/**************************************************************** * * * Copyright 2011 Fidelity Information Services, Inc * * * * This source code contains the intellectual property * * of its copyright holder(s), and is made available * * under a license. If you do not know the terms of * * the license, please stop and do not read further. * * * ****************************************************************/ #include "mdef.h" #include "gtm_string.h" #include /* for OFFSETOF macro used in the IS_OFFSET_AND_SIZE_MATCH macro */ #include "collseq.h" #include "subscript.h" #include "lv_tree.h" #include "gtm_stdio.h" #include "min_max.h" #include "lv_val.h" #include "numcmp.h" #include "arit.h" #include "promodemo.h" /* for "promote" & "demote" prototype */ #define LV_TREE_INIT_ALLOC 4 #define LV_TREENODE_INIT_ALLOC 16 #define LV_TREESUBSCR_INIT_ALLOC 16 /* the below assumes TREE_LEFT_HEAVY is 0, TREE_RIGHT_HEAVY is 1 and TREE_BALANCED is 2 */ LITDEF int tree_balance_invert[] = {TREE_RIGHT_HEAVY, TREE_LEFT_HEAVY, TREE_BALANCED}; LITREF mval literal_null; LITREF int4 ten_pwr[NUM_DEC_DG_1L+1]; STATICFNDCL void lvAvlTreeNodeFltConv(lvTreeNodeNum *fltNode); STATICFNDCL lvTreeNode *lvAvlTreeSingleRotation(lvTreeNode *rebalanceNode, lvTreeNode *anchorNode, int4 balanceFactor); STATICFNDCL lvTreeNode *lvAvlTreeDoubleRotation(lvTreeNode *rebalanceNode, lvTreeNode *anchorNode, int4 balanceFactor); STATICFNDCL boolean_t lvAvlTreeLookupKeyCheck(treeKeySubscr *key); STATICFNDCL int lvAvlTreeNodeHeight(lvTreeNode *node); STATICFNDCL boolean_t lvAvlTreeNodeIsWellFormed(lvTree *lvt, lvTreeNode *node); STATICFNDEF void lvAvlTreeNodeFltConv(lvTreeNodeNum *fltNode) { int int_m1, int_exp; const int4 *pwr; DEBUG_ONLY(int key_mvtype;) DEBUG_ONLY(key_mvtype = fltNode->key_mvtype;) assert(MV_INT & key_mvtype); assert(!fltNode->key_flags.key_bits.key_iconv); int_m1 = fltNode->key_m0; if (int_m1) { /* The following logic is very similar to that in promodemo.c (promote function). * That operates on mvals whereas this does not hence the duplication inspite of similar logic. */ if (0 < int_m1) fltNode->key_flags.key_bits.key_sgn = 0; else { fltNode->key_flags.key_bits.key_sgn = 1; int_m1 = -int_m1; } int_exp = 0; pwr = &ten_pwr[0]; while (int_m1 >= *pwr) { int_exp++; pwr++; assert(pwr < ARRAYTOP(ten_pwr)); } fltNode->key_m1 = int_m1 * ten_pwr[NUM_DEC_DG_1L - int_exp] ; int_exp += EXP_INT_UNDERF; fltNode->key_flags.key_bits.key_e = int_exp; } else fltNode->key_flags.key_bits.key_e = 0; /* integer 0 will have exponent 0 even after float promotion */ fltNode->key_flags.key_bits.key_iconv = TRUE; return; } /* All the below comparison macros & functions return * = 0 if equal; * < 0 if key of aSUBSCR < key of bNODE; * > 0 if key of aSUBSCR > key of bNODE * The 3 LV_AVL_TREE_*KEY_CMP macros below have very similar (yet not completely identical) code. * They are kept separate because this is frequently used code and we want to avoid if checks as much as possible. * Having separate macros for each keytype lets us reduce the # of if checks we need inside the macro. */ #define LV_AVL_TREE_INTKEY_CMP(aSUBSCR, aSUBSCR_M1, bNODE, retVAL) \ { \ int a_m1, b_mvtype, a_sgn, b_sgn, exp_diff, m1_diff, m0_diff, b_m0; \ lvTreeNodeNum *bNodeFlt; \ treeKeySubscr fltSubscr, *tmpASubscr; \ \ /* aSUBSCR is a number */ \ assert(TREE_KEY_SUBSCR_IS_CANONICAL((aSUBSCR)->mvtype)); \ assert(MVTYPE_IS_INT((aSUBSCR)->mvtype)); \ b_mvtype = (bNODE)->key_mvtype; \ assert(!TREE_KEY_SUBSCR_IS_CANONICAL(b_mvtype) \ || (MVTYPE_IS_NUMERIC(b_mvtype) && !MVTYPE_IS_NUM_APPROX(b_mvtype))); \ assert(MVTYPE_IS_NUMERIC((aSUBSCR)->mvtype) && !MVTYPE_IS_NUM_APPROX((aSUBSCR)->mvtype)); \ assert((aSUBSCR_M1) == (aSUBSCR)->m[1]); \ if (MV_INT & b_mvtype) \ { \ bNodeFlt = (lvTreeNodeNum *)(bNODE); \ (retVAL) = (aSUBSCR_M1) - bNodeFlt->key_m0; \ } else if (TREE_KEY_SUBSCR_IS_CANONICAL(b_mvtype)) \ { /* Both aSUBSCR and bNODE are numbers */ \ b_mvtype &= MV_INT; \ /* aSUBSCR is MV_INT but bNODE is not. Promote aSubscr to float representation before comparing \ * it with bNODE. Cannot touch input mval since non-lv code expects MV_INT value to be stored in \ * integer format only (and not float format). So use a temporary mval for comparison. \ */ \ fltSubscr.m[1] = (aSUBSCR_M1); \ tmpASubscr = &fltSubscr; \ promote(tmpASubscr); /* Note this modifies tmpASubscr->m[1] so no longer can use aSUBSCR_M1 below */ \ assert(tmpASubscr->e || !tmpASubscr->m[1]); \ bNodeFlt = (lvTreeNodeNum *)(bNODE); \ if (b_mvtype && !bNodeFlt->key_flags.key_bits.key_iconv) \ { \ lvAvlTreeNodeFltConv(bNodeFlt); \ assert(bNodeFlt->key_flags.key_bits.key_iconv); \ } \ a_sgn = (0 == tmpASubscr->sgn) ? 1 : -1; /* 1 if positive, -1 if negative */ \ b_sgn = (0 == bNodeFlt->key_flags.key_bits.key_sgn) ? 1 : -1; \ /* Check sign. If different we are done right there */ \ if (a_sgn != b_sgn) \ (retVAL) = a_sgn; \ else \ { /* Signs equal; compare exponents for magnitude and adjust sense depending on sign. */ \ exp_diff = tmpASubscr->e - bNodeFlt->key_flags.key_bits.key_e; \ if (exp_diff) \ (retVAL) = (exp_diff * a_sgn); \ else \ { /* Signs and exponents equal; compare magnitudes. */ \ /* First, compare high-order 9 digits of magnitude. */ \ a_m1 = tmpASubscr->m[1]; \ m1_diff = a_m1 - bNodeFlt->key_m1; \ if (m1_diff) \ (retVAL) = (m1_diff * a_sgn); \ else \ { /* High-order 9 digits equal; if not zero, compare low-order 9 digits. */ \ if (0 == a_m1) /* zero special case */ \ (retVAL) = 0; \ else \ { \ b_m0 = (b_mvtype ? 0 : bNodeFlt->key_m0); \ m0_diff = tmpASubscr->m[0] - b_m0; \ if (m0_diff) \ (retVAL) = (m0_diff * a_sgn); \ else \ { /* Signs, exponents, high-order & low-order magnitudes equal */ \ (retVAL) = 0; \ } \ } \ } \ } \ } \ } else \ (retVAL) = -1; /* aSubscr is a number, but bNODE is a string */ \ } #define LV_AVL_TREE_NUMKEY_CMP(aSUBSCR, bNODE, retVAL) \ { \ int b_mvtype, a_sgn, b_sgn, exp_diff, m1_diff, m0_diff, a_m1, b_m0; \ lvTreeNodeNum *bNodeFlt; \ \ /* aSUBSCR is a number */ \ assert(TREE_KEY_SUBSCR_IS_CANONICAL((aSUBSCR)->mvtype)); \ assert(!MVTYPE_IS_INT((aSUBSCR)->mvtype)); \ b_mvtype = (bNODE)->key_mvtype; \ assert(!TREE_KEY_SUBSCR_IS_CANONICAL(b_mvtype) \ || (MVTYPE_IS_NUMERIC(b_mvtype) && !MVTYPE_IS_NUM_APPROX(b_mvtype))); \ assert(MVTYPE_IS_NUMERIC((aSUBSCR)->mvtype) && !MVTYPE_IS_NUM_APPROX((aSUBSCR)->mvtype)); \ if (TREE_KEY_SUBSCR_IS_CANONICAL(b_mvtype)) \ { /* Both aSUBSCR and bNODE are numbers */ \ b_mvtype &= MV_INT; \ bNodeFlt = (lvTreeNodeNum *)(bNODE); \ if (b_mvtype && !bNodeFlt->key_flags.key_bits.key_iconv) \ { \ lvAvlTreeNodeFltConv(bNodeFlt); \ assert(bNodeFlt->key_flags.key_bits.key_iconv); \ } \ a_sgn = (0 == (aSUBSCR)->sgn) ? 