PARAMETER TOOLS
SUPPLEMENT TO PATCH DESCRIPTION

Patch XT*7.3*26
August 2001
Revised: October 2008

Department of Veterans Affairs (VA)
Office of Information & Technology (OI&T)
Common Services (CS)

Revision History

Documentation Revisions

The following table displays the revision history for this document. Revisions to the documentation are
based on patches and new versions released to the field.

Table i. Documentation revision history

Date Revision | Description Author
10/28/08 | 2.4 Updates: Thom Blom Oakland, CA Office of
e Table 1-1 to add "DEV" entity Information field Office (OIFO)
and correct the OE/RR LIST file
number from "101.21" to the
correct "100.21" file number.
e Made general format updates to
follow current style guidelines
and standards.
01/03/05 | 2.3 Reviewed document and edited for the Lauren Gorgoglione, Bay Pines
"Data Scrubbing" and the "PDF 508 OIFO
Compliance" projects.
PDF 508 Compliance—The final PDF
document was recreated and now
supports the minimum requirements to
be 508 compliant (i.e., accessibility tags,
language selection, alternate text for all
images/icons, fully functional Web links,
successfully passed Adobe Acrobat
Quick Check).
07/08/04 | 2.2 Updated documentation to include Wally Fort, Oakland, CA OIFO;
examples for all APIs. Susan Strack, Oakland, CA OIFO
07/01/04 | 2.1 Updated documentation based on Wally Fort, Oakland, CA OIFO;
changes from Patches XT*7.3*79 and Thom Blom, Oakland, CA OIFO;
XT*7.3*82. Susan Strack, Oakland, CA OIFO
12/12/03 | 2.0 Reformatted Patch XT*7.3*26 Wally Fort, Oakland, CA OIFO;
Supplemental Documentation and Thom Blom, Oakland, CA OIFO
updated API content.
08/--/01 1.0 Initial Patch XT*7.3*26 Supplemental Wally Fort, Oakland, CA OIFO;
Documentation creation. Marcia Insley, Salt Lake City, UT
OIFO

Patch Revisions

For a complete list of patches related to this software, please refer to the Patch Module on FORUM.

August 2001

Revised: October 2008

Parameter Tools

Supplement to Patch Description
Kernel Toolkit Patch XT*7.3*26

Revision History

iv Parameter Tools August 2001
Supplement to Patch Description Revised: October 2008
Kernel Toolkit Patch XT*7.3*26

Contents

REVISION HISTOMY ...t bbbt b bbb bt b bt b e n e iii
T UL o I 1= o] USSP SOP vii
L@ 7T o1 v o] o ISR iX
1. User Manual—Parameter TOOISc.coviviieieiieie sttt sreenes 1-13
a1 oo ¥ 011 o] SRRSO 1-13
2103 (0] (010 T OSSR 1-14
DIESCIIPTION ...ttt bbbttt h bbb ettt n e r e 1-15
D] 1T T TSR 1-15
0] (12U TUROSPS SRR 1-15
PAIAMIBLET ...t b et b bbb e b b e tbe e nnbeeenbeas 1-16
INSTANCE ... ettt ettt e sk bt e s b e e e sh b e e e be e e bR e e eR R e e e eRr e e eRb e e e Ee e e nRreenreeenrne e 1-16
RV 1L PSSR 1-17
Parameter TEMPIALEcc.oieiie ettt et e s e e e e te e e sresta e benbenne s 1-17
Why Would You Use Parameter TOOIS?ccoiiiiiiiieiiisienesieseee st 1-18
e 0 o] TSR 1-18
2. Programmer—Parameter TOOIScoiiiiiiiiee ettt e e neenaeeneas 2-1
Application Program Interfaces (APIS)—"XPAR ROULINEc.cccvrvveieiiiiieie s 2-1
ADD/MXPAR(): Add Parameter VaAIUEccovieiieieece ettt eneas 2-1
CHGMXPAR(): Change Parameter ValUEccoocviiiiiiiiii et 2-2
DELMXPAR(): Delete Parameter VAIUEccocveiiiieiie et 2-2
ENAXPAR(): Add, Change, Delete Parameters. ..o 2-4
ENVALMXPAR(): Return All Parameter INSTANCES..........oovviiiririeiciee s 2-5
$SGETAXPAR(): Return an Instance of @ Parametercoccoveieieeiiese e 2-7
GETLSTAXPAR(): Return All Instances of @ Parameterccoevviiinineneneese e 2-9
GETWPAXPAR(): Return Word-proCessing TeXE.......ccoieiiiierineieieeeeees e 2-10
NDELMXPAR(): Delete All Instances of a Parametercccccovevieeiieiiiee i s esie e 2-11
PUTAXPAR(): Add/Update Parameter INSLANCE.cceiiiieiieieeie e se et ste e e 2-11
REPAMXPAR(): Replace INStANCE VAIUEc.ecvveiiiececie sttt st 2-12
Application Program Interfaces (APIS)—"XPAREDIT ROULINEccooeeiirriiirieeeene e 2-13
BLDLSTAXPAREDIT(): Return All Entities of @ Parameter.........c.cccoccveviveveeieevee v, 2-13
EDITAXPAREDIT(): Edit Instance and Value of a Parameter...........cccccovvvvveveieiieveseee e, 2-13
August 2001 Parameter Tools Y
Revised: October 2008 Supplement to Patch Description

Kernel Toolkit Patch XT*7.3*26

Contents

Vi

EDITPARMXPAREDIT(): Edit Single Parameterccccovviiiieieieeeeesese e 2-14
ENAXPAREDIT(): Parameter Edit PrOMPLcooiiiiiiiiiiiieeeeeee s 2-15
GETENTAXPAREDIT(): Prompt for Entity Based on Parameter..........ccccocveveeeviveveeveeveesnennnn, 2-15
GETPARMXPAREDIT(): Select Parameter Definition File ... 2-16
TED"XPAREDIT(): Edit Template Parameters (N0 Dash DiVIiders).........ccccoovvvrenereneininnnnn. 2-17
TEDHMXPAREDIT(): Edit Template Parameters (With Dash DIVIders)........ccccccvevivevinevieeinennn, 2-18
... Index-1
Parameter Tools August 2001

Supplement to Patch Description Revised: October 2008

Kernel Toolkit Patch XT*7.3*26

Figures and Tables

Figures

Figure 1-1. Setting up the PARAMETER DEFINITION file (#8989.51)cccootviiiiiiiiiiiicnees 1-19
Figure 1-2. Use "XPAREDIT to enter a value for your Nnew parameterccoccovrerereienienenenennennns 1-19
Figure 1-3. Get the value of your new parameter for your VistA applicationccccccevvevieviniinnnnnns 1-19
Figure 1-4. Adding a sample parameter teMPIate..........cccceiieiiii i e 1-20
Tables

Table 1-1. Parameter ENTITIES.c.o ittt nne e 1-15
Table 1-2. Templates—Parameter TOOISc.ccviiiiie i 1-17
August 2001 Parameter Tools vii
Revised: October 2008 Supplement to Patch Description

Kernel Toolkit Patch XT*7.3*26

Figures and Tables

viii Parameter Tools August 2001
Supplement to Patch Description Revised: October 2008
Kernel Toolkit Patch XT*7.3*26

Orientation

How to Use this Manual

Throughout this manual, advice and instructions are offered regarding the use of Kernel Toolkit and Patch
XT*7.3*26 software and the functionality it provides for Veterans Health Information Systems and
Technology Architecture (VistA) software products.

This manual uses several methods to highlight different aspects of the material:

e Various symbols are used throughout the documentation to alert the reader to special information.
The following table gives a description of each of these symbols:

Table ii: Documentation symbol descriptions

Symbol Description

NOTE/REF: Used to inform the reader of general information including
references to additional reading material.

