 Alerts: Developer Tools
	3.1 Package Identifier vs. Alert Identifier
	3.1.1 Package Identifier
	3.1.2 Alert Identifier

	3.2 Package Identifier Conventions
	3.3 Glossary of Terms for Alerts
	3.4 Application Program Interface (API)
	3.4.1 AHISTORY^XQALBUTL(): Get Alert Tracking File Information
	3.4.2 ALERTDAT^XQALBUTL(): Get Alert Tracking File Information
	3.4.3 DELSTAT^XQALBUTL(): Get User Information and Status for Recent Alert
	3.4.4 NOTIPURG^XQALBUTL(): Purge Alerts Based on Code
	3.4.5 $$PENDING^XQALBUTL(): Pending Alerts for a User
	3.4.6 $$PKGPEND^XQALBUTL(): Pending Alerts for a User in Specified Software
	3.4.7 PTPURG^XQALBUTL(): Purge Alerts Based on Patient
	3.4.8 RECIPURG^XQALBUTL(): Purge User Alerts
	3.4.9 USERDATA^XQALBUTL(): Get User Information for an Alert
	3.4.10 USERLIST^XQALBUTL(): Get Recipient Information for an Alert
	3.4.11 ACTION^XQALERT(): Process an Alert
	3.4.12 DELETE^XQALERT: Clear Obsolete Alerts
	3.4.13 DELETEA^XQALERT: Clear Obsolete Alerts
	3.4.14 GETACT^XQALERT(): Return Alert Variables
	3.4.15 PATIENT^XQALERT(): Get Alerts for a Patient
	3.4.16 SETUP^XQALERT: Send Alerts
	3.4.17 $$SETUP1^XQALERT: Send Alerts
	3.4.18 USER^XQALERT(): Get Alerts for a User
	3.4.19 FORWARD^XQALFWD(): Forward Alerts
	3.4.20 $$CURRSURO^XQALSURO(): Get Current Surrogate for Alerts
	3.4.21 $$GETSURO^XQALSURO(): Get Current Surrogate Information
	3.4.22 REMVSURO^XQALSURO(): Remove Surrogates for Alerts
	3.4.23 SETSURO1^XQALSURO(): Establish a Surrogate for Alerts
	3.4.24 SUROFOR^XQALSURO(): Return a Surrogate's List of Users
	3.4.25 SUROLIST^XQALSURO(): List Surrogates for a User

	4 Common Services: Developer Tools
	4.1 Application Program Interface (API)
	4.1.1 $$IEN^XUPS(): Get IEN Using VPID in File #200
	4.1.2 $$VPID^XUPS(): Get VPID Using IEN in File #200
	4.1.3 EN1^XUPSQRY(): Query New Person File

	5 Device Handler: Developer Tools
	5.1 Application Program Interface (API)
	5.1.1 DEVICE^XUDHGUI(): GUI Device Lookup
	5.1.2 $$RES^XUDHSET(): Set Up Resource Device
	5.1.3 ^%ZIS: Standard Device Call
	5.1.4 HLP1^%ZIS: Display Brief Device Help
	5.1.5 HLP2^%ZIS: Display Device Help Frames
	5.1.6 HOME^%ZIS: Reset Home Device IO Variables
	5.1.7 $$REWIND^%ZIS(): Rewind Devices
	5.1.8 ^%ZISC: Close Device
	5.1.9 PKILL^%ZISP: Kill Special Printer Variables
	5.1.10 PSET^%ZISP: Set Up Special Printer Variables
	5.1.11 ENDR^%ZISS: Set Up Specific Screen Handling Variables
	5.1.12 ENS^%ZISS: Set Up Screen-handling Variables
	5.1.13 GKILL^%ZISS: KILL Graphic Variables
	5.1.14 GSET^%ZISS: Set Up Graphic Variables
	5.1.15 KILL^%ZISS: KILL Screen Handling Variables
	5.1.16 CALL^%ZISTCP: Make TCP/IP Connection (Remote System)
	5.1.17 CLOSE^%ZISTCP: Close TCP/IP Connection (Remote System)
	5.1.18 CLOSE^%ZISUTL(): Close Device with Handle
	5.1.19 OPEN^%ZISUTL(): Open Device with Handle
	5.1.20 RMDEV^%ZISUTL(): Delete Data Given a Handle
	5.1.21 SAVDEV^%ZISUTL(): Save Data Given a Handle
	5.1.22 USE^%ZISUTL(): Use Device Given a Handle

	5.2 Special Device Issues
	5.2.1 Form Feeds
	5.2.1.1 How to Check if Current Device is a CRT
	5.2.1.2 Guidelines for Form Issuing Form Feeds

	5.2.2 Resources
	5.2.2.1 Queuing to a Resource

	6 Domain Name Service (DNS): Developer Tools
	6.1 Application Program Interface (API)
	6.1.1 $$ADDRESS^XLFNSLK(): Convert Domain Name to IP Addresses
	6.1.2 MAIL^XLFNSLK(): Get IP Addresses for a Domain Name

	7 Electronic Signatures: Developer Tools
	7.1 Application Program Interface (API)
	7.1.1 ^XUSESIG: Set Up Electronic Signature Code
	7.1.2 SIG^XUSESIG(): Verify Electronic Signature Code
	7.1.3 $$CHKSUM^XUSESIG1(): Build Checksum for Global Root
	7.1.4 $$CMP^XUSESIG1(): Compare Checksum to $Name_Value
	7.1.5 $$DE^XUSESIG1(): Decode String
	7.1.6 $$EN^XUSESIG1(): Encode Esblock
	7.1.7 $$ESBLOCK^XUSESIG1(): E-Sig Fields Required for Hash
	7.1.8 DE^XUSHSHP: Decrypt Data String
	7.1.9 EN^XUSHSHP: Encrypt Data String
	7.1.10 HASH^XUSHSHP: Hash Electronic Signature Code

	8 Error Processing: Developer Tools
	8.1 Direct Mode Utilities
	8.1.1 >D ^XTER
	8.1.2 >D ^XTERPUR

	8.2 Application Program Interface (API)
	8.2.1 $$EC^%ZOSV: Get Error Code
	8.2.2 ^%ZTER: Kernel Standard Error Recording Routine
	8.2.3 $$NEWERR^%ZTER: Verify Support of Standard Error Trapping (Obsolete)
	8.2.4 UNWIND^%ZTER: Quit Back to Calling Routine