1 : -1; /* 1 if positive, -1 if negative */ \ b_sgn = (0 == bNodeFlt->key_flags.key_bits.key_sgn) ? 1 : -1; \ /* Check sign. If different we are done right there */ \ if (a_sgn != b_sgn) \ (retVAL) = a_sgn; \ else \ { /* Signs equal; compare exponents for magnitude and adjust sense depending on sign. */ \ exp_diff = (aSUBSCR)->e - bNodeFlt->key_flags.key_bits.key_e; \ if (exp_diff) \ (retVAL) = (exp_diff * a_sgn); \ else \ { /* Signs and exponents equal; compare magnitudes. */ \ /* First, compare high-order 9 digits of magnitude. */ \ a_m1 = (aSUBSCR)->m[1]; \ m1_diff = a_m1 - bNodeFlt->key_m1; \ if (m1_diff) \ (retVAL) = (m1_diff * a_sgn); \ else \ { /* High-order 9 digits equal; if not zero, compare low-order 9 digits. */ \ if (0 == a_m1) /* zero special case */ \ (retVAL) = 0; \ else \ { \ b_m0 = (b_mvtype ? 0 : bNodeFlt->key_m0); \ m0_diff = (aSUBSCR)->m[0] - b_m0; \ if (m0_diff) \ (retVAL) = (m0_diff * a_sgn); \ else \ { /* Signs, exponents, high-order & low-order magnitudes equal */ \ (retVAL) = 0; \ } \ } \ } \ } \ } \ } else \ (retVAL) = -1; /* aSUBSCR is a number, but bNODE is a string */ \ } #define LV_AVL_TREE_STRKEY_CMP(aSUBSCR, aSUBSCR_ADDR, aSUBSCR_LEN, bNODE, retVAL) \ { \ /* aSUBSCR is a string */ \ assert(!TREE_KEY_SUBSCR_IS_CANONICAL((aSUBSCR)->mvtype)); \ assert(MVTYPE_IS_STRING((aSUBSCR)->mvtype)); \ if (TREE_KEY_SUBSCR_IS_CANONICAL((bNODE)->key_mvtype)) \ (retVAL) = 1; /* aSUBSCR is a string, but bNODE is a number */ \ else /* aSUBSCR and bNODE are both strings */ \ MEMVCMP(aSUBSCR_ADDR, aSUBSCR_LEN, (bNODE)->key_addr, (bNODE)->key_len, (retVAL)); \ } #ifdef DEBUG /* This function is currently DEBUG-only because no one is supposed to be calling it. * Callers are usually performance sensitive and should therefore use the LV_AVL_TREE_NUMKEY_CMP * or LV_AVL_TREE_STRKEY_CMP macros that this function in turn invokes. */ int lvAvlTreeKeySubscrCmp(treeKeySubscr *aSubscr, lvTreeNode *bNode) { int retVal, a_mvtype; a_mvtype = aSubscr->mvtype; if (TREE_KEY_SUBSCR_IS_CANONICAL(a_mvtype)) { if (MVTYPE_IS_INT(a_mvtype)) { LV_AVL_TREE_INTKEY_CMP(aSubscr, aSubscr->m[1], bNode, retVal); } else LV_AVL_TREE_NUMKEY_CMP(aSubscr, bNode, retVal); } else LV_AVL_TREE_STRKEY_CMP(aSubscr, aSubscr->str.addr, aSubscr->str.len, bNode, retVal); return retVal; } /* This function is currently coded not as efficiently as it needs to be because it is only invoked by dbg code. * Hence the definition inside a #ifdef DEBUG. If this change and pro code needs it, the below code needs to be revisited. */ int lvAvlTreeNodeSubscrCmp(lvTreeNode *aNode, lvTreeNode *bNode) { int a_mvtype, b_mvtype, retVal; int a_sgn, b_sgn, exp_diff, m1_diff, m0_diff, a_m1, b_m1, a_m0, b_m0; lvTreeNodeNum *aNodeFlt, *bNodeFlt; a_mvtype = aNode->key_mvtype; b_mvtype = bNode->key_mvtype; if (TREE_KEY_SUBSCR_IS_CANONICAL(a_mvtype)) { /* aSubscr is a number */ assert(!MVTYPE_IS_STRING(a_mvtype)); if (TREE_KEY_SUBSCR_IS_CANONICAL(b_mvtype)) { /* Both aNode and bNode are numbers */ assert(!MVTYPE_IS_STRING(b_mvtype)); aNodeFlt = (lvTreeNodeNum *)aNode; bNodeFlt = (lvTreeNodeNum *)bNode; a_mvtype = a_mvtype & MV_INT; if (a_mvtype & b_mvtype) { /* Both aNode & bNode are integers */ a_m1 = aNodeFlt->key_m0; b_m1 = bNodeFlt->key_m0; return (a_m1 - b_m1); } if (a_mvtype) { if (!aNodeFlt->key_flags.key_bits.key_iconv) lvAvlTreeNodeFltConv(aNodeFlt); assert(aNodeFlt->key_flags.key_bits.key_iconv); } else if (b_mvtype = (MV_INT & b_mvtype)) { if (!bNodeFlt->key_flags.key_bits.key_iconv) lvAvlTreeNodeFltConv(bNodeFlt); assert(bNodeFlt->key_flags.key_bits.key_iconv); } a_sgn = (0 == aNodeFlt->key_flags.key_bits.key_sgn) ? 1 : -1; /* 1 if positive, -1 if negative */ b_sgn = (0 == bNodeFlt->key_flags.key_bits.key_sgn) ? 1 : -1; /* Check sign. If different we are done right there */ if (a_sgn != b_sgn) return a_sgn; /* Signs equal; compare exponents for magnitude and adjust sense depending on sign. */ exp_diff = aNodeFlt->key_flags.key_bits.key_e - bNodeFlt->key_flags.key_bits.key_e; if (exp_diff) return (exp_diff * a_sgn); /* Signs and exponents equal; compare magnitudes. */ /* First, compare high-order 9 digits of magnitude. */ a_m1 = aNodeFlt->key_m1; m1_diff = a_m1 - bNodeFlt->key_m1; if (m1_diff) return (m1_diff * a_sgn); /* High-order 9 digits equal; if not zero, compare low-order 9 digits. */ if (0 == a_m1) /* zero special case */ return 0; /* If key_iconv is TRUE, key_m0 is not lower-order 9 digits but instead is MV_INT representation */ a_m0 = (a_mvtype && aNodeFlt->key_flags.key_bits.key_iconv) ? 0 : aNodeFlt->key_m0; b_m0 = (b_mvtype && bNodeFlt->key_flags.key_bits.key_iconv) ? 0 : bNodeFlt->key_m0; m0_diff = a_m0 - b_m0; if (m0_diff) return (m0_diff * a_sgn); /* Signs, exponents, high-order magnitudes, and low-order magnitudes equal. */ return 0; } /* aNode is a number, but bNode is a string */ return(-1); } /* aNode is a string */ assert(MVTYPE_IS_STRING(a_mvtype)); if (TREE_KEY_SUBSCR_IS_CANONICAL(b_mvtype)) { assert(!MVTYPE_IS_STRING(b_mvtype)); return(1); /* aNode is a string, but bNode is a number */ } /* aNode and bNode are both strings */ assert(MVTYPE_IS_STRING(b_mvtype)); MEMVCMP(aNode->key_addr, aNode->key_len, bNode->key_addr, bNode->key_len, retVal); return retVal; } #endif /* Return first in-order traversal node (also smallest collating key) in avl tree. Returns NULL if NO key in tree */ lvTreeNode *lvAvlTreeFirst(lvTree *lvt) { lvTreeNode *avl_first, *next; next = lvt->avl_root; if (NULL == next) return NULL; do { avl_first = next; next = next->avl_left; } while (NULL != next); return avl_first; } /* Return last (highest collating) key in avl tree. Returns NULL if NO key in tree */ lvTreeNode *lvAvlTreeLast(lvTree *lvt) { lvTreeNode *avl_last, *next; next = lvt->avl_root; if (NULL == next) return NULL; do { avl_last = next; next = next->avl_right; } while (NULL != next); return avl_last; } /* Returns the in-order predecessor of the input "node". * Assumes input is in the avl tree and operates within the avl tree only. */ lvTreeNode *lvAvlTreePrev(lvTreeNode *node) { lvTreeNode *prev, *tmp, *parent; assert(NULL != node); prev = node->avl_left; if (NULL != prev) { /* in-order predecessor is BELOW "node" */ tmp = prev->avl_right; while (NULL != tmp) { prev = tmp; tmp = prev->avl_right; } } else { /* in-order predecessor is an ancestor of "node" or could be "" (because "node" is the BIGGEST key in tree) */ parent = node->avl_parent; tmp = node; while (NULL != parent) { if (parent->avl_right == tmp) { prev = parent; break; } assert(parent->avl_left == tmp); tmp = parent; parent = tmp->avl_parent; } } return prev; } /* Return "node" in AVL tree IMMEDIATELY BEFORE input "key" */ lvTreeNode *lvAvlTreeKeyPrev(lvTree *lvt, treeKeySubscr *key) { lvTreeNode *node, *tmp, *prev, *parent; node = lvAvlTreeLookup(lvt, key, &parent); if (NULL != node) /* most common case */ { prev = lvAvlTreePrev(node); assert((NULL == prev) || (0 < lvAvlTreeKeySubscrCmp(key, prev))); } else { assert(NULL != parent); /* lvAvlTreeLookup should have initialized this */ if (TREE_DESCEND_LEFT == parent->descent_dir) { assert(NULL == parent->avl_left); assert(0 > lvAvlTreeKeySubscrCmp(key, parent)); prev = lvAvlTreePrev(parent); assert((NULL == prev) || (0 < lvAvlTreeKeySubscrCmp(key, prev))); } else { assert(NULL == parent->avl_right); assert(0 < lvAvlTreeKeySubscrCmp(key, parent)); DEBUG_ONLY(tmp = lvAvlTreeNext(parent);) assert((NULL == tmp) || (0 > lvAvlTreeKeySubscrCmp(key, tmp))); prev = parent; } } return prev; } /* Returns the in-order successor of the input "node". * Assumes input is in the avl tree and operates within the avl tree. */ lvTreeNode *lvAvlTreeNext(lvTreeNode *node) { lvTreeNode *next, *tmp, *parent; DEBUG_ONLY(lvTree *lvt;) assert(NULL != node); next = node->avl_right; if (NULL != next) { /* in-order successor is BELOW "node" */ tmp = next->avl_left; while (NULL != tmp) { next = tmp; tmp = next->avl_left; } } else { /* in-order successor is an ancestor of "node" or could be "" (because "node" is the BIGGEST key in tree) */ parent = node->avl_parent; tmp = node; while (NULL != parent) { if (parent->avl_left == tmp) { next = parent; break; } assert(parent->avl_right == tmp); tmp = parent; parent = tmp->avl_parent; } } assert((NULL == next) || (node == lvAvlTreePrev(next))); return next; } /* Return "node" in AVL tree IMMEDIATELY AFTER input "key" */ lvTreeNode *lvAvlTreeKeyNext(lvTree *lvt, treeKeySubscr *key) { lvTreeNode *node, *tmp, *next, *parent; node = lvAvlTreeLookup(lvt, key, &parent); if (NULL != node) /* most common case */ { next = lvAvlTreeNext(node); assert((NULL == next) || (0 > lvAvlTreeKeySubscrCmp(key, next))); } else { assert(NULL != parent); /* lvAvlTreeLookup should have initialized this */ if (TREE_DESCEND_RIGHT == parent->descent_dir) { assert(NULL == parent->avl_right); assert(0 < lvAvlTreeKeySubscrCmp(key, parent)); next = lvAvlTreeNext(parent); assert((NULL == next) || (0 > lvAvlTreeKeySubscrCmp(key, next))); } else { assert(NULL == parent->avl_left); assert(0 > lvAvlTreeKeySubscrCmp(key, parent)); DEBUG_ONLY(tmp = lvAvlTreePrev(parent);) assert((NULL == tmp) || (0 < lvAvlTreeKeySubscrCmp(key, tmp))); next = parent; } } return next; } /* Return first post-order traversal node in avl tree. Returns NULL if NO key in tree */ lvTreeNode *lvAvlTreeFirstPostOrder(lvTree *lvt) { lvTreeNode *first, *tmp; first = lvt->avl_root; if (NULL == first) return NULL; /* Look for first post-order traversal node under left subtree if any. If not look under right sub-tree. * If neither is present, then this node is it. */ do { if ((NULL != (tmp = first->avl_left)) || (NULL != (tmp = first->avl_right))) first = tmp; /* need to go further down the tree to find post-order successor */ else break; /* found leaf-level post-order successor */ } while (TRUE); return first; } /* Returns the post-order successor of the input "node". Assumes input is in the avl tree and operates within the avl tree. */ lvTreeNode *lvAvlTreeNextPostOrder(lvTreeNode *node) { lvTreeNode *next, *tmp, *parent; assert(NULL != node); parent = node->avl_parent; if (NULL == parent) /* Reached root node of the AVL tree in the post order traversal */ return NULL; /* Done with post-order traversal */ if (node == parent->avl_right) /* done with "node" and its subtree so post-order successor is "parent" */ return parent; assert(node == parent->avl_left); /* Post-order successor will be in the right subtree of "parent" */ next = parent->avl_right; if (NULL == next) return parent; /* No right subtree so "parent" it is */ /* Find post-order successor under the right subtree. Use logic similar to "lvAvlTreeFirstPostOrder" */ do { if ((NULL != (tmp = next->avl_left)) || (NULL != (tmp = next->avl_right))) next = tmp; /* need to go further down the tree to find post-order successor */ else break; /* found leaf-level post-order successor */ } while (TRUE); return next; } /* Returns the collated successor of the input "key" taking into account the currently effective null collation scheme */ lvTreeNode *lvAvlTreeKeyCollatedNext(lvTree *lvt, treeKeySubscr *key) { lvTreeNode *node; DCL_THREADGBL_ACCESS; SETUP_THREADGBL_ACCESS; if (TREF(local_collseq_stdnull)) { if (MV_IS_STRING(key) && (0 == key->str.len)) { /* want the subscript AFTER the null subscript. That is the FIRST node in the tree * unless the first one happens to also be the null subscript. In that case, we need * to hop over that and get the next node in the tree. */ node = lvAvlTreeFirst(lvt); } else { /* want the subscript AFTER a numeric or string subscript. It could end up resulting * in the null subscript in case "key" is the highest numeric subscript in the tree. * In that case, hop over the null subscript as that comes first in the collation order * even though it comes in between numbers and strings in the tree node storage order. */ node = lvAvlTreeKeyNext(lvt, key); } /* If "node" holds the NULL subscript, then hop over to the next one. */ if ((NULL != node) && MVTYPE_IS_STRING(node->key_mvtype) && (0 == node->key_len)) node = lvAvlTreeNext(node); /* Need to hop over the null subscript */ } else node = lvAvlTreeKeyNext(lvt, key); return node; } /* Returns the collated successor of the input "node" taking into account the currently effective null collation scheme */ lvTreeNode *lvAvlTreeNodeCollatedNext(lvTreeNode *node) { boolean_t get_next; lvTree *lvt; DCL_THREADGBL_ACCESS; SETUP_THREADGBL_ACCESS; if (TREF(local_collseq_stdnull)) { /* If standard null collation, then null subscript needs special handling. * * If current subscript is a null subscript, the next subscript in collation order could * very well be the first numeric (canonical) subscript in the avl tree (if one exists). * If not the