CAUTION/DISCLAIMER: Used to caution the reader to take special notice of
critical information.

e Descriptive text is presented in a proportional font (as represented by this font).
e Conventions for displaying TEST data in this document are as follows:

— The first three digits (prefix) of any Social Security Numbers (SSN) will begin with either
"000" or "666".

— Patient and user names will be formatted as follows: [Application Name]PATIENT,[N] and
[Application Name]USER,[N] respectively, where "Application Name" is defined in the
Approved Application Abbreviations document and "N" represents the first name as a
number spelled out and incremented with each new entry. For example, in Kernel (KRN) test
patient and user names would be documented as follows: KRNPATIENT,ONE;
KRNPATIENT, TWO; KRNPATIENT, THREE; etc.

e Sample HL7 messages, "snapshots™ of computer online displays (i.e., roll-and-scroll screen
captures/dialogues) and computer source code, if any, are shown in a non-proportional font and
enclosed within a box.

e User's responses to online prompts will be boldface.

e References to "<Enter>" within these snapshots indicate that the user should press the Enter key
on the keyboard. Other special keys are represented within < > angle brackets. For example,
pressing the PF1 key can be represented as pressing <PF1>.

e Author's comments, if any, are displayed in italics or as "callout" boxes.

NOTE: Callout boxes refer to labels or descriptions usually enclosed within a box,
which point to specific areas of a displayed image.

August 2001 Parameter Tools iX
Revised: October 2008 Supplement to Patch Description
Kernel Toolkit Patch XT*7.3*26

Orientation

o All uppercase is reserved for the representation of M code, variable names, or the formal name of
options, field and file names, and security keys (e.g., the XUPROGMODE key).

How to Obtain Technical Information Online

Exported VistA M Server-based software file, routine, and global documentation can be generated
through the use of Kernel, MailMan, and VA FileMan utilities.

NOTE: Methods of obtaining specific technical information online will be indicated where
applicable under the appropriate topic.

REF: Please refer to the Kernel Technical Manual for further information.

Help at Prompts

VistA M Server-based software provides online help and commonly used system default prompts. Users
are encouraged to enter question marks at any response prompt. At the end of the help display, you are
immediately returned to the point from which you started. This is an easy way to learn about any aspect of
the software.

Obtaining Data Dictionary Listings

Technical information about VistA M Server-based files and the fields in files is stored in data
dictionaries (DD). You can use the List File Attributes option on the Data Dictionary Utilities submenu in
VA FileMan to print formatted data dictionaries.

REF: For details about obtaining data dictionaries and about the formats available, please refer
to the "List File Attributes™ chapter in the "File Management" section of the VA FileMan
Advanced User Manual.

Assumptions About the Reader

This manual is written with the assumption that the reader is familiar with the following:
e VistA computing environment:
— Kernel—VistA M Server software
— VA FileMan data structures and terminology—VistA M Server software
e Microsoft Windows environment

e M programming language

X Parameter Tools August 2001
Supplement to Patch Description Revised: October 2008
Kernel Toolkit Patch XT*7.3*26

Orientation

This manual provides an overall explanation of Kernel and the functionality contained in Kernel 8.0.
However, no attempt is made to explain how the overall VistA programming system is integrated and
maintained. Such methods and procedures are documented elsewhere. We suggest you look at the various
VA Internet and Intranet Web pages for a general orientation to VistA. For example, go to the Office of
Information and Technology (OI&T) VistA Development Intranet Website:

http://vista.med.va.gov/

Reference Materials

Readers who wish to learn more about the Kernel Toolkit software should consult the following:
o Kernel Toolkit Release Notes
o Kernel Toolkit Installation Guide
o Kernel Systems Management Guide
o Kernel Developer's Guide
o Kernel Technical Manual
o Kernel Security Tools Manual
o Kernel Website:

http://vista.med.va.gov/kernel/index.asp

This site contains other information and provides links to additional documentation.

o NOTE: This site contains additional information and documentation.

VistA documentation is made available online in Microsoft Word format and in Adobe Acrobat Portable
Document Format (PDF). The PDF documents must be read using the Adobe Acrobat Reader, which is
freely distributed by Adobe Systems Incorporated at the following Website:

http://www.adobe.com/

VistA documentation can be downloaded from the VHA Software Document Library (VDL) Website:
http://www.va.gov/vdl/

VistA documentation and software can also be downloaded from the Product Support (PS) anonymous
directories:

o Preferred Method download.vista.med.va.gov

This method transmits the files from the first available FTP server.
e Albany OIFO ftp.fo-albany.med.va.gov
e Hines OIFO ftp.fo-hines.med.va.gov
e Salt Lake City OIFO ftp.fo-slc.med.va.gov

August 2001 Parameter Tools xi
Revised: October 2008 Supplement to Patch Description
Kernel Toolkit Patch XT*7.3*26

http://vista.med.va.gov/
http://vista.med.va.gov/kernel/index.asp
http://www.adobe.com/
http://www.va.gov/vdl/

Orientation

constitute endorsement by the Department of Veterans Affairs (VA) of this Website or
the information, products, or services contained therein. The VA does not exercise any
editorial control over the information you may find at these locations. Such links are
provided and are consistent with the stated purpose of this VA Intranet Service.

ﬁ DISCLAIMER: The appearance of external hyperlink references in this manual does not

xii Parameter Tools August 2001
Supplement to Patch Description Revised: October 2008
Kernel Toolkit Patch XT*7.3*26

1. User Manual—Parameter Tools

This is the User Manual section of this supplemental documentation for the Parameter Tools software
(i.e., Kernel Toolkit Patch XT*7.3*26).

The intended audience for this chapter is the Information Resource Management (IRM) at a local site.
However, it can also be helpful to application developers of Veterans Health Information Systems and
Technology Architecture (VistA) software and others in VA Office of Information & Technology
(OI&T), and Product Support (PS).

Introduction

This supplemental documentation is intended for use in conjunction with the Parameter Tools patch
(XT*7.3*26). This documentation explains the functions available with the use of the Parameter Tools
and describes the APIs that are part of the patch. It combines information from the patch description and
two Integration Agreements (IAs): 2263 and 2336, as well as providing additional explanatory material
and a generic example to illustrate the use of the Parameter Tools.

In brief, the Parameter Tools patch provides a method of managing the definition, assignment, and
retrieval of parameters for VistA software applications.

VistA software applications are designed to be used in a variety of ways. Many aspects of hospital
activity vary from one hospital to another and thus there are many possible ways software applications
can be used that also vary from one institution to another. Each site has its own requirements—its own
settings for each software application. IRM staff must modify the software parameters to fit their
requirements.

Previously, each software application had its own files and options but no two software applications had
the site parameters set up the same way or found in the same place. Thus, when a new software
application was released, each site would have to look for the location where the settings were stored for
that software. Next, they would have to look to see what settings were available and how to set them.
Very little about the parameters was uniform from software to software.

With the Computerized Patient Record System (CPRS) software, the idea was born that a parameter file
could be created to export with the software. The CPRS parameter file and parameter utility were
subsequently modified to create a generic method of exporting and installing other VistA software
applications. Most developers were willing to abandon previous methods and use this tool for software
they were developing.

Parameter Tools was designed as a method of managing the definition, assignment, and retrieval of
parameters for VistA software. A parameter may be defined for various levels at which you want to allow
the parameter described (e.g., software level, system level, division level, location level, user level).

August 2001 Parameter Tools 1-13
Revised: October 2008 Supplement to Patch Description
Kernel Toolkit Patch XT*7.3*26

User Manual—Parameter Tools

Background

Whenever you have an entity with many attributes that apply to it, you can do either of the following:
1. Make one big relation to represent that entity.