	9 Field Monitoring: Developer Tools
	9.1 Application Program Interface (API)
	9.1.1 OPKG^XUHUI(): Monitor New Style Cross-referenced Fields

	10 File Access Security: Developer Tools
	10.1 Field Level Protection
	10.2 File Navigation
	10.3 Use of DLAYGO When Navigating to Files
	10.4 Use of DLAYGO in ^DIC Calls
	10.5 Use of DIDEL in ^DIE Calls

	11 Help Processor: Developer Tools
	11.1 Entry and Exit Execute Statements
	11.2 Link to the OBJECT File
	11.3 Application Program Interface (API)
	11.3.1 EN^XQH: Display Help Frames
	11.3.2 EN1^XQH: Display Help Frames
	11.3.3 ACTION^XQH4(): Print Help Frame Tree

	12 Host Files: Developer Tools
	12.1 Application Program Interface (API)
	12.1.1 CLOSE^%ZISH(): Close Host File
	12.1.2 $$DEFDIR^%ZISH(): Get Default Host File Directory
	12.1.3 $$DEL^%ZISH(): Delete Host File
	12.1.4 $$FTG^%ZISH(): Load Host File into Global
	12.1.5 $$GATF^%ZISH(): Copy Global to Host File
	12.1.6 $$GTF^%ZISH(): Copy Global to Host File
	12.1.7 $$LIST^%ZISH(): List Directory
	12.1.8 $$MV^%ZISH(): Rename Host File
	12.1.9 OPEN^%ZISH(): Open Host File
	12.1.10 $$PWD^%ZISH: Get Current Directory
	12.1.11 $$STATUS^%ZISH: Return End-of-File Status

	13 Institution File: Developer Tools
	13.1 Application Program Interface (API)
	13.1.1 $$ACTIVE^XUAF4(): Institution Active Facility (True/False)
	13.1.2 CDSYS^XUAF4(): Coding System Name
	13.1.3 CHILDREN^XUAF4(): List of Child Institutions for a Parent
	13.1.4 $$CIRN^XUAF4(): Institution CIRN-enabled Field Value
	13.1.5 F4^XUAF4(): Institution Data for a Station Number
	13.1.6 $$ID^XUAF4(): Institution Identifier
	13.1.7 $$IDX^XUAF4(): Institution IEN (Using Coding System & ID)
	13.1.8 $$IEN^XUAF4(): IEN for Station Number
	13.1.9 $$LEGACY^XUAF4(): Institution Realigned/Legacy (True/False)
	13.1.10 $$LKUP^XUAF4(): Institution Lookup
	13.1.11 LOOKUP^XUAF4(): Look Up Institution Identifier
	13.1.12 $$MADD^XUAF4(): Institution Mailing Address
	13.1.13 $$NAME^XUAF4(): Institution Official Name
	13.1.14 $$NNT^XUAF4(): Institution Station Name, Number, and Type
	13.1.15 $$NS^XUAF4(): Institution Name and Station Number
	13.1.16 $$O99^XUAF4(): IEN of Merged Station Number
	13.1.17 $$PADD^XUAF4(): Institution Physical Address
	13.1.18 PARENT^XUAF4(): Parent Institution Lookup
	13.1.19 $$PRNT^XUAF4(): Institution Parent Facility
	13.1.20 $$RF^XUAF4(): Realigned From Institution Information
	13.1.21 $$RT^XUAF4(): Realigned To Institution Information
	13.1.22 SIBLING^XUAF4(): Sibling Institution Lookup
	13.1.23 $$STA^XUAF4(): Station Number for IEN
	13.1.24 $$TF^XUAF4(): Treating Facility (True/False)
	13.1.25 $$WHAT^XUAF4(): Institution Single Field Information
	13.1.26 $$IEN^XUMF(): Institution IEN (Using IFN, Coding System, & ID)
	13.1.27 MAIN^XUMFI(): HL7 Master File Message Builder
	13.1.28 MAIN^XUMFP(): Master File Parameters

	14 Kernel Installation and Distribution System (KIDS): Developer Tools
	14.1 KIDS Build-related Options
	14.2 Creating Builds
	14.2.1 Build Entries
	14.2.2 Create a Build Using Namespace
	14.2.3 Copy Build to Build
	14.2.4 Edit a Build
	14.2.4.1.1 KIDS Build Screens
	14.2.4.2 Edit a Build: Name & Version, Build Information
	14.2.4.2.1.1 Build Name

	14.2.4.3 Edit a Build: Files
	14.2.4.3.1 Data Dictionary Update
	14.2.4.3.2 Sending Security Codes
	14.2.4.3.3 Sending Full or Partial Data Dictionaries
	14.2.4.3.4 Full DD (All Fields)
	14.2.4.3.5 Partial DD (Some Fields)
	14.2.4.3.6 Choosing What Data to Send with a File
	14.2.4.3.7 Determining How Data is Installed at the Receiving Site
	14.2.4.3.8 How KIDS Matches Incoming Entries with Existing Entries
	14.2.4.3.9 Limited Resolution of Pointers
	14.2.4.3.10 Re-Indexing Files
	14.2.4.3.11 Data Dictionary Cleanup

	14.2.4.4 Edit a Build: Components
	14.2.4.5 Edit a Build: Options and Protocols
	14.2.4.6 Edit a Build: Routines
	14.2.4.7 Edit a Build: Dialog Entries (DIALOG File [#.84])
	14.2.4.8 Edit a Build: Forms
	14.2.4.9 Edit a Build: Templates

	14.2.5 Transporting a Distribution
	14.2.5.1 When to Transport More than One Transport Global in a Distribution
	14.2.5.2 Multi-Package Builds
	14.2.5.3 Exporting Globals with KIDS

	14.2.6 Creating Transport Globals that Install Efficiently

	14.3 Advanced Build Techniques
	14.3.1 Environment Check Routine
	14.3.1.1 Self-Contained Routine
	14.3.1.2 Environment Check is Run Twice
	14.3.1.3 Key Variables during Environment Check
	14.3.1.4 Package Version vs. Installing Version
	14.3.1.5 Telling KIDS to Skip Installing or Delete a Routine
	14.3.1.6 Verifying Patch Installation
	14.3.1.7 Aborting Installations During the Environment Check
	14.3.1.8 Controlling the Queuing of the Install Prompt
	14.3.1.9 Controlling the Disable Options/Protocols Prompt
	14.3.1.10 Controlling the Move Routines to Other CPUs Prompt