next subscript would be the first non-null string subscript in the tree. * * If current subscript is NOT a null subscript, it is possible we encounter the null * subscript as the next subscript in collation order. In that case, we need to hop over * it as that collates before the current numeric subscript. */ if ((NULL != node) && MVTYPE_IS_STRING(node->key_mvtype) && (0 == node->key_len)) { lvt = LV_GET_PARENT_TREE(node); node = lvAvlTreeFirst(lvt); assert(NULL != node); } else node = lvAvlTreeNext(node); get_next = ((NULL != node) && MVTYPE_IS_STRING(node->key_mvtype) && (0 == node->key_len)); } else get_next = TRUE; if (get_next) node = lvAvlTreeNext(node); return node; } /* Function to clone an avl tree (used by the LV_TREE_CLONE macro). Uses recursion to descend the tree. */ lvTreeNode *lvAvlTreeCloneSubTree(lvTreeNode *node, lvTree *lvt, lvTreeNode *avl_parent) { lvTreeNodeVal *dupVal; lvTreeNode *cloneNode, *left, *right; lvTreeNode *leftSubTree, *rightSubTree; lvTree *lvt_child; lv_val *base_lv; assert(NULL != node); cloneNode = lvtreenode_getslot(LVT_GET_SYMVAL(lvt)); /* The following is optimized to do the initialization of just the needed structure members. For that it assumes a * particular "lvTreeNode" structure layout. The assumed layout is asserted so any changes to the layout will * automatically show an issue here and cause the below initialization to be accordingly reworked. */ assert(0 == OFFSETOF(lvTreeNode, v)); assert(OFFSETOF(lvTreeNode, v) + SIZEOF(cloneNode->v) == OFFSETOF(lvTreeNode, sbs_child)); assert(OFFSETOF(lvTreeNode, sbs_child) + SIZEOF(cloneNode->sbs_child) == OFFSETOF(lvTreeNode, tree_parent)); assert(OFFSETOF(lvTreeNode, tree_parent) + SIZEOF(cloneNode->tree_parent) == OFFSETOF(lvTreeNode, key_mvtype)); assert(OFFSETOF(lvTreeNode, key_mvtype) + SIZEOF(cloneNode->key_mvtype) == OFFSETOF(lvTreeNode, balance)); assert(OFFSETOF(lvTreeNode, balance) + SIZEOF(cloneNode->balance) == OFFSETOF(lvTreeNode, descent_dir)); assert(OFFSETOF(lvTreeNode, descent_dir) + SIZEOF(cloneNode->descent_dir) == OFFSETOF(lvTreeNode, key_len)); assert(OFFSETOF(lvTreeNode, key_len) + SIZEOF(cloneNode->key_len) == OFFSETOF(lvTreeNode, key_addr)); assert(OFFSETOF(lvTreeNode, key_mvtype) + 8 == OFFSETOF(lvTreeNode, key_addr)); GTM64_ONLY(assert(OFFSETOF(lvTreeNode, key_addr) + SIZEOF(cloneNode->key_addr) == OFFSETOF(lvTreeNode, avl_left));) NON_GTM64_ONLY( assert(OFFSETOF(lvTreeNode, key_addr) + SIZEOF(cloneNode->key_addr) == OFFSETOF(lvTreeNode, filler_8byte)); assert(OFFSETOF(lvTreeNode, filler_8byte) + SIZEOF(cloneNode->filler_8byte) == OFFSETOF(lvTreeNode, avl_left)); ) assert(OFFSETOF(lvTreeNode, avl_left) + SIZEOF(cloneNode->avl_left) == OFFSETOF(lvTreeNode, avl_right)); assert(OFFSETOF(lvTreeNode, avl_right) + SIZEOF(cloneNode->avl_right) == OFFSETOF(lvTreeNode, avl_parent)); assert(OFFSETOF(lvTreeNode, avl_parent) + SIZEOF(cloneNode->avl_parent) == SIZEOF(lvTreeNode)); cloneNode->v = node->v; /* "cloneNode->sbs_child" initialized later */ cloneNode->tree_parent = lvt; /* cloneNode->key_mvtype/balance/descent_dir/key_len all initialized in one shot. * Note: We use "qw_num *" instead of "uint8 *" below because the former works on 32-bit platforms too. */ GTM64_ONLY(assert(IS_PTR_8BYTE_ALIGNED(&cloneNode->key_mvtype));) NON_GTM64_ONLY(assert(IS_PTR_4BYTE_ALIGNED(&cloneNode->key_mvtype));) GTM64_ONLY(assert(IS_PTR_8BYTE_ALIGNED(&node->key_mvtype));) NON_GTM64_ONLY(assert(IS_PTR_4BYTE_ALIGNED(&node->key_mvtype));) *(RECAST(qw_num *)&cloneNode->key_mvtype) = *(RECAST(qw_num *)&node->key_mvtype); cloneNode->key_addr = node->key_addr; NON_GTM64_ONLY( assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNode, filler_8byte, lvTreeNodeNum, key_m1)); ((lvTreeNodeNum *)cloneNode)->key_m1 = ((lvTreeNodeNum *)node)->key_m1; ) cloneNode->avl_parent = avl_parent; lvt_child = node->sbs_child; base_lv = lvt->base_lv; if (NULL != lvt_child) { LV_TREE_CLONE(lvt_child, cloneNode, base_lv); /* initializes "cloneNode->sbs_child" */ } else cloneNode->sbs_child = NULL; left = node->avl_left; leftSubTree = (NULL != left) ? lvAvlTreeCloneSubTree(left, lvt, cloneNode) : NULL; cloneNode->avl_left = leftSubTree; right = node->avl_right; rightSubTree = (NULL != right) ? lvAvlTreeCloneSubTree(right, lvt, cloneNode) : NULL; cloneNode->avl_right = rightSubTree; return cloneNode; } #ifdef DEBUG /* Function to check integrity of lv key subscript. Currently tests the MV_CANONICAL bit is in sync with the key type */ STATICFNDEF boolean_t lvAvlTreeLookupKeyCheck(treeKeySubscr *key) { mval dummy_mval; boolean_t is_canonical; /* Ensure "key->mvtype" comes in with the MV_CANONICAL bit set if applicable */ dummy_mval = *key; is_canonical = MV_IS_CANONICAL(&dummy_mval); if (is_canonical) TREE_KEY_SUBSCR_SET_MV_CANONICAL_BIT(&dummy_mval); else TREE_KEY_SUBSCR_RESET_MV_CANONICAL_BIT(&dummy_mval); assert(TREE_KEY_SUBSCR_IS_CANONICAL(key->mvtype) == TREE_KEY_SUBSCR_IS_CANONICAL(dummy_mval.mvtype)); assert(TREE_KEY_SUBSCR_IS_CANONICAL(key->mvtype) || MV_IS_STRING(key)); assert(!TREE_KEY_SUBSCR_IS_CANONICAL(key->mvtype) || MV_IS_NUMERIC(key)); return TRUE; } boolean_t lvTreeIsWellFormed(lvTree *lvt) { lvTreeNode *avl_root, *tmpNode, *minNode, *maxNode, *sbs_parent, *avl_node, *node; treeSrchStatus *lastLookup; lvTree *tmplvt; int nm_node_cnt, sbs_depth; lv_val *base_lv; if (NULL != lvt) { /* Check lvt->ident */ assert(MV_LV_TREE == lvt->ident); /* Check lvt->sbs_parent */ sbs_parent = LVT_PARENT(lvt); assert(NULL != sbs_parent); assert(sbs_parent->sbs_child == lvt); /* Check lvt->sbs_depth */ sbs_depth = 1; while (!LV_IS_BASE_VAR(sbs_parent)) { tmplvt = LV_GET_PARENT_TREE(sbs_parent); sbs_parent = tmplvt->sbs_parent; sbs_depth++; } assert(sbs_depth == lvt->sbs_depth); /* Check lvt->base_lv */ assert((lv_val *)sbs_parent == lvt->base_lv); /* Note: lvt->avl_height is checked in lvAvlTreeNodeIsWellFormed */ /* Check lvt->avl_root */ if (NULL != (avl_root = lvt->avl_root)) { /* Check lvt->lastLookup clue fields */ lastLookup = &lvt->lastLookup; if (NULL != (tmpNode = lastLookup->lastNodeLookedUp)) { minNode = lastLookup->lastNodeMin; if (NULL != minNode) assert(0 > lvAvlTreeNodeSubscrCmp(minNode, tmpNode)); maxNode = lastLookup->lastNodeMax; if (NULL != maxNode) assert(0 < lvAvlTreeNodeSubscrCmp(maxNode, tmpNode)); } lvAvlTreeNodeIsWellFormed(lvt, avl_root); } } return TRUE; } STATICFNDEF boolean_t lvAvlTreeNodeIsWellFormed(lvTree *lvt, lvTreeNode *node) { int