fis-gtm/sr_unix/gtm_text_alloc.c

594 lines
22 KiB
C
Raw Normal View History

/****************************************************************
* *
2024-07-19 11:43:27 -04:00
* Copyright 2007, 2013 Fidelity Information Services, Inc *
* *
* This source code contains the intellectual property *
* of its copyright holder(s), and is made available *
* under a license. If you do not know the terms of *
* the license, please stop and do not read further. *
* *
****************************************************************/
/* Storage manager for mmap() allocated storage used for executable code.
2024-07-19 11:43:27 -04:00
* Uses power-of-two "buddy" system as described by Knuth. Allocations up to
* size <pagesize> - SIZEOF(header) are managed by the buddy system. Larger
* sizes are only "tracked" and then released via munmap() when they are freed.
*
* The algorithms used in this module are very similar to those used in
* gtm_malloc.c with some changes and fewer of the generation options
* since this is a more special purpose type allocation mechanism.
*/
#include "mdef.h"
#include <sys/types.h>
#include <sys/mman.h>
#include <signal.h>
#include <stddef.h>
#include <errno.h>
#include "gtm_stdio.h"
#include "gtm_string.h"
#include "gtm_stdlib.h"
#include "gtm_unistd.h"
#include "eintr_wrappers.h"
#include "mdq.h"
#include "min_max.h"
#include "error.h"
#include "gtmmsg.h"
#include "caller_id.h"
#include "gtm_text_alloc.h"
#include "gtmdbglvl.h"
#include "gtmio.h"
#include "have_crit.h"
GBLREF int process_exiting; /* Process is on it's way out */
GBLREF volatile int4 fast_lock_count; /* Stop stale/epoch processing while we have our parts exposed */
GBLREF uint4 gtmDebugLevel;
2024-07-19 11:43:27 -04:00
GBLREF size_t gtm_max_storalloc; /* Max value for $ZREALSTOR or else memory error is raised */
OS_PAGE_SIZE_DECLARE
#ifdef COMP_GTA /* Only build this routine if it is going to be called */
/* This module is built in two different ways: (1) For z/OS the allocation and free routines will just call
2024-07-19 11:43:27 -04:00
* __malloc31() and free() respectively since mmap() on z/OS does not support the necessary features as of this
* writing (12/2008). (2) For all other platforms that use this module (Linux and Tru64 builds currently), the
* module will expand with the mmap code. [SE 12/2008]
*/
/* The MAXTWO is set to pagesize and MINTWO to 5 sizes below that. Our systems have page
2024-07-19 11:43:27 -04:00
* sizes of 16K, 8K, and 4K.
*/
#define MAXTWO gtm_os_page_size
#define MINTWO TwoTable[0] /* Computed by gtaSmInit() */
#define MAXINDEX 5
/* Fields to help instrument our algorithm */
2024-07-19 11:43:27 -04:00
GBLREF size_t totalRmalloc; /* Total storage allocated through malloc() */
GBLREF size_t totalRallocGta; /* Total storage currently (real) mmap alloc'd */
GBLREF size_t totalAllocGta; /* Total mmap allocated (includes allocation overhead but not free space */
GBLREF size_t totalUsedGta; /* Sum of "in-use" portions (totalAllocGta - overhead) */
static int totalAllocs; /* Total alloc requests */
static int totalFrees; /* Total free requests */
2024-07-19 11:43:27 -04:00
static size_t rAllocMax; /* Maximum value of totalRallocGta */