2. Create a "binary" relation to represent the entity. In the latter case, the relation consists of two
columns (thus the term binary), one representing the attribute and the other representing the value
for that attribute. So each tuple (i.e., a data type/data object containing two or more components)
of the relation represents a single attribute and its associated value.

o NOTE: This works only when the individual attributes are independent observations
(have no dependencies on anything other than the key that identifies the entity). Such a
relation tends to look a lot like a Windows INI file.

Most of the VistA parameter files were very long lists of independent values that pertained to a single
entity. In most cases, this entity was the site or system on which the software was running [similar to an
INI file]. In other cases, however, the parameter files had multiples that made things more complex.
These multiples generally allow parameters to be defined at levels more specific than the site (e.g., by
divisions or hospital location). It seems best to accommodate this by using both an entity identifier and
parameter together to name any given value. This yields a relation with a compound key:

Entity | Parameter = Value

Finally, it seems that multiple-valued parameters (e.g., collection times) occur often enough that it is
worthwhile to add a field to identify the parameter instance. So the relation becomes:

Entity | Parameter | Instance = Value
This is the relation that the PARAMETERS file (#8989.5) is intended to represent.

Software parameter files frequently maintain parameters that apply to the site, a division, or a location. In
addition, many parameters that apply to individual users are kept in the NEW PERSON file (#200). Also,
many parameter values are hard-coded in individual software routines for the case when the site has not
set up a value for a given parameter. Entity, then, is implemented as a variable pointer.

A given parameter may occur for a variety of entities. In fact, we frequently need to obtain the value of a
parameter by following an entity "chain.” For example, the Add Orders menu a CPRS user sees may be
defined at various levels. Initially, a site generally creates a custom Add Orders menu. Later, hospital
locations may each build a custom menu that more specifically meets their needs. Individual users may
also have their own Add Orders menus. If no site configuration has been done, the Add Orders menu
exported with OE/RR is used. So, when OE/RR needs to display an Add Orders menu, a chain is followed
that looks first to see if the user has their own menu. Next, the current location is checked, followed by
the site. Finally, if no values exist, the software default menu is used.

In the PARAMETER DEFINITION file (#8989.51), a multiple lists which entities are valid with a given
parameter. These entities are also assigned a precedence, so that it is possible to write functions that will
"chain" through entities until a value is found, using the proper sequence.

1-14 Parameter Tools August 2001
Supplement to Patch Description Revised: October 2008
Kernel Toolkit Patch XT*7.3*26

User Manual—Parameter Tools

Description

Patch XT*7.3*26 contains a developer toolset that allows creation of software parameters in a central
location. Integration Agreements (1As) 2263 and 2336 define the supported entry points for this
application. Kernel Patch XU*8.0*201 allows KIDS to transport the parameters.

Parameter Tools is a generic method of handling parameter definition, assignment, and retrieval. A
parameter can be defined for various entities where an entity is the level at which you want to allow the

parameter defined (e.g., software level, system level, division level, location level, user level, etc.). A
developer can then determine in which order the values assigned to given entities are interpreted.

Definitions

The following are some basic definitions used by Parameter Tools.

Entity

An entity is a level at which you can define a parameter. The entities allowed are stored in the
PARAMETER ENTITY file (#8989.518). Kernel Toolkit patches maintain entries in this file. The list of
allowable entries is as follows:

Table 1-1. Parameter Entities

Prefix Message Points To File

PKG Package PACKAGE (#9.4)

SYS System DOMAIN (#4.2)

DIV Division INSTITUTION (#4)

SRV Service SERVICE/SECTION (#49)
LOC Location HOSPITAL LOCATION (#44)
TEA Team TEAM (#404.51)

CLS Class USR CLASS (#8930)
USR User NEW PERSON (#200)
BED Room-Bed ROOM-BED (#405.4)
OTL Team (OE/RR) OE/RR LIST (#100.21)
DEV Device DEVICE (#3.5)

Package (PKG), as an entity, allows the software defaults to be handled the same way as other parameters
rather than hard-coded.

System (SYS), Division (DIV), Location (LOC), and User (USR) are frequent entries in existing software
parameter files (or additions to the NEW PERSON file [#200]).

August 2001 Parameter Tools 1-15
Revised: October 2008 Supplement to Patch Description
Kernel Toolkit Patch XT*7.3*26

User Manual—Parameter Tools

Service (SRV), Team (TEA), and Class (CLS) are referenced frequently by parameters that pertain to
Notifications.

The process of exporting software using this kind of parameters file involves sending:

e Parameter definitions that belong to the software (entries in the PARAMETER DEFINITION file
[#8989.51]).

e Actual parameter instances that point to the software (entries in the PARAMETERS file
[#8989.5] that have an entity that matches the software).

All the other entries in the PARAMETERS file (#8989.5 (those that correspond to entities other than
package [PKG]) would never be exported, as they are only valid for the system on which they reside.

Parameter

A parameter is the actual name under which values are stored. The name of the parameter must be
namespaced and it must be unique and start with two uppercase characters. Parameters can be defined to
store the typical software parameter data (e.g., the default add order screen in OE/RR), but they can also
be used to store graphical user interface (GUI) application screen settings a user has selected (e.g., font or
window width). With each parameter, a more readable display name can also be defined. When a
parameter is defined, the entities that may set that parameter are also defined. The definition of
parameters is stored in the PARAMETER DEFINITION file (#8989.51).

Instance

An instance is a unique value assigned to an entity/parameter combination. For most parameters, there
will only be one instance, that is, instance does not apply and is simply set to "1".

However, a parameter can be multi-valued—it can have more than one instance. More than one value can
be assigned to the parameter as it relates to a specific entity. For example, lab collection times at a
division. For a single entity (division in this case), multiple collection times may exist. Each collection
time would be assigned a unique instance.

A parameter is not considered multi-valued if it can apply to several entities, but for each entity only one
value of the parameter exists. For example, "maximum days for a lab order” can be set for every location
in the hospital. However, since there is only one value for each location, "maximum days for a lab order"
is not multi-valued.

1-16 Parameter Tools August 2001
Supplement to Patch Description Revised: October 2008
Kernel Toolkit Patch XT*7.3*26

User Manual—Parameter Tools

When a parameter that is multi-valued is defined, the instance can be defined as any of the following:

Numeric
Date/Time
Pointer

Set Of Codes
Free Text
Yes/No

The validating logic for an instance is defined the same way as for a value.

Value

A value can be assigned to every parameter for the entities allowed in the parameter definition. Values are
stored in the PARAMETERS file (#8989.5). Fields in the PARAMETERS file (#8989.5) map to DIR
fields. DIR is used to validate the data. Values can be any of the following:

Numeric

Date/Time

Pointer

Set Of Codes

Free Text

Yes/No
Word-processing Type

Parameter Template

A Parameter template is similar to an Input template. It contains a list of parameters that can be entered
through an input session (e.g., an option). Templates are stored in the PARAMETER TEMPLATE file
(#8989.52). Entries in this file must also be namespaced.

There are two Input templates for adding parameter definitions:

Table 1-2. Templates—Parameter Tools

Template Description

XPAR SINGLE VALUED CREATE For adding/editing parameters that will be single valued

XPAR MULTI VALUED CREATE For adding/editing parameters that will be multiple valued
August 2001 Parameter Tools 1-17
Revised: October 2008 Supplement to Patch Description

Kernel Toolkit Patch XT*7.3*26

User Manual—Parameter Tools

Why Would You Use Parameter Tools?

The reason a developer would use Parameter Tools is to allow a hierarchical designation of a parameter
value. Thus, rather than many parameters that exist now, which are just for the system level or just for a
particular clinic, Parameter Tools allows you to define:

o Different levels at which the parameter can be set.

e Inwhat priority the values are used.