leftSubTreeHeight, rightSubTreeHeight; boolean_t leftWellFormed, rightWellFormed; lvTreeNode *left, *right; lvTree *sbs_child; if (NULL == node) return TRUE; assert(node->tree_parent == lvt); left = node->avl_left; assert((NULL == left) || (left->avl_parent == node)); right = node->avl_right; assert((NULL == right) || (right->avl_parent == node)); leftWellFormed = ((NULL == left) || (0 > lvAvlTreeNodeSubscrCmp(left, node))); assert(leftWellFormed); rightWellFormed = ((NULL == right) || (0 < lvAvlTreeNodeSubscrCmp(right, node))); assert(rightWellFormed); leftSubTreeHeight = lvAvlTreeNodeHeight(left); rightSubTreeHeight = lvAvlTreeNodeHeight(right); if (rightSubTreeHeight > leftSubTreeHeight) assert(node->balance == TREE_RIGHT_HEAVY); else if (rightSubTreeHeight == leftSubTreeHeight) assert(node->balance == TREE_BALANCED); else assert(node->balance == TREE_LEFT_HEAVY); if (node == node->tree_parent->avl_root) assert(node->tree_parent->avl_height == MAX(leftSubTreeHeight, rightSubTreeHeight) + 1); assert(lvAvlTreeNodeIsWellFormed(lvt, left)); assert(lvAvlTreeNodeIsWellFormed(lvt, right)); sbs_child = node->sbs_child; if (NULL != sbs_child) assert(lvTreeIsWellFormed(sbs_child)); return TRUE; } STATICFNDEF int lvAvlTreeNodeHeight(lvTreeNode *node) { int leftSubTreeHeight, rightSubTreeHeight; if (NULL != node) { leftSubTreeHeight = lvAvlTreeNodeHeight(node->avl_left); rightSubTreeHeight = lvAvlTreeNodeHeight(node->avl_right); return (MAX(leftSubTreeHeight, rightSubTreeHeight) + 1); } return 0; } void assert_tree_member_offsets(void) { STATICDEF boolean_t first_tree_create = TRUE; if (first_tree_create) { /* This is the FIRST "lvTree" that this process is creating. Do a few per-process one-time assertions first. */ assert(0 == TREE_LEFT_HEAVY); /* tree_balance_invert array definition depends on this */ assert(1 == TREE_RIGHT_HEAVY); /* tree_balance_invert array definition depends on this */ assert(2 == TREE_BALANCED); /* tree_balance_invert array definition depends on this */ assert(TREE_DESCEND_LEFT == TREE_LEFT_HEAVY); /* they are interchangeably used for performance reasons */ assert(TREE_DESCEND_RIGHT == TREE_RIGHT_HEAVY); /* they are interchangeably used for performance reasons */ /* A lot of the lv functions are passed in an (lv_val *) which could be a (lvTreeNode *) as well. * For example, in op_kill.c, if "kill a" is done, an "lv_val *" (corresponding to the base local variable "a") * is passed whereas if "kill a(1,2)" is done, a "lvTreeNode *" (corresponding to the subscripted node "a(1,2)") * is passed. From the input pointer, we need to determine in op_kill.c if it is a "lv_val *" or "lvTreeNode *". * Assuming "curr_lv" is the input pointer of type "lv_val *", to find out if it is a pointer to an lv_val or * lvTreeNode, one checks the ident of the parent. If it is MV_SYM, it means the pointer is to an lv_val (base * variable) and if not it is a lvTreeNode pointer. The code will look like the below. * * if (MV_SYM == curr_lv->ptrs.val_ent.parent.sym->ident) * { // curr_lv is a base var pointing to an "lv_val" structure * ... * } else * { // curr_lv points to a lvTreeNode structure whose parent.sym field points to a "lvTree" structure * assert(MV_LV_TREE == curr_lv->ptrs.val_ent.parent.sym->ident); * ... * } * * Note : The MV_SYM == check above has now been folded into a IS_LV_VAL_PTR macro in lv_val.h * * In order for the above check to work, one needs to ensure that that an lv_val.ptrs.val_ent.parent.sym * is at the same offset and size as a lvTreeNode.tree_parent and that a symval.ident is at the same offset and * size as a lvTree.ident. * * Similarly, in op_fndata.c we could be passed in a base lv_val * or a subscripted lv_val (i.e. lvTreeNode *) * and want to find out if this lv_val has any children. To do this we would normally need to check * if the input is an lv_val or a lvTreeNode pointer and access curr_lv->ptrs.val_ent.children or * curr_lv->sbs_child respectively. To avoid this additional if checks, we ensure that both are at the * same offset and have the same size. * * We therefore ensure that all fields below in the same line should be at same structure offset * AND have same size as each other. Note: all of this might not be necessary in current code but * might be useful in the future. Since it is easily possible for us to ensure this, we do so right now. * * lvTreeNode.tree_parent == lv_val.ptrs.val_ent.parent.sym * lvTreeNode.sbs_child == lv_val.ptrs.val_ent.children * lvTree.ident == symval.ident == lv_val.v.mvtype * lvTree.sbs_depth == symval.sbs_depth * lvTreeNode.v == lv_val.v */ /* lvTreeNode.tree_parent == lv_val.ptrs.val_ent.parent.sym */ assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNode, tree_parent, lv_val, ptrs.val_ent.parent.sym)); /* lvTreeNode.sbs_child == lv_val.ptrs.val_ent.children */ assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNode, sbs_child, lv_val, ptrs.val_ent.children)); /* lvTree.ident == symval.ident == lv_val.v.mvtype */ assert(IS_OFFSET_AND_SIZE_MATCH(lvTree, ident, symval, ident)); assert(IS_OFFSET_AND_SIZE_MATCH(lvTree, ident, lv_val, v.mvtype)); /* In order to get OFFSETOF & SIZEOF to work on v.mvtype, the mval field "mvtype" was changed from * being a 16-bit "unsigned int" type bitfield to a "unsigned short". While this should not affect the * size of the "mvtype" fields, we fear it might affect the size of the immediately following fields * "sgn" (1-bit), "e" (7-bit) and "fnpc_index" (8-bit). While all of them together occupy 16-bits, they * have an "unsigned int" as the type specifier. In order to ensure the compiler does not allocate 4-bytes * (because of the int specification) to those 3 bitfields (and actually use only 2-bytes of those) and * create a 2-byte filler space, we assert that the offset of the immediately following non-bitfield (which * is "m[2]" in Unix & "str" in VMS) in the mval is 4-bytes. If the compiler had allocated 4-bytes, then this * offset would have been 8-bytes instead and the assert will fail alerting us of the unnecessary mval size bloat. */ UNIX_ONLY(assert(4 == OFFSETOF(mval, m[0]));) VMS_ONLY(assert(4 == OFFSETOF(mval, str));) /* lvTree.sbs_depth == symval.sbs_depth */ assert(IS_OFFSET_AND_SIZE_MATCH(lvTree, sbs_depth, symval, sbs_depth)); /* lvTreeNode.v == lv_val.v */ assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNode, v, lv_val, v)); /* Assert that lvTreeNodeNum and lvTreeNodeStr structures have ALMOST the same layout. * This makes them