
RPC Broker 1.1

User Guide

May 2017

Department of Veterans Affairs (VA)

Office of Information and Technology (OI&T)

Enterprise Program Management Office (EPMO)

RPC Broker 1.1
User Guide ii May 2017

Revision History

Document Revisions

Date Revision Description Authors

05/18/2017 7.2 Updated the CALLBACKTYPE entry in
“Table 10: Fields in the REMOTE
APPLICATION (#8994.5) File” to include the
“S—Station-number callback” value.

• Developer: H. W.
• Technical Writer: T.

B.

05/17/2017 7.1 Tech Edits:
• Updated/Added Caution note for the

Reference PType input parameter in
Table 6, Step 1 in Section 3.6, and
Section 4.3.

• Reformatted all references to file and
field name numbers throughout.

• Developers: H. W.
and V. D.

• Technical Writer: T.
B.

01/24/2017 7.0 Tech Edits based on release of RPC Broker
Patch XWB*1.1*65:

• Reformatted document to follow
current documentation standards
and style formatting requirements.

• Inserted Section 5, “Broker Security
Enhancement (BSE);” content taken
from Chapters 1-2 in the Broker
Security Enhancement (BSE) Patch
XWB*1.1*45 Supplement.

• Added content and references to the
TXWBSSOi component in Sections
1.1 and 2.4.

• Updated Section 1.1.1 for 2-factor
authentication feature and current
level of Delphi version support.

• Updated Section 2.1.4.
• Added Caution note to the

Reference PType in Table 6.
• Updated Figure 7.
• Updated registry information in

Section 4.1.1.
• Added Figure 9.
• Corrected Section 4.1.2.
• Updated debug instructions in

Section 6.1.
• Updated instructions in Section

6.2.1.
• Updated Section 7.1 and 7.1.1 for

currently supported Delphi versions.

• Developer: H. W.
• Technical Writer: T.

B.

RPC Broker 1.1
User Guide iii May 2017

Date Revision Description Authors
• Updated Section 7.1.2 and 7.1.3 for

.bpl file references.
• Changed references from “Borland

Delphi” to “Embarcadero Delphi”
throughout.

• Added new glossary terms: SAML
and XML.

RPC Broker 1.1; XWB*1.1*65 BDK

04/27/2016 6.0 Tech Edits:
• Reformatted document to follow

current documentation standards
and style formatting requirements.

• Updated the “Orientation” section.
• Updated Section 1.1.1.
• Updated Table 3 for TRPCBroker

component key properties.
• Updated Section 2.1.4.
• Updated Figure 2.
• Deleted Sections 2.3,

"TSharedBroker Component" and
2.4, "TSharedRPCBroker
Component."

• Updated Section 3.2. Added Section
3.2.1 and titled and modified Section
3.2.2.

• Updated Table 7.
• Updated Section 3.7.2.
• Updated Figure 7.
• Updated Section 4.1.
• Updated Figure 8.
• Updated Section 4.1.2.
• Update Figure 10.
• Updated Sections 6.2.1 and 6.2.2.
• Updated Section 7.
• Updated Sections 7.1.1, 7.1.2, and

7.1.3.
• Deleted, Sections 6.1.4,

"SharedRPCBroker_RXE5.bpl File"
and 6.1.5,
"SharedRPCBroker_DXE5.bpl File."

• Deleted Sections 6.2, “Delphi XE4
Packages,” 6.3, "Delphi XE3
Packages," and 6.4, “Delphi XE2
Packages.”

• Updated Section 8.1.
• Deleted references to

• Developer: H. W.
• Technical Writer: T.

B.

RPC Broker 1.1
User Guide iv May 2017

Date Revision Description Authors
TSharedRPCBroker and
TSharedBroker components
throughout, since they were removed
from the software.

• Updated help file references from
“BROKER.HLP” to
“Broker_1_1.chm” throughout.

• Updated references to show RPC
Broker Patch XWB*1.1*60 supports
Delphi XE7, XE6, XE5, and XE4
throughout.

12/04/2013 5.1 Tech Edit:
• Updated document for RPC Broker

Patch XWB*1.1*50 based on
feedback from H Westra.

• Removed references related to
Virgin Installations throughout.

• Updated file name references
throughout.

• Removed distribution files that are
obsolete or no longer distributed
throughout.

• Updated RPC Broker support on the
following software:
o Microsoft® XP and 7.0 (operating

system) throughout.
o Microsoft® Office Products 2010

throughout.
o Changed references from

“Borland” to “Embarcadero” and
updated support for Delphi
Versions XE5, XE4, XE3, and
XE2 throughout.

• Updated all images for prior
Microsoft® Windows operating
systems to Windows 7 dialogues.

• Deleted Section 6, “RPC Broker
Developer Utilities,” since those
utilities no longer exist in this latest
version of the Broker.

• Updated the “RPC Broker and
Delphi” section for Delphi XE5, XE4,
XE3, and XE2.

• Removed sample DLL from Section
8.

• Redacted document for the following
information:
o Names (replaced with role and

• Developer: H. W.
• Technical Writer: T.

B.

RPC Broker 1.1
User Guide v May 2017

Date Revision Description Authors
initials).

o Production IP addresses and
ports.

o Intranet websites.
RPC Broker 1.1

07/25/2013 5.0 Tech Edit:
• Baselined document.
• Updated all styles and formatting to

follow current internal team style
template.

• Updated all organizational
references.

• Developer: H. W.
• Technical Writer: T.

B.

08/26/2008 4.2 Updates for RPC Broker Patch XWB*1.1*50:
• Added new properties.
• Support for Delphi 5, 6, 7, 2005,

2006, and 2007.
• Changed references form Patch 47

to Patch 50 where appropriate.

• Project Manager: J.
Sch.

• Developer: J. I.
• SQA: G. S.
• Technical Writer: T.

B.

07/03/2008 4.1 Updates for RPC Broker Patch XWB*1.1*47:
• No content changes required; no

new public classes, methods, or
properties added to those available
in XWB*1.1*40.

• Bug fixes to the ValidAppHandle
function and fixed memory leaks.

• Support added for Delphi 2005,
2006, and 2007.

• Reformatted document.
• Changed references form Patch 40

to Patch 47 where appropriate.

• Common Services
(CS) Development
Team Oakland, CA
OIFO:

• Project Manager: J.
Sch.

• Developer: J. I.
• SQA: G. S.
• Technical Writer: T.

B.

02/24/2005 4.0 Revised Version for RPC Broker Patches
XWB*1.1*35 and 40.
Also, reviewed document and edited for the
“Data Scrubbing” and the “PDF 508
Compliance” projects.
Data Scrubbing—Changed all patient/user
TEST data to conform to standards and
conventions as indicated below:

• The first three digits (prefix) of any
Social Security Numbers (SSN) start
with “000” or “666.”

• Patient or user names are formatted
as follows: XWBPATIENT,[N] or
XWBUSER,[N] respectively, where
the N is a number written out and
incremented with each new entry

• Developer: J. I.
• Technical Writer: T.

B.

RPC Broker 1.1
User Guide vi May 2017

Date Revision Description Authors
(e.g., XWBPATIENT, ONE,
XWBPATIENT, TWO, etc.).

• Other personal demographic-related
data (e.g., addresses, phones, IP
addresses, etc.) were also changed
to be generic.

PDF 508 Compliance—The final PDF
document was recreated and now supports
the minimum requirements to be 508
compliant (i.e., accessibility tags, language
selection, alternate text for all images/icons,
fully functional Web links, successfully
passed Adobe Acrobat Quick Check).

05/08/2002 3.0 Revised Version for RPC Broker Patch
XWB*1.1*26.

• Developer: J. I.
• Technical Writer: T.

B.

05/01/2002 2.0 Revised Version for RPC Broker Patch
XWB*1.1*13.

• Developer: J. I.
• Technical Writer: T.

B.

09/--/1997 1.0 Initial RPC Broker Version 1.1 software
release.

• Developer: J. I.
• Technical Writer: T.

B.

Patch Revisions
For the current patch history related to this software, see the Patch Module on FORUM.

RPC Broker 1.1
User Guide vii May 2017

Table of Contents

Revision History .. ii
List of Figures .. ix
List of Tables ... ix
Orientation .. x

1 Introduction .. 1
1.1 About this Version of the BDK ... 1

1.1.1 Features .. 2
1.1.2 Backward Compatibility Issues ... 3

2 RPC Broker Components for Delphi ... 4
2.1 TRPCBroker Component .. 4

2.1.1 TRPCBroker Properties and Methods .. 4
2.1.2 TRPCBroker Key Properties .. 4
2.1.3 TRPCBroker Key Methods ... 6
2.1.4 How to Connect to an M Server ... 7

2.2 TCCOWRPCBroker Component .. 8
2.2.1 Single Signon/User Context (SSO/UC) .. 8

2.3 TXWBRichEdit Component .. 8
2.4 TXWBSSOiToken Component ... 9

3 Remote Procedure Calls (RPCs) ... 10
3.1 What is a Remote Procedure Call? .. 10

3.1.1 Relationship between an M Entry Point and an RPC 10
3.2 Create Your Own RPCs .. 10

3.2.1 Preliminary Considerations .. 10
3.2.2 Process .. 11

3.3 Writing M Entry Points for RPCs ... 11
3.3.1 First Input Parameter for RPCs (Required) .. 11
3.3.2 Return Value Types for RPCs .. 11
3.3.3 Input Parameter Types for RPCs (Optional) ... 13
3.3.4 RPC M Entry Point Examples .. 14

3.4 RPC Entry in the REMOTE PROCEDURE File ... 14
3.5 What Makes a Good Remote Procedure Call? .. 15
3.6 How to Execute an RPC from a Client Application ... 15
3.7 RPC Security: How to Register an RPC .. 16

3.7.1 Bypassing RPC Security for Development ... 17
3.7.2 BrokerExample Online Code Example ... 17

4 Other RPC Broker APIs ... 19
4.1 GetServerInfo Function .. 19

4.1.1 Overview .. 19
4.1.2 Syntax .. 20

RPC Broker 1.1
User Guide viii May 2017

4.2 VistA Splash Screen Procedures .. 20
4.3 XWB GET VARIABLE VALUE RPC .. 21
4.4 M Emulation Functions .. 22

4.4.1 Translate Function ... 22
4.5 Encryption Functions ... 22

4.5.1 In Delphi .. 22
4.5.2 On the VistA M Server ... 22

4.6 $$BROKER^XWBLIB .. 23
4.7 $$RTRNFMT^XWBLIB .. 23

5 Broker Security Enhancement (BSE) ... 24
5.1 Introduction ... 24

5.1.1 Features .. 25
5.1.2 Architectural Scope .. 25

5.2 Process Overview ... 25
5.2.1 Process Diagrams .. 29

5.3 BSE-related VistA Applications and Modules .. 31
5.4 Kernel—Authentication Interface to VistA .. 32
5.5 RPC Broker ... 32

5.5.1 Client ... 32
5.5.2 Server .. 33

5.6 REMOTE APPLICATION (#8994.5) File .. 33
5.7 Security Phrase .. 34
5.8 Kernel Authentication Token ... 35

6 Debugging and Troubleshooting .. 36
6.1 How to Debug Your Client Application ... 36

6.1.1 RPC Error Trapping ... 36
6.2 Troubleshooting Connections ... 36

6.2.1 Identifying the Listener Process on the Server ... 36
6.2.2 Identifying the Handler Process on the Server ... 37
6.2.3 Testing Your RPC Broker Connection .. 37

7 RPC Broker and Delphi .. 38
7.1 Delphi XE4, XE5, XE6, XE7, XE8, 10 Seattle (10.0), and 10 Berlin (10.1)

Packages ... 38
7.1.1 Delphi Starter Edition—Not Recommended for BDK Development 38
7.1.2 XWB_RXE#.bpl File ... 39
7.1.3 XWB_DXE#.bpl File ... 39

8 RPC Broker Dynamic Link Library (DLL) 40
8.1 DLL Interface ... 40

8.1.1 Exported Functions .. 40
8.1.2 Header Files Provided ... 40
8.1.3 Return Values from RPCs .. 40
8.1.4 COTS Development and the DLL ... 41

Glossary..42

RPC Broker 1.1
User Guide ix May 2017

Index ...44

List of Figures

Figure 1: Delphi’s Tool Properties Dialogue—Broker_1_1.chm Entry .. xv
Figure 2: OnCreate Event Handler—Sample Code .. 7
Figure 3: RPC M Entry Point Example—Sum of Two Numbers ...14
Figure 4: RPC M Entry Point Example—Sorted Array ...14
Figure 5: Param Property—Sample Settings ...15
Figure 6: Exception Handler—try...except Code—Sample Usage ...16
Figure 7: RPC Broker Example Application ...18
Figure 8: Server and Port Configuration Selection Dialogue..19
Figure 9: Sample Registry Information ..20
Figure 10: VistA Splash Screen ..21
Figure 11: Displaying a VistA Splash Screen: Sample Code ...21
Figure 12: XWB GET VARIABLE VALUE RPC Usage—Sample Code21
Figure 13: Encryption in VistA M Server—Sample Code ...22
Figure 14: Decryption in VistA M Server—Sample Code ...22
Figure 15: BSE—Process Sequence Flow Diagram ..29
Figure 16: BSE—Process Overview ..30

List of Tables

Table 1: Documentation Symbol Descriptions .. xi
Table 2: Commonly Used RPC Broker Terms .. xiii
Table 3: TRPCBroker Component Key Properties ... 4
Table 4: TRPCBroker Component Methods ... 6
Table 5: RPC Broker Return Value Types ...12
Table 6: Input Parameter Types ..13
Table 7: REMOTE PROCEDURE File Key Field Entries ...14
Table 8: BSE—Application Authentication Server Class Types ...28
Table 9: BSE—Software Applications and Modules ..31
Table 10: Fields in the REMOTE APPLICATION (#8994.5) File ..33
Table 11: Header Files that Provide Correct Declarations for DLL Functions40
Table 12: TRPCBroker Component’s Results Property ...40
Table 13: Glossary of Terms and Acronyms ...42

RPC Broker 1.1
User Guide x May 2017

Orientation

How to Use this Manual
Throughout this manual, advice and instructions are offered regarding the use of the Remote Procedure
Call (RPC) Broker 1.1 Development Kit (BDK) and the functionality it provides for Veterans Health
Information Systems and Technology Architecture (VistA).