static int allocCnt[MAXINDEX + 2]; /* Alloc count satisfied by each queue size */
static int freeCnt[MAXINDEX + 2]; /* Free count for element in each queue size */
static int elemSplits[MAXINDEX + 2]; /* Times a given queue size block was split */
static int elemCombines[MAXINDEX + 2]; /* Times a given queue block was formed by buddies being recombined */
static int freeElemCnt[MAXINDEX + 2]; /* Current count of elements on the free queue */
static int freeElemMax[MAXINDEX + 2]; /* Maximum number of blocks on the free queue */
error_def(ERR_INVDBGLVL);
error_def(ERR_MEMORY);
error_def(ERR_MEMORYRECURSIVE);
error_def(ERR_SYSCALL);
error_def(ERR_TEXT);
error_def(ERR_TRNLOGFAIL);
#define INCR_CNTR(x) ++x
#define DECR_CNTR(x) --x
#define INCR_SUM(x, y) x += y
#define DECR_SUM(x, y) {x -= y; assert(0 <= x);}
#define SET_MAX(max, tst) max = MAX(max, tst)
#define SET_ELEM_MAX(idx) SET_MAX(freeElemMax[idx], freeElemCnt[idx])
#define CALLERID ((unsigned char *)caller_id())
#ifdef DEBUG
# define TRACE_TXTALLOC(addr,len) {if (GDL_SmTrace & gtmDebugLevel) \
FPRINTF(stderr, "TxtAlloc at 0x"lvaddr" of %ld bytes from 0x"lvaddr"\n", addr, len, CALLERID);}
# define TRACE_TXTFREE(addr,len) {if (GDL_SmTrace & gtmDebugLevel) \
FPRINTF(stderr, "TxtFree at 0x"lvaddr" of %ld bytes from 0x"lvaddr"\n", addr, len, CALLERID);}
#else
# define TRACE_TXTALLOC(addr, len)
# define TRACE_TXTFREE(addr, len)
#endif
#ifdef __MVS__
static uint4 TwoTable[MAXINDEX + 2];
/* ******* z/OS expansion ******* */
#undef malloc
#undef free
#include <rtnhdr.h>
#include "obj_file.h"
/* This function is meant as a temporary replacement for the gtm_text_alloc code that uses mmap.
2024-07-19 11:43:27 -04:00
* ABS 2008/12 - It is deficient in two regards:
* 1) It abuses textElem - the abuse stems from account needs. It was hoped that we could simply
* abuse textElem to hold the actual length of memory allocated and then use the size of textElem
* as the offset to the original start of memory address that was malloc'ed. However, the
* userStart of memory needs to be SECTION_ALIGN_BOUNDARY byte aligned.
* action: don't use textElem
* 2) SECTION_ALIGN_BOUNDARY is 16 bytes in 64bit world. Since __malloc31 is returning 8 byte
* aligned memory, we really only needed a pad of 8 bytes. But that left no real mechanism to
* return to the original start of memory. So we have a pad of 24 bytes. The first 8 bytes point
* back to the start of memory. If the next 8 bytes are 16 byte aligned that is returned to the
* caller. If not, then we store the start of memory there and return the next 8 bytes. This allows
* us to free() the correct address.
* action: remove SECTION_ALIGN_BOUNDARY as a restriction for all 64bit platforms except IA64
*/
void *gtm_text_alloc(size_t size)
{
textElem *uStor;
unsigned long *aligned, *memStart;
int hdrSize, tSize, save_errno;
hdrSize = SIZEOF(textElem);
/* Pad the memory area for SECTION_ALIGN_BOUNDARY alignment required by comp_indr() */
tSize = (int)size + hdrSize + (SECTION_ALIGN_BOUNDARY * 2);
uStor = __malloc31(tSize);
if (NULL != uStor)
{
assert(((long)uStor & (long)-8) == (long)uStor);