	14.3.2 PRE-TRANSPORTATION ROUTINE field (#900)
	14.3.3 Pre- and Post-Install Routines: Special Features
	14.3.3.1 Aborting an Installation During the Pre-Install Routine
	14.3.3.2 Setting a File's Package Revision Data Node (Post-Install)
	14.3.3.3 Key Variables during Pre- and Post-Install Routines
	14.3.3.4 NEW the DIFROM Variable When Calling MailMan
	14.3.3.5 Update the Status Bar During Pre- and Post-Install Routines

	14.3.4 Edit a Build—Screen 4
	14.3.5 How to Ask Installation Questions
	14.3.5.1 Question Subscripts
	14.3.5.2 M Code in Questions
	14.3.5.3 Skipping Installation Questions
	14.3.5.4 Accessing Questions and Answers
	14.3.5.5 Where Questions Are Asked During Installations

	14.3.6 Using Checkpoints (Pre- and Post-Install Routines)
	14.3.6.1 Checkpoints with Callbacks
	14.3.6.2 Checkpoint Parameter Node
	14.3.6.3 Checkpoints without Callbacks (Data Storage)

	14.3.7 Required Builds
	14.3.8 Package File Link
	14.3.9 Track Package Nationally
	14.3.10 Alpha/Beta Tracking
	14.3.10.1 Initiating Alpha/Beta Tracking
	14.3.10.2 Error Tracking—Alpha/Beta Software Releases
	14.3.10.3 Monitoring Alpha/Beta Tracking
	14.3.10.3.1 Usage Report Options
	14.3.10.3.2 Actual Usage of Alpha/Beta Test Options Option
	14.3.10.3.3 Low Usage of Alpha/Beta Test Options Option
	14.3.10.3.4 Print Alpha/Beta Errors (Date/Site/Num/Rou/Err) Option
	14.3.10.3.5 Send Alpha/Beta Usage to Programmers Option

	14.3.10.4 Terminating Alpha/Beta Tracking
	14.3.10.4.1 Local (Test) Software Option Usage—Terminating Alpha/Beta Tracking
	14.3.10.4.2 National (Production) Software Option Usage—Terminating Alpha/Beta Tracking

	14.4 Application Program Interface (API)
	14.4.1 UPDATE^XPDID(): Update Install Progress Bar
	14.4.2 EN^XPDIJ(): Task Off KIDS Install
	14.4.3 $$PKGPAT^XPDIP(): Update Patch History
	14.4.4 BMES^XPDUTL(): Output a Message with Blank Line
	14.4.5 $$COMCP^XPDUTL(): Complete Checkpoint
	14.4.6 $$CURCP^XPDUTL(): Get Current Checkpoint Name/IEN
	14.4.7 $$INSTALDT^XPDUTL(): Return All Install Dates/Times
	14.4.8 $$LAST^XPDUTL(): Last Software Patch
	14.4.9 MES^XPDUTL(): Output a Message
	14.4.10 $$NEWCP^XPDUTL(): Create Checkpoint
	14.4.11 $$OPTDE^XPDUTL(): Disable/Enable an Option
	14.4.12 $$PARCP^XPDUTL(): Get Checkpoint Parameter
	14.4.13 $$PATCH^XPDUTL(): Verify Patch Installation
	14.4.14 $$PKG^XPDUTL(): Parse Software Name from Build Name
	14.4.15 $$PRODE^XPDUTL(): Disable/Enable a Protocol
	14.4.16 $$RTNUP^XPDUTL(): Update Routine Action
	14.4.17 $$UPCP^XPDUTL(): Update Checkpoint
	14.4.18 $$VER^XPDUTL(): Parse Version from Build Name
	14.4.19 $$VERCP^XPDUTL(): Verify Checkpoint
	14.4.20 $$VERSION^XPDUTL(): Package File Current Version

	15 Menu Manager: Developer Tools
	15.1 Creating Options
	15.1.1 Option Types
	15.1.2 Creating Options (Edit Options)
	15.1.2.1.1 Options that Should Be Regularly Scheduled

	15.2 Variables for Developer Use
	15.2.1.1.1 XQUIT: Quit the Option
	15.2.1.1.2 XQMM("A"): Menu Prompt
	15.2.1.1.3 XQMM("B"): Default Response
	15.2.1.1.4 XQMM("J"): The Phantom Jump
	15.2.1.1.5 XQMM("N"): No Menu Display

	15.3 Direct Mode Utilities
	15.3.1 ^XQ1: Test an Option

	15.4 Application Program Interface (API)
	15.4.1 $$ADD^XPDMENU(): Add Option to Menu
	15.4.2 $$DELETE^XPDMENU(): Delete Menu Item
	15.4.3 $$LKOPT^XPDMENU(): Look Up Option IEN
	15.4.4 OUT^XPDMENU(): Edit Option's Out of Order Message
	15.4.5 RENAME^XPDMENU(): Rename Option
	15.4.6 $$TYPE^XPDMENU(): Get Option Type
	15.4.7 NEXT^XQ92(): Restricted Times Check
	15.4.8 $$ACCESS^XQCHK(): User Option Access Test
	15.4.9 OP^XQCHK(): Current Option Check

	16 Miscellaneous: Developer Tools
	16.1 Direct Mode Utilities
	16.2 Programmer Options Menu
	16.2.1 Delete Unreferenced Options
	16.2.2 Global Block Count Option
	16.2.3 Listing Globals Option
	16.2.4 Test an option not in your menu Option

	16.3 ^%Z Editor
	16.3.1 User Interface

	16.4 Application Program Interface (API)
	16.4.1 Progress Bar Emulator
	16.4.1.1 INIT^XPDID: Progress Bar Emulator: Initialize Device and Draw Box Borders
	16.4.1.2 TITLE^XPDID(): Progress Bar Emulator: Display Title Text
	16.4.1.3 EXIT^XPDID(): Progress Bar Emulator: Restore Screen, Clean Up Variables, and Display Text

	16.4.2 Lookup Utility
	16.4.2.1 $$EN^XUA4A71(): Convert String to Soundex

	16.4.3 Date Conversions and Calculations
	16.4.3.1 ^XQDATE: Convert $H to VA FileMan Format (Obsolete)
	16.4.3.2 ^XUWORKDY: Workday Calculation (Obsolete)
	16.4.3.3 $$EN^XUWORKDY: Number of Workdays Calculation
	16.4.3.4 $$WORKDAY^XUWORKDY: Workday Validation
	16.4.3.5 $$WORKPLUS^XUWORKDY: Workday Offset Calculation