Take, for example, setting up a default order menu for a person. Each facility may have a default order
menu for their primary care clinicians. Each division may have one that is slightly different if their
practices vary enough. For each location, they may set up a different order menu so that users working in
a cardiology clinic get a different set of possible orders than those in a dermatology clinic. And there may
be reasons to give one specific person a different order menu because they are authorized to prescribe
additional medications, because they tend to practice in a different flow, or for other reasons. It's one
parameter, but it allows the parameter to be set for multiple entities (at multiple levels). Those entities are
defined in the 1A, but can include package (PKG, which only developers should set—these are default
export values), system (SYS, whole medical facility), division (DIV), location (LOC), room-bed (BED),
team (TEA), provider, etc.

The PARAMETER DEFINITION file (#8989.51) defines what entities are allowed to be used for a
parameter and in which order they are resolved (individual takes precedence over location takes
precedence over division takes precedence over system which takes precedence over package).
Sometimes you would want to create defaults for your medical center, but allow users in a certain area to
customize what they see and do for their particular role.

XPAR finds the appropriate value based on the parameter definitions and settings that may exist. This
way, the developer does not need to look at multiple different location or person files to determine how
the software should operate.

With integrations, this is even more important because it allows facilities to integrate; however, at the
same time, continue some business practices based on parameters set at the division level rather than at
the system level.

Example

The following is a simple example of a way you might use the Parameter Tools. Suppose you needed a
parameter that could be set as a default for the system (account) and also overridden for a given user.
Previously, you had to add a field to a software site file (e.g., the KERNEL SYSTEM PARAMETERS
file [#8989.3]) and then add a similar field to the NEW PERSON file (#200). This situation is a perfect
use of the Parameter Tools.

1-18 Parameter Tools August 2001
Supplement to Patch Description Revised: October 2008
Kernel Toolkit Patch XT*7.3*26

User Manual—Parameter Tools

1. You need the equivalent to a data dictionary (DD) entry. Figure 1-1 goes into the PARAMETER
DEFINITION file (#8989.51). In this case we need a Yes/No Set of Codes. So, this is what you set

up:

Figure 1-1. Setting up the PARAMETER DEFINITION file (#8989.51)

Name: XUS-XUP VPE

DISPLAY TEXT: Drop into VPE

MULTIPLE VALUED: n <Enter> No

VALUE DATA TYPE: y <Enter> yes/no

VALUE HELP: Should XUP drop the user into the VPE environment?

Description. ..
PRECEDENCE: 1 ENTITY FILE: USER
PRECEDENCE: 2 ENTITY FILE: SYSTEM

NOTE: Figure 1-1 only shows the fields with the data necessary to set up the PARAMETER
DEFINITION file (#8989.51).

Figure 1-1 lists the order that values are looked for and/or returned. You want a USER value (File #200)
if there is one; otherwise a SYSTEM value (File #4.2). It also gives the entities that are allowed to have
values of this data. In the place of SYSTEM, you could have used PACKAGE.

2. You can use “"XPAREDIT to enter a value for your new parameter:

Figure 1-2. Use “"XPAREDIT to enter a value for your new parameter

>D ~XPAREDIT

--- Edit Parameter Values ---
Select PARAMETER DEFINITION NAME: XUS-XUP VPE <Enter> Drop into VPE
XUS-XUP VPE may be set for the following:

1 User USR [choose from NEW PERSON]
2 System SYS [NXT.KERNEL . ISC-SF.VA_GOV]

Enter selection: 2 <Enter> System NXT .KERNEL . 1SC-SF_VA.GOV

————— Setting XUS-XUP VPE for System: NXT.KERNEL.ISC-SF.VA.GOV -—-—-——-—-
Value: NO

3. How do you get this value out in your VistA application?

Figure 1-3. Get the value of your new parameter for your VistA application

>S X=$$CETXPAR('USRNSYS™,""XUS-XUP VPE™,1,"Q"™) ;X will be null, 0 or 1.

August 2001 Parameter Tools 1-19

Revised: October 2008 Supplement to Patch Description
Kernel Toolkit Patch XT*7.3*26

User Manual—Parameter Tools

For the first parameter, you want a value from USR (user / New Person) or SY'S (system)
Next, this is the name of the parameter: "XUS-XUP VPE"

Next, in this example you only allow one instance (optional, Defaults to 1 if not passed in).

Last, the format to return: Use "Q" to get the internal value.

Adding the parameter template with VA FileMan, Figure 1-4:

Figure 1-4. Adding a sample parameter template

Select PARAMETER DEFINITION NAME: XUS-XUP VPE <Enter> Drop into VPE

NAME: XUS-XUP VPE// <Enter>
DISPLAY TEXT: Drop into VPE// <Enter>
MULTIPLE VALUED: No// <Enter>
INSTANCE TERM: <Enter>
VALUE TERM: <Enter>
PROHIBIT EDITING: <Enter>
VALUE DATA TYPE: yes/no// <Enter>
VALUE DOMAIN: <Enter>
VALUE HELP: Should XUP drop the user into the VPE environment.
VALUE VALIDATION CODE: <Enter>
VALUE SCREEN CODE: <Enter>
INSTANCE DATA TYPE: <Enter>
INSTANCE DOMAIN: <Enter>
INSTANCE HELP: <Enter>
INSTANCE VALIDATION CODE: <Enter>
INSTANCE SCREEN CODE: <Enter>
DESCRIPTION:
1> This parameter controls if a user when exiting XUP is dropped into
2> VPE or right to the ">" prompt.
EDIT Option: <Enter>
Select PRECEDENCE: 2// <Enter>
PRECEDENCE: 2// <Enter>
ENTITY FILE: SYSTEM// <Enter>
Select PRECEDENCE: <Enter>

1-20 Parameter Tools

August 2001

Supplement to Patch Description Revised: October 2008

Kernel Toolkit Patch XT*7.3*26

2. Programmer Manual—Parameter Tools

This is the Programmer Manual section of this supplemental documentation for the Parameter Tools
software (i.e., Kernel Toolkit Patch XT*7.3*26).

The intended audience for this chapter is the application developers of VistA software. However, it can
also be helpful to others in Information Resource Management (IRM), Product Support (PS), and
Application Structure and Integration Services (ASIS).

Application Program Interfaces (APIs)—*XPAR Routine

The following is a list of APIs available in the *XPAR routine.

ADD~AXPAR():

Reference Type
Category
IA#

Description

Format

Input/Output
Parameters

Example:

Add Parameter Value

Supported

Toolkit—Parameter Tools

2263

This API can be called to add a new parameter value as an entry to the

PARAMETERS file (#8989.5) if the Entity/Parameter/Instance combination does
not already exist.

o REF: For descriptive information about the elements and how they are used
in the callable entry points into XPAR, please refer to Chapter 1, "User
Manual Information™ in this manual.

ADD"XPAR (entity,parameter[,instance],value[,.error])

For the definition of the input and output parameters used in this API, please refer
to the EN*XPAR(): Add, Change, Delete Parameters API.

>D ADDXPAR('PKG.KERNEL™,"XPAR TEST FREE TEXT",,"Today Good',.ERROR)

August 2001
Revised: October 2008

Parameter Tools
Supplement to Patch Description
Kernel Toolkit Patch XT*7.3*26

2-1

Programmer Manual—Parameter Tools

CHG"MXPAR(): Change Parameter Value

Reference Type Supported

Category Toolkit—Parameter Tools
IA# 2263
Description This API can be called to change the value assigned to an existing parameter if the

Entity/Parameter/Instance combination already exists.

o REF: For descriptive information about the elements and how they are used
in the callable entry points into XPAR, please refer to Chapter 1, "User
Manual Information™ in this manual.