aligned = (unsigned long *)&uStor->userStorage.userStart;
aligned++;
/* Matching the alignment as required in comp_indr() */
aligned = (unsigned long *)ROUND_UP2((unsigned long)aligned, (unsigned long)SECTION_ALIGN_BOUNDARY);
memStart = aligned - 1;
*memStart = (unsigned long) uStor;
assert((unsigned long)uStor == *memStart);
uStor->realLen = tSize;
INCR_SUM(totalRallocGta, tSize);
INCR_SUM(totalAllocGta, tSize);
INCR_SUM(totalUsedGta, tSize);
INCR_CNTR(totalAllocs);
2024-07-19 11:43:27 -04:00
SET_MAX(rAllocMax, totalRallocGta);
TRACE_TXTALLOC(aligned, tSize);
return (void *)aligned;
}
save_errno = errno;
if (ENOMEM == save_errno)
{
assert(FALSE);
2024-07-19 11:43:27 -04:00
rts_error_csa(CSA_ARG(NULL) VARLSTCNT(5) ERR_MEMORY, 2, tSize, CALLERID, save_errno);
}
/* On non-allocate related error, give more general error and GTMASSERT */
2024-07-19 11:43:27 -04:00
gtm_putmsg_csa(CSA_ARG(NULL) VARLSTCNT(14) ERR_SYSCALL, 5, LEN_AND_LIT("gtm_text_alloc()"), CALLFROM,
save_errno, 0, ERR_TEXT, 3, LEN_AND_LIT("Storage call made from"), CALLERID);
GTMASSERT;
}
void gtm_text_free(void *addr)
{
int size;
long *storage;
textElem *uStor;
storage = (long *)addr;
storage--;
uStor = (textElem *)*storage;
size = uStor->realLen;
free(uStor);
DECR_SUM(totalRallocGta, size);
DECR_SUM(totalAllocGta, size);
DECR_SUM(totalUsedGta, size);
INCR_CNTR(totalFrees);
TRACE_TXTFREE(addr, size);
}
#else /* if not __MVS__ */
/* ******* Normal mmap() expansion ******* */
/* These routines for Unix are NOT thread or interrupt safe */
# define TEXT_ALLOC(rsize, addr) \
{ \
int save_errno; \
2024-07-19 11:43:27 -04:00
if ((0 < gtm_max_storalloc) && ((rsize + totalRmalloc + totalRallocGta) > gtm_max_storalloc)) \
{ /* Boundary check for $gtm_max_storalloc (if set) */ \
--gtaSmDepth; \
--fast_lock_count; \
rts_error_csa(CSA_ARG(NULL) VARLSTCNT(5) ERR_MEMORY, 2, rsize, CALLERID, ERR_MALLOCMAXUNIX); \
} \
addr = mmap(NULL, rsize, (PROT_READ + PROT_WRITE + PROT_EXEC), (MAP_PRIVATE + MAP_ANONYMOUS), -1, 0); \
if (MAP_FAILED == addr) \
{ \
--gtaSmDepth; \
--fast_lock_count; \
save_errno = errno; \
if (ENOMEM == save_errno) \
{ \
assert(FALSE); \
2024-07-19 11:43:27 -04:00
rts_error_csa(CSA_ARG(NULL) VARLSTCNT(5) ERR_MEMORY, 2, rsize, CALLERID, save_errno); \
} \
/* On non-allocate related error, give more general error and GTMASSERT */ \
2024-07-19 11:43:27 -04:00
gtm_putmsg_csa(CSA_ARG(NULL) VARLSTCNT(14) ERR_SYSCALL, 5, LEN_AND_LIT("mmap()"), CALLFROM, \
save_errno, 0, ERR_CALLERID, 3, LEN_AND_LIT("TEXT_ALLOC"), CALLERID); \
GTMASSERT; \
} \
}
#define TEXT_FREE(addr, rsize) \
{ \
int rc, save_errno; \
rc = munmap(addr, rsize); \
if (-1 == rc) \
{ \
--gtaSmDepth; \
--fast_lock_count; \
save_errno = errno; \
2024-07-19 11:43:27 -04:00
gtm_putmsg_csa(CSA_ARG(NULL) VARLSTCNT(14) ERR_SYSCALL, 5, LEN_AND_LIT("munmap"), CALLFROM, \
save_errno, 0, ERR_CALLERID, 3, LEN_AND_LIT("TEXT_FREE"), CALLERID); \
GTMASSERT; \
} \
}
#define STE_FP(p) p->userStorage.links.fPtr
#define STE_BP(p) p->userStorage.links.bPtr
/* Following are values used in queueIndex in a storage element. Note that both
2024-07-19 11:43:27 -04:00
* values must be less than zero for the current code to function correctly.