	17 Name Standardization: Developer Tools
	17.1 Application Program Interface (API)
	17.1.1 $$BLDNAME^XLFNAME(): Build Name from Component Parts
	17.1.2 $$CLEANC^XLFNAME(): Name Component Standardization Routine
	17.1.3 $$FMNAME^XLFNAME(): Convert HL7 Formatted Name to Name
	17.1.4 $$HLNAME^XLFNAME(): Convert Name to HL7 Formatted Name
	17.1.5 NAMECOMP^XLFNAME(): Component Parts from Standard Name
	17.1.6 $$NAMEFMT^XLFNAME(): Formatted Name from Name Components
	17.1.7 STDNAME^XLFNAME(): Name Standardization Routine
	17.1.8 DELCOMP^XLFNAME2(): Delete Name Components Entry
	17.1.9 UPDCOMP^XLFNAME2(): Update Name Components Entry

	18 National Provider Identifier (NPI): Developer Tools
	18.1 Application Program Interface (API)
	18.1.1 $$CHKDGT^XUSNPI(): Validate NPI Format
	18.1.2 $$NPI^XUSNPI(): Get NPI from Files #200 or #4
	18.1.3 $$QI^XUSNPI(): Get Provider Entities
	18.1.4 $$TAXIND^XUSTAX(): Get Taxonomy Code from File #200
	18.1.5 $$TAXORG^XUSTAX(): Get Taxonomy Code from File #4

	19 Operating System (OS) Interface: Developer Tools
	19.1 Direct Mode Utilities
	19.1.1.1 >D ^%ZTBKC: Global Block Count
	19.1.1.2 >D ^ZTMGRSET: Update ^%ZOSF Nodes

	19.2 Application Program Interface (API)
	19.2.1 ^%ZOSF(): Operating System-dependent Logic Global
	19.2.2 $$ACTJ^%ZOSV: Number of Active Jobs
	19.2.3 $$AVJ^%ZOSV: Number of Available Jobs
	19.2.4 DOLRO^%ZOSV: Display Local Variables
	19.2.5 GETENV^%ZOSV: Current System Information
	19.2.6 $$LGR^%ZOSV: Last Global Reference
	19.2.7 LOGRSRC^%ZOSV(): Record Resource Usage (RUM)
	19.2.8 $$OS^%ZOSV: Get Operating System Information
	19.2.9 SETENV^%ZOSV: Set VMS Process Name (Caché/OpenVMS Systems)
	19.2.10 SETNM^%ZOSV(): Set VMS Process Name (Caché/OpenVMS Systems)
	19.2.11 T0^%ZOSV: Start RT Measure (Obsolete)
	19.2.12 T1^%ZOSV: Stop RT Measure (Obsolete)
	19.2.13 $$VERSION^%ZOSV(): Get OS Version Number or Name

	20 Security Keys: Developer Tools
	20.1 Key Lookup
	20.2 Person Lookup
	20.3 Application Program Interface (API)
	20.3.1 DEL^XPDKEY(): Delete Security Key
	20.3.2 $$LKUP^XPDKEY(): Look Up Security Key Value
	20.3.3 $$RENAME^XPDKEY(): Rename Security Key
	20.3.4 OWNSKEY^XUSRB(): Verify Security Keys Assigned to a User

	21 Server Options: Developer Tools
	21.1 Tools for Processing Server Requests
	21.2 Key Variables When a Server Option is Running
	21.3 Appending Text to a Server Request Bulletin or Mailman Reply
	21.4 Customizing a Server Request Bulletin

	22 Signon/Security: Developer Tools
	22.1 Direct Mode Utilities
	22.1.1 ^XUP: Programmer Signon
	22.1.2 ^XUS: User Signon: No Error Trapping
	22.1.3 H^XUS: Programmer Halt
	22.1.4 ^XUSCLEAN: Programmer Halt
	22.1.5 ^ZU: User Signon

	22.2 XU USER SIGN-ON Option
	22.2.1 XU USER SIGN-ON: Package-specific Signon Actions

	22.3 XU USER TERMINATE Option
	22.3.1 Discontinuation of USER TERMINATE ROUTINE
	22.3.2 Creating a Package-specific User Termination Action

	22.4 Application Program Interface (API)
	22.4.1 $$GET^XUPARAM(): Get Parameters
	22.4.2 $$KSP^XUPARAM(): Return Kernel Site Parameter
	22.4.3 $$LKUP^XUPARAM(): Look Up Parameters
	22.4.4 SET^XUPARAM(): Set Parameters
	22.4.5 $$PROD^XUPROD(): Production Vs. Test Account
	22.4.6 H^XUS: Programmer Halt
	22.4.7 SET^XUS1A(): Output Message During Signon
	22.4.8 AVHLPTXT^XUS2: Get Help Text
	22.4.9 $$CREATE^XUSAP: Create Application Proxy User
	22.4.10 KILL^XUSCLEAN: Clear all but Kernel Variables
	22.4.11 $$ADD^XUSERNEW(): Add New Users
	22.4.12 $$CHECKAV^XUSRB(): Check Access/Verify Codes
	22.4.13 CVC^XUSRB: VistALink—Change User's Verify Code
	22.4.14 $$INHIBIT^XUSRB: Check if Logons Inhibited
	22.4.15 INTRO^XUSRB: VistALink—Get Introductory Text
	22.4.16 LOGOUT^XUSRB: VistALink—Log Out User from M
	22.4.17 SETUP^XUSRB(): VistALink—Set Up User's Partition in M
	22.4.18 VALIDAV^XUSRB(): VistALink—Validate User Credentials
	22.4.19 $$DECRYP^XUSRB1(): Decrypt String
	22.4.20 $$ENCRYP^XUSRB1(): Encrypt String
	22.4.21 $$HANDLE^XUSRB4(): Return Unique Session ID String
	22.4.22 ^XUVERIFY: Verify Access and Verify Codes
	22.4.23 $$CHECKAV^XUVERIFY(): Check Access/Verify Codes
	22.4.24 WITNESS^XUVERIFY(): Return IEN of Users with A/V Codes & Security Keys
	22.4.25 GETPEER^%ZOSV: VistALink—Get IP Address for Current Session

	23 Spooling: Developer Tools
	23.1 Application Program Interface (API)
	23.1.1 DSD^ZISPL: Delete Spool Data File Entry
	23.1.2 DSDOC^ZISPL: Delete Spool Document File Entry