Format CHG”XPAR((entity,parameter[,instance],valuel[,.error])

Input/Output For the definition of the input and output parameters used in this API, please refer
Parameters to the EN*XPAR(): Add, Change, Delete Parameters API.

Example

>D CHGMXPAR(''PKG.KERNEL",""XPAR TEST FREE TEXT",,"Tomorrow Hot",.ERROR)

DELMXPAR(): Delete Parameter Value

Reference Type Supported

Category Toolkit—Parameter Tools

1A # 2263

Description This API can be called to delete an existing parameter instance if the value
assigned is "@".

o REF: For descriptive information about the elements and how they are used
in the callable entry points into XPAR, please refer to Chapter 1, "User
Manual Information" in this manual.

Format DEL"XPAR(entity,parameter[,instance][,.error])

Input/Output For the definition of the input and output parameters used in this API, please refer

Parameters to the EN*XPAR(): Add, Change, Delete Parameters API.

2-2 Parameter Tools August 2001
Supplement to Patch Description Revised: October 2008

Kernel Toolkit Patch XT*7.3*26

Programmer Manual—Parameter Tools

Example

>D DEL"XPAR(''PKG.KERNEL™,"XPAR TEST FREE TEXT™,),-.ERROR) 1 ERROR>0 W !_ERROR

August 2001 Parameter Tools 2-3
Revised: October 2008 Supplement to Patch Description
Kernel Toolkit Patch XT*7.3*26

Programmer Manual—Parameter Tools

EN~XPAR(): Add, Change, Delete Parameters

Reference Type Supported

Category Toolkit—Parameter Tools

1A # 2263

Description This API performs any one of the following functions:

e Adds the value as a new entry to the PARAMETERS file (#8989.5) if the
Entity|Parameter|Instance combination does not already exist.

e Changes the value assigned to the parameter in the PARAMETERS file
(#8989.5) if the Entity|Parameter|Instance combination already exists.

o Deletes the parameter instance in the PARAMETERS file (#8989.5) if
the value assigned is "@".
Format EN~XPAR(entity,parameter[,instance],value[,.error])

Input Parameters entity: (required) Entity can be set to the following:
e Internal variable pointer (nnn;GLO(123,)

o External format of the variable pointer using the three-
character prefix (prefix.entryname)

o Prefix alone to set the parameter based on the current
entity selected. This works for the following entities:

— "USR"—Uses current value of DUZ.
— "DIV"—Uses current value of DUZ(2).
— "SYS"—Uses system (domain).

— "PKG"—Uses the package to which the parameter
belongs.

parameter: (required) Can be passed in external or internal format. ldentifies
the name or internal entry number (IEN) of the parameter as
defined in the PARAMETER DEFINITION file (#8989.51).

instance: (optional) Defaults to 1 if not passed. Can be passed in external or
internal format. Internal format requires that the value be preceded
by the grave accent (°) character.

value: (required) Can be passed in external or internal format. If using
internal format for a pointer type parameter, the value must be
preceded by the accent grave (°) character.

If the value is being assigned to a word-processing parameter, the
text can be passed in the subordinate nodes of Value
(e.g., Value(1,0)=Text) and the variable "Value" itself can be

2-4 Parameter Tools August 2001
Supplement to Patch Description Revised: October 2008
Kernel Toolkit Patch XT*7.3*26

Programmer Manual—Parameter Tools

defined as a title or description of the text.

Output Parameter .error: (optional) If used, must be passed in by reference. It returns any
error condition that may occur:

e 0 (Zero)—If no error occurs.

e # errortext—If an error does occur.

The "#" is the number in the VA FileMan DIALOG file
(#.84) and the "errortext" describes the error.

Example

>D ENAXPAR('SYS™,"XPAR TEST FREE TEXT",0,"Good times',.ERROR)
>D ENXPAR('SYS™,"XPAR TEST FREE TEXT",1,"to night', _ERROR)

ENVALMXPAR(): Return All Parameter Instances

Reference Type Supported

Category Toolkit—Parameter Tools
1A # 2263
Description This API can be called to return all parameter instances.

o REF: For descriptive information about the elements and how they are used
in the callable entry points into XPAR, please refer to Chapter 1, "User
Manual Information™ in this manual.

Format ENVALMXPAR(.list,parameter,instancel[,.error][,gbl])
Input/Output Jist (required) If the gbl parameter is set to 1, then the .list parameter
Parameter becomes an input and holds the closed root of a global where the

GETLST~AXPAR(): Return All Instances of a Parameter API
should put the output. For example:

SNA(ATMP($J, "XPAR™))

Input Parameters parameter: (required) For a description of this parameter, please refer to the
EN~XPAR(): Add, Change, Delete Parameters API.

instance: (required) For a description of this parameter, please refer to the
ENAXPAR(): Add, Change, Delete Parameters API.

gbl: (optional) If this optional parameter is set to 1, then the parameter
" list" must be set before the call to the closed global root where
the return data should be put. For example:

August 2001 Parameter Tools 2-5
Revised: October 2008 Supplement to Patch Description
Kernel Toolkit Patch XT*7.3*26

Programmer Manual—Parameter Tools

S LIST=$NA("TMP($J))
ENVALMXPAR(LIST,par, inst, .error,1

If this optional variable is set to 1. Then the parameter List must
be set before the call to the closed global root where the return
data should be put. For example:

GETLSTAXPAR(SNA(NTMP($J)) ,ent,par,fmt, _error,1)

Output .error; (optional) For a description of this parameter, please refer to the

Parameter EN~AXPAR(): Add, Change, Delete Parameters API.

2-6 Parameter Tools August 2001
Supplement to Patch Description Revised: October 2008

Kernel Toolkit Patch XT*7.3*26

Programmer Manual—Parameter Tools

$SGETAXPAR(): Return an Instance of a Parameter

Reference Type
Category
IA#

Description

Format

Input Parameters

August 2001
Revised: October 2008

Supported

Toolkit—Parameter Tools

2263

This extrinsic function retrieves the value of a parameter. The value is returned
from this call in the format defined by the input parameter named "format."

o REF: For descriptive information about the elements and how they are used
in the callable entry points into XPAR, please refer to Chapter 1, "User
Manual Information™ in this manual.

$SGETAXPAR(entity,parameter,instance,format)

entity:

parameter:

instance:

format:

(required) Entity is defined as the single entity or group of entities
you want to look at in order to retrieve the value. Entities may be
passed in internal or external format (e.g., LOC.PULMONARY or
LOC.'57 or 57;SC(). The list of entities in this variable may be
defined as follows:

e Asingle entity to look at (e.g., LOC.PULMONARY).

e The word "ALL" which will tell the utility to look for
values assigned to the parameter using the entity
precedence defined in the PARAMETER DEFINITION
file (#8989.51).

o Alist of entities you want to search
(e.g., "USRMLOCASYSMPKG™). The list is searched from
left to right with the first value found returned.

Items 2 or 3 with specific entity values referenced such as:

o ALLMNOC.PULMONARY—To look at the defined entity
precedence, but when looking at location, only look at the
PULMONARY location.

e USRMALOC.PULMONARY”SYS"PKG—To look for
values for all current user, PULMONARY location,
system, or package).

(required) For a description of this parameter, please refer to the
EN~XPAR(): Add, Change, Delete Parameters API.

(required) For a description of this parameter, please refer to the
EN~XPAR(): Add, Change, Delete Parameters API.