interchangeably usable with care on the non-intersecting fields. */ assert(SIZEOF(lvTreeNodeNum) == SIZEOF(lvTreeNodeStr)); assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNodeNum, v, lvTreeNodeStr, v)); assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNodeNum, sbs_child, lvTreeNodeStr, sbs_child)); assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNodeNum, tree_parent, lvTreeNodeStr, tree_parent)); assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNodeNum, key_mvtype, lvTreeNodeStr, key_mvtype)); assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNodeNum, balance, lvTreeNodeStr, balance)); assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNodeNum, descent_dir, lvTreeNodeStr, descent_dir)); assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNodeNum, avl_left, lvTreeNodeStr, avl_left)); assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNodeNum, avl_right, lvTreeNodeStr, avl_right)); assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNodeNum, avl_parent, lvTreeNodeStr, avl_parent)); /* Assert that lvTreeNodeStr and lvTreeNode structures have EXACTLY the same layout. * This makes them interchangeably usable. */ assert(SIZEOF(lvTreeNodeStr) == SIZEOF(lvTreeNode)); assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNodeStr, v, lvTreeNode, v)); assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNodeStr, sbs_child, lvTreeNode, sbs_child)); assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNodeStr, tree_parent, lvTreeNode, tree_parent)); assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNodeStr, key_mvtype, lvTreeNode, key_mvtype)); assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNodeStr, balance, lvTreeNode, balance)); assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNodeStr, descent_dir, lvTreeNode, descent_dir)); assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNodeStr, key_len, lvTreeNode, key_len)); assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNodeStr, key_addr, lvTreeNode, key_addr)); assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNodeStr, avl_left, lvTreeNode, avl_left)); assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNodeStr, avl_right, lvTreeNode, avl_right)); assert(IS_OFFSET_AND_SIZE_MATCH(lvTreeNodeStr, avl_parent, lvTreeNode, avl_parent)); first_tree_create = FALSE; } } #endif /* In order to lookup a key in the AVL tree, there are THREE functions. One for each different keytype (integer, number, string). * lvAvlTreeLookupInt (look up an integer subscript) * lvAvlTreeLookupNum (look up a non-integer numeric subscript) * lvAvlTreeLookupStr (look up a string subscript) * The functions share a lot of code but have slightly different codepaths. Since these functions are frequently invoked, * we want to keep their cost to a minimum and having separate functions for each keytype lets us minimize the # of if checks * in them which is why we do it this way even if it means a lot of duplication. * * The lookup first attempts to use the clue (if possible) and avoid a full tree traversal. * If not easily possible, we do the full tree traversal. As part of that, we update the clue (to help with future lookups). * As this is an AVL tree, the full tree traversal will take O(log(n)) (i.e. logarithmic) time. */ lvTreeNode *lvAvlTreeLookupInt(lvTree *lvt, treeKeySubscr *key, lvTreeNode **lookupParent) { int cmp; int4 key_m1; lvTreeNode *node, *nextNode, *lastNodeMin, *lastNodeMax, *minNode, *maxNode, **nodePtr; lvTreeNode *parent, *tmpNode; treeSrchStatus *lastLookup; assert(lvAvlTreeLookupKeyCheck(key)); assert(TREE_KEY_SUBSCR_IS_CANONICAL(key->mvtype)); assert(MVTYPE_IS_INT(key->mvtype)); assert(NULL != lookupParent); TREE_DEBUG_ONLY(assert(lvTreeIsWellFormed(lvt));) key_m1 = key->m[1]; /* First see if node can be looked up easily from the lastLookup clue (without a tree traversal) */ lastLookup = &lvt->lastLookup; if (NULL != (tmpNode = lastLookup->lastNodeLookedUp)) { assert(NULL != lvt->avl_root); /* there better be an AVL tree if we have a non-zero clue */ LV_AVL_TREE_INTKEY_CMP(key, key_m1, tmpNode, cmp); if (0 == cmp) { /* Input key matches last used clue. Return right away with a match. */ node = tmpNode; /* "parent" or "parent->descent_dir" need not be set since node is non-NULL */ return node; } else if (0 < cmp) { /* Input key is GREATER than last used clue. Check RIGHT subtree of clue node to see if input key * could possibly be found there. */ if (NULL == tmpNode->avl_right) { /* No subtree to the right of the "clue" node. * If input key is LESSER than the maximum key that can be found under the "clue" node, * then we know for sure input key can not be found anywhere else in the tree. * If input key is GREATER than the maximum key then it definitely is not under "clue" * but could be somewhere else in the tree. We choose to do a fresh traversal from the top. * If input key is EQUAL to the maximum key then return right away with a match. */ maxNode = lastLookup->lastNodeMax; if (NULL != maxNode) { assert(0 < lvAvlTreeNodeSubscrCmp(maxNode, tmpNode)); LV_AVL_TREE_INTKEY_CMP(key, key_m1, maxNode, cmp); if (0 == cmp) { /* input key is EQUAL to the maximum possible key under "clue" node */ node = maxNode; /* "parent" or "parent->descent_dir" need not be set since node is non-NULL */ return node; } else if (0 > cmp) { /* input key is LESSER than the maximum possible key under "clue" node */ parent = tmpNode; parent->descent_dir = TREE_DESCEND_RIGHT; *lookupParent = parent; return NULL; } } else { /* Note: maxNode == NULL implies, max key is +INFINITY so treat this case the same way * as if input key value is LESSER than the maximum possible key under the "clue" node. */ parent = tmpNode; parent->descent_dir = TREE_DESCEND_RIGHT; *lookupParent = parent; return NULL; } } } else if (NULL == tmpNode->avl_left) { /* Input key is LESSER than last used clue AND no subtree to the left of the "clue" node. * If input key is GREATER than the minimum key that can be found under the "clue" node, * then we know for sure input key can not be found anywhere else in the tree. * If input key is LESSER than the minimum key then it definitely is not under "clue" * but could be somewhere else in the tree. We choose to do a fresh traversal from the top. * If input key is EQUAL to the minimum key then return right away with a match. */ minNode = lastLookup->lastNodeMin; if (NULL != minNode) { assert(0 > lvAvlTreeNodeSubscrCmp(minNode, tmpNode)); LV_AVL_TREE_INTKEY_CMP(key, key_m1, minNode, cmp); if (0 == cmp) { /* input key is EQUAL to the minimum possible key under "clue" node */ node = minNode; /* "parent" or "parent->descent_dir" need not be set since node is non-NULL */ return node; } else if (0 < cmp) { /* input key is GREATER than the minimum possible key under "clue" node */ parent = tmpNode; parent->descent_dir = TREE_DESCEND_LEFT; *lookupParent = parent; return NULL; } } else { /* Note: minNode == NULL implies, min key is -INFINITY so treat this case the same way * as if input key value is GREATER than the minimum possible key under the "clue" node. */ parent = tmpNode; parent->descent_dir = TREE_DESCEND_LEFT; *lookupParent = parent; return NULL; } } } /* Now that we know "clue" did not help, do a fresh traversal looking for the input key. Maintain clue at the same time */ parent = lvt->avl_root; if (NULL == parent) { *lookupParent = NULL; return NULL; } node = parent; lastNodeMin = (lvTreeNode *)NULL; /* the minimum possible key under "clue" is initially -INFINITY */ lastNodeMax = (lvTreeNode *)NULL; /* the maximum possible key under "clue" is initially +INFINITY */ if (NULL != node) { while (TRUE) { LV_AVL_TREE_INTKEY_CMP(key, key_m1, node, cmp); if (0 == cmp) { lvt->lastLookup.lastNodeLookedUp = node; break; } else if (cmp < 0) { node->descent_dir = TREE_DESCEND_LEFT; /* if we descend left, we know for sure all-subtree-keys are < node key so update the max key */ nodePtr = &lastNodeMax; nextNode = node->avl_left; } else /* (cmp > 0) */ { node->descent_dir = TREE_DESCEND_RIGHT; /* if we descend right, we know for sure all-subtree-keys are > node-key so update the min key */ nodePtr = &lastNodeMin; nextNode = node->avl_right; } parent = node; node = nextNode; if (NULL == node) { lvt->lastLookup.lastNodeLookedUp = parent; break; } *nodePtr = parent; /* the actual max-key or min-key update happens here */ } } else lvt->lastLookup.lastNodeLookedUp = NULL; *lookupParent = parent; lvt->lastLookup.lastNodeMin = lastNodeMin; /* now that clue has been set, also set max-key and min-key */ lvt->lastLookup.lastNodeMax = lastNodeMax; return node; } /* All comments for "lvAvlTreeLookupInt" function apply here as well */ lvTreeNode *lvAvlTreeLookupNum(lvTree *lvt, treeKeySubscr *key, lvTreeNode **lookupParent) { int cmp; lvTreeNode *node, *nextNode, *lastNodeMin, *lastNodeMax, *minNode, *maxNode, **nodePtr; lvTreeNode *parent, *tmpNode; treeSrchStatus *lastLookup; assert(lvAvlTreeLookupKeyCheck(key)); assert(TREE_KEY_SUBSCR_IS_CANONICAL(key->mvtype)); assert(!MVTYPE_IS_INT(key->mvtype)); assert(NULL != lookupParent); TREE_DEBUG_ONLY(assert(lvTreeIsWellFormed(lvt));) /* First see if node can be looked up easily from the lastLookup clue (without a tree traversal) */ lastLookup = &lvt->lastLookup; if (NULL != (tmpNode = lastLookup->lastNodeLookedUp)) { assert(NULL != lvt->avl_root); /* there better be an AVL tree if we have a non-zero clue */ LV_AVL_TREE_NUMKEY_CMP(key, tmpNode, cmp); if (0 == cmp) { /* Input key matches last used clue. Return right away with a match. */ node = tmpNode; /* "parent" or "parent->descent_dir" need not be set since node is non-NULL */ return node; } else if (0 < cmp) { /* Input key is GREATER than last used clue. Check RIGHT subtree of clue node to see if input key * could possibly be found there. */ if (NULL == tmpNode->avl_right) { /* No subtree to the right of the "clue" node. * If input key is LESSER than the maximum key that can be found under the "clue" node, * then we know for sure input key can not be found anywhere else in the tree. * If input key is GREATER than the maximum key then it definitely is not under "clue" * but could be somewhere else in the tree. We choose to do a fresh traversal from the top. * If input key is EQUAL to the maximum key then return right away with a match. */ maxNode = lastLookup->lastNodeMax; if (NULL != maxNode) { assert(0 < lvAvlTreeNodeSubscrCmp(maxNode, tmpNode)); LV_AVL_TREE_NUMKEY_CMP(key, maxNode, cmp); if (0 == cmp) { /* input key is EQUAL to the maximum possible key under "clue" node */ node = maxNode; /* "parent" or "parent->descent_dir" need not be set since node is non-NULL */ return node; } else if (0 > cmp) { /* input key is LESSER than the maximum possible key under "clue" node */ parent = tmpNode; parent->descent_dir = TREE_DESCEND_RIGHT; *lookupParent = parent; return NULL; } } else { /* Note: maxNode == NULL implies, max key is +INFINITY so treat this case the same way * as if input key value is LESSER than the maximum possible key under the "clue" node. */ parent = tmpNode; parent->descent_dir = TREE_DESCEND_RIGHT; *lookupParent = parent; return NULL; } } } else if (NULL == tmpNode->avl_left) { /* Input key is LESSER than last used clue AND no subtree to the left of the "clue" node. * If input key is GREATER than the minimum key that can be found under the "clue" node, * then we know for sure input key can not be found anywhere else in the tree. * If input key is LESSER than the minimum key then it definitely is not under "clue" * but could be somewhere else in the tree. We choose to do a fresh traversal from the top. * If input key is EQUAL to the minimum key then return right away with a match. */ minNode = lastLookup->lastNodeMin; if (NULL != minNode) { assert(0 > lvAvlTreeNodeSubscrCmp(minNode, tmpNode)); LV_AVL_TREE_NUMKEY_CMP(key, minNode, cmp); if (0 == cmp) { /* input key is EQUAL to the minimum possible key under "clue" node */ node = minNode; /* "parent" or "parent->descent_dir" need not be set since node is non-NULL */ return node; } else if (0 < cmp) { /* input key is GREATER than the minimum possible key under "clue" node */ parent = tmpNode; parent->descent_dir = TREE_DESCEND_LEFT; *lookupParent = parent; return NULL; } } else { /* Note: minNode == NULL implies, min key is -INFINITY so treat this case the same way * as if input key value is GREATER than the minimum possible key under the "clue" node. */ parent = tmpNode; parent->descent_dir = TREE_DESCEND_LEFT; *lookupParent = parent; return NULL; } } } /* Now that we know "clue" did not help, do a fresh traversal looking for the input key. Maintain clue at the same time */ parent = lvt->avl_root; if (NULL == parent) { *lookupParent = NULL; return NULL; } node = parent; lastNodeMin = (lvTreeNode *)NULL; /* the minimum possible key under "clue" is initially -INFINITY */ lastNodeMax = (lvTreeNode *)NULL; /* the maximum possible key