	24 TaskMan: Developer Tools
	24.1 How to Write Code to Queue Tasks
	24.1.1 Queuers
	24.1.1.1.1 Calling EN^XUTMDEVQ to Create Tasks
	24.1.1.1.2 Creating Tasks Using Scheduled Options

	24.1.2 Tasks
	24.1.2.1.1 Key Variables and Environment When Task is Running
	24.1.2.1.2 Checking for Stop Requests
	24.1.2.1.3 Purging the Task Record
	24.1.2.1.4 Checking For Background Execution: ZTQUEUED
	24.1.2.1.5 Post-Execution Commands: ZTREQ
	24.1.2.1.6 Calling ^%ZTLOAD within a Task
	24.1.2.1.7 Calling the Device Handler (^%ZIS) within a Task
	24.1.2.1.8 Long Running Tasks—Writing Two-step Tasks
	24.1.2.1.9 Long Running Tasks—Using ^%ZIS
	24.1.2.1.10 Using SYNC FLAGs to Control Sequences of Tasks

	24.2 Direct Mode Utilities
	24.2.1 >D ^ZTMB: Start TaskMan
	24.2.2 >D RESTART^ZTMB: Restart TaskMan
	24.2.3 >D ^ZTMCHK: Check TaskMan's Environment
	24.2.4 >D RUN^ZTMKU: Remove Taskman from WAIT State Option
	24.2.5 >D STOP^ZTMKU: Stop Task Manager Option
	24.2.6 >D WAIT^ZTMKU: Place Taskman in a WAIT State Option
	24.2.7 >D ^ZTMON: Monitor TaskMan Option

	24.3 Application Program Interface (API)
	24.3.1 $$DEV^XUTMDEVQ(): Force Queuing—Ask for Device
	24.3.2 EN^XUTMDEVQ(): Run a Task (Directly or Queued)
	24.3.3 $$NODEV^XUTMDEVQ(): Force Queuing—No Device Selection
	24.3.4 $$QQ^XUTMDEVQ(): Double Queue—Direct Queuing in a Single Call
	24.3.5 $$REQQ^XUTMDEVQ(): Schedule Second Part of a Task
	24.3.6 DISP^XUTMOPT(): Display Option Schedule
	24.3.7 EDIT^XUTMOPT(): Edit an Option's Scheduling
	24.3.8 OPTSTAT^XUTMOPT(): Obtain Option Schedule
	24.3.9 RESCH^XUTMOPT(): Set Up Option Schedule
	24.3.10 EN^XUTMTP(): Display HL7 Task Information
	24.3.11 ^%ZTLOAD: Queue a Task
	24.3.11.1 Interactive Use of ^%ZTLOAD
	24.3.11.2 Non-interactive Use of ^%ZTLOAD
	24.3.11.3 Queuing Tasks without an I/O Device
	24.3.11.4 Code Execution
	24.3.11.5 Output

	24.3.12 $$ASKSTOP^%ZTLOAD: Stop TaskMan Task
	24.3.13 DESC^%ZTLOAD(): Find Tasks with a Description
	24.3.14 DQ^%ZTLOAD: Unschedule a Task
	24.3.15 ISQED^%ZTLOAD: Return Task Status
	24.3.16 $$JOB^%ZTLOAD(): Return a Job Number for a Task
	24.3.17 KILL^%ZTLOAD: Delete a Task
	24.3.18 OPTION^%ZTLOAD(): Find Tasks for an Option
	24.3.19 PCLEAR^%ZTLOAD(): Clear Persistent Flag for a Task
	24.3.20 $$PSET^%ZTLOAD(): Set Task as Persistent
	24.3.21 REQ^%ZTLOAD: Requeue a Task
	24.3.21.1 Example
	24.3.21.2 Code Execution
	24.3.21.3 Output

	24.3.22 RTN^%ZTLOAD(): Find Tasks that Call a Routine
	24.3.23 $$S^%ZTLOAD(): Check for Task Stop Request
	24.3.24 STAT^%ZTLOAD: Task Status
	24.3.25 $$TM^%ZTLOAD: Check if TaskMan is Running
	24.3.26 ZTSAVE^%ZTLOAD(): Build ZTSAVE Array

	25 Toolkit: Developer Tools
	25.1 Toolkit—Application Program Interface (API)
	25.2 Toolkit—Alerts APIs
	25.2.1 DELSTAT^XQALBUTL(): Get Alert Status and Recipient Information

	25.3 Toolkit—Data Standardization APIs
	25.3.1 Replacement Relationships
	25.3.2 $$GETRPLC^XTIDTRM(): Get Mapped Terms (Term/Concept)
	25.3.3 $$RPLCLST^XTIDTRM(): Get List of Replacement Terms, w/Optional Status Date and History (Term/Concept)
	25.3.4 $$RPLCMNT^XTIDTRM(): Map One Term to Another (Term/Concept)
	25.3.5 $$RPLCTRL^XTIDTRM(): Get Replacement Trail for Term, with Replaced “BY” and Replacement "FOR" Terms (Term/Concept)
	25.3.6 $$RPLCVALS^XTIDTRM(): Get Field Values of Final Replacement Term (Term/Concept)
	25.3.7 $$SETRPLC^XTIDTRM(): Set Replacement Terms (Term/Concept)

	25.4 Toolkit—Duplicate Record Merge APIs
	25.4.1 EN^XDRMERG(): Merge File Entries
	25.4.1.1.1 Problems Related To Data Entry While Merging

	25.4.2 RESTART^XDRMERG(): Merge File Entries
	25.4.3 SAVEMERG^XDRMERGB(): Save Image of Existing and Merged Data

	25.5 Toolkit—HTTP Client APIs
	25.5.1 $$GETURL^XTHC10: Return URL Data Using HTTP
	25.5.2 $$ENCODE^XTHCURL: Encodes a Query String
	25.5.3 $$MAKEURL^XTHCURL: Creates a URL from Components
	25.5.4 $$PARSEURL^XTHCURL: Parses a URL
	25.5.5 $$DECODE^XTHCUTL: Decodes a String

	25.6 Toolkit—KERMIT APIs
	25.6.1 RECEIVE^XTKERMIT: Load a File into the Host
	25.6.2 RFILE^XTKERM4: Add Entries to Kermit Holding File
	25.6.3 SEND^XTKERMIT: Send Data from Host