Intended Audience
The intended audience of this manual is the following stakeholders:

• Enterprise Program Management Office (EPMO)—VistA legacy development teams.

• System Administrators—System administrators at Department of Veterans Affairs (VA) regional
and local sites who are responsible for computer management and system security on the VistA
M Servers.

• Information Security Officers (ISOs)—Personnel at VA sites responsible for system security.

• Product Support (PS).

Disclaimers
Software Disclaimer
This software was developed at the Department of Veterans Affairs (VA) by employees of the Federal
Government in the course of their official duties. Pursuant to title 17 Section 105 of the United States
Code this software is not subject to copyright protection and is in the public domain. VA assumes no
responsibility whatsoever for its use by other parties, and makes no guarantees, expressed or implied,
about its quality, reliability, or any other characteristic. We would appreciate acknowledgement if the
software is used. This software can be redistributed and/or modified freely provided that any derivative
works bear some notice that they are derived from it, and any modified versions bear some notice that
they have been modified.

 CAUTION: To protect the security of VistA systems, distribution of this software for use
on any other computer system by VistA sites is prohibited. All requests for copies of
this software for non-VistA use should be referred to the VistA site’s local Office of
Information and Technology Field Office (OI&TFO).

Documentation Disclaimer
This manual provides an overall explanation of RPC Broker and the functionality contained in RPC
Broker 1.1; however, no attempt is made to explain how the overall VistA programming system is
integrated and maintained. Such methods and procedures are documented elsewhere. We suggest you
look at the various VA Internet and Intranet Websites for a general orientation to VistA. For example,
visit the Office of Information and Technology (OI&T) VistA Development Intranet website.

 DISCLAIMER: The appearance of any external hyperlink references in this manual does
not constitute endorsement by the Department of Veterans Affairs (VA) of this Website
or the information, products, or services contained therein. The VA does not exercise

RPC Broker 1.1
User Guide xi May 2017

any editorial control over the information you find at these locations. Such links are
provided and are consistent with the stated purpose of this VA Intranet Service.

Documentation Conventions
This manual uses several methods to highlight different aspects of the material:

• Various symbols are used throughout the documentation to alert the reader to special information.
Table 1 gives a description of each of these symbols:

Table 1: Documentation Symbol Descriptions

Symbol Description

NOTE / REF: Used to inform the reader of general information including
references to additional reading material.

CAUTION / RECOMMENDATION / DISCLAIMER: Used to caution the reader
to take special notice of critical information.

• Descriptive text is presented in a proportional font (as represented by this font).

• Conventions for displaying TEST data in this document are as follows:

o The first three digits (prefix) of any Social Security Numbers (SSN) begin with either “000”
or “666.”

o Patient and user names are formatted as follows:

− [Application Name]PATIENT,[N]

− [Application Name]USER,[N]

Where “[Application Name]” is defined in the Approved Application Abbreviations
document and “[N]” represents the first name as a number spelled out and incremented with
each new entry.

For example, in RPC Broker (XWB) test patient names would be documented as follows:

XWBPATIENT,ONE; XWBPATIENT,TWO; XWBPATIENT,14, etc.

For example, in RPC Broker (XWB) test user names would be documented as follows:

XWBUSER,ONE; XWBUSER,TWO; XWBUSER,14, etc.

• “Snapshots” of computer online displays (i.e., screen captures/dialogues) and computer source
code are shown in a non-proportional font and may be enclosed within a box.

• User’s responses to online prompts are in boldface and highlighted in yellow (e.g., <Enter>).

• Emphasis within a dialogue box is in boldface and highlighted in blue (e.g., STANDARD
LISTENER: RUNNING).

• Some software code reserved/key words are in boldface with alternate color font.

• References to “<Enter>” within these snapshots indicate that the user should press the <Enter>
key on the keyboard. Other special keys are represented within < > angle brackets. For example,
pressing the PF1 key can be represented as pressing <PF1>.

RPC Broker 1.1
User Guide xii May 2017

• Author’s comments are displayed in italics or as “callout” boxes.

 NOTE: Callout boxes refer to labels or descriptions usually enclosed within a box, which
point to specific areas of a displayed image.

• This manual refers to the M programming language. Under the 1995 American National
Standards Institute (ANSI) standard, M is the primary name of the MUMPS programming
language, and MUMPS is considered an alternate name. This manual uses the name M.

• All uppercase is reserved for the representation of M code, variable names, or the formal name of
options, field/file names, and security keys (e.g., the XUPROGMODE security key).

 NOTE: Other software code (e.g., Delphi/Pascal and Java) variable names and file/folder
names can be written in lower or mixed case.

Documentation Navigation
This document uses Microsoft® Word’s built-in navigation for internal hyperlinks. To add Back and
Forward navigation buttons to your toolbar, do the following:

1. Right-click anywhere on the customizable Toolbar in Word (not the Ribbon section).

2. Select Customize Quick Access Toolbar from the secondary menu.

3. Press the drop-down arrow in the “Choose commands from:” box.

4. Select All Commands from the displayed list.

5. Scroll through the command list in the left column until you see the Back command (circle with
arrow pointing left).

6. Click/Highlight the Back command and press Add to add it to your customized toolbar.

7. Scroll through the command list in the left column until you see the Forward command (circle
with arrow pointing right).

8. Click/Highlight the Forward command and press Add to add it to your customized toolbar.

9. Press OK.

You can now use these Back and Forward command buttons in your Toolbar to navigate back and forth
in your Word document when clicking on hyperlinks within the document.

 NOTE: This is a one-time setup and is automatically available in any other Word document once
you install it on the Toolbar.

RPC Broker 1.1
User Guide xiii May 2017

Commonly Used Terms
Table 2 lists terms and their descriptions that can be helpful while reading the RPC Broker
documentation:

Table 2: Commonly Used RPC Broker Terms

Term Description

Client A single term used interchangeably to refer to a user, the workstation
(i.e., PC), and the portion of the program that runs on the workstation.

Component A software object that contains data and code. A component may or may not
be visible.

 REF: For a more detailed description, see the Embarcadero Delphi for
Windows User Guide.

GUI The Graphical User Interface application that is developed for the client
workstation.

Host The term Host is used interchangeably with the term Server.

Server The computer where the data and the RPC Broker remote procedure calls
(RPCs) reside.

 REF: For additional terms and definitions, see the “Glossary.”

How to Obtain Technical Information Online
Exported VistA M Server-based software file, routine, and global documentation can be generated using
Kernel, MailMan, and VA FileMan utilities.

 NOTE: Methods of obtaining specific technical information online are indicated where
applicable under the appropriate section.

REF: See the RPC Broker Technical Manual for further information.

Help at Prompts
VistA M Server-based software provides online help and commonly used system default prompts. Users
are encouraged to enter question marks at any response prompt. At the end of the help display, you are
immediately returned to the point from which you started. This is an easy way to learn about any aspect of
VistA M Server-based software.

Obtaining Data Dictionary Listings
Technical information about VistA M Server-based files and the fields in files is stored in data
dictionaries (DD). You can use the List File Attributes option on the Data Dictionary Utilities submenu in
VA FileMan to print formatted data dictionaries.

 REF: For details about obtaining data dictionaries and about the formats available, see the “List
File Attributes” chapter in the “File Management” section of the VA FileMan Advanced User
Manual.

RPC Broker 1.1
User Guide xiv May 2017

Assumptions
This manual is written with the assumption that the reader is familiar with the following:

• VistA computing environment:

o Kernel—VistA M Server software

o Remote Procedure Call (RPC) Broker—VistA Client/Server software

o VA FileMan data structures and terminology—VistA M Server software

• Microsoft Windows environment

• M programming language

• Object Pascal programming language

• Object Pascal programming language/Embarcadero Delphi Integrated Development Environment
(IDE)—RPC Broker

References
Readers who wish to learn more about RPC Broker should consult the following:

• RPC Broker Release Notes

• RPC Broker Deployment, Installation, Back-Out, and Rollback Guide

• RPC Broker Systems Management Guide

• RPC Broker Technical Manual

• RPC Broker User Guide (this manual)

• RPC Broker Developer’s Guide—Document and BDK Online Help, which provides an overview
of development with the RPC Broker. The help is distributed in two zip files:

o Broker_1_1.zip (i.e., Broker_1_1.chm)—This zip file contains the standalone online HTML
help file. Unzip the contents and double-click on the Broker_1_1.chm file to open the help.

o Broker_1_1-HTML_Files.zip—This zip file contains the associated HTML help files. Unzip
the contents in the same directory and double-click on the index.htm file to open the help.

RPC Broker 1.1
User Guide xv May 2017

You can create an entry for Broker_1_1.chm in Delphi’s Tools Menu, to make it easily
accessible from within Delphi. To do this, use Delphi’s Tools | Configure Tools option and
create a new menu entry as shown in Figure 1.

Figure 1: Delphi’s Tool Properties Dialogue—Broker_1_1.chm Entry

• RPC Broker VA Intranet website.

This site provides announcements, additional information (e.g., Frequently Asked Questions
[FAQs], advisories), documentation links, archives of older documentation and software
downloads.

VistA documentation is made available online in Microsoft® Word format and in Adobe Acrobat Portable
Document Format (PDF). The PDF documents must be read using the Adobe Acrobat Reader, which is
freely distributed by Adobe Systems Incorporated at: http://www.adobe.com/

VistA documentation can be downloaded from the VA Software Document Library (VDL) Website:
http://www.va.gov/vdl/

RPC Broker documentation is located on the VDL at: https://www.va.gov/vdl/application.asp?appid=23

VistA documentation and software can also be downloaded from the Product Support (PS) Anonymous
Directories.

http://www.adobe.com/
http://www.va.gov/vdl/
https://www.va.gov/vdl/application.asp?appid=23

RPC Broker 1.1
User Guide 1 May 2017

1 Introduction
The Remote Procedure Call (RPC) Broker (also referred to as “Broker”) is a client/server system within
Department of Veterans Affairs (VA) Veterans Health Information Systems and Technology Architecture
(VistA) environment. It establishes a common and consistent foundation for client/server applications
being written as part of VistA. It enables client applications to communicate and exchange data with M
Servers.

This manual provides an overview of software development with the RPC Broker. It introduces
developers to the RPC Broker and the Broker Development Kit (BDK) with emphasis on using the RPC
Broker in conjunction with Embarcadero’s Delphi software. However, the RPC Broker supports other
development environments.

 REF: For more complete information on development with the RPC Broker components, see the
BDK Online Help (i.e., Broker_1_1.chm) and RPC Broker Developer’s Guide.

This document is intended for the VistA development community and system administrators. A wider
audience of technical personnel engaged in operating and maintaining the Department of Veterans Affairs
(VA) software can also find it useful as a reference.

1.1 About this Version of the BDK
RPC Broker 1.1 (fully patched) provides developers with the capability to create new VistA client/server
software using the following RPC Broker Delphi components in the 32-bit environment:

• TCCOWRPCBroker

• TContextorControl

• TRPCBroker (original component)

• TXWBRichEdit

• TXWBSSOi

 NOTE: These RPC Broker components wrap the functionality of the Broker resulting in a more
modularized and orderly interface. Those components derived from the original TRPCBroker
component, inherit the TRPCBroker properties and methods.

RPC Broker 1.1
User Guide 2 May 2017

1.1.1 Features
This enhanced Broker software has the following functionality/features:

• Supports 2-factor Authentication—The TRPCBroker component authenticates a user by making a
mutual Transport Layer Security (TLS) authentication connection to the Identity and Access
Management (IAM) Secure Token Service (STS). Mutual authentication refers to two parties
authenticating each other at the same time. Mutual TLS authentication uses the TLS protocol to
authenticate and identify a user using Public Key Encryption (PKI) certificates (usually found on
a portable smart card or device) and a private Personal Identification Number (PIN) to unlock the
certificate. The STS server returns a digitally-signed token containing the user’s identity. This
token is trusted by the VistA M Server as a delegated form of user authentication.

• Supports IPv4/IPv6 Dual-Stack Environment—The TRPCBroker component uses WinSock 2.2
Application Programming Interfaces (APIs) that support network connections using Internet
Protocol (IP) version 4 and/or IP version 6. IPv6 is a protocol designed to handle the growth rate
of the Internet and to cope with the demanding requirements of services, mobility, and end-to-end
security.

• Supports Secure Shell (SSH)—The TRPCBroker component enabled Secure Shell (SSH) Tunnels
to be used for secure connections. This functionality is controlled by setting an internal property
value (mandatory SSH) or command line option at run time.

• Supports Broker Security Enhancement (BSE)—The TRPCBroker component enabled visitor
access to remote sites using authentication established at a home site.

• Supports Single Sign-On/User context (SSO/UC)—TCCOWRPCBroker component enables
Single Sign-On/User Context (SSO/UC) in CCOW-enabled applications.

• Supports Non-Callback Connections—By default the RPC Broker components are built with a
UCX or non-callback Broker connection, so that it can be used from behind firewalls, routers, etc.

• Supports Silent Logon capabilities—RPC Broker provides “Silent Login” capability. It provides
functionality associated with the ability to make logins to a VistA M Server without the RPC
Broker asking for Access and Verify code information.

• Documented Deferred RPCs and Capability to Run RPCs on a Remote Server.

• Multi-instances of the RPC Broker—RPC Broker code permits an application to open two
separate Broker instances with the same Server/ListenerPort combination, resulting in two
separate partitions on the server. Previously, an attempt to open a second Broker instance ended
up using the same partition. For this capability to be useful for concurrent processing, an
application would have to use threads to handle the separate Broker sessions.

 CAUTION: Although we believe there should be no problems, the RPC Broker is
not guaranteed to be thread safe.

• Updated components, properties, methods, and types.

• Separate Design-time and Run-time Packages—BDK contains separate run-time and design-time
packages.

• Supports Delphi 10 Berlin (10.1), 10 Seattle (10.0), XE8, XE7, XE6, XE5, and XE4.

RPC Broker 1.1
User Guide 3 May 2017

To develop VistA applications in a 32-bit environment you must have Delphi XE4 or greater. However,
the Broker routines on the M server continue to support VistA applications previously developed in the
16-bit environment.