*/
#define QUEUE_ANCHOR -1
#define REAL_ALLOC -2
#ifdef DEBUG_SM
# define DEBUGSM(x) (PRINTF x, FFLUSH(stdout))
# else
# define DEBUGSM(x)
#endif
/* Define "routines" to enqueue and dequeue storage elements. Use define so we don't
2024-07-19 11:43:27 -04:00
* have to depend on each implementation's compiler inlining to get efficient code here.
*/
#define ENQUEUE_STOR_ELEM(idx, elem) \
{ \
textElem *qHdr, *fElem; \
qHdr = &freeStorElemQs[idx]; \
STE_FP(elem) = fElem = STE_FP(qHdr); \
STE_BP(elem) = qHdr; \
STE_FP(qHdr) = STE_BP(fElem) = elem; \
INCR_CNTR(freeElemCnt[idx]); \
SET_ELEM_MAX(idx); \
}
#define DEQUEUE_STOR_ELEM(elem) \
{ \
STE_FP(STE_BP(elem)) = STE_FP(elem); \
STE_BP(STE_FP(elem)) = STE_BP(elem); \
DECR_CNTR(freeElemCnt[elem->queueIndex]); \
}
#define GET_QUEUED_ELEMENT(sizeIndex, uStor, qHdr) \
{ \
qHdr = &freeStorElemQs[sizeIndex]; \
uStor = STE_FP(qHdr); /* First element on queue */ \
if (QUEUE_ANCHOR != uStor->queueIndex) /* Does element exist? (Does queue point to itself?) */ \
{ \
DEQUEUE_STOR_ELEM(uStor); /* It exists, dequeue it for use */ \
} else \
uStor = gtaFindStorElem(sizeIndex); \
assert(0 == ((unsigned long)uStor & (TwoTable[sizeIndex] - 1))); /* Verify alignment */ \
}
GBLREF readonly struct
{
unsigned char nullHMark[4];
unsigned char nullStr[1];
unsigned char nullTMark[4];
} NullStruct;
static uint4 TwoTable[MAXINDEX + 2];
static textElem freeStorElemQs[MAXINDEX + 1]; /* Need full element as queue anchor for dbl-linked
2024-07-19 11:43:27 -04:00
* list since ptrs not at top of element */
static volatile int4 gtaSmDepth; /* If we get nested... */
static boolean_t gtaSmInitialized; /* Initialized indicator */
/* Internal prototypes */
void gtaSmInit(void);
textElem *gtaFindStorElem(int sizeIndex);
int getSizeIndex(size_t size);
error_def(ERR_TRNLOGFAIL);
error_def(ERR_INVDBGLVL);
error_def(ERR_MEMORY);
error_def(ERR_SYSCALL);
error_def(ERR_MEMORYRECURSIVE);
error_def(ERR_CALLERID);
error_def(ERR_TEXT);
2024-07-19 11:43:27 -04:00
error_def(ERR_MALLOCMAXUNIX);
/* Initialize the storage manangement system. Things to initialize:
2024-07-19 11:43:27 -04:00
*
* - Initialize size2Index table. This table is used to convert a malloc request size
* to a storage queue index.
* - Initialize queue anchor fwd/bkwd pointers to point to queue anchors so we
* build a circular queue. This allows elements to be added and removed without
* end-of-queue special casing. The queue anchor element is easily recognized because
* it's queue index size will be set to a special value.
* - Initialize debug mode. See if gtm_debug_level environment variable is set and
* retrieve it's value if yes.
*/
void gtaSmInit(void)
{
char *ascNum;
textElem *uStor;
int i, sizeIndex, twoSize;
/* WARNING!! Since this is early initialization, the assert(s) below are not well behaved if they do
2024-07-19 11:43:27 -04:00
* indeed trip. The best that can be hoped for is they give a condition handler exhausted error on
* GTM startup. Unfortunately, more intelligent responses are somewhat elusive since no output devices
* are setup nor (potentially) most of the GTM runtime.