	25.7 Toolkit—Multi-Term Look-Up (MTLU) APIs
	25.7.1 How to Override
	25.7.2 Application Program Interfaces
	25.7.2.1 MTLU and VA FileMan Supported Calls
	25.7.2.2 Kernel Toolkit Enhanced APIs

	25.7.3 XTLKKWL^XTLKKWL: Perform Supported VA FileMan Calls on Files Configured for MTLU
	25.7.4 DK^XTLKMGR(): Delete Keywords from the Local Keyword File
	25.7.5 DLL^XTLKMGR(): Delete an Entry from the Local Lookup File
	25.7.6 DSH^XTLKMGR(): Delete Shortcuts from the Local Shortcut File
	25.7.7 DSY^XTLKMGR(): Delete Synonyms from the Local Synonym File
	25.7.8 K^XTLKMGR(): Add Keywords to the Local Keyword File
	25.7.9 L^XTLKMGR(): Define a File in the Local Lookup File
	25.7.10 LKUP^XTLKMGR(): General Lookup Facility for MTLU
	25.7.11 SH^XTLKMGR(): Add Shortcuts to the Local Shortcut File
	25.7.12 SY^XTLKMGR(): Add Terms and Synonyms to the Local Synonym File

	25.8 Toolkit—Parameter Tools APIs
	25.8.1 Definitions
	25.8.1.1 Entity
	25.8.1.2 Parameter
	25.8.1.3 Value
	25.8.1.4 Instance
	25.8.1.5 Parameter Template

	25.8.2 ADD^XPAR(): Add Parameter Value
	25.8.3 CHG^XPAR(): Change Parameter Value
	25.8.4 DEL^XPAR(): Delete Parameter Value
	25.8.5 EN^XPAR(): Add, Change, Delete Parameters
	25.8.6 ENVAL^XPAR(): Return All Parameter Instances
	25.8.7 $$GET^XPAR(): Return an Instance of a Parameter
	25.8.8 GETLST^XPAR(): Return All Instances of a Parameter
	25.8.9 GETWP^XPAR(): Return Word-processing Text
	25.8.10 NDEL^XPAR(): Delete All Instances of a Parameter
	25.8.11 PUT^XPAR(): Add/Update Parameter Instance
	25.8.12 REP^XPAR(): Replace Instance Value
	25.8.13 BLDLST^XPAREDIT(): Return All Entities of a Parameter
	25.8.14 EDIT^XPAREDIT(): Edit Instance and Value of a Parameter
	25.8.15 EDITPAR^XPAREDIT(): Edit Single Parameter
	25.8.16 EN^XPAREDIT(): Parameter Edit Prompt
	25.8.17 GETENT^XPAREDIT(): Prompt for Entity Based on Parameter
	25.8.18 GETPAR^XPAREDIT(): Select Parameter Definition File
	25.8.19 TED^XPAREDIT(): Edit Template Parameters (No Dash Dividers)
	25.8.20 TEDH^XPAREDIT(): Edit Template Parameters (with Dash Dividers)

	25.9 Toolkit—Routine Tools
	25.9.1 Direct Mode Utilities
	25.9.2 Routine Tools Menu
	25.9.2.1 Analyzing Routines
	25.9.2.1.1 XINDEX—%Index of Routines Option
	25.9.2.1.2 Flow Chart Entire Routine Option
	25.9.2.1.3 Flow Chart From Entry Point Option

	25.9.2.2 Editing Routines
	25.9.2.2.1 Group Routine Edit Option
	25.9.2.2.2 Routine Edit Option
	25.9.2.2.3 Routines by Patch Number Option
	25.9.2.2.4 Variable Changer Option
	25.9.2.2.5 Version Number Update Option

	25.9.2.3 Printing Routines
	25.9.2.3.1 List Routines Option

	25.9.2.4 Comparing Routines
	25.9.2.4.1 Compare local/national checksums report Option
	25.9.2.4.2 Compare Routines on Tape to Disk Option
	25.9.2.4.3 Compare Two Routines Option

	25.9.2.5 Deleting Routines
	25.9.2.5.1 Delete Routines Option

	25.9.2.6 Load and Save Routines
	25.9.2.6.1 Input Routines Option
	25.9.2.6.2 Output Routines Option
	25.9.2.6.3 Load/refresh checksum values into ROUTINE file Option

	25.10 Toolkit—Verification Tools
	25.10.1 Direct Mode Utilities
	25.10.2 Verifier Tools Menu
	25.10.2.1 Update with Current Routines Option
	25.10.2.2 Routine Compare - Current with Previous Option

	25.10.3 Programmer Options Menu
	25.10.3.1 Calculate and Show Checksum Values Option
	25.10.3.2 Error Processing—Kernel Error Trapping and Reporting

	25.11 Toolkit—VistA XML Parser APIs
	25.11.1 $$ATTRIB^MXMLDOM(): Retrieve First or Next Node Attribute
	25.11.2 $$CHILD^MXMLDOM(): Return Parent Node's First or Next Child
	25.11.3 $$CMNT^MXMLDOM(): Extract Comment Text
	25.11.4 CMNT^MXMLDOM(): Extract Comment Text
	25.11.5 DELETE^MXMLDOM(): Delete Specified Document Instance
	25.11.6 $$EN^MXMLDOM(): Perform Initial Processing of XML Document
	25.11.7 $$NAME^MXMLDOM(): Return Element Name at Specified Node in Document Parse Tree
	25.11.8 $$PARENT^MXMLDOM(): Return Parent Node
	25.11.9 $$SIBLING^MXMLDOM(): Return Sibling Node
	25.11.10 $$TEXT^MXMLDOM(): Extract Non-markup Text
	25.11.11 TEXT^MXMLDOM(): Extract Non-markup Text
	25.11.12 $$VALUE^MXMLDOM(): Retrieve Value Associated with Attribute
	25.11.13 EN^MXMLPRSE(): Event-Driven API Based on SAX Interface
	25.11.14 $$SYMENC^MXMLUTL(): Replace XML Symbols with XML Encoding
	25.11.15 $$XMLHDR^MXMLUTL: Return a Standard XML Message Headers

	25.12 Toolkit—VHA Unique ID (VUID) APIs
	25.12.1 GETIREF^XTID(): Get IREF (Term/Concept)
	25.12.2 $$GETMASTR^XTID(): Get Master VUID Flag (Term/Concept)
	25.12.3 $$GETSTAT^XTID(): Get Status Information (Term/Concept)
	25.12.4 $$GETVUID^XTID(): Get VUID (Term/Concept)
	25.12.5 $$SCREEN^XTID(): Get Screening Condition (Term/Concept)
	25.12.6 $$SETMASTR^XTID(): Set Master VUID Flag (Term/Concept)
	25.12.7 $$SETSTAT^XTID(): Set Status Information (Term/Concept)
	25.12.8 $$SETVUID^XTID(): Set VUID (Term/Concept)