The default installation of the Broker creates a separate BDK directory (i.e., BDK32) that contains the
required Broker files for development.

 REF: For a complete list of all new or modified features and functionality with RPC Broker 1.1,
see the RPC Broker Release Notes.

1.1.2 Backward Compatibility Issues
Client applications compiled with RPC Broker 1.1 will not work at a site that has not upgraded its RPC
Broker server software to Version 1.1.

On the other hand, client applications compiled with RPC Broker 1.0 will work with the RPC Broker 1.1
server.

RPC Broker 1.1
User Guide 4 May 2017

2 RPC Broker Components for Delphi

 REF: For more detailed information on the RPC Broker components for Delphi, see the BDK
Online Help (i.e., Broker_1_1.chm) and RPC Broker Developer’s Guide.

2.1 TRPCBroker Component
The main tool to develop client applications for the RPC Broker environment is the TRPCBroker
component for Delphi. The TRPCBroker component adds the following abilities to your Delphi
application:

• Connecting to an M server:

o Authenticate the user

o Set up the environment on the server

o Bring back the introductory text

• Invoking Remote Procedure Calls (RPCs) on the M Server:

o Send data to the M Server

o Perform actions on the server

o Return data from the server to the client

To add the TRPCBroker component to your Delphi application, simply drop it from the Kernel tab of
Delphi’s component palette to a form in your application.

2.1.1 TRPCBroker Properties and Methods
As a Delphi component, the TRPCBroker component is controlled and accessed through its properties
and methods. By setting its properties and executing its methods, you can connect to an M server from
your application and execute RPCs on the M server to exchange data and perform actions on the M
server.

For most applications, you only need to use a single TRPCBroker component to manage communications
with the M server.

2.1.2 TRPCBroker Key Properties
The following table lists the most important properties of the TRPCBroker component.

 REF: For a complete list of all of Broker properties, see the BDK Online Help
(i.e., Broker_1_1.chm) and RPC Broker Developer’s Guide.

Table 3: TRPCBroker Component Key Properties

Property Description

ClearParameters If True, the Param property is cleared after every invocation of the Call,
strCall, or the lstCall methods.

ClearResults If True, the Results property is cleared before every invocation of the Call
method, thus assuring that only the results of the last call are returned.

Connected Setting this property to True connects your application to the server.

RPC Broker 1.1
User Guide 5 May 2017

Property Description

ListenerPort Sets server port to connect to a Broker Listener process (mainly for
development purposes; for end-users, determine on the fly with
GetServerInfo method.)

Param Run-time array in which you set any parameters to pass as input
parameters when calling an RPC on the server.

RemoteProcedure Name of a RemoteProcedure entry that the Call, lstCall, or strCall method
should invoke.

Results This is where any results are stored after a Call, lstCall, or strCall method
completes.

Server Name of the server to connect to (mainly for development purposes; for
end-users, determine on the fly with GetServerInfo method.)

SSHPort Holds a specific port number for Secure Shell (SSH) Tunneling if the
UseSecureConnection property is set to “SSH” or “PLINK”. If not
specified, uses the RPC Broker listener port for the remote server.

SSHPw Holds a password for SSH Tunneling if the UseSecureConnection
property is set to “PLINK”.

SSHUser Holds a specific username for SSH Tunneling if the UseSecureConnection
property is set to “SSH”. For VA VistA servers, the username is typically of
the form xxxvista where the xxx is the station’s three letter abbreviation.

UseSecureConnection Used to specify whether SSH Tunneling is to be used when making the
connection.

RPC Broker 1.1
User Guide 6 May 2017

2.1.3 TRPCBroker Key Methods
This section lists the most important methods of the TRPCBroker component.

 REF: For a complete list of all of Broker methods, see the BDK Online Help
(i.e., Broker_1_1.chm) and RPC Broker Developer’s Guide.

Table 4: TRPCBroker Component Methods

Method Description

procedure Call; This method executes an RPC on the server and returns the
results in the TRPCBroker component’s Results property.
Call expects the name of the remote procedure and its
parameters to be set up in the RemoteProcedure and Param
properties respectively. If ClearResults is True, then the
Results property is cleared before the call. If ClearParameters
is True, then the Param property is cleared after the call
finishes.

function strCall: string; This method is a variation of the Call method. Only use it
when the return type is a single string. Instead of returning
results in the TRPCBroker component’s Results[0] property
node, results are returned as the value of the function call.
Unlike the Call method, the Results property is not affected;
no matter the setting of ClearResults, the value is left
unchanged.

procedure lstCall(OutputBuffer:
TStrings);

This method is a variation of the Call method. Instead of
returning results in the TRPCBroker component’s Results
property, it instead returns results in the TStrings object you
specify. Unlike the Call method, the Results property is not
affected; no matter the setting of ClearResults, the value is
left unchanged.

function CreateContext(strContext:
string): boolean;

This method creates a context for your application. Pass an
option name in the strContext parameter. If the function
returns True, a context was created, and your application can
use all RPCs entered in the option’s RPC multiple.

Examples
For examples of how to use these methods to invoke RPCs, see the “How to Execute an RPC from a
Client Application” section.

RPC Broker 1.1
User Guide 7 May 2017

2.1.4 How to Connect to an M Server
To establish a connection from your application to a Broker server, perform the following procedure:

1. From the Kernel component palette tab, add a TRPCBroker component to your form.

2. Add code to your application to connect to the server; one likely location is your form’s OnCreate
event handler. The code should:

a. Use the GetServerInfo function to retrieve the run-time server and port to connect to, and
SSHUsername if available.

 NOTE: This function is not a method of the TRPCBroker component; it is described
in the “Other RPC Broker APIs” section.

b. Inside of an exception handler try...except block, set RPCBroker1’s Connected property to
True. This causes an attempt to connect to the Broker server and authenticates the user.

c. Check if an EBrokerError exception is raised. If this happens, connection failed. You should
inform the user of this and then terminate the application.

The code, placed in an OnCreate event handler, should look like Figure 2:
Figure 2: OnCreate Event Handler—Sample Code

procedure TForm1.FormCreate(Sender: TObject);
var ServerStr: String;
 PortStr: String;
begin
 // get the correct port and server from registry
 if GetServerInfo(ServerStr,PortStr,SSHUsernameStr)<>mrCancel then
 begin
 RPCBroker1.Server:=ServerStr;
 RPCBroker1.ListenerPort:=StrToInt(PortStr);
 if SSHUsernameStr <> ‘’ then
 begin
 RPCBroker1.UseSecureConnection := ‘SSH’;
 RPCBroker1.SSHport := ‘‘;
 RPCBroker1.SSHUser := SSHUsernameStr;
 RPCBroker1.SSHpw := ‘‘;
 RPCBroker1.SSHHide := true;
 end;
 end
 else Application.Terminate;

 // establish a connection to the Broker
 try
 RPCBroker1.Connected:=True;
 except
 On EBrokerError do
 begin
 ShowMessage(‘Connection to server could not be established!’);
 Application.Terminate;
 end;
 end;
end;

3. A connection with the Broker M Server is now established. You can use the CreateContext
method of the TRPCBroker component to authorize use of RPCs for your user, and then use the

RPC Broker 1.1
User Guide 8 May 2017

Call, lstCall, and strCall methods of the TRPCBroker component to execute RPCs on the M
server.

 REF: For information on creating and executing RPCs, see the “Remote Procedure Calls
(RPCs)” section.

2.2 TCCOWRPCBroker Component
As of Patch XWB*1.1*40, the TCCOWRPCBroker component was added to Version 1.1 of the RPC
Broker. The TCCOWRPCBroker Delphi component allows VistA application developers to make their
applications CCOW-enabled and Single Sign-On/User Context (SSO/UC)-aware with all of the
client/server-related functionality in one integrated component. Using the TCCOWRPCBroker
component, an application can share User Context stored in the CCOW Context Vault.

Thus, when a VistA CCOW-enabled application is recompiled with the TCCOWRPCBroker component
and other required code modifications are made, that application would then become SSO/UC-aware and
capable of single sign-on (SSO).

 NOTE: This RPC Broker component is derived from the original TRPCBroker Component; it
inherits the TRPCBroker properties and methods.

2.2.1 Single Signon/User Context (SSO/UC)
The Veterans Health Administration (VHA) information systems user community expressed a need for a
single sign-on (SSO) service with interfaces to VistA, HealtheVet VistA, and non-VistA systems. This
architecture allows users to authenticate and sign on to multiple applications that are CCOW-enabled and
SSO/UC-aware using a single set of credentials, which reduces the need for multiple ID’s and passwords
in the HealtheVet clinician desktop environment. The RPC Broker software addressed this architectural
need by providing a new TCCOWRPCBroker component in RPC Broker Patch XWB*1.1*40.

The TCCOWRPCBroker component allows VistA application developers to make their applications
CCOW-enabled and Single Sign-On/User Context (SSO/UC)-aware with all of the client/server-related
functionality in one integrated component. Using the TCCOWRPCBroker component, an application can
share User Context stored in the CCOW Context Vault.

Thus, when a VistA CCOW-enabled application is recompiled with the TCCOWRPCBroker component
and other required code modifications are made, that application would then become SSO/UC-aware and
capable of single sign-on (SSO).

 REF: For more information on SSO/UC and making your Broker-based applications CCOW-
enabled and SSO/UC-aware, please consult the Single Sign-On/User Context (SSO/UC)
Installation Guide and Single Sign-On/User Context (SSO/UC) Deployment Guide on the VA
Software Document Library (VDL) at: https://www.va.gov/vdl/application.asp?appid=162

2.3 TXWBRichEdit Component
As of Patch XWB*1.1*13, the TXWBRichEdit component was added to Version 1.1 of the RPC Broker.
The TXWBRichEdit Delphi component replaces the Introductory Text Memo component on the Login
Form. TXWBRichEdit is a version of the TRichEdit component that uses Version 2 of Microsoft’s
RichEdit Control and adds the ability to detect and respond to a Uniform Resource Locator (URL) in the
text. This component permits us to provide some requested functionality on the login form. As an XWB
namespaced component we are required to put it on the Kernel tab of the component palette, however, it
rightly belongs on the Win32 tab.

https://www.va.gov/vdl/application.asp?appid=162

RPC Broker 1.1
User Guide 9 May 2017

2.4 TXWBSSOiToken Component
As of Patch XWB*1.1*65, the TXWBSSOiToken component was added to RPC Broker 1.1. The
TXWBSSOiToken Delphi component is used to authenticate a user into the Identity and Access
Management (IAM) Secure Token Service (STS) and obtain a Security Assertion Markup Language
(SAML) token containing an authenticated user’s identity. The TXWBSSOiToken component does not
need to be specifically added to a RPC Broker application, as authentication is built into the TRPCBroker
Component. However, it is made available as a separate component for those applications that might need
to obtain a SAML token for authentication into non-RPC Broker applications or servers.

RPC Broker 1.1
User Guide 10 May 2017

3 Remote Procedure Calls (RPCs)
3.1 What is a Remote Procedure Call?
A remote procedure call (RPC) is a defined call to M code that runs on an M server. A client application,
through the RPC Broker, can make a call to the M server and execute an RPC on the M server. This is the
mechanism through which a client application can:

• Send data to an M server.

• Execute code on an M server.

• Retrieve data from an M server.

An RPC can take optional parameters to do some task and then return either a single value or an array to
the client application. RPCs are stored in the REMOTE PROCEDURE (#8994) file.

3.1.1 Relationship between an M Entry Point and an RPC
An RPC can be thought of as a wrapper placed around an M entry point for use with client applications.
Each RPC invokes a single M entry point. The RPC passes data in specific ways to its corresponding M
entry point and expects any return values from the M entry point to be returned in a pre-determined
format. This allows client applications to connect to the RPC Broker, invoke an RPC, and through the
RPC, invoke an M entry point on a server.

3.2 Create Your Own RPCs
3.2.1 Preliminary Considerations
Because creating an Remote Procedure Call (RPC) could introduce security risks, you should consider
your options prior to creating a new one:

1. First, look for an existing RPC that provides the data you need. You may need an Integration
Control Registration (ICR) for permission to use the RPC.

2. If you cannot locate an existing RPC that meets your needs, look for an existing Application
Programming Interface (API) that can be wrapped with a new RPC.

3. If an existing RPC or API provides “almost” what you need, contact the package owners to see
whether there is a modification or alternative that could be provided to meet your needs. For
example, determine whether post-processing of the data in your application would provide the
results you need.

4. You should create a new RPC only as a last result. When creating a new RPC is necessary, you
should carefully consider how general to make the RPC, so that it can potentially be used by other
applications in the future.

RPC Broker 1.1
User Guide 11 May 2017

3.2.2 Process
You can create your own custom RPCs to perform actions on the M server and to retrieve data from the
M server. Then you can call these RPCs from your client application. Creating an RPC requires you to
perform the following steps:

1. Reference the RPC Broker Developers Guide for instructions and examples when creating a new
RPC.

2. Write and test the M entry point that is called by the RPC.

3. Add the RPC entry that invokes your M entry point, in the REMOTE PROCEDURE (#8994) file.
The RPC name should begin with the VistA package namespace that owns the RPC. For
example, “XWB EXAMPLE BIG TEXT” is owned by the RPC Broker package (namespace:
XWB). M Programming Standards and Conventions (SAC) provide policy on name requirements
for new RPCs.

4. Add the RPC to a “B-Broker (Client/Server)” type option in the OPTION (#19) file. The option
should be in your VistA package namespace. M Programming Standards and Conventions (SAC)
provide policy on name requirements for options.

3.3 Writing M Entry Points for RPCs
3.3.1 First Input Parameter for RPCs (Required)

The RPC Broker always passes a variable by reference in the first input parameter to your M routine. It
expects results (one of five types described in Table 5) to be returned in this parameter. You must always
set some return value into that first parameter before your routine returns.