*/
/* Initialize the TwoTable fields for our given page size */
TwoTable[MAXINDEX + 1] = 0xFFFFFFFF;
for (sizeIndex = MAXINDEX, twoSize = gtm_os_page_size; 0 <= sizeIndex; --sizeIndex, twoSize >>= 1)
{
assert(0 < twoSize);
TwoTable[sizeIndex] = twoSize;
assert(TwoTable[sizeIndex] < TwoTable[sizeIndex + 1]);
}
/* Need to initialize the fwd/bck ptrs in the anchors to point to themselves */
for (uStor = &freeStorElemQs[0], i = 0; i <= MAXINDEX; ++i, ++uStor)
{
STE_FP(uStor) = STE_BP(uStor) = uStor;
uStor->queueIndex = QUEUE_ANCHOR;
}
gtaSmInitialized = TRUE;
}
/* Recursive routine used to obtain an element on a given size queue. If no
2024-07-19 11:43:27 -04:00
* elements of that size are available, we recursively call ourselves to get
* an element of the next larger queue which we will then split in half to
* get the one we need and place the remainder back on the free queue of its
* new smaller size. If we run out of queues, we obtain a fresh new 'hunk' of
* storage, carve it up into the largest block size we handle and process as
* before.
*/
textElem *gtaFindStorElem(int sizeIndex)
{
unsigned char *uStorAlloc;
textElem *uStor, *uStor2, *qHdr;
int hdrSize;
++sizeIndex;
if (MAXINDEX >= sizeIndex)
{ /* We have more queues to search */
GET_QUEUED_ELEMENT(sizeIndex, uStor, qHdr);
/* We have a larger than necessary element now so break it in half and put
the second half on the queue one size smaller than us */
INCR_CNTR(elemSplits[sizeIndex]);
--sizeIndex; /* Dealing now with smaller element queue */
assert(0 <= sizeIndex && MAXINDEX >= sizeIndex);
uStor2 = (textElem *)((unsigned long)uStor + TwoTable[sizeIndex]);
uStor2->state = TextFree;
uStor2->queueIndex = sizeIndex;
assert(0 == ((unsigned long)uStor2 & (TwoTable[sizeIndex] - 1))); /* Verify alignment */
ENQUEUE_STOR_ELEM(sizeIndex, uStor2); /* Place on free queue */
} else
{ /* Nothing left to search, [real] allocation must occur */
TEXT_ALLOC((size_t)MAXTWO, uStorAlloc);
uStor2 = (textElem *)uStorAlloc;
/* Make addr "MAXTWO" byte aligned */
uStor = (textElem *)(((unsigned long)(uStor2) + MAXTWO - 1) & (unsigned long) -MAXTWO);
INCR_SUM(totalRallocGta, MAXTWO);
SET_MAX(rAllocMax, totalRallocGta);
DEBUGSM(("debuggta: Allocating block at 0x%08lx\n", uStor));
uStor->state = TextFree;
sizeIndex = MAXINDEX;
}
assert(sizeIndex >= 0 && sizeIndex <= MAXINDEX);
uStor->queueIndex = sizeIndex; /* This is now a smaller block */
return uStor;
}
/* Routine to return an index into the TwoTable for a given size (round up to next power of two) */
int getSizeIndex(size_t size)
{
size_t testSize;
int sizeIndex;
testSize = MAXTWO;
sizeIndex = MAXINDEX;
/* Theory here is to hunt for first significant bit. Then if there is more to the word, bump back
2024-07-19 11:43:27 -04:00
* to previous queue size. Note that in the following loop, the sizeIndex can go negative if the
* value of size is less than MINTWO (which is queue index 0) but since we guarantee there will be a
* remainder, we will increment back to 0.