	26 Unwinder: Developer Tools
	26.1 Application Program Interface (API)
	26.1.1 EN^XQOR(): Navigating Protocols
	26.1.2 EN1^XQOR(): Navigating Protocols
	26.1.3 MSG^XQOR(): Enable HL7 Messaging
	26.1.4 EN^XQORM(): Menu Item Display and Selection
	26.1.5 XREF^XQORM(): Force Menu Recompile
	26.1.6 DISP^XQORM1(): Display Menu Selections From Help Code

	27 User: Developer Tools
	27.1 Application Program Interface (API)
	27.1.1 $$CODE2TXT^XUA4A72(): Get HCFA Text
	27.1.2 $$GET^XUA4A72(): Get Specialty and Subspecialty for a User
	27.1.3 $$IEN2CODE^XUA4A72(): Get VA Code
	27.1.4 $$DTIME^XUP(): Reset DTIME for USER
	27.1.5 $$ACTIVE^XUSER(): Status Indicator
	27.1.6 $$DEA^XUSER(): Get DEA Number
	27.1.7 DIV4^XUSER(): Get User Divisions
	27.1.8 $$LOOKUP^XUSER(): New Person File Lookup
	27.1.9 $$NAME^XUSER(): Get Name of User
	27.1.10 $$PROVIDER^XUSER(): Providers in New Person File
	27.1.11 $$KCHK^XUSRB(): Check If User Holds Security Key
	27.1.12 DIVGET^XUSRB2(): Get Divisions for Current User
	27.1.13 DIVSET^XUSRB2(): Set Division for Current User
	27.1.14 USERINFO^XUSRB2(): Get Demographics for Current User

	28 XGF Function Library: Developer Tools
	28.1 Direct Mode Utilities
	28.1.1 ^XGFDEMO: Demo Program

	28.2 Application Program Interface (API)
	28.2.1 CHGA^XGF(): Screen Change Attributes
	28.2.2 CLEAN^XGF: Screen/Keyboard Exit and Cleanup
	28.2.3 CLEAR^XGF(): Screen Clear Region
	28.2.4 FRAME^XGF(): Screen Frame
	28.2.5 INITKB^XGF(): Keyboard Setup Only
	28.2.6 IOXY^XGF(): Screen Cursor Placement
	28.2.7 PREP^XGF(): Screen/Keyboard Setup
	28.2.8 $$READ^XGF(): Read Using Escape Processing
	28.2.9 RESETKB^XGF: Exit XGF Keyboard
	28.2.10 RESTORE^XGF(): Screen Restore
	28.2.11 SAVE^XGF(): Screen Save
	28.2.12 SAY^XGF(): Screen String
	28.2.13 SAYU^XGF(): Screen String with Attributes
	28.2.14 SETA^XGF(): Screen Video Attributes
	28.2.15 WIN^XGF(): Screen Text Window

	29 XLF Function Library: Developer Tools
	29.1 Application Program Interface (API)
	29.2 CRC Functions—XLFCRC
	29.2.1 $$CRC16^XLFCRC(): Cyclic Redundancy Code 16
	29.2.2 $$CRC32^XLFCRC(): Cyclic Redundancy Code 32

	29.3 Date Functions—XLFDT
	29.3.1 $$%H^XLFDT(): Convert Seconds to $H
	29.3.2 $$DOW^XLFDT(): Day of Week
	29.3.3 $$DT^XLFDT: Current Date (VA FileMan Date Format)
	29.3.4 $$FMADD^XLFDT(): VA FileMan Date Add
	29.3.5 $$FMDIFF^XLFDT(): VA FileMan Date Difference
	29.3.6 $$FMTE^XLFDT(): Convert VA FileMan Date to External Format
	29.3.7 $$FMTH^XLFDT(): Convert VA FileMan Date to $H
	29.3.8 $$FMTHL7^XLFDT(): Convert VA FileMan Date to HL7 Date
	29.3.9 $$HADD^XLFDT(): $H Add
	29.3.10 $$HDIFF^XLFDT(): $H Difference
	29.3.11 $$HL7TFM^XLFDT(): Convert HL7 Date to VA FileMan Date
	29.3.12 $$HTE^XLFDT(): Convert $H to External Format
	29.3.13 $$HTFM^XLFDT(): Convert $H to VA FileMan Date Format
	29.3.14 $$NOW^XLFDT: Current Date and Time (VA FileMan Format)
	29.3.15 $$SCH^XLFDT(): Next Scheduled Runtime
	29.3.16 $$SEC^XLFDT(): Convert $H/VA FileMan date to Seconds
	29.3.17 $$TZ^XLFDT: Time Zone Offset (GMT)
	29.3.18 $$WITHIN^XLFDT(): Checks Dates/Times within Schedule

	29.4 Hyperbolic Trigonometric Functions—XLFHYPER
	29.4.1 $$ACOSH^XLFHYPER(): Hyperbolic Arc-cosine
	29.4.2 $$ACOTH^XLFHYPER(): Hyperbolic Arc-cotangent
	29.4.3 $$ACSCH^XLFHYPER(): Hyperbolic Arc-cosecant
	29.4.4 $$ASECH^XLFHYPER(): Hyperbolic Arc-secant
	29.4.5 $$ASINH^XLFHYPER(): Hyperbolic Arc-sine
	29.4.6 $$ATANH^XLFHYPER(): Hyperbolic Arc-tangent
	29.4.7 $$COSH^XLFHYPER(): Hyperbolic Cosine
	29.4.8 $$COTH^XLFHYPER(): Hyperbolic Cotangent
	29.4.9 $$CSCH^XLFHYPER(): Hyperbolic Cosecant
	29.4.10 $$SECH^XLFHYPER(): Hyperbolic Secant
	29.4.11 $$SINH^XLFHYPER(): Hyperbolic Sine
	29.4.12 $$TANH^XLFHYPER(): Hyperbolic Tangent