3.3.2 Return Value Types for RPCs
There are five RETURN VALUE TYPES for RPCs as shown in Table 5. Choose a return value type that
is appropriate to the type of data your RPC needs to return to your client. Your M entry point should set
the return value (in the routine’s first input parameter) accordingly.

http://www.va.gov/vdl/application.asp?appid=23

RPC Broker 1.1
User Guide 12 May 2017

Table 5: RPC Broker Return Value Types

RPC Return
Value Type

How M Entry Point Should Set the Return
Parameter

RPC WORD
WRAP ON
Setting

Value(s) returned in
Client Results

Single Value Set the return parameter to a single value.
For example:

TAG(RESULT) ;

 S RESULT=“DOE, JOHN”

 Q

No effect Value of parameter, in
Results[0].

Array Set an array of strings into the return
parameter, each subscripted one level
descendant.
For example:

TAG(RESULT) ;

 S RESULT(1)=“ONE”

 S RESULT(2)=“TWO”

 Q

For large arrays consider using the
GLOBAL ARRAY return value type to avoid
memory allocation errors.

No effect Array values, each in
a Results item.

Word-
processing

Set the return parameter the same as you
set it for the ARRAY type. The only
difference is that the WORD WRAP ON
(#.08) field setting affects the Word-
processing return value type.

True Array values, each in
a Results item.

False Array values,
concatenated into
Results[0].

Global Array Set the return parameter to a closed global
reference in ^TMP. The global’s data nodes
are traversed using $QUERY, and all data
values on global nodes descendant from
the global reference are returned.
This type is especially useful for returning
data from VA FileMan word processing
fields, where each line is on a 0-subscripted
node.

 CAUTION: The global reference
you pass is killed by the Broker
at the end of RPC Execution as
part of RPC cleanup. Do not pass
a global reference that is not in
^TMP or that should not be
killed.

This type is useful for returning large
amounts of data to the client, where using
the ARRAY type can exceed the symbol
table limit and crash your RPC.
For example, to return signon introductory
text you could do:

True Array values, each in
a Results item.

False Array values,
concatenated into
Results[0].

RPC Broker 1.1
User Guide 13 May 2017

RPC Return
Value Type

How M Entry Point Should Set the Return
Parameter

RPC WORD
WRAP ON
Setting

Value(s) returned in
Client Results

TAG(RESULT);

 M ^TMP(“A6A”,$J)=

^XTV(8989.3,1,”INTRO”)

 ;this node not needed

 K ^TMP(“A6A”,$J,0)

 S RESULT=$NA(^TMP(“A6A”,$J))

 Q

Global Instance Set the return parameter to a closed global
reference.
For example, to return the 0th node from
the NEW PERSON (#200) file for the
current user:

TAG(RESULT) ;

 S RESULT=$NA(^VA(200,DUZ,0))

 Q

No effect Value of global node,
in Results[0].

3.3.3 Input Parameter Types for RPCs (Optional)
The M entry point for an RPC can optionally have input parameters (i.e., beyond the first parameter,
which is always used to return an output value). The client passes data to your M entry point through
these parameters.

The client can send data to an RPC (and therefore your entry point) in one of the following three format
types:

Table 6: Input Parameter Types

Param PType Param Value

Literal Delphi string value, passed as a string literal to the M server.

Reference Delphi string value, treated on the M Server as an M variable name and resolved
from the symbol table at the time the RPC executes.

 CAUTION: The use of a reference-type input parameter represents a
significant security risk. The M entry point should include code to
screen the input value for M code injection (e.g., function calls, M
commands, or direct global reads).

List A single-dimensional array of strings in the Mult subproperty of the Param property,
passed to the M Server where it is placed in an array. String subscripting can be
used.

The type of the input parameters passed in the Param property of the TRPCBroker component determines
the format of the data you must be prepared to receive in your M entry point.

RPC Broker 1.1
User Guide 14 May 2017

3.3.4 RPC M Entry Point Examples
The following two examples illustrate sample M code that could be used in simple RPCs.

3.3.4.1 Sum of Two Numbers
The following example takes two numbers and returns their sum:

Figure 3: RPC M Entry Point Example—Sum of Two Numbers
SUM(RESULT,A,B) ;add two numbers
 S RESULT=A+B
 Q

3.3.4.2 Sorted Array
The following example receives an array of numbers and returns them as a sorted array to the client:

Figure 4: RPC M Entry Point Example—Sorted Array
SORT(RESULT,UNSORTED) ;sort numbers
 N I
 S I=““
 F S I=$O(UNSORTED(I)) Q:I=““ S RESULT(UNSORTED(I))=UNSORTED(I)
 Q

3.4 RPC Entry in the REMOTE PROCEDURE File
After the M code is complete, you need to create the RPC itself in the REMOTE PROCEDURE (#8994)
file. The following fields in the REMOTE PROCEDURE (#8994) file are key to the correct operation of
an RPC:

Table 7: REMOTE PROCEDURE File Key Field Entries

Field Name Required? Description

NAME (#.01) Yes The name that identifies the RPC (this entry should
be namespaced in the package namespace).

TAG (#.02) Yes The tag at which the remote procedure call begins.

ROUTINE (#.03)) Yes The name of the routine that should be invoked to
start the RPC.

WORD WRAP ON (#.08) No Affects Global Array and Word-processing return
value types only:

• If set to False, data is returned in a single
concatenated string in Results[0].

• If set to True, each array node on the M side
is returned as a distinct array item in Results.

RETURN VALUE TYPE (#.04) Yes This indicates to the Broker how to format the return
values. For example, if the RETURN VALUE TYPE is
set as Word-processing, then each entry in the
returning list has a <CR><LF> (<carriage
return><line feed>) appended.

APP PROXY ALLOWED (#.11) No This field must be set to Allowed (1) if this RPC is to
be run by an APPLICATION PROXY user. The

RPC Broker 1.1
User Guide 15 May 2017

Field Name Required? Description
default is to not allow access.

 CAUTION: APPLICATION PROXY users
do not meet Health Insurance Portability
and Accounting Act of 1996 (HIPAA)
requirements for user identification, and
should not be permitted to access an RPC
that reads or writes Personal Health
Information (PHI).

3.5 What Makes a Good Remote Procedure Call?
• Silent calls (no I/O to terminal or screen, no user intervention required).

• Minimal resources required (passes data in brief, controlled increments).

• Discrete calls (requiring as little information as possible from the process environment).

• Generic as possible (different parts of the same package as well as other packages could use the
same RPC).

3.6 How to Execute an RPC from a Client Application
To execute an RPC from a client application, perform the following procedure:

1. If your RPC has any input parameters beyond the mandatory first parameter, set a Param node in
the TRPCBroker’s Param property for each. For each input parameter, set the following sub
properties:

• Value

• PType (Literal, List, or Reference)

If the parameter’s PType is List, however, set a list of values in the Mult subproperty rather than
setting the Value subproperty.

 CAUTION: The use of a reference-type input parameter represents a significant
security risk. The M entry point should include code to screen the input value for
M code injection (e.g., function calls, M commands, or direct global reads).

Figure 5 is an example of some settings of the Param property:
Figure 5: Param Property—Sample Settings

RPCBroker1.Param[0].Value := ‘10/31/97’;
RPCBroker1.Param[0].PType := literal;
RPCBroker1.Param[1].Mult[‘“NAME”‘] := ‘XWBUSER, ONE’;
RPCBroker1.Param[1].Mult[‘“SSN”‘] := ‘000-45-6789’;
RPCBroker1.Param[1].PType := list;

2. Set the TRPCBroker’s RemoteProcedure property to the name of the RPC to execute.
RPCBroker1.RemoteProcedure:=‘A6A LIST’;

RPC Broker 1.1
User Guide 16 May 2017

3. Invoke the Call method of the TRPCBroker component to execute the RPC. All calls to the Call
method should be done within an exception handler try...except statement, so that all
communication errors (which trigger the EBrokerError exception) can be trapped and handled.
For example:

Figure 6: Exception Handler—try...except Code—Sample Usage
try
 RPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage(‘A problem was encountered communicating with the server.’);
end;

4. Any results returned by your RPC are returned in the TRPCBroker component’s Results
property. Depending on how you set up your RPC, results are returned either in a single node of
the Results property (Result[0]) or in multiple nodes of the Results property.

 NOTE: You can also use the lstCall and strCall methods to execute an RPC. The main
difference between these methods and the Call method is that lstCall and strCall do not
use the Results property, instead returning results into a location you specify.

3.7 RPC Security: How to Register an RPC
Security for RPCs is handled through the RPC registration process. Each client application must create a
context for itself, which checks if the application user has access to a “B”-type option in the Kernel menu
system. Only RPCs assigned to that option can be run by the client application.

To enable your application to create a context for itself, perform the following procedure:

1. Create a “B”-type option in the OPTION (#19) file for your application.

 NOTE: The OPTION TYPE “B” represents a Broker client/server type option.

2. In the RPC multiple for this option type, add an entry for each RPC that your application calls.
You can also specify a security key that can lock each RPC (this is a pointer to the SECURITY
KEY [#19.1] file) and M code in the RULES subfield that can also determine whether to enable
access to each RPC.

3. When you export your software using KIDS, export both your RPCs and your software option.

4. Your application must create a context for itself on the server, which checks access to RPCs. In
the initial code of your client application, make a call to the CreateContext method of your
TRPCBroker component. Pass your application’s “B”-type option’s name as a parameter. For
example:

RPCBroker1.CreateContext(option_name)

If the CreateContext method returns True, only those RPCs designated in the RPC multiple of
your application option are permitted to run.

If the CreateContext method returns False, you should terminate your application (if you do not,
your application runs, but you get errors every time you try to access an RPC).

5. End-users of your application must have the “B”-type option assigned to them on one of their
menus, in order for the CreateContext method to return True.

RPC Broker 1.1
User Guide 17 May 2017

3.7.1 Bypassing RPC Security for Development
Having the XUPROGMODE security key allows you to bypass the Broker security checks. You can run
any RPC without regard to application context (without having to use the CreateContext method). This is
a convenience for application development. When you complete development, make sure you test your
application from an account without the XUPROGMODE key, to ensure that all RPCs needed are
properly registered.

3.7.2 BrokerExample Online Code Example
The BrokerExample sample application (i.e., BROKEREXAMPLE.EXE) provided with the BDK
demonstrates the basic features of developing RPC Broker-based applications, including:

• Connecting to an M server.

• Creating an application context.

• Using the GetServerInfo function.

• Displaying the VistA splash screen.

• Setting the TRPCBroker Param property for each Param PType (literal, reference, and list).

• Calling RPCs with the Call method.

• Calling RPCs with the lstCall and strCall methods.

• Secure Shell (SSH) connection (from Options menu) methods.

The client source code files for the BrokerExample application are located in the
SAMPLES\RPCBROKER\BROKEREX subdirectory of the main BDK32 directory.

RPC Broker 1.1
User Guide 18 May 2017

Figure 7: RPC Broker Example Application

RPC Broker 1.1
User Guide 19 May 2017

4 Other RPC Broker APIs
4.1 GetServerInfo Function
4.1.1 Overview
The GetServerInfo function retrieves the end-user workstation’s server, port, and SSHUsername if
available. Use this function to set the TRPCBroker component’s Server, ListenerPort, and SSHUser
properties to reflect the end-user workstation’s settings before connecting to the server.

If there is more than one server/port to choose from, GetServerInfo displays dialogue that allows users to
select a service to connect to, as shown in Figure 8:

Figure 8: Server and Port Configuration Selection Dialogue

If exactly one server and port entry is defined in the Microsoft Windows Registry, GetServerInfo does not
display the dialogue in Figure 8. The values in the single Microsoft Windows Registry entry are returned,
with no user interaction required.

If more than one server and port entry exists in the Microsoft® Windows Registry, the dialogue is
displayed, and the user chooses to which server they want to connect.

If no values for server and port are defined in the Microsoft® Windows Registry, GetServerInfo does not
display the dialogue in Figure 8, and automatic default values are returned (i.e., BROKERSERVER and
9200).

The values are stored in either of the following registries:

• HKEY_CURRENT_USER (HKCU)

• HKEY_LOCAL_MACHINE (HKLM)

These registries are located under:

\Software\Vista\Broker\Servers

Entries are of the format:

• Name: Server,ListenerPort

• Type: REG_SZ

• Data: SSHUser

RPC Broker 1.1
User Guide 20 May 2017

For example, a connection to server address “r08dhcp017.vha.med.va.gov” using port 19001 and
SSHUsername of “xkgvista” would look like:

Figure 9: Sample Registry Information

4.1.2 Syntax
Two versions of the GetServerInfo function are supported:

• Legacy Version—Retrieves the end user’s server and port:
function GetServerInfo(var Server, Port: string): integer;

• New Version—Retrieves the end user’s server and port as well as the SSHUsername value from
the Windows registry:

function GetServerInfo(var Server, Port, SSHUsername: string): integer;

Both versions continue to support specification of SSHUsername at the command line.

 NOTE: The unit is RpcConf1.

4.2 VistA Splash Screen Procedures
Two procedures in SplVista.PAS unit are provided to display a VistA splash screen when an application
loads:

• procedure SplashOpen;

• procedure SplashClose(TimeOut: longint);

It is recommended that the splash screen be opened and closed in the section of Pascal code in an
application’s project file (i.e., .DPR).

To use the splash screen in an application, perform the following procedure:

1. Open your application’s project (.DPR) file (in Delphi, choose View | Project Source).

2. Include the SplVista in the uses clause of the project source.

3. Call SplashOpen immediately after the first form of your application is created and call
SplashClose just prior to invoking the Application.Run method.

4. Use the TimeOut parameter to ensure a minimum display time.

RPC Broker 1.1
User Guide 21 May 2017

Figure 10: VistA Splash Screen

Figure 11: Displaying a VistA Splash Screen: Sample Code

uses
 Forms, Unit1 in ‘Unit1.pas’, SplVista;

{$R *.RES}

begin
 Application.Initialize;
 Application.CreateForm(TForm1, Form1);
 SplashOpen;
 SplashClose(2000);
 Application.Run;
end.