(required) Format determines how the value is returned. It can be
set to the following:

Parameter Tools 2-7
Supplement to Patch Description
Kernel Toolkit Patch XT*7.3*26

Programmer Manual—Parameter Tools

e "I" - Internal, returns internal value.

e "Q" - returns the value in the quickest manner - internal
format.

e "E" -returns external value.

e "B" - returns internal*external value.

2-8 Parameter Tools August 2001
Supplement to Patch Description Revised: October 2008
Kernel Toolkit Patch XT*7.3*26

Programmer Manual—Parameter Tools

GETLSTAXPAR(): Return All Instances of a Parameter

Reference Type Supported

Category Toolkit—Parameter Tools
IA# 2263
Description This API is similar to the ENVAL"XPAR(): Return All Parameter Instances API;

however, it returns all instances of a parameter.

o REF: For descriptive information about the elements and how they are used
in the callable entry points into XPAR, please refer to Chapter 1, "User
Manual Information™ in this manual.

Format GETLSTAXPAR(.list,entity,parameter,format[,.error][,gbl])

Input/Output list:
Parameter

Input Parameters entity:

parameter:
instance:
format:
gbl:
Output .error:
Parameter
August 2001

Revised: October 2008

(required) The array passed as List will be returned with all of the
possible values assigned to the parameter.

o REF: To see how this data can be returned, please refer to
the "format™ parameter description below.

If the gbl parameter is set to 1, then the .list parameter becomes an
input and holds the closed root of a global where the
GETLST~AXPAR(): Return All Instances of a Parameter API
should put the output [i.e., SNA(*"TMP($J,"XPAR"))].

(required) For a description of this parameter, please refer to the
EN~XPAR(): Add, Change, Delete Parameters API.

(required) For a description of this parameter, please refer to the
EN~XPAR(): Add, Change, Delete Parameters API.

(required) For a description of this parameter, please refer to the
EN~XPAR(): Add, Change, Delete Parameters API.

(required) For a description of this parameter, please refer to the
$SGETAXPAR(): Return an Instance of a Parameter API.

(optional) If this optional variable is set to 1. Then the parameter
" list" must be set before the call to the closed global root where the
return data should be put. For example:

GETLSTAXPAR(SNA(NTMP($J)) ,ent,par,fmt, _error,1)

(optional) For a description of this parameter, please refer to the
EN~AXPAR(): Add, Change, Delete Parameters API.

Parameter Tools 2-9
Supplement to Patch Description
Kernel Toolkit Patch XT*7.3*26

Programmer Manual—Parameter Tools

Example:

>D GETLSTAXPAR(.LIST,"SYS","XPAR TEST MULTI FREE TEXT",,.ERROR)

GETWP/MXPAR(): Return Word-processing Text

Reference Type Supported

Category Toolkit—Parameter Tools
IA# 2263
Description This API returns word-processing text in the returnedtext parameter. The

returnedtext parameter itself contains the value field, which is free text that may
contain a title, description, etc. The word-processing text is returned in
returnedtext(#,0).

o REF: For descriptive information about the elements and how they are used
in the callable entry points into XPAR, please refer to Chapter 1, "User
Manual Information™ in this manual.

Format GETWPAXPAR(returnedtext,entity,parameter|,instance][,.error])
Input/Output .returnedtext (required) This parameter is defined as the name of an array in
Parameter which you want the text returned. The .returnedtext parameter is

set to the title, description, etc. The actual word-processing text
will be returned in returnedtext(#,0). For example:

>returnedtext=""Select Notes Help"
>returnedtext(1,0)="To select a progress note from

the list, "
>returnedtext(2,0)="click on the date/title of the
note."

Input Parameters entity: (required) For a description of this parameter, please refer to the

EN~XPAR(): Add, Change, Delete Parameters API.

parameter: (required) For a description of this parameter, please refer to the
EN~XPAR(): Add, Change, Delete Parameters API.

instance: (optional) For a description of this parameter, please refer to the
ENAXPAR(): Add, Change, Delete Parameters API.

Output .error (optional) For a description of this parameter, please refer to the
Parameter EN~XPAR(): Add, Change, Delete Parameters API.
Example:

>D GETWPAXPAR(.X,"PKG™,"ORW HELP™","IstNotes", .ERROR)

2-10 Parameter Tools August 2001
Supplement to Patch Description Revised: October 2008
Kernel Toolkit Patch XT*7.3*26

Programmer Manual—Parameter Tools

NDEL"MXPAR(): Delete All Instances of a Parameter

Reference Type
Category
IA#

Description

Format

Input/Output
Parameters

Example

>D NDELMXPAR(™

Supported
Toolkit—Parameter Tools
2263

This API can be called to delete the value for all instances of a parameter for a
given entity.

o REF: For descriptive information about the elements and how they are used
in the callable entry points into XPAR, please refer to Chapter 1, "User
Manual Information™ in this manual.

NDEL"MXPAR(entity,parameter[,.error])

For the definition of the input and output parameters used in this API, please refer
to the EN*XPAR(): Add, Change, Delete Parameters API.

SYS™,"XPAR TEST MULTI FREE TEXT",.ERROR)

PUTAXPAR(): Add/Update Parameter Instance

Reference Type
Category
IA#

Description

Format

Input/Output
Parameters

August 2001
Revised: October 2008

Supported
Toolkit—Parameter Tools
2263

This API can be called to add or update a parameter instance and bypass the input
transforms.

o REF: For descriptive information about the elements and how they are used
in the callable entry points into XPAR, please refer to Chapter 1, "User
Manual Information" in this manual.

PUT~XPAR(entity,parameter[,instance],value[,.error])

For the definition of the input and output parameters used in this API, please refer
to the EN*XPAR(): Add, Change, Delete Parameters API.

Parameter Tools 2-11
Supplement to Patch Description
Kernel Toolkit Patch XT*7.3*26

Programmer Manual—Parameter Tools

Example:

>D PUTAXPAR('SYS'™,""XPAR TEST MULTI FREE TEXT'",0,"Good times',.ERROR)

REPAMXPAR(): Replace Instance Value

Reference Type
Category
IA#

Description

Format

Input Parameters

Output Parameter

2-12

Supported
Toolkit—Parameter Tools
2263

This API can be called to replace the value of an instance with another value.

o REF: For descriptive information about the elements and how they are
used in the callable entry points into XPAR, please refer to Chapter 1,
"User Manual Information™ in this manual.

REPMXPAR(entity,parameter,currentinstance,newinstance[,.error])

entity: (required) For a description of this parameter, please refer to
the EN*XPAR(): Add, Change, Delete Parameters API.

parameter: (required) For a description of this parameter, please refer to
the EN*XPAR(): Add, Change, Delete Parameters API.

currentinstance: (required) The instance for which the value is currently
defined.

newinstance: (required) The instance to which you want to assign the value
that is currently assigned to currentinstance.

.rror: (optional) For a description of this parameter, please refer to
the EN*XPAR(): Add, Change, Delete Parameters API.

Parameter Tools August 2001
Supplement to Patch Description Revised: October 2008
Kernel Toolkit Patch XT*7.3*26

Programmer Manual—Parameter Tools

Application Program Interfaces (APIs)—*XPAREDIT Routine

The following is a list of APIs available in the ~XPAREDIT routine. The calls are supported for use with
the Parameter Tools and are part of the Parameter Tools component of Kernel Toolkit. These calls contain
some additional utilities for editing parameters and are covered by 1A #2336. (See |A #2263 for the main
XPAR entry points to this module.)

BLDLSTAXPAREDIT(): Return All Entities of a Parameter

Reference Type Supported

Category Toolkit—Parameter Tools
IA # 2336
Description This API returns in the array "list" all entities allowed for the input parameter

named "parameter."

Format BLDLSTAXPAREDIT(.list,parameter)
Input Parameters list: (required) Name of array to receive output.
parameter: (required) Internal Entry Number (IEN) of entry in the

PARAMETER DEFINITION file (#8989.51).

