fis-gtm/sr_port/numcmp.c

165 lines
6.6 KiB
C
Raw Permalink Normal View History

/****************************************************************
* *
* Copyright 2001, 2011 Fidelity Information Services, Inc *
* *
* This source code contains the intellectual property *
* of its copyright holder(s), and is made available *
* under a license. If you do not know the terms of *
* the license, please stop and do not read further. *
* *
****************************************************************/
#include "mdef.h"
#include "promodemo.h"
#include "numcmp.h"
/* numcmp compares two mvals.
*
* entry:
* u, v - pointers to mvals
*
* exit:
* function value:
* 1, if u > v
* 0, if u == v
* -1, if u < v
*
* NOTE: Some of numcmp's callers depend on the value returned being one of (1, 0, -1),
* so it is not appropriate to return the difference of the two mval values.
*
* In order to better understand the numcmp algorithm, it would help to list a few representations of numerics (int & float).
* Note that SOME integers and decimal numbers upto 3 digits can have TWO representations.
* One is where the MV_INT bit is set. This is only if they are within a certain range.
* Another is where the MV_INT bit is not set.
* Examples of both are shown below.
* Note that the mantissa can be negative ONLY if MV_INT bit is set.
* If not, the sgn bit reflects the sign while the mantissa stays positive.
*
* MV_NM | MV_INT representation
* -------------------------------
* mvtype = 3, e = 0, sgn = 0, m = { 0, -1} => - 0.001
* mvtype = 3, e = 0, sgn = 0, m = { 0, -10} => - 0.01
* mvtype = 3, e = 0, sgn = 0, m = { 0, -100} => - 0.1
* mvtype = 3, e = 0, sgn = 0, m = { 0, -1000} => - 1
* mvtype = 3, e = 0, sgn = 0, m = { 0, -10000} => - 10
* mvtype = 3, e = 0, sgn = 0, m = { 0, -100000} => - 100
* mvtype = 3, e = 0, sgn = 0, m = { 0, -1000000} => - 1000
* mvtype = 3, e = 0, sgn = 0, m = { 0, -10000000} => - 10000
* mvtype = 3, e = 0, sgn = 0, m = { 0, -100000000} => - 100000
* mvtype = 3, e = 0, sgn = 0, m = { 0, -999999000} => - 999999
* mvtype = 3, e = 0, sgn = 0, m = { 0, -999999876} => - 999999.876
* mvtype = 3, e = 0, sgn = 0, m = { 0, 1} => + 0.001
* mvtype = 3, e = 0, sgn = 0, m = { 0, 10} => + 0.01
* mvtype = 3, e = 0, sgn = 0, m = { 0, 100} => + 0.1
* mvtype = 3, e = 0, sgn = 0, m = { 0, 1000} => + 1
* mvtype = 3, e = 0, sgn = 0, m = { 0, 10000} => + 10
* mvtype = 3, e = 0, sgn = 0, m = { 0, 100000} => + 100
* mvtype = 3, e = 0, sgn = 0, m = { 0, 1000000} => + 1000
* mvtype = 3, e = 0, sgn = 0, m = { 0, 10000000} => + 10000
* mvtype = 3, e = 0, sgn = 0, m = { 0, 100000000} => + 100000
* mvtype = 3, e = 0, sgn = 0, m = { 0, 999999000} => + 999999
* mvtype = 3, e = 0, sgn = 0, m = { 0, 999999876} => + 999999.876
*
* MV_NM only representation
* --------------------------
* mvtype = 1, e = 3, sgn = 0, m = { 0, 100000000} => 1E-60 ; set a=1.23456789123456789E-43-(1.23456789123456788E-43)
* ; above is the smallest positive non-zero numeric allowed in GT.M