4.3 XWB GET VARIABLE VALUE RPC
You can call the XWB GET VARIABLE VALUE RPC (distributed with the RPC Broker) to retrieve the
value of any M variable in the server environment. Pass the variable name in Param[0].Value and the type
(reference) in Param[0].PType. Also, the current context of your user must give them permission to
execute the XWB GET VARIABLE VALUE RPC (it must be included in the RPC multiple of the “B”-
type option registered with the CreateContext function). For example:

Figure 12: XWB GET VARIABLE VALUE RPC Usage—Sample Code
RPCBroker1.RemoteProcedure := ‘XWB GET VARIABLE VALUE’;
RPCBroker1.Param[0].Value :=‘DUZ’;
RPCBroker1.Param[0].PType := reference;
try
 RPCBroker1.Call;
except
 On EBrokerError do
 ShowMessage(‘Connection to server could not be established!’);
end;
ShowMessage(‘DUZ is ‘+RPCBroker1.Results[0]);

RPC Broker 1.1
User Guide 22 May 2017

 CAUTION: The use of a reference-type input parameter represents a significant security
risk. The M entry point should include code to screen the input value for M code
injection (e.g., function calls, M commands, or direct global reads).

4.4 M Emulation Functions
Piece Function
The Piece function is a scaled down Pascal version of M’s $PIECE function. It is declared in
MFUNSTR.PAS.

function Piece(x: string; del: string; piece: integer) : string;

4.4.1 Translate Function
The Translate function is a scaled down Pascal version of M’s $TRANSLATE function. It is declared in
MFUNSTR.PAS.

function Translate(passedString, identifier, associator: string): string;

4.5 Encryption Functions
Kernel and the RPC Broker provide some rudimentary encryption and decryption functions. Data can be
encrypted on the client end and decrypted on the server, and vice-versa.

4.5.1 In Delphi
Include HASH in the “uses” clause of the unit in which you’ll be encrypting or decrypting.

Function prototypes are as follows:
• function Decrypt(EncryptedText: string): string;

• function Encrypt(NormalText: string): string;

4.5.2 On the VistA M Server
4.5.2.1 Encryption
To encrypt:

Figure 13: Encryption in VistA M Server—Sample Code
>S CIPHER=$$ENCRYP^XUSRB1(“Hello world!”) W CIPHER

/U’llTG~TVl&f-

4.5.2.2 Decryption
To decrypt:

Figure 14: Decryption in VistA M Server—Sample Code
>S PLAIN=$$DECRYP^XUSRB1(CIPHER) W PLAIN

Hello world!

RPC Broker 1.1
User Guide 23 May 2017

4.6 $$BROKER^XWBLIB
Use this function in the M code called by an RPC to determine if the Broker is executing the current
process. It returns:

• 1—If this is True.

• 0—If False.

4.7 $$RTRNFMT^XWBLIB
Use this function in the M code called by an RPC to change the return value type that the RPC returns on-
the-fly. This allows you to change the return value type to any valid return value type (Single Value,
Array, Word-processing, Global Array, or Global Instance). It also lets you set WORD WRAP ON (#.08)
field to True or False, on-the-fly, for the RPC.

 REF: For more information about $$RTRNFMT^XWBLIB, see the BDK Online Help
(i.e., Broker_1_1.chm) and RPC Broker Developer’s Guide.

RPC Broker 1.1
User Guide 24 May 2017

5 Broker Security Enhancement (BSE)
5.1 Introduction
This section describes the mechanism by which the Broker Security Enhancement (BSE) enables RPC
Broker Delphi-based applications to make remote user/visitor connections in a more secure manner. This
BSE-based mechanism subsequently replaces the current Compensation And Pension Records
Interchange (CAPRI)-based mechanism for remote user/visitor access by RPC Broker Delphi-based
client/server applications.

The Veterans Health Administration (VHA) information systems management and user community has
expressed a need to secure access to patient information at remote sites.

Some VistA application users require access to data located at remote sites at which the users:

• Do not have assigned Access and Verify codes.

• Have not been entered into the NEW PERSON (#200) file by system administrators.

• Want to avoid having multiple Access/Verify code pairs.

The Compensation And Pension Records Interchange (CAPRI) application was the first application with
these requirements. This application is used by Veterans Benefits Administration (VBA) staff to remotely
access VistA data related to claims for veterans treated at any VistA site.

The CAPRI application was the first application to use the modified version of the VistA Remote
Procedure Call (RPC) Broker software, which was based on the Remote Data Views (RDV) access
method, as a means for obtaining such access. This access enters the user's information into the NEW
PERSON (#200) file as a visitor, but does not require an Access or Verify code for the user at the remote
site. As a result of the CAPRI application, there has been an increase in the number of other applications
that also require or are requesting this type of remote data access.

The goal of the Broker Security Enhancement (BSE) Project is to accomplish the following:

• Enable RPC Broker Delphi-based applications to access Remote VistA M Servers with increased
security.

• Enhance the RPC Broker method used to connect to Remote VistA M Servers.

• Ensure correct information for user access to prevent the mistaken identification of an incorrect or
non-existent user (spoofing) via unauthorized applications.

• Provide the ability for RPC Broker Delphi-based applications that have implemented BSE to
specify their own context option.

• Allow the VistA Imaging Display Client to pull in images from remote sites without requiring
credentials on the Remote VistA M Servers.

RPC Broker 1.1
User Guide 25 May 2017

5.1.1 Features
The Broker Security Enhancement (BSE) Project provides the following features and functionality:

• Adds a step to the RPC Broker signon process to authenticate the connecting application. This
also involves passing a secret encoded phrase that is established on the VistA M Server via a
patch and KIDS build.

• Adds a step to the RPC Broker signon process on the Remote VistA M Server to authenticate the
user by connecting back to the Authenticating VistA M Server.

• Provides the capability for remote applications to specify their own context option.

5.1.2 Architectural Scope
The architectural scope of BSE is as follows:

• Use of Kernel Authentication—Kernel is used as the authenticator. Kernel is a valid means of
authenticating on a backend VistA M Server.

• Client/Server-based Application Support—This document only discusses the BSE
functionality provided with VistA RPC Broker Delphi-based client/server applications.

5.2 Process Overview
The overall process to make a remote connection via an RPC Broker Delphi-based client/server
application that has implemented the Broker Security enhancement (BSE) is as follows:

1. The user starts the BSE-enabled application.

2. The BSE-enabled application connects to the Authenticating VistA M Server and presents the
VistA login GUI dialogue to the user.

 NOTE: The Authenticating VistA M Server is identified in the CALLBACKSERVER
(#.03) field in the CALLBACKTYPE (#1) Multiple field in the REMOTE
APPLICATION (#8994.5) file.

3. The user enters their Kernel Access and Verify codes, is authenticated via Kernel, and is signed
onto the BSE-enabled application's Authenticating VistA M Server.

4. The BSE-enabled application gets a Kernel Authentication Token for the authenticated user from
the Authenticating VistA M Server. This token is eventually used by the Remote VistA M Server
to obtain the necessary user information for populating a user as a "visitor" entry in the remote
site's NEW PERSON (#200) file. This ensures the following:

• The user is not spoofed.

• The data at the remote site is valid.

A sample Kernel Authentication Token follows:
XWBHDL977-124367_0

5. The BSE-enabled application completes any other processing necessary to identify the Remote
VistA M Server and gathers any other required information.

6. The BSE-enabled application disconnects from the Authenticating VistA M Server.

RPC Broker 1.1
User Guide 26 May 2017

7. The BSE-enabled application performs the following tasks:

a. Creates a Security Pass Phrase value that is composed of the following two pieces of data:

• Security Phrase—A one-way hashed value that is stored in the REMOTE
APPLICATION (#8994.5) file and used to identify the BSE-enabled application's file
entry.

 REF: For more information on the Security Phrase, see the "Security Phrase"
section.

• Kernel Authentication Token

b. Sets the SecurityPhrase property of the RPCBroker login component to the Security Pass
Phrase value (see Step 7a), which is later used by the Remote VistA M Server to call back the
Authenticating VistA M Server.

c. Sets the other appropriate RPCBroker login component properties in order to call the Remote
VistA M Server.

 REF: For more information on the specific RPCBroker login component property
settings, see the "Step-By-Step Procedures to Implement BSE" section in the RPC
Broker Developer’s Guide.

8. The BSE-enabled application connects to the Remote VistA M Server with the RPCBroker login
component passing in the encoded value of the SecurityPhrase property (see Step 7).

 CAUTION: Remote access is only permitted at sites that have installed the
application's information (including the hashed Security Phrase) into the
REMOTE APPLICATION (#8994.5) file, ensuring that a rogue application cannot
obtain access.

 REF: For more information on the application's Security Phrase, see the "Security
Phrase" section.

9. The Kernel software on the Remote VistA M Server performs the following tasks:

a. Identifies and hashes the decoded value of the RPCBroker login component's SecurityPhrase
property (see Steps 7a and 7b).

b. Uses the hashed value of the BSE-enabled application's Security Pass Phrase to identify the
application's entry in the REMOTE APPLICATION (#8994.5) file.

 NOTE: Included in that entry is the mechanisms for contacting the Authenticating
VistA M Server.

c. Connects to the Authenticating VistA M Server passing in the Kernel Authentication Token
that identifies the user.

d. Obtains the user demographic information from the Authenticating VistA M Server. This user
demographic information is used to establish the user as a remote user/visitor.

e. Disconnects from the Authenticating VistA M Server.

RPC Broker 1.1
User Guide 27 May 2017

f. Uses the demographic information obtained from the Authenticating VistA M Server to set
up the user as a visitor entry on the Remote VistA M Server. It creates or matches an entry in
the NEW PERSON (#200) file and provides the visitor with the context option specified for
the BSE-enabled application in the REMOTE APPLICATION (#8994.5) file.

10. The BSE-enabled application is notified by the RPCBroker login component that it successfully
connected and that the user is signed on to the Remote VistA M Server. The user can then
continue with any processing necessary on the Remote VistA M Server. If for some reason the
user signon fails on the Remote VistA M Server, the user is prompted to enter a valid Access and
Verify code on the Remote VistA M Server. If the user cancels the signon, he/she is prompted
with a signon cancellation dialogue box.

 REF: For more information on the REMOTE APPLICATION (#8994.5) file, see the
"REMOTE APPLICATION (#8994.5) File" section.

If any of the following error conditions exist, the user is prompted with a regular GUI signon dialogue
instructing them to enter their Access and Verify codes:

• No entry for the application in the REMOTE APPLICATION (#8994.5) file.

• No match for the Kernel Authentication Token.

• Cannot connect to the Authenticating VistA M Server.

The Remote VistA M Server connects to the Authenticating VistA M Server and passes in the Kernel
Authentication Token identifying the user. The Authenticating VistA M Server responds back by
returning the demographic information necessary to establish the user as a remote user. The Remote
VistA M Server disconnects from the Authenticating VistA M Server and sets up the user's profile as a
visitor entry, including the necessary context option specified for the application in the REMOTE
APPLICATION (#8994.5) file.

The BSE-enabled application is notified that the user is signed on and continues processing as normal.

RPC Broker 1.1
User Guide 28 May 2017

There are basically two classes of applications that use this BSE authentication mechanism:
Table 8: BSE—Application Authentication Server Class Types

Application Class Description

Single Server Authentication Applications that require users to authenticate against a single VistA M
Server and determine the remote locations to be accessed
(e.g., CAPRI).
For those applications where the users all authenticate on a single
VistA M Server, the application only needs to specify the Uniform
Resource Locator (URL) for its VistA M Server and one or more
methods for connecting to it (including port number[s]) in the
CALLBACKTYPE Multiple of the REMOTE APPLICATION (#8994.5)
file.

Multiple Server Authentication Applications that require users to authenticate at their local medical
center or other site (e.g., VistAWeb or other Web-based applications).
For those applications where each user authenticates on
multiple/different VistA M Servers, the application needs to obtain both
a Kernel Authentication Token and the demographic data necessary
for identifying or adding a remote user/visitor during the authentication
process on the Authenticating VistA M Server. The application passes
in the Kernel Authentication Token and application Security Pass
Phrase, as described above (see the "Process Overview" topic). The
REMOTE APPLICATION (#8994.5) file contains an address for the
Web-based application and the Remote VistA M Server returns the
Kernel Authentication Token to the application and expects it to return
the demographic information associated with that Kernel
Authentication Token. This requires the application to keep the Kernel
Authentication Token and demographic data in a location that is
accessible by the application until the demographic data has been
provided to the Remote VistA M Server.

 RECOMMENDATION: VistA Infrastructure (VI) highly
encourages that other non-Web-based applications use a
single server rather than multiple servers for user
authentication.

RPC Broker 1.1
User Guide 29 May 2017

5.2.1 Process Diagrams
Figure 15 illustrates the BSE process sequence flow:

Figure 15: BSE—Process Sequence Flow Diagram
User BSE Application Remote VistA M Server Authenticating VistA M Server

User Authenticates

Get Kernel Authentication Token

Disconnect

User Enters A/V
Codes & Institution

User Starts BSE
Application

Connect

Connect

Pass Kernel Authentication
Token & Security Pass Phrase

Connect

Pass Kernel Authentication
Token & Security Pass Phrase

Get User Demographics

Disconnect
User Signed on as a Remote

User/Visitor

Application Processing

RPC Broker 1.1
User Guide 30 May 2017

Figure 16 illustrates the BSE process overview:
Figure 16: BSE—Process Overview

Authenticating VistA M Server: Remote VistA M Server

Kernel BSE Token
Generation Process

(character string)

8. Returns active
BSE token.

6. Kernel calls BSE
token generator

process.

User

Kernel BSE Token
Verification Process
(checks BSE token to

see if valid & not
expired)

• RPC Broker routines
• Kernel routines
• RPC Broker Delphi-based

application w/ BSE
implemented

• REMOTE APPLICATION
file (#8994.5)

VistA Database
(temp global)

7.
Stores BSE token & token
creation time in the Temp

global.

RPC Broker
App. w/ BSE
Implemented

(Client)

2. User not logged into VistA. Starts the first VistA RPC Broker Delphi-
based application with BSE implemented (a.k.a. BSE App.).

BSE
App.