Output list: The array passed as "list" is returned with all of the possible
Parameter values assigned to the parameter.

Data is returned in the list(ent,inst)=val format.

EDITAXPAREDIT(): Edit Instance and Value of a Parameter

Reference Type Supported

Category Toolkit—Parameter Tools
1A # 2336
Description This API interactively edits the instance (if multiple instances are allowed) and the

value for a parameter associated with a given entity.
Format EDITAXPAREDIT (entity,parameter)

Make sure to perform the following steps before calling this API:
e NEW all variables.

e Setall input variables.
August 2001 Parameter Tools 2-13

Revised: October 2008 Supplement to Patch Description
Kernel Toolkit Patch XT*7.3*26

Programmer Manual—Parameter Tools

e Call the API.

If you do not follow these steps, the variables could unintentionally assume the values of the variables
of the current running task.

Input Parameters entity: (required) Identifies the specific entity for which a parameter may
be edited. The entity must be in variable pointer format.

parameter: (required) ldentifies the parameter that should be edited.
Parameter should contain two pieces:

IEN~DisplayNameOfParameter

Output .LIST: The array passed as "list" is returned with all of the possible
Parameters values assigned to the parameter.

o REF: For a description of this parameter, please refer to
the "format" parameter in the ENVALXPAR(): Return
All Parameter Instances API.

.error (optional) For a description of this parameter, please refer to the
ENAXPAR(): Add, Change, Delete Parameters API.

EDITPARMXPAREDIT(): Edit Single Parameter

Reference Type Supported

Category Toolkit—Parameter Tools

1A # 2336

Description This API is used to edit a single parameter.

Format EDITPARMXPAREDIT (parameter)

Input Parameter parameter: (required) For a description of this parameter, please refer to the

EN~XPAR(): Add, Change, Delete Parameters API.

Output Returns requested parameter.
2-14 Parameter Tools August 2001
Supplement to Patch Description Revised: October 2008

Kernel Toolkit Patch XT*7.3*26

Programmer Manual—Parameter Tools

EN~XPAREDIT(): Parameter Edit Prompt

Reference Type Supported

Category Toolkit—Parameter Tools
IA# 2336
Description This API is called to prompt the user for a parameter to edit. This is provided as a

tool for developers and is not intended for exported calls as it allows editing of
any parameter.

Format ENXPAREDIT
Input Parameter none

Output none

GETENTAXPAREDIT(): Prompt for Entity Based on Parameter

Reference Type Supported

Category Toolkit—Parameter Tools

1A # 2336

Description This API interactively prompts for an entity, based on the definition of a
parameter.

Format GETENT~XPAREDIT(.entity,parameter[,.onlyone?])

Output .entity (required) Returns the selected entity in variable pointer format.

Input Parameter parameter: (required) Specifies the parameter for which an entity should be
selected. Parameter should contain two pieces:

IEN~DisplayNameOfParameter

Output Parameter onlyone? (optional) Returns "1" if there is only one possible entity for the
value. For example:

o 1—If the parameter can only be set for the system,

onlyone?
e 0—If the parameter could be set for any location,
onlyone?
August 2001 Parameter Tools 2-15
Revised: October 2008 Supplement to Patch Description

Kernel Toolkit Patch XT*7.3*26

Programmer Manual—Parameter Tools

GETPARMXPAREDIT(): Select Parameter Definition File

Reference Type Supported

Category Toolkit—Parameter Tools

IA# 2336

Description This API allows the user to select the PARAMETER DEFINITION file
(#8989.51) entry.

Format GETPARMXPAREDIT(.variable)

Make sure to perform the following steps before calling this API:
e NEW all variables.
e Setall input variables.
e Call the API.

If you do not follow these steps, the variables could unintentionally assume the values of the variables
of the current running task.

Input Parameter .variable: (required) The name of the variable where data is
returned.

Output Variable .OUTPUTVALU: Returns the value Y in standard DIC lookup format.

2-16 Parameter Tools August 2001
Supplement to Patch Description Revised: October 2008
Kernel Toolkit Patch XT*7.3*26

Programmer Manual—Parameter Tools

TEDMXPAREDIT(): Edit Template Parameters (No Dash Dividers)

Reference Type Supported

Category Toolkit—Parameter Tools
IA# 2336
Description This API allows editing of parameters defined in a template. The parameters in the

template are prompted in VA FileMan style—prompt by prompt. No dashed line
dividers are displayed between each parameter.

Since the dashed line headers are suppressed, it is important to define the VALUE
TERM for each parameter in the template, as this is what is used to prompt for the

value.
Format TED*XPAREDIT (template[,reviewflags][,allentities])
Input Parameters template: (required) The Internal Entry Number (IEN) or NAME of an entry

in the PARAMETER TEMPLATE file (#8989.52).

reviewflags: (optional) There are two flags (A and B) that can be used
individually, together, or not at all:

e A—lIndicates that the new values for the parameters in
the template are displayed after the prompting is done.

o B—Indicates that the current values of the parameters
are displayed before editing.

allentities: (optional) This is a variable pointer that should be used as the
entity for all parameters in the template. If left blank, prompting
for the entity is done as defined in the PARAMETER
TEMPLATE file (#8989.52).

August 2001 Parameter Tools 2-17
Revised: October 2008 Supplement to Patch Description
Kernel Toolkit Patch XT*7.3*26

Programmer Manual—Parameter Tools

TEDHAXPAREDIT(): Edit Template Parameters (With Dash Dividers)

Reference Type Supported

Category Toolkit—Parameter Tools

IA# 2336

Description This API is similar to the TED"XPAREDIT(): Edit Template Parameters (No
Dash Dividers) API except that the dashed line headers are shown between each
parameter.

It allows editing of parameters defined in a template. The parameters in the
template are prompted in VA FileMan style—prompt by prompt.

Format TEDHAXPAREDIT (template[,reviewflags][,allentities])

Input Parameters template (required) For a description of this parameter, please refer to the
TEDMXPAREDIT(): Edit Template Parameters (No Dash
Dividers) API.

reviewflags (optional) For a description of this parameter, please refer to the
TED"XPAREDIT(): Edit Template Parameters (No Dash

Dividers) API.
allentities (optional) For a description of this parameter, please refer to the
TED*XPAREDIT(): Edit Template Parameters (No Dash
Dividers) API.
Output none
2-18 Parameter Tools August 2001
Supplement to Patch Description Revised: October 2008

Kernel Toolkit Patch XT*7.3*26

Index

$

$$GET XPAR, 2-7

A

ADD"MXPAR, 2-1
Assumptions About the Reader, x

B

Background, 1-14
BLDLSTAXPAREDIT, 2-13

C

Callout Boxes, ix
CHG"XPAR, 2-2
Contents, v

D

Data Dictionary
Data Dictionary Utilities Menu, x
Listings, x
Definitions, 1-15
DEL"XPAR, 2-2
Description, 1-15
DIALOG File (#.84), 2-5
Documentation
Revisions, iii
Symbols, ix