* mvtype = 1, e = 19, sgn = 0, m = { 0, 100000000} => 1E-44 ; set a=1.2E-43-(1.1E-43)
* mvtype = 1, e = 20, sgn = 0, m = { 0, 100000000} => 1E-43 ; set a=1E-43
* mvtype = 1, e = 62, sgn = 0, m = { 0, 100000000} => 0.1
* mvtype = 1, e = 63, sgn = 0, m = { 0, 100000000} => 1
* mvtype = 1, e = 63, sgn = 0, m = { 0, 120000000} => 1.2
* mvtype = 1, e = 71, sgn = 0, m = { 0, 123456789} => + 123456789
* mvtype = 1, e = 71, sgn = 0, m = { 876, 123456789} => + 123456789.876
* mvtype = 1, e = 73, sgn = 0, m = { 0, 100000000} => 1E+10
* mvtype = 1, e = 83, sgn = 0, m = { 0, 100000000} => 1E+20
* mvtype = 1, e = 93, sgn = 0, m = { 0, 100000000} => 1E+30
* mvtype = 1, e =103, sgn = 0, m = { 0, 100000000} => 1E+40
* mvtype = 1, e =110, sgn = 0, m = {898765432, 991234567} => ~1E+48 ; set a=1E46*99.1234567898765432
* mvtype = 1, e =110, sgn = 0, m = {999999999, 999999999} => ~1E+48 ; set a=1E46*99.9999999999999999
* ; above is the largest positive numeric allowed n GT.M
* mvtype = 1, e = 69, sgn = 1, m = { 0, 100000000} => -1,000,000
* mvtype = 1, e = 68, sgn = 1, m = { 0, 999999000} => - 999,999
* mvtype = 1, e = 63, sgn = 1, m = { 0, 100000000} => - 1
* mvtype = 1, e = 0, sgn = 0, m = { 0, 0} => - 0
* mvtype = 1, e = 0, sgn = 0, m = { 0, 0} => + 0
* mvtype = 1, e = 63, sgn = 0, m = { 0, 100000000} => + 1
* mvtype = 1, e = 68, sgn = 0, m = { 0, 999999000} => + 999,999
* mvtype = 1, e = 69, sgn = 0, m = { 0, 100000000} => +1,000,000
*
*/
long numcmp(mval *u, mval *v)
{
mval w;
int u_sgn, v_sgn, exp_diff, m1_diff, m0_diff;
int u_m0, v_m0, u_m1, v_m1;
int u_mvtype;
MV_FORCE_NUM(u);
MV_FORCE_NUM(v);
/* If both are integer representations, just compare m[1]'s. */
u_mvtype = u->mvtype & MV_INT;
if (u_mvtype & v->mvtype)
{
u_m1 = u->m[1];
v_m1 = v->m[1];
if (u_m1 > v_m1) return 1;
else if (u_m1 == v_m1) return 0;
else /* (u_m1 < v_m1) */ return -1;
}
/* If not both integer, promote either one that might be. */
if (u_mvtype)
{
w = *u ;
promote(&w) ;
u = &w ;
} else if (v->mvtype & MV_INT)
{
w = *v ;
promote(&w) ;
v = &w ;
}
/* Compare signs. */
u_sgn = (0 == u->sgn) ? 1 : -1; /* 1 if positive, -1 if negative */
v_sgn = (0 == v->sgn) ? 1 : -1;
if (u_sgn != v_sgn)
return u_sgn;
/* Signs equal; compare exponents for magnitude and adjust sense depending on sign. */
exp_diff = u->e - v->e;
if (exp_diff)
{
if (0 > exp_diff)
return -u_sgn;
else
return u_sgn;
}
/* Signs and exponents equal; compare magnitudes. */
/* First, compare high-order 9 digits of magnitude. */
u_m1 = u->m[1];
v_m1 = v->m[1];
m1_diff = u_m1 - v_m1;
if (m1_diff)
{
if (0 > m1_diff)
return -u_sgn;
else
return u_sgn;
}
/* High-order 9 digits equal; if not zero, compare low-order 9 digits. */
if (0 == u_m1) /* zero special case */
return 0;
u_m0 = u->m[0];
v_m0 = v->m[0];
m0_diff = u_m0 - v_m0;
if (m0_diff)
{
if (0 > m0_diff)
return -u_sgn;
else
return u_sgn;
}
/* Signs, exponents, high-order magnitudes, and low-order magnitudes equal. */
return 0;
}