No BSE token verification
required for initial logon

1. User manually enters
their NT Logon ID:

NT Logon
User name: xxxxxxxx
 Password: xxxxxxxx
 Domain: xxxxxxxx

RPC Broker Delphi-based application w/ BSE implemented on client workstation
software processes

Kernel server routine processes

Application on Remote VistA M Server software processes

Legend
User processes

• RPC Broker routines
• Kernel routines
• RPC Broker Delphi-based

application w/ BSE
implemented

• REMOTE APPLICATION
file (#8994.5)

4. User manually enters
their VistA Logon ID:

VistA Logon
Access Code: xxxxxxxx
Verify Code: xxxxxxxx

9. BSE App.
receives token.

3. BSE App. prompts user to enter their VistA Access & Verify
codes (i.e., VistA logon ID).

10. RPC Broker in BSE
App. Connects to Remote
server, passing Security

Pass Phrase
(i.e., Security Phrase &

Kernel Auth. Token), which is
used to identify Auth. VistA M

Server & user.

11. Remote VistA M Server connects to
Auth server, passing in Kernel

Authentication Token.

12. Remote VistA M Server obtains
user demographics to sign on the user to

the Remote server.

5. RPC Broker in BSE
App. Connects to Auth,

server and logs user into
VistA using the user's
Access & Verify codes
(i.e., VistA logon ID).

• Microsoft Windows 2000/XP
• RPC Broker Delphi-based software

with BSE implemented (e.g., CAPRI)

Cient Workstation:

13. Remote VistA M
Server notifies BSE

app, user is signed on.
User can now perform
tasks on the Remote
server as a remote

user/visitor.

RPC Broker 1.1
User Guide 31 May 2017

5.3 BSE-related VistA Applications and Modules
This section describes the new or modified functionality made to the BSE-related software applications
and modules as listed in Table 9.

An RPC Broker Delphi-based and BSE-enabled VistA application comprises software that has been re-
compiled using the RPC Broker login component, modified for BSE. BSE capability comes into play
when you are using a BSE-enabled application (e.g., Compensation And Pension Records Interchange
[CAPRI] or VistAWeb).

 REF: For information on how to implement BSE in VistA RPC Broker Delphi-based
client/server applications, see the "Implementing BSE in VistA RPC Broker-based Applications,"
in RPC Broker Developer’s Guide.

This section discusses in more detail the various software applications and modules that, together, provide
for BSE functionality:

Table 9: BSE—Software Applications and Modules

Application/Module Location Description

VistA M Server VistA M Server This is the "backend server" where the Kernel and RPC
Broker software act as the authentication source for all
VistA applications (i.e., client/server, rich client, Web, and
roll-and-scroll applications). The VistA M Server also
executes remote procedure calls (RPCs) and provides
other functions to VistA applications.

 REF: For a list of BSE-related Vista M Server
patches, see the “BSE Installation Instructions for
Developers” section in the RPC Broker Developer’s
Guide.

Client/Server Login
Component: RPC
Broker

Client
(Developer
workstations
only)

The RPCBroker login component allows client/server
applications to authenticate against the VistA M Server and
obtain a persistent connection over which remote
procedure calls (RPCs) are executed. This component is
modified in BSE to be more secure when accessing data at
remote sites.
RPC Broker-based applications using remote or visitor
access (e.g., Compensation And Pension Records
Interchange [CAPRI], VistAWeb) must invoke this modified
RPC Broker login component to implement the Broker
Security Enhancement (BSE).

 REF: For the specific software patches required for the implementation of BSE, see the “BSE
Installation Instructions for Developers” section in the RPC Broker Developer’s Guide.

RPC Broker 1.1
User Guide 32 May 2017

5.4 Kernel—Authentication Interface to VistA
Authentication is the process of verifying a user identity to ensure that the person requesting access to a
VistA system (e.g., clinical information system) is, in fact, that person to whom entry is authorized.

Currently, Kernel on the VistA M Server is the approved method to provide both Authentication and
Authorization (AA) services for all VistA applications Kernel was assessed as the most straightforward
and timely approach to also be used for remote signon authentication in BSE. By using Kernel as the
authenticator for BSE, the NEW PERSON (#200) file continues to serve as the single user data store for
VistA and BSE.

Some potential advantages to employing Kernel as the AA source include the following:

• Ease of file maintenance by system administrators.

• Provides a single point of user management for existing and new VistA RPC Broker Delphi-
based applications.

• Allows the use of an existing credential (i.e., the Access and Verify code) for Authentication and
Authorization, rather than introducing a new security credential.

• Ease of coding requirements by application developers.

• Avoids an additional user store, which simplifies the migration to any future AA solutions.

The BSE functionality for Kernel was introduced with Kernel Patch XU*8.0*404 (server-side). The BSE
functionality includes the creation of a Kernel Authentication Token. The Kernel Authentication Token is
generated once a user has been initially authenticated on the Authenticating VistA M Server via their
Access and Verify codes. This Kernel Authentication Token can then be used to authenticate a user on a
Remote VistA M Server.

5.5 RPC Broker
The RPC Broker software consists of both a client and server software piece.

5.5.1 Client
The RPC Broker login component is embedded in a Embarcadero Delphi-based rich client/server
application (e.g., Compensation And Pension Records Interchange [CAPRI]). The RPCBroker login
component is used to connect the application running on a Microsoft Windows client workstation to the
VistA M Server. This connection allows data retrieval from the VistA M Server database. The
RPCBroker login component uses Kernel's Access and Verify codes to authenticate a user to VistA.

The BSE functionality for the RPCBroker login component was introduced with RPC Broker Patch
XWB*1.1*45 (client-side) and Kernel Patch XU*8.0*404 (server-side). BSE functionality includes the
addition of a new property to the RPCBroker login component that allows applications to pass an
application's Security Phrase and Kernel Authentication Token, which is referred to in this documentation
as the Security Pass Phrase. Thus, when a VistA RPC Broker Delphi-based application, such as CAPRI,
is recompiled with the BSE-updated RPCBroker login component and other required code modifications
are made, that application would then become capable of accessing Remote VistA M Servers without
requiring users to re-enter their Access and Verify codes.

RPC Broker 1.1
User Guide 33 May 2017

5.5.2 Server
In order to implement BSE and use the RPC-Broker callback type, the central Authenticating VistA M
server must run the RPC Broker as a TCPIP service. The Non-callback RPC Broker Listener/TCPIP
service is distributed and described with RPC Broker Patch XWB*1.1*35 and was updated with
XWB*1.1*44.

 REF: For more information on the RPC Broker and TCPIP service setup, see the RPC Broker
Patches XWB*1.1*35 and 44 on FORUM and the RPC Broker documentation, specifically the
RPC Broker TCP/IP Supplement, located on the VDL at the following Web address:
http://www.va.gov/vdl/application.asp?appid=23

 REF: For more detailed information on the application developer procedures and code
modifications needed to implement BSE in RPC Broker Delphi-based applications, see the
"Implementing BSE in VistA RPC Broker-based" section in the RPC Broker Developer’s Guide.

5.6 REMOTE APPLICATION (#8994.5) File
The REMOTE APPLICATION (#8994.5) file was released with RPC Broker Patch XWB*1.1*45. This
file helps better secure remote user/visitor access to Remote VistA M Servers initiated by RPC Broker
Delphi-based GUI applications. Remote user/visitor access permits applications where users need to
access a large number of sites and do so without requiring separate Access and Verify codes at each target
remote site.

The REMOTE APPLICATION (#8994.5) file contains the fields listed in Table 10:
Table 10: Fields in the REMOTE APPLICATION (#8994.5) File

Field Name Field
Number

Description

NAME .01 (required) This is the name for the RPC Broker Delphi-based
application that requires remote user/visitor access. The name
must be from 3 to 30 characters, not numeric or starting with
punctuation.

CONTEXTOPTION .02 (required) This is the name of the context option
(i.e., client/server or "B"-type option) that the application users
need. The name must be from 3 to 45 characters. The user is
signed on as a visitor and given this context option as a
secondary menu option.

APPLICATIONCODE .03 (required) This is the hashed value for an application's Security
Phrase.

 REF: For more information on the Security Phrase, see the
"Security Phrase" section.

CALLBACKTYPE 1 (required) This is a Multiple field. It can contain multiple values
describing the mechanisms by which the Remote VistA M Server
can contact the application's Authenticating VistA M Server to
obtain the demographic information. It consists of the subfields
described below.

CALLBACKTYPE
(CALLBACKTYPE

.01 (required) This field indicates the mechanisms by which the
server should contact the Authenticating VistA M Server to

http://www.va.gov/vdl/application.asp?appid=23

RPC Broker 1.1
User Guide 34 May 2017

Field Name Field
Number

Description

Multiple) obtain information necessary to sign the current user onto the
current server. The values for this field are:
• R—RPC Broker TCP/IP connection
• M—M-to-M Broker connection
• H—HyperText Transport Protocol (HTTP) connection
• S—Station-number callback

CALLBACKPORT
(CALLBACKTYPE
Multiple)

.02 (required) This is the port number (3 – 5 characters) to be used
for the callback connection to the Authenticating VistA M Server
for the CALLBACKTYPE (#.01) specified.

CALLBACKSERVER
(CALLBACKTYPE
Multiple)

.03 (required) This is the server designation (address) to be used for
the callback to the Authenticating VistA M Server for the
CALLBACKTYPE (#.01) specified. This should be a Domain
Name Service (DNS) name-based address rather than an
Internet Protocol (IP) address, because IP addresses can
change. It should be a server name ending in MED.VA.GOV or
MED.VHA.VA.GOV. The DNS servers resolve the name, and
thus, ensure that the site is a valid VistA M Server.

URLSTRING
(CALLBACKTYPE
Multiple)

.04 (optional) This field holds the text that should follow the
SERVER ADDRESS (#.03) field for HTTP connections to obtain
the information for the Kernel Authentication Token passed in for
a REMOTE APPLICATION connection.
If the complete Uniform Resource Locator (URL) to be used for
the callback is:

http://myserver.med.va.gov/some/kind/of/location/
somePage.aspx

The CALLBACKSERVER (#.03) field could be:
myserver.med.va.gov

and the URLSTRING would be:
some/kind/of/location/somePage.aspx

This field is only used if the CALLBACKTYPE filed (#.01) value
is H for HTTP.

 REF: For more information on the REMOTE APPLICATION (#8994.5) file, see the "Files"
section in the RPC Broker Technical Manual.

5.7 Security Phrase
The Security Phrase is an RPC Broker Delphi-based application's entry into the REMOTE
APPLICATION (#8994.5) file. The Security Phrase is a general phrase that is known only to the
application that created it. When it is stored in the REMOTE APPLICATION (#8994.5) file, it must be
hashed. This one-way hashed value, which is the result of a call to the $$EN^XUSHSH(phrase) API, is
entered into the APPLICATIONCODE (#.03) field in the REMOTE APPLICATION (#8994.5) file for
the application.

This Security Phrase is combined with the Kernel Authentication Token to make up the Security Pass
Phrase, which is then stored in the SecurityPhrase property of the RPCBroker login component.

RPC Broker 1.1
User Guide 35 May 2017

 CAUTION: It is important to realize that the Security Phrase identifies only those
applications that are authorized to perform remote user/visitor access. Thus, the stored
value of the Security Phrase is a one-way hash so that other rogue applications cannot
mimic an application and access the Remote VistA M Server.

 RECOMMENDATION: Since the Security Phrase is the application's identifier, VistA
Infrastructure (VI) recommends developers identify the Security Phrase as a const value
in an include file in any RPC Broker Delphi-based program implementing BSE. A
substitute include file containing a phrase similar to the Security Phrase should then be
included with release of the source code.

5.8 Kernel Authentication Token
The Kernel Authentication Token is generated by the same code used to generate handles (i.e., a unique
text string that is used to identify a specific user for which it was generated) for other purposes used in the
RPC Broker software. Once created, the token is stored in the ^XTMP temporary global. The basic format
of the token (handle) is as follows:

XWBHDLnnn-nnnnnn_n

The "XWBHDL" indicates that it is an RPC Broker handle; where "XWB" is the RPC Broker namespace
and "HDL" indicates that it is a handle.

The following is an example of a Kernel Authentication Token:
XWBHDL977-124367_0

RPC Broker 1.1
User Guide 36 May 2017

6 Debugging and Troubleshooting
6.1 How to Debug Your Client Application
Beside the normal debugging facilities provided by Delphi, you can also invoke a debug mode, so that
you can step through your code on the client side and your RPC code on the M server side
simultaneously.

To invoke the debug mode, perform the following procedure:

1. On the client side, set the DebugMode property on the TRPCBroker component to True.

2. Switch over to the VistA M Server and set any break points in the routines being called in order
to help isolate the problem.

3. Issue the M debug command (e.g., ZDEBUG) or follow instructions in the InterSystems Caché
documentation on “Debugging with the Caché Debugger.”

4. Start the following VistA M Server process:
>D DEBUG^XWBTCPM

5. Enter a unique Listener port number (i.e., a port number not in general use).

6. Switch over to the client application and connect the client application to the VistA M Server
using the server’s IP address and the port number you entered Step 5.

7. You can now step through the code on your client and simultaneously step through the code on
the VistA M Server side for any RPCs that your client calls.

6.1.1 RPC Error Trapping
M errors on the VistA M Server that occur during RPC execution are trapped by the use of M and Kernel
error handling. In addition, the M error message is sent back to the Delphi client. Delphi raises an
exception EBrokerError and a popup box displaying the error. At this point, RPC execution terminates
and the channel is closed.

6.2 Troubleshooting Connections
6.2.1 Identifying the Listener Process on the Server
On InterSystems Caché systems, where the Broker Listener is running and the System Status
[XUSTATUS] menu option is available, the Listener process name is:

|TCP|####

Where #### is the port number being listened to. This should help quickly locate Listener processes when
troubleshooting any connection problems.

On systems with greater security or with listener processes started by Linux xinetd.d scripts, the
following commands can be helpful:

• List all xinetd.d scripts:

>!ls –al /etc/xinetd.d

• List xinetd.d scripts containing string “vis”:

>!ls –al/etc/xinetd.d | grep vis

RPC Broker 1.1
User Guide 37 May 2017

• Display script “vis_rpct”:

>!cat /etc/xinetd.d/vis_rpct

• Look for listener running on port 2020:

>!netstat –an | grep :2020

6.2.2 Identifying the Handler Process on the Server
On InterSystems Caché systems the name of a Handler process for IPv4 is:

|TCP|nnn.nnn.nnn.nnn: ####

Where nnn.nnn.nnn.nnn is the client IPv4 address and #### is the port number.