	29.5 Mathematical Functions—XLFMTH
	29.5.1 $$ABS^XLFMTH(): Absolute Value
	29.5.2 $$ACOS^XLFMTH(): Arc-cosine (Radians)
	29.5.3 $$ACOSDEG^XLFMTH(): Arc-cosine (Degrees)
	29.5.4 $$ACOT^XLFMTH(): Arc-cotangent (Radians)
	29.5.5 $$ACOTDEG^XLFMTH(): Arc-cotangent (Degrees)
	29.5.6 $$ACSC^XLFMTH(): Arc-cosecant (Radians)
	29.5.7 $$ACSCDEG^XLFMTH(): Arc-cosecant (Degrees)
	29.5.8 $$ASEC^XLFMTH(): Arc-secant (Radians)
	29.5.9 $$ASECDEG^XLFMTH(): Arc-secant (Degrees)
	29.5.10 $$ASIN^XLFMTH(): Arc-sine (Radians)
	29.5.11 $$ASINDEG^XLFMTH(): Arc-sine (Degrees)
	29.5.12 $$ATAN^XLFMTH(): Arc-tangent (Radians)
	29.5.13 $$ATANDEG^XLFMTH(): Arc-tangent (Degrees)
	29.5.14 $$COS^XLFMTH(): Cosine (Radians)
	29.5.15 $$COSDEG^XLFMTH(): Cosine (Degrees)
	29.5.16 $$COT^XLFMTH(): Cotangent (Radians)
	29.5.17 $$COTDEG^XLFMTH(): Cotangent (Degrees)
	29.5.18 $$CSC^XLFMTH(): Cosecant (Radians)
	29.5.19 $$CSCDEG^XLFMTH(): Cosecant (Degrees)
	29.5.20 $$DECDMS^XLFMTH(): Convert Decimals to Degrees:Minutes:Seconds
	29.5.21 $$DMSDEC^XLFMTH(): Convert Degrees:Minutes:Seconds to Decimal
	29.5.22 $$DTR^XLFMTH(): Convert Degrees to Radians
	29.5.23 $$E^XLFMTH(): e—Natural Logarithm
	29.5.24 $$EXP^XLFMTH(): e—Natural Logarithm to the Nth Power
	29.5.25 $$LN^XLFMTH(): Natural Log (Base e)
	29.5.26 $$LOG^XLFMTH(): Logarithm (Base 10)
	29.5.27 $$MAX^XLFMTH(): Maximum of Two Numbers
	29.5.28 $$MIN^XLFMTH(): Minimum of Two Numbers
	29.5.29 $$PI^XLFMTH(): PI
	29.5.30 $$PWR^XLFMTH(): X to the Y Power
	29.5.31 $$RTD^XLFMTH(): Convert Radians to Degrees
	29.5.32 $$SD^XLFMTH(): Standard Deviation
	29.5.33 $$SEC^XLFMTH(): Secant (Radians)
	29.5.34 $$SECDEG^XLFMTH(): Secant (Degrees)
	29.5.35 $$SIN^XLFMTH(): Sine (Radians)
	29.5.36 $$SINDEG^XLFMTH(): Sine (Degrees)
	29.5.37 $$SQRT^XLFMTH(): Square Root
	29.5.38 $$TAN^XLFMTH(): Tangent (Radians)
	29.5.39 $$TANDEG^XLFMTH(): Tangent (Degrees)

	29.6 Measurement Functions—XLFMSMT
	29.6.1 $$BSA^XLFMSMT(): Body Surface Area Measurement
	29.6.2 $$LENGTH^XLFMSMT(): Convert Length Measurement
	29.6.3 $$TEMP^XLFMSMT(): Convert Temperature Measurement
	29.6.4 $$VOLUME^XLFMSMT(): Convert Volume Measurement
	29.6.5 $$WEIGHT^XLFMSMT(): Convert Weight Measurement

	29.7 String Functions—XLFSTR
	29.7.1 $$CJ^XLFSTR(): Center Justify String
	29.7.2 $$INVERT^XLFSTR(): Invert String
	29.7.3 $$LJ^XLFSTR(): Left Justify String
	29.7.4 $$LOW^XLFSTR(): Convert String to Lowercase
	29.7.5 $$REPEAT^XLFSTR(): Repeat String
	29.7.6 $$REPLACE^XLFSTR(): Replace Strings
	29.7.7 $$RJ^XLFSTR(): Right Justify String
	29.7.8 $$SENTENCE^XLFSTR(): Convert String to Sentence Case
	29.7.9 $$STRIP^XLFSTR(): Strip a String
	29.7.10 $$TITLE^XLFSTR(): Convert String to Title Case
	29.7.11 $$TRIM^XLFSTR(): Trim String
	29.7.12 $$UP^XLFSTR(): Convert String to Uppercase

	29.8 Utility Functions—XLFUTL
	29.8.1 $$BASE^XLFUTL(): Convert Between Two Bases
	29.8.2 $$CCD^XLFUTL(): Append Check Digit
	29.8.3 $$CNV^XLFUTL(): Convert Base 10 to Another Base
	29.8.4 $$DEC^XLFUTL(): Convert Another Base to Base 10
	29.8.5 $$VCD^XLFUTL(): Verify Integrity

	30 XML: Developer Tools
	30.1 Application Program Interface (API)
	30.1.1 $$ATTRIB^MXMLDOM(): XML—Get Attribute Name
	30.1.2 $$CHILD^MXMLDOM(): XML—Get Child Node
	30.1.3 $$CMNT^MXMLDOM(): XML—Extract Comment Text (True/False)
	30.1.4 CMNT^MXMLDOM(): XML—Extract Comment Text (True/False)
	30.1.5 DELETE^MXMLDOM(): XML—Delete Document Instance
	30.1.6 $$EN^MXMLDOM(): XML—Initial Processing, Build In-memory Image
	30.1.7 $$NAME^MXMLDOM(): XML—Get Element Name
	30.1.8 $$PARENT^MXMLDOM(): XML—Get Parent Node
	30.1.9 $$SIBLING^MXMLDOM(): XML—Get Sibling Node
	30.1.10 $$TEXT^MXMLDOM(): XML—Get Text (True/False)
	30.1.11 TEXT^MXMLDOM(): XML—Get Text (True/False)
	30.1.12 $$VALUE^MXMLDOM(): XML—Get Attribute Value
	30.1.13 EN^MXMLPRSE(): XML—Event Driven API
	30.1.14 $$SYMENC^MXMLUTL(): XML—Encoded Strings in Messages
	30.1.15 $$XMLHDR^MXMLUTL: XML—Message Headers

	Glossary
	Index