*/
while (0 == (testSize & size))
{
--sizeIndex; /* Try next smaller queue */
if (0 <= sizeIndex) /* .. if there is a queue */
testSize >>= 1;
else /* Else leave loop with last valid testSize */
break;
}
if (0 != (size & (testSize - 1))) /* Is there a remainder? */
++sizeIndex; /* .. if yes, round up a size */
return sizeIndex;
}
/* Obtain free storage of the given size */
void *gtm_text_alloc(size_t size)
{
unsigned char *retVal;
textElem *uStor, *qHdr;
size_t tSize;
int sizeIndex, hdrSize;
boolean_t reentered;
/* Note that this if is also structured for maximum fallthru. The else will
2024-07-19 11:43:27 -04:00
* be near the end of this entry point.
*/
if (gtaSmInitialized)
{
hdrSize = OFFSETOF(textElem, userStorage); /* Size of textElem header */
GTM64_ONLY(if (MAXUINT4 < (size + hdrSize)) GTMASSERT); /* Only deal with < 4GB requests */
NON_GTM64_ONLY(if ((size + hdrSize) < size) GTMASSERT); /* Check for wrap with 32 bit platforms */
assert(hdrSize < MINTWO);
fast_lock_count++;
++gtaSmDepth; /* Nesting depth of memory calls */
reentered = (1 < gtaSmDepth);
if (reentered)
{
--gtaSmDepth;
assert(FALSE);
2024-07-19 11:43:27 -04:00
rts_error_csa(CSA_ARG(NULL) VARLSTCNT(1) ERR_MEMORYRECURSIVE);
}
INCR_CNTR(totalAllocs);
if (0 != size)
{
tSize = size + hdrSize; /* Add in header size */
if (MAXTWO >= tSize)
{ /* Use our memory manager for smaller pieces */
sizeIndex = getSizeIndex(tSize); /* Get index to size we need */
assert(0 <= sizeIndex && MAXINDEX >= sizeIndex);
GET_QUEUED_ELEMENT(sizeIndex, uStor, qHdr);
tSize = TwoTable[sizeIndex];
uStor->realLen = (unsigned int)tSize;
} else
{ /* Use regular mmap to obtain the piece */
TEXT_ALLOC(tSize, uStor);
INCR_SUM(totalRallocGta, tSize);
uStor->queueIndex = REAL_ALLOC;
uStor->realLen = (unsigned int)tSize;
sizeIndex = MAXINDEX + 1;
}
INCR_SUM(totalUsedGta, tSize);
INCR_SUM(totalAllocGta, tSize);
INCR_CNTR(allocCnt[sizeIndex]);
uStor->state = TextAllocated;
retVal = &uStor->userStorage.userStart;
/* Assert we have an appropriate boundary */
assert(((long)retVal & (long)IA64_ONLY(-16)NON_IA64_ONLY(-8)) == (long)retVal);
TRACE_TXTALLOC(retVal, tSize);
} else /* size was 0 */
retVal = &NullStruct.nullStr[0];
--gtaSmDepth;
--fast_lock_count;
return retVal;
} else /* Storage mgmt has not been initialized */
{
gtaSmInit();
/* Reinvoke gtm_text_alloc now that we are initialized */
return (void *)gtm_text_alloc(size);
}
}
/* Release the free storage at the given address */
void gtm_text_free(void *addr)
{
textElem *uStor, *buddyElem;
int sizeIndex, hdrSize, saveIndex;
size_t allocSize;
if (process_exiting) /* If we are exiting, don't bother with frees. Process destruction can do it */
return;
if (!gtaSmInitialized) /* Storage must be init'd before can free anything */
GTMASSERT;
++fast_lock_count;
++gtaSmDepth; /* Recursion indicator */
if (1 < gtaSmDepth)
{
--gtaSmDepth;
assert(FALSE);
2024-07-19 11:43:27 -04:00
rts_error_csa(CSA_ARG(NULL) VARLSTCNT(1) ERR_MEMORYRECURSIVE);
}
INCR_CNTR(totalFrees);
if ((unsigned char *)addr != &NullStruct.nullStr[0])
{
hdrSize = OFFSETOF(textElem, userStorage);
uStor = (textElem *)((unsigned long)addr - hdrSize); /* Backup ptr to element header */