Alternatively, for IPv6:

|TCP|hhhh:hhhh::hhhh:####

Where hhhh represents the hexadecimal segments of the client IPv6 address and #### is the port number.

6.2.3 Testing Your RPC Broker Connection
To test the RPC Broker connection from your workstation to the M Server, use the RPC Broker
Diagnostic Program (RPCTEST.EXE).

 REF: For a complete description of the RPC Broker Diagnostic program, see the
“Troubleshooting” chapter in the RPC Broker Systems Management Guide.

RPC Broker 1.1
User Guide 38 May 2017

7 RPC Broker and Delphi
The following sections highlight changes made to or comments about the RPC Broker to accommodate a
particular version of Delphi.

 RECOMMENDATION: To avoid problems with the BDK, it is recommended for all Delphi
packages that you accept the default directory after compiling the Broker Development
Kit (BDK) on a workstation.

7.1 Delphi XE4, XE5, XE6, XE7, XE8, 10 Seattle (10.0), and 10
Berlin (10.1) Packages

7.1.1 Delphi Starter Edition—Not Recommended for BDK
Development

Delphi XE4, XE5, XE6, XE7, XE8, 10 Seattle (10.0), and 10 Berlin (10.1) comes in three flavors:

• Starter

• Professional

• Enterprise

 RECOMMENDATION: It is recommended that you use either the Professional or
Enterprise version of Delphi to develop applications using the RPC Broker.

This version of the BDK requires the Professional or Enterprise Edition. The Starter editions are targeted
mainly at students, and as such, leave out many features. We do not recommend using any of the Starter
editions of Delphi for RPC Broker development at this time. Delphi Starter Edition does not ship the
following:

• OpenHelp help system—Allow easy integration of 3rd party component help with Delphi’s own
internal component help.

• VCL source code unit (i.e., “dsgnintf.pas” file)—RPCBroker component has a dependency on a
VCL source code unit. Delphi Starter Editions do not ship VCL source code unit in either .PAS or
.DCU form; however, VCL Source code units are available in Delphi Professional and Enterprise
editions.

 NOTE: When installing Delphi Professional or Enterprise editions, make sure you leave
the VCL Source installation option selected.

RPC Broker 1.1
User Guide 39 May 2017

7.1.2 XWB_RXE#.bpl File
This run-time package contains the source code for the standard RPCBroker components and is found in
the following directory after compiling the Broker Development Kit (BDK) on a workstation. Shown are
the default paths for various versions of Delphi, where # represents the version number. If you have
changed any default paths, your files may be in a different location:

• C:\Users\Public\Public Documents\RAD Studio\11.0\Bpl\XWB_RXE4.bpl

• C:\Users\Public\Public Documents\RAD Studio\12.0\Bpl\XWB_RXE5.bpl

• C:\Users\Public\Public Documents\Embarcadero\Studio\14.0\Bpl\XWB_RXE6.bpl

• C:\Users\Public\Public Documents\Embarcadero\Studio\15.0\Bpl\XWB_RXE7.bpl

• C:\Users\Public\Public Documents\Embarcadero\Studio\16.0\Bpl\XWB_RXE8.bpl

• C:\Users\Public\Public Documents\Embarcadero\Studio\17.0\Bpl\XWB_RunTime.bpl

• C:\Users\Public\Public Documents\Embarcadero\Studio\18.0\Bpl\XWB_RunTime.bpl

7.1.3 XWB_DXE#.bpl File
This design-time package contains the installed components for the standard RPCBroker and is found in
the following directory after compiling the Broker Development Kit (BDK) on a workstation. Shown are
the default paths for various versions of Delphi, where # represents the version number. If you have
changed any default paths, your files may be in a different location:

• C:\Users\Public\Public Documents\RAD Studio\11.0\Bpl\XWB_DXE4.bpl

• C:\Users\Public\Public Documents\RAD Studio\12.0\Bpl\XWB_DXE5.bpl

• C:\Users\Public\Public Documents\Embarcadero\Studio\14.0\Bpl\XWB_DXE6.bpl

• C:\Users\Public\Public Documents\Embarcadero\Studio\15.0\Bpl\XWB_DXE7.bpl

• C:\Users\Public\Public Documents\Embarcadero\Studio\16.0\Bpl\XWB_DXE8.bpl

• C:\Users\Public\Public Documents\Embarcadero\Studio\17.0\Bpl\XWB_DesignTime.bpl

• C:\Users\Public\Public Documents\Embarcadero\Studio\18.0\Bpl\XWB_DesignTime.bpl

RPC Broker 1.1
User Guide 40 May 2017

8 RPC Broker Dynamic Link Library (DLL)
8.1 DLL Interface
The RPC Broker provides a Dynamic Link Library (DLL) interface, which acts like a “shell” around the
Delphi TRPCBroker component. The DLL is contained in the BAPI32.DLL file.

The DLL interface enables client applications, written in any language that supports access to Microsoft
Windows DLL functions, to take advantage of all features of the TRPCBroker component. This allows
programming environments other than Embarcadero Delphi to make use of the TRPCBroker component.
All of the communication to the server is handled by the TRPCBroker component, accessed via the DLL
interface.

The DLL interface has not been updated to support Secure Shell (SSH) or IPv4/IPv6 dual-stack
environments.

8.1.1 Exported Functions
The complete list of functions exported in the DLL is provided in the BDK Online Help
(i.e., Broker_1_1.chm) and RPC Broker Developer’s Guide. Functions are provided in the DLL for:

• Creating and destroying RPC Broker components.

• Setting and retrieving RPC Broker component properties.

• Executing RPC Broker component methods.

8.1.2 Header Files Provided
Table 11 lists the header files that provide correct declarations for DLL functions:

Table 11: Header Files that Provide Correct Declarations for DLL Functions

Language Header File

C BAPI32.H

C++ BAPI32.HPP

Visual Basic BAPI32.BAS

8.1.3 Return Values from RPCs
Results from an RPC executed on an M server are returned as a text stream. This text stream may or may
not have embedded <CR><LF> character combinations.

When you call an RPC using the TRPCBroker component for Delphi, the text stream returned from an
RPC is automatically parsed and returned in the TRPCBroker component’s Results property as follows:

Table 12: TRPCBroker Component’s Results Property

Results stream contains
<CR><LF> combinations

Location/format of results
(assumes RPC’s WORD WRAP ON field is True if RPC is Global
Array or Word-processing type)

Yes Results nodes, split based on <CR><LF> delimiter

No Results[0]

RPC Broker 1.1
User Guide 41 May 2017

When you call an RPC using the DLL interface, the return value is the unprocessed text stream, which
may or may not contain <CR><LF> combinations. It is up to you to parse out what would have been
individual Results nodes in Delphi, based on the presence of any <CR><LF> character combinations in
the text stream.

8.1.4 COTS Development and the DLL
The Broker DLL serves as the gateway to the REMOTE PROCEDURE (#8994) file for non-Delphi
client/server applications. In order to use any RPCs not written specifically by the client application
(e.g., CONSULTS FOR A PATIENT, USER SIGN-ON RPCs, or the more generic VA FileMan RPCs),
you must call the RPC Broker DLL with input parameters defined and results accepted in the formats
required by the RPC being called.

Therefore, to use the Broker DLL interface you must determine the following information for each RPC
you plan to use:

• How does the RPC expect input parameters, if any, to be passed to it?

• Will you be able to create any input arrays expected by the RPC in the same format expected by
the RPC?

• What does the results data stream returned by the RPC look like?

RPC Broker 1.1
User Guide 42 May 2017

Glossary

Table 13: Glossary of Terms and Acronyms

Term Definition

BDK Broker Development Kit.

BSE Broker Security Enhancement.

Client A single term used interchangeably to refer to the user, the workstation,
and the portion of the program that runs on the workstation. In an object-
oriented environment, a client is a member of a group that uses the
services of an unrelated group. If the client is on a local area network
(LAN), it can share resources with another computer (server).

Component An object-oriented term used to describe the building blocks of GUI
applications. A software object that contains data and code. A component
may or may not be visible. These components interact with other
components on a form to create the GUI user application interface.

DHCP Dynamic Host Configuration Protocol.

DLL Dynamic Link Library. A DLL allows executable routines to be stored
separately as files with a DLL extension. These routines are only loaded
when a program calls for them. DLLs provide several advantages:

• Help save on computer memory, since memory is only consumed
when a DLL is loaded. They also save disk space. With static
libraries, your application absorbs all the library code into your
application so the size of your application is greater. Other
applications using the same library also carry this code around.
With the DLL, you do not carry the code itself; you have a pointer
to the common library. All applications using it will then share one
image.

• Ease maintenance tasks. Because the DLL is a separate file, any
modifications made to the DLL do not affect the operation of the
calling program or any other DLL.

• Help avoid redundant routines. They provide generic functions that
can be used by a variety of programs.

GUI Graphical User Interface. A type of display format that enables users to
choose commands, initiate programs, and other options by selecting
pictorial representations (icons) via a mouse or a keyboard.

IAM Identity and Access Management.

Icon A picture or symbol that graphically represents an object or a concept.

PIN Personal Identification Number.

PKI Public Key Encryption.

Remote Procedure Call A remote procedure call (RPC) is essentially M code that can take optional
parameters to do some work and then return either a single value or an
array back to the client application.

RPC Broker 1.1
User Guide 43 May 2017

Term Definition

SAML Security Assertion Markup Language. An XML-based industry standard for
communicating identities over the Internet.

Server The computer where the data and the Business Rules reside. It makes
resources available to client workstations on the network. In VistA, it is an
entry in the OPTION (#19) file. An automated mail protocol that is
activated by sending a message to a server at another location with the
“S.server” syntax. A server’s activity is specified in the OPTION (#19) file
and can be the running of a routine or the placement of data into a file.

SSH Secure Shell.

SSO/UC Sign-On/User Context.

STS Secure Token Service.

User Access This term is used to refer to a limited level of access to a computer system
that is sufficient for using/operating software, but does not allow
programming, modification to data dictionaries, or other operations that
require programmer access. Any of VistA’s options can be locked with a
security key (e.g., XUPROGMODE, which means that invoking that option
requires programmer access).
The user’s access level determines the degree of computer use and the
types of computer programs available. The Systems Manager assigns the
user an access level.

User Interface The way the software is presented to the user, such as Graphical User
Interfaces that display option prompts, help messages, and menu choices.
A standard user interface can be achieved by using Borland’s Delphi
Graphical User Interface to display the various menu option choices,
commands, etc.

VistA Veterans Health Information Systems and Technology Architecture.

Window An object on the screen (dialogue) that presents information such as a
document or message.

XML eXtensible Markup Language.

 REF: For a list of commonly used terms and definitions, see the OIT Master Glossary VA
Intranet Website.

For a list of commonly used acronyms, see the VA Acronym Lookup Intranet Website.

RPC Broker 1.1
User Guide 44 May 2017

Index

$
$$BROKER^XWBLIB, 23
$$EN^XUSHSH API, 34
$$RTRNFMT^XWBLIB, 23

^
^XTMP Global, 35

A
About this Version of the BDK, 1
Acronyms

Intranet Website, 43
APIs

$$BROKER^XWBLIB, 23
$$EN^XUSHSH, 34
$$RTRNFMT^XWBLIB, 23

APP PROXY ALLOWED (#.11) Field, 14
Application.Run Method, 20
APPLICATIONCODE (#.03) Field, 33, 34
Architectural Scope, 25
Assumptions, xiv
Authentication

Interface to VistA
Kernel, 32

Kernel Authentication Token, 25, 26, 27, 28,
32, 34, 35
Sample, 25, 26

B
Backward Compatibility Issues, 3
BAPI32.BAS File, 40
BAPI32.DLL File, 40
BAPI32.H File, 40
BAPI32.HPP File, 40
Broker

Component, 26, 27, 31, 32, 34
Patches

XWB*1.1*45, 32
BrokerExample, 17
BROKEREXAMPLE.EXE, 17
BSE

Introduction, 24
Project Overview, 24

Scope, 25
VistA Applications/Modules, 31

Bypassing Security for Development, 17

C
C Language, 40
C++ Language, 40
Call Method, 6, 16
CALLBACKPORT (#.02) Field

CALLBACKTYPE (#1) Multiple Field, 34
CALLBACKSERVER (#.03) Field

CALLBACKTYPE (#1) Multiple Field, 25,
34

CALLBACKTYPE (#.01) Field
CALLBACKTYPE (#1) Multiple Field, 33

CALLBACKTYPE (#1) Multiple Field, 25, 33
CALLBACKPORT (#.02) Field, 34
CALLBACKSERVER (#.03) Field, 25, 34
CALLBACKTYPE (#.01) Field, 33
URLSTRING (#.04) Field, 34

Callout Boxes, xii
Calls

Discrete, 15
Silent, 15

CAPRI, 24, 31, 32
ClearParameters Property, 4
ClearResults Property, 4
Commonly Used Terms, xiii
Compatibility Issues, 3
Components

RPC Broker, 26, 27, 31, 32, 34
RPC Broker Components for Delphi, 4
TCCOWRPCBroker, 8
TRPCBroker, 4
TXWBRichEdit, 8
TXWSSOiToken, 9

Connect To, 19
Connected Property, 4
Connection

Testing Your RPC Broker Connection, 37
Contents, vii
CONTEXTOPTION (#.02) Field, 33
COTS Development and the DLL, 41
Create Your Own RPCs

Preliminary Considerations, 10
Process, 11

CreateContext Method, 6, 16, 21

RPC Broker 1.1
User Guide 45 May 2017

D
Data Dictionary

Data Dictionary Utilities Menu, xiii
Listings, xiii

DEBUG^XWBTCPM, 36
Debugging, 36

Error Trapping, 36
How to Debug Your Client Application, 36
Identifying

Handler Process on the Server, 37
Listener Process on the Server, 36

Testing Your RPC Broker Connection, 37
DebugMode Property, 36
DECRYP^XUSRB1, 22
Decrypt Method, 22
Decryption Functions, 22
Delphi, 38

Starter Edition, 38
Delphi Components

RPC Broker, 4
Demographics, 26, 27, 28, 33
Diagnostic Program, 37
Disclaimers, x

Software, x
Discrete Calls, 15
DLL

COTS Development and the DLL, 41
Exported Functions, 40
Header Files, 40
Interface, 40