E

EDITAXPAREDIT, 2-13
EDITPARMXPAREDIT, 2-14
EN~XPAR, 2-4
EN~AXPAREDIT, 2-15
Entity

Definition, 1-15
ENVALMXPAR, 2-5
Example, 1-18

F

Figures, vii
Files

August 2001
Revised: October 2008

DIALOG (#.84), 2-5

KERNEL SYSTEM PARAMETERS
(#8989.3), 1-18

NEW PERSON (#200), 1-14, 1-15, 1-18

PARAMETER DEFINITION (#8989.51), 1-
14, 1-16, 1-18, 1-19, 2-4, 2-7, 2-13, 2-16

PARAMETER ENTITY (#8989.518), 1-15

PARAMETER TEMPLATE (#8989.52), 1-
17, 2-17

PARAMETERS (#8989.5), 1-14, 1-16, 1-17,
2-1,2-4

G

GETENT~XPAREDIT, 2-15
GETLST~XPAR, 2-9
GETPARMXPAREDIT, 2-16
GETWPAXPAR, 2-10

H

Help
At Prompts, x
Online, x
Question Marks, x
Home Pages
Adobe Website, xi
Kernel Website, xi
VHA Software Document Library (VDL)
Website, Xi
VistA Development Website, xi
How to
Obtain Technical Information Online, x
Use this Manual, ix

I

Instance
Definition, 1-16
Introduction, 1-13

K

Kernel
Website, xi

KERNEL SYSTEM PARAMETERS file
(#8989.3), 1-18

Parameter Tools Index-1
Supplement to Patch Description
Kernel Toolkit Patch XT*7.3*26

Index

L
List File Attributes Option, x

M

Menus
Data Dictionary Utilities, x

N

NDEL"MXPAR, 2-11
NEW PERSON File (#200), 1-14, 1-15, 1-18

0

Online

Documentation, X

Technical Information, How to Obtain, X
Options

Data Dictionary Utilities, x

List File Attributes, x
Orientation, ix

P

Parameter, 1-17
Definition, 1-16
PARAMETER DEFINITION File (#8989.51),
1-14, 1-16, 1-18, 1-19, 2-4, 2-7, 2-13, 2-16
PARAMETER ENTITY File (#8989.518), 1-15
PARAMETER TEMPLATE File (#8989.52), 1-
17, 2-17
Parameter Tools
Background, 1-14
Definitions, 1-15
Description, 1-15
Entity Definition, 1-15
Example, 1-18
Instance Definition, 1-16
Introduction, 1-13
Parameter Definition, 1-16
Template Definition, 1-17
Value Definition, 1-17
Why Would You Use?, 1-18
PARAMETERS File (#8989.5), 1-14, 1-16, 1-
17, 2-1, 2-4
Patches
Revisions, iii
Programmer Manual Information, 2-1
PS Anonymous Directories, xi
PUTAXPAR, 2-11

Q

Question Mark Help, x

R

Reader, Assumptions About the, x
Reference Materials, xi
Reference Type
Supported
$SGETAXPAR, 2-7
ADD”MXPAR, 2-1
BLDLSTAXPAREDIT, 2-13
CHG"XPAR, 2-2
DELMXPAR, 2-2
EDITAXPAREDIT, 2-13
EDITPARMXPAREDIT, 2-14
ENAXPAR, 2-4
EN~AXPAREDIT, 2-15
ENVAL~XPAR, 2-5
GETENTAXPAREDIT, 2-15
GETLST~XPAR, 2-9
GETPARMXPAREDIT, 2-16
GETWP/AXPAR, 2-10
NDELAXPAR, 2-11
PUT~AXPAR, 2-11
REPAXPAR, 2-12
TEDAXPAREDIT, 2-17
TEDH~AXPAREDIT, 2-18
REPAXPAR, 2-12
Revision History, iii
Documentation, iii
Patches, iii
Routines
XPAR
APlIs, 2-1

S

Symbols
Found in the Documentation, ix

T

Table of Contents, v
Tables, vii
TEDAXPAREDIT, 2-17
TEDHAXPAREDIT, 2-18
Templates

Definition, 1-17
Toolkit

Parameter Tools

Index-2 Parameter Tools
Supplement to Patch Description
Kernel Toolkit Patch XT*7.3*26

August 2001
Revised: October 2008

U

$$SGETAXPAR, 2-7
ADD"XPAR, 2-1
BLDLSTAXPAREDIT, 2-13
CHG"XPAR, 2-2
DEL"XPAR, 2-2
EDITAXPAREDIT, 2-13
EDITPARMXPAREDIT, 2-14
EN~XPAR, 2-4
ENAXPAREDIT, 2-15
ENVAL"MXPAR, 2-5
GETENTAXPAREDIT, 2-15
GETLST~XPAR, 2-9
GETPARMXPAREDIT, 2-16
GETWPAXPAR, 2-10
NDEL"XPAR, 2-11
PUTAXPAR, 2-11
REPMXPAR, 2-12
TEDXPAREDIT, 2-17
TEDH"XPAREDIT, 2-18

URLs
Adobe Website, xi
Kernel Website, xi

VHA Software Document Library (VDL)
Website, xi

VistA Development Website, xi
Use this Manual, How to, ix
User Manual Information, 1-13

\'

Value
Definition, 1-17

VHA Software Document Library (VDL)

Website, xi

August 2001
Revised: October 2008

w

Web Pages

Adobe Website, xi
Kernel Website, Xi

Index

VHA Software Document Library (VDL)

Website, Xi

VistA Development Website, xi
Why Would You Use Parameter Tools?, 1-18

X

XPAR

$SGETAXPAR, 2-7
ADD"MXPAR, 2-1
CHG"XPAR, 2-2
DEL"MXPAR, 2-2
ENAXPAR, 2-4
ENVALMXPAR, 2-5
GETLST~XPAR, 2-9
GETWP~AXPAR, 2-10
NDELMXPAR, 2-11
PUTAXPAR, 2-11
REPAXPAR, 2-12
Routine

APls, 2-1

XPAREDIT

BLDLSTAXPAREDIT, 2-13
EDITA"XPAREDIT, 2-13
EDITPARMXPAREDIT, 2-14
EN~*XPAREDIT, 2-15
GETENTAXPAREDIT, 2-15
GETPARMXPAREDIT, 2-16
TEDMXPAREDIT, 2-17
TEDHAXPAREDIT, 2-18

Parameter Tools
Supplement to Patch Description
Kernel Toolkit Patch XT*7.3*26

Index-3

Index

Index-4 Parameter Tools August 2001
Supplement to Patch Description Revised: October 2008
Kernel Toolkit Patch XT*7.3*26

	Title Page
	Revision History
	Contents
	Figures and Tables
	Orientation
	1. User Manual—Parameter Tools
	Introduction
	Background
	Description
	Definitions
	Entity
	Parameter
	Instance
	Value
	Parameter Template
	Why Would You Use Parameter Tools?
	Example

	2. Programmer Manual—Parameter Tools
	Application Program Interfaces (APIs)—^XPAR Routine
	ADD^XPAR(): Add Parameter Value
	CHG^XPAR(): Change Parameter Value
	DEL^XPAR(): Delete Parameter Value
	EN^XPAR(): Add, Change, Delete Parameters
	ENVAL^XPAR(): Return All Parameter Instances
	$$GET^XPAR(): Return an Instance of a Parameter
	GETLST^XPAR(): Return All Instances of a Parameter
	GETWP^XPAR(): Return Word-processing Text
	NDEL^XPAR(): Delete All Instances of a Parameter
	PUT^XPAR(): Add/Update Parameter Instance
	REP^XPAR(): Replace Instance Value

	Application Program Interfaces (APIs)—^XPAREDIT Routine
	BLDLST^XPAREDIT(): Return All Entities of a Parameter
	EDIT^XPAREDIT(): Edit Instance and Value of a Parameter
	EDITPAR^XPAREDIT(): Edit Single Parameter
	EN^XPAREDIT(): Parameter Edit Prompt
	GETENT^XPAREDIT(): Prompt for Entity Based on Parameter
	GETPAR^XPAREDIT(): Select Parameter Definition File
	TED^XPAREDIT(): Edit Template Parameters (No Dash Dividers)
	TEDH^XPAREDIT(): Edit Template Parameters (With Dash Dividers)

	Index