assert(TextAllocated == uStor->state);
allocSize = uStor->realLen;
sizeIndex = uStor->queueIndex;
DECR_SUM(totalUsedGta, uStor->realLen);
if (sizeIndex >= 0)
{ /* We can put the storage back on one of our simple queues */
assert(0 == ((unsigned long)uStor & (TwoTable[sizeIndex] - 1))); /* Verify alignment */
assert(0 <= sizeIndex && MAXINDEX >= sizeIndex);
assert(uStor->realLen == TwoTable[sizeIndex]);
uStor->state = TextFree;
INCR_CNTR(freeCnt[sizeIndex]);
DECR_SUM(totalAllocGta, TwoTable[sizeIndex]);
/* First, if there are larger queues than this one, see if it has a buddy that it can
combine with */
while (sizeIndex < MAXINDEX)
{
buddyElem = (textElem *)((unsigned long)uStor ^ TwoTable[sizeIndex]);/* Address of buddy */
assert(0 == ((unsigned long)buddyElem & (TwoTable[sizeIndex] - 1)));/* Verify alignment */
assert(TextAllocated == buddyElem->state || TextFree == buddyElem->state);
assert(0 <= buddyElem->queueIndex && buddyElem->queueIndex <= sizeIndex);
if (TextAllocated == buddyElem->state || buddyElem->queueIndex != sizeIndex)
/* All possible combines done */
break;
/* Remove buddy from its queue and make a larger element for a larger queue */
DEQUEUE_STOR_ELEM(buddyElem);
if (buddyElem < uStor) /* Pick lower address buddy for top of new bigger block */
uStor = buddyElem;
++sizeIndex;
assert(0 <= sizeIndex && MAXINDEX >= sizeIndex);
INCR_CNTR(elemCombines[sizeIndex]);
uStor->queueIndex = sizeIndex;
}
ENQUEUE_STOR_ELEM(sizeIndex, uStor);
} else
{
assert(REAL_ALLOC == sizeIndex); /* Better be a real alloc type block */
INCR_CNTR(freeCnt[MAXINDEX + 1]); /* Count free of malloc */
TEXT_FREE(uStor, allocSize);
DECR_SUM(totalRallocGta, allocSize);
DECR_SUM(totalAllocGta, allocSize);
}
TRACE_TXTFREE(addr, allocSize);
}
--gtaSmDepth;
--fast_lock_count;
}
#endif /* not __MVS__ */
/* Routine to print the end-of-process info -- either allocation statistics or malloc trace dump.
2024-07-19 11:43:27 -04:00
* Note that the use of FPRINTF here instead of util_out_print is historical. The output was at one
* time going to stdout and util_out_print goes to stderr. If necessary or desired, these could easily
* be changed to use util_out_print instead of FPRINTF
*/
void printAllocInfo(void)
{
textElem *eHdr, *uStor;
int i;
if (0 == totalAllocs)
return; /* Nothing to report -- likely a utility that doesn't use mmap */
FPRINTF(stderr, "\nMmap small storage performance:\n");
FPRINTF(stderr,
"Total allocs: %d, total frees: %d, total ralloc bytes: %ld, max ralloc bytes: %ld\n",
totalAllocs, totalFrees, totalRallocGta, rAllocMax);
FPRINTF(stderr,
"Total (currently) allocated (includes overhead): %ld, Total (currently) used (no overhead): %ld\n",
totalAllocGta, totalUsedGta);
FPRINTF(stderr, "\nQueueSize Allocs Frees Splits Combines CurCnt MaxCnt\n");
FPRINTF(stderr, " Free Free\n");
FPRINTF(stderr, "---------------------------------------------------------------------\n");
{
for (i = 0; i <= MAXINDEX + 1; ++i)
{
FPRINTF(stderr,
"%9d %9d %9d %9d %9d %9d %9d\n", TwoTable[i], allocCnt[i], freeCnt[i],
elemSplits[i], elemCombines[i], freeElemCnt[i], freeElemMax[i]);
}
}
}
#endif /* COMP_GTA */