Documentation
Revisions, ii
Symbols, xi

Documentation Conventions, xi
Documentation Navigation, xii
Dynamic Link Library (DLL), 40

E
EBrokerError, 36
ENCRYP^XUSRB1, 22
Encrypt Method, 22
Encryption Functions, 22
Entry in the Remote Procedure File, 14
Error Message Handling, 36
Execute an RPC from a Client Application, How

to, 15
Exported

DLL Functions, 40

F
Features, 25
Fields

APP PROXY ALLOWED (#.11), 14
APPLICATIONCODE (#.03), 33, 34
CALLBACKPORT (#.02)

CALLBACKTYPE (#1) Multiple Field, 34
CALLBACKSERVER (#.03)

CALLBACKTYPE (#1) Multiple Field, 25,
34

CALLBACKTYPE (#.01)
CALLBACKTYPE (#1) Multiple Field, 33

CALLBACKTYPE (#1) Multiple, 25, 33
CALLBACKPORT (#.02) Field, 34
CALLBACKSERVER (#.03) Field, 25, 34
CALLBACKTYPE (#.01) Field, 33
URLSTRING (#.04) Field, 34

CONTEXTOPTION (#.02), 33
NAME (#.01), 14, 33
RETURN VALUE TYPE (#.04), 14
ROUTINE (#.03), 14
TAG (#.02), 14
URLSTRING (#.04)

CALLBACKTYPE (#1) Multiple Field, 34
WORD WRAP ON (#.08), 12, 14, 23

Figures, ix
Files

BAPI32.BAS, 40
BAPI32.DLL, 40
BAPI32.H, 40
BAPI32.HPP, 40
Header Files, 40
NEW PERSON (#200), 13, 24, 25, 27, 32
OPTION (#19), 11, 16
REMOTE APPLICATION (#8994.5), 25, 26,

27, 28, 33, 34
REMOTE PROCEDURE (#8994), 10, 11, 14,

41
SECURITY KEY (#19.1), 16
XWB_DXE#.bpl, 39
XWB_RXE#.bpl, 39

First Input Parameter for RPCs (Required), 11
Functions

Decryption, 22
Encryption, 22
Exported with DLL, 40
Piece, 22
Translate, 22

RPC Broker 1.1
User Guide 46 May 2017

G
GetServerInfo Method, 5, 7, 19
Globals

^XTMP, 35
Glossary, 42

Intranet Website, 43

H
HASH, 22
Header Files, 40
Help

At Prompts, xiii
Online, xiii
Question Marks, xiii

History
Revisions, ii

Home Pages
Acronyms Intranet Website, 43
Adobe Website, xv
Glossary Intranet Website, 43
RPC Broker Website, xv
VA Software Document Library (VDL)

RPC Broker Home Page Web Address, 33
VA Software Document Library (VDL)

Website, xv
How to

Connect to an M Server, 7
Debug Your Client Application, 36
Execute an RPC from a Client Application, 15
Obtain Technical Information Online, xiii
Register an RPC, 16
Use this Manual, x

I
Identifying

Handler Process on the Server, 37
Listener Process on the Server, 36

Input Parameter Types for RPCs (Optional), 13
Intended Audience, x
Interface

DLL, 40
Introduction, 1, 24
Issues

Backward Compatibility, 3

K
Kernel, 25, 32

Authentication
Interface to VistA, 32
Token, 25, 26, 27, 28, 32, 34, 35

Sample, 25, 26
Patches

XU*8.0*404, 32

L
LAN, 42
List File Attributes Option, xiii
List PType, 13
ListenerPort Property, 5, 19
Literal PType, 13
lstCall Method, 6, 16

M
M Emulation Functions, 22
M Entry Points for RPC Examples, 14
Menus

Data Dictionary Utilities, xiii
System Status Menu, 36
XUSTATUS, 36

Message Handling, Errors, 36
Methods

Application.Run, 20
Call, 6, 16
CreateContext, 6, 16, 21
Decrypt, 22
Encrypt, 22
GetServerInfo, 5, 19
lstCall, 6, 16
SplashClose, 20
SplashOpen, 20
strCall, 6, 16
TRPCBroker Component, 4

MFUNSTR.PAS, 22
Microsoft Windows Registry, 7, 19
Mult Property, 13, 15
Multiple Server Authentication, 28

N
NAME (#.01) Field, 14, 33
NEW PERSON (#200) File, 13, 24, 25, 27, 32

RPC Broker 1.1
User Guide 47 May 2017

O
Obtaining

Data Dictionary Listings, xiii
Online

Documentation, xiii
Technical Information, How to Obtain, xiii

Online Code Samples (RPCs), 17
OPTION (#19) File, 11, 16
Options

Data Dictionary Utilities, xiii
List File Attributes, xiii
System Status Menu, 36
XUSTATUS, 36

Orientation, x
Other RPC Broker APIs, 19

P
Param Property, 5, 13, 15
Parameters

TimeOut, 20
Patches

Revisions, vi
XU*8.0*404, 32
XWB*1.1*45, 32

Piece Function, 22
Process

Diagrams, 29
Overview, 25

Product Support (PS)
Anonymous Directories, xv

Programs
BROKEREXAMPLE.EXE, 17

Properties
ClearParameters, 4
ClearResults, 4
Connected, 4
DebugMode, 36
ListenerPort, 5, 19
Mult, 13, 15
Param, 5, 13, 15
RemoteProcedure, 5, 15
Results, 5, 16
SecurityPhrase, 26, 34
Server, 5, 19
SSHPort, 5
SSHPw, 5
SSHUser, 5
SSHUseSecureConnection, 5
TRPCBroker Component, 4

Value, 15
PS

Anonymous Directories, xv
PTypes

List, 13
Literal, 13
Reference, 13

Q
Question Mark Help, xiii

R
Reference PType, 13
Registering RPCs, 16
Registry, 7, 19
Relationship between an M Entry Point and an

RPC, 10
REMOTE APPLICATION (#8994.5) File, 25,

26, 27, 28, 33, 34
Remote Data Views, 24
REMOTE PROCEDURE (#8994) File, 10, 11,

14, 41
Remote Procedure Calls (RPCs), 10
RemoteProcedure Property, 5, 15
Results Property, 5, 16
RETURN VALUE TYPE (#.04) Field, 14
Return Value Types for RPCs, 11
Return Values from RPCs, 40
Revision History, ii

Documentation, ii
Patches, vi

ROUTINE (#.03) Field, 14
RPC Broker

Components for Delphi, 4
Delphi, 38
Login Component, 26, 27, 31, 32, 34
Patches

XWB*1.1*45, 32
Website, xv

RPCs, 10
Bypassing Security, 17
Create Your Own RPCs

Preliminary Considerations, 10
Process, 11

Error Trapping, 36
Executing, 15
First Input Parameter (Required), 11
Input Parameter Types (Optional), 13

RPC Broker 1.1
User Guide 48 May 2017

M Entry Point Examples, 14
Online Code Samples, 17
Registering, 16
Relationship between an M Entry Point and

an RPC, 10
Return Value Types, 11
RPC Entry in the REMOTE PROCEDURE

File, 14
Security, 16
What is a Remote Procedure Call?, 10
Writing M Entry Points for RPCs, 11
XWB GET VARIABLE VALUE, 21

RPCTEST.EXE, 37

S
Security

Bypassing Security for Development, 17
How to Register an RPC, 16
Pass Phrase, 26, 28, 32, 34
Phrase, 33, 34

SECURITY KEY (#19.1) File, 16
Security Keys

XUPROGMODE, 17
SecurityPhrase Property, 26, 34
Server Property, 5, 19
Silent Calls, 15
Single Server Authentication, 28
Single Signon/User Context (SSO/UC), 8
Software Disclaimer, x
Splash Screen, 20
SplashClose Method, 20
SplashOpen Method, 20
SplVista.PAS Unit, 20
SSHPort Property, 5
SSHPw Property, 5
SSHUser Property, 5
SSHUseSecureConnection Property, 5
SSO/UC, 8
Starter Edition, 38
strCall Method, 6, 16
Support

Anonymous Directories, xv
Symbols

Found in the Documentation, xi
Syntax

GetServerInfo Function, 20
System Status Menu, 36

T
Table of Contents, vii
TAG (#.02) Field, 14
TCCOWRPCBroker Component, 8
Temporary Globals

^XTMP, 35
Testing Your RPC Broker Connection, 37
TimeOut Parameter, 20
Token, 25, 26, 27, 28, 32, 34, 35

Sample, 25, 26
Translate Function, 22
Trapping RPC Errors, 36
Troubleshooting, 36

Connections, 36
Error Trapping, 36
How to Debug Your Client Application, 36
Identifying

Handler Process on the Server, 37
Listener Process on the Server, 36

Testing Your RPC Broker Connection, 37
TRPCBroker Component, 4

Call Method, 6, 16
Connecting to an M Server, 7
CreateContext Method, 6, 16, 21
Key Properties, 4
lstCall Method, 6
Methods, 6
Properties and Methods, 4
strCall Method, 6

TXWBRichEdit Component, 8
TXWBSSOiToken Component, 9

U
Units

SplVista.PAS, 20
URLs

Acronyms Intranet Website, 43
Adobe Website, xv
Glossary Intranet Website, 43
RPC Broker Website, xv
VA Software Document Library (VDL)

RPC Broker Home Page Web Address, 33
VA Software Document Library (VDL)

Website, xv
URLSTRING (#.04) Field

CALLBACKTYPE (#1) Multiple Field, 34

RPC Broker 1.1
User Guide 49 May 2017

V
VA Software Document Library (VDL)

RPC Broker Home Page Web Address, 33
Website, xv

Value Property, 15
Version

About this Version of the BDK, 1
VistA M Server, 31, 32
VistA Splash Screen, 20
Visual Basic Language, 40

W
Web Pages

VA Software Document Library (VDL)
RPC Broker Home Page Web Address, 33

Websites
Acronyms Intranet Website, 43
Adobe Website, xv
Glossary Intranet Website, 43

RPC Broker, xv
VA Software Document Library (VDL)

Website, xv
What is a Remote Procedure Call?, 10
What Makes a Good Remote Procedure Call?,

15
Windows Registry, 7, 19
WORD WRAP ON (#.08) Field, 12, 14, 23
Writing M Entry Points for RPCs, 11

X
XU*8.0*404, 32
XUPROGMODE Security Key, 17
XUSTATUS Menu, 36
XWB GET VARIABLE VALUE RPC, 21
XWB_DXE#.bpl File, 39
XWB_RXE#.bpl File, 39
XWBLIB

$$BROKER^XWBLIB, 23
$$RTRNFMT^XWBLIB, 23

	Title Page
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Orientation
	1 Introduction
	1.1 About this Version of the BDK
	1.1.1 Features
	1.1.2 Backward Compatibility Issues

	2 RPC Broker Components for Delphi
	2.1 TRPCBroker Component
	2.1.1 TRPCBroker Properties and Methods
	2.1.2 TRPCBroker Key Properties
	2.1.3 TRPCBroker Key Methods
	2.1.4 How to Connect to an M Server

	2.2 TCCOWRPCBroker Component
	2.2.1 Single Signon/User Context (SSO/UC)

	2.3 TXWBRichEdit Component
	2.4 TXWBSSOiToken Component

	3 Remote Procedure Calls (RPCs)
	3.1 What is a Remote Procedure Call?
	3.1.1 Relationship between an M Entry Point and an RPC

	3.2 Create Your Own RPCs
	3.2.1 Preliminary Considerations
	3.2.2 Process

	3.3 Writing M Entry Points for RPCs
	3.3.1 First Input Parameter for RPCs (Required)
	3.3.2 Return Value Types for RPCs
	3.3.3 Input Parameter Types for RPCs (Optional)
	3.3.4 RPC M Entry Point Examples
	3.3.4.1 Sum of Two Numbers
	3.3.4.2 Sorted Array

	3.4 RPC Entry in the REMOTE PROCEDURE File
	3.5 What Makes a Good Remote Procedure Call?
	3.6 How to Execute an RPC from a Client Application
	3.7 RPC Security: How to Register an RPC
	3.7.1 Bypassing RPC Security for Development
	3.7.2 BrokerExample Online Code Example

	4 Other RPC Broker APIs
	4.1 GetServerInfo Function
	4.1.1 Overview
	4.1.2 Syntax

	4.2 VistA Splash Screen Procedures
	4.3 XWB GET VARIABLE VALUE RPC
	4.4 M Emulation Functions
	4.4.1 Translate Function

	4.5 Encryption Functions
	4.5.1 In Delphi
	4.5.2 On the VistA M Server
	4.5.2.1 Encryption
	4.5.2.2 Decryption

	4.6 $$BROKER^XWBLIB
	4.7 $$RTRNFMT^XWBLIB

	5 Broker Security Enhancement (BSE)
	5.1 Introduction
	5.1.1 Features
	5.1.2 Architectural Scope

	5.2 Process Overview
	5.2.1 Process Diagrams

	5.3 BSE-related VistA Applications and Modules
	5.4 Kernel—Authentication Interface to VistA
	5.5 RPC Broker
	5.5.1 Client
	5.5.2 Server

	5.6 REMOTE APPLICATION (#8994.5) File
	5.7 Security Phrase
	5.8 Kernel Authentication Token

	6 Debugging and Troubleshooting
	6.1 How to Debug Your Client Application
	6.1.1 RPC Error Trapping

	6.2 Troubleshooting Connections
	6.2.1 Identifying the Listener Process on the Server
	6.2.2 Identifying the Handler Process on the Server
	6.2.3 Testing Your RPC Broker Connection

	7 RPC Broker and Delphi
	7.1 Delphi XE4, XE5, XE6, XE7, XE8, 10 Seattle (10.0), and 10 Berlin (10.1) Packages
	7.1.1 Delphi Starter Edition—Not Recommended for BDK Development
	7.1.2 XWB_RXE#.bpl File
	7.1.3 XWB_DXE#.bpl File

	8 RPC Broker Dynamic Link Library (DLL)
	8.1 DLL Interface
	8.1.1 Exported Functions
	8.1.2 Header Files Provided
	8.1.3 Return Values from RPCs
	8.1.4 COTS Development and the DLL

	Glossary
	Index