under "clue" is initially +INFINITY */ if (NULL != node) { while (TRUE) { LV_AVL_TREE_NUMKEY_CMP(key, node, cmp); if (0 == cmp) { lvt->lastLookup.lastNodeLookedUp = node; break; } else if (cmp < 0) { node->descent_dir = TREE_DESCEND_LEFT; /* if we descend left, we know for sure all-subtree-keys are < node key so update the max key */ nodePtr = &lastNodeMax; nextNode = node->avl_left; } else /* (cmp > 0) */ { node->descent_dir = TREE_DESCEND_RIGHT; /* if we descend right, we know for sure all-subtree-keys are > node-key so update the min key */ nodePtr = &lastNodeMin; nextNode = node->avl_right; } parent = node; node = nextNode; if (NULL == node) { lvt->lastLookup.lastNodeLookedUp = parent; break; } *nodePtr = parent; /* the actual max-key or min-key update happens here */ } } else lvt->lastLookup.lastNodeLookedUp = NULL; *lookupParent = parent; lvt->lastLookup.lastNodeMin = lastNodeMin; /* now that clue has been set, also set max-key and min-key */ lvt->lastLookup.lastNodeMax = lastNodeMax; return node; } /* All comments for "lvAvlTreeLookupInt" function apply here as well */ lvTreeNode *lvAvlTreeLookupStr(lvTree *lvt, treeKeySubscr *key, lvTreeNode **lookupParent) { int cmp, key_len; char *key_addr; lvTreeNode *node, *nextNode, *lastNodeMin, *lastNodeMax, *minNode, *maxNode, **nodePtr; lvTreeNode *parent, *tmpNode; treeSrchStatus *lastLookup; assert(lvAvlTreeLookupKeyCheck(key)); assert(!TREE_KEY_SUBSCR_IS_CANONICAL(key->mvtype)); assert(MVTYPE_IS_STRING(key->mvtype)); assert(NULL != lookupParent); TREE_DEBUG_ONLY(assert(lvTreeIsWellFormed(lvt));) key_addr = key->str.addr; key_len = key->str.len; /* First see if node can be looked up easily from the lastLookup clue (without a tree traversal) */ lastLookup = &lvt->lastLookup; if (NULL != (tmpNode = lastLookup->lastNodeLookedUp)) { assert(NULL != lvt->avl_root); /* there better be an AVL tree if we have a non-zero clue */ LV_AVL_TREE_STRKEY_CMP(key, key_addr, key_len, tmpNode, cmp); if (0 == cmp) { /* Input key matches last used clue. Return right away with a match. */ node = tmpNode; /* "parent" or "parent->descent_dir" need not be set since node is non-NULL */ return node; } else if (0 < cmp) { /* Input key is GREATER than last used clue. Check RIGHT subtree of clue node to see if input key * could possibly be found there. */ if (NULL == tmpNode->avl_right) { /* No subtree to the right of the "clue" node. * If input key is LESSER than the maximum key that can be found under the "clue" node, * then we know for sure input key can not be found anywhere else in the tree. * If input key is GREATER than the maximum key then it definitely is not under "clue" * but could be somewhere else in the tree. We choose to do a fresh traversal from the top. * If input key is EQUAL to the maximum key then return right away with a match. */ maxNode = lastLookup->lastNodeMax; if (NULL != maxNode) { assert(0 < lvAvlTreeNodeSubscrCmp(maxNode, tmpNode)); LV_AVL_TREE_STRKEY_CMP(key, key_addr, key_len, maxNode, cmp); if (0 == cmp) { /* input key is EQUAL to the maximum possible key under "clue" node */ node = maxNode; /* "parent" or "parent->descent_dir" need not be set since node is non-NULL */ return node; } else if (0 > cmp) { /* input key is LESSER than the maximum possible key under "clue" node */ parent = tmpNode; parent->descent_dir = TREE_DESCEND_RIGHT; *lookupParent = parent; return NULL; } } else { /* Note: maxNode == NULL implies, max key is +INFINITY so treat this case the same way * as if input key value is LESSER than the maximum possible key under the "clue" node. */ parent = tmpNode; parent->descent_dir = TREE_DESCEND_RIGHT; *lookupParent = parent; return NULL; } } } else if (NULL == tmpNode->avl_left) { /* Input key is LESSER than last used clue AND no subtree to the left of the "clue" node. * If input key is GREATER than the minimum key that can be found under the "clue" node, * then we know for sure input key can not be found anywhere else in the tree. * If input key is LESSER than the minimum key then it definitely is not under "clue" * but could be somewhere else in the tree. We choose to do a fresh traversal from the top. * If input key is EQUAL to the minimum key then return right away with a match. */ minNode = lastLookup->lastNodeMin; if (NULL != minNode) { assert(0 > lvAvlTreeNodeSubscrCmp(minNode, tmpNode)); LV_AVL_TREE_STRKEY_CMP(key, key_addr, key_len, minNode, cmp); if (0 == cmp) { /* input key is EQUAL to the minimum possible key under "clue" node */ node = minNode; /* "parent" or "parent->descent_dir" need not be set since node is non-NULL */ return node; } else if (0 < cmp) { /* input key is GREATER than the minimum possible key under "clue" node */ parent = tmpNode; parent->descent_dir = TREE_DESCEND_LEFT; *lookupParent = parent; return NULL; } } else { /* Note: minNode == NULL implies, min key is -INFINITY so treat this case the same way * as if input key value is GREATER than the minimum possible key under the "clue" node. */ parent = tmpNode; parent->descent_dir = TREE_DESCEND_LEFT; *lookupParent = parent; return NULL; } } } /* Now that we know "clue" did not help, do a fresh traversal looking for the input key. Maintain clue at the same time */ parent = lvt->avl_root; if (NULL == parent) { *lookupParent = NULL; return NULL; } node = parent; lastNodeMin = (lvTreeNode *)NULL; /* the minimum possible key under "clue" is initially -INFINITY */ lastNodeMax = (lvTreeNode *)NULL; /* the maximum possible key under "clue" is initially +INFINITY */ if (NULL != node) { while (TRUE) { LV_AVL_TREE_STRKEY_CMP(key, key_addr, key_len, node, cmp); if (0 == cmp) { lvt->lastLookup.lastNodeLookedUp = node; break; } else if (cmp < 0) { node->descent_dir = TREE_DESCEND_LEFT; /* if we descend left, we know for sure all-subtree-keys are < node key so update the max key */ nodePtr = &lastNodeMax; nextNode = node->avl_left; } else /* (cmp > 0) */ { node->descent_dir = TREE_DESCEND_RIGHT; /* if we descend right, we know for sure all-subtree-keys are > node-key so update the min key */ nodePtr = &lastNodeMin; nextNode = node->avl_right; } parent = node; node = nextNode; if (NULL == node) { lvt->lastLookup.lastNodeLookedUp = parent; break; } *nodePtr = parent; /* the actual max-key or min-key update happens here */ } } else lvt->lastLookup.lastNodeLookedUp = NULL; *lookupParent = parent; lvt->lastLookup.lastNodeMin = lastNodeMin; /* now that clue has been set, also set max-key and min-key */ lvt->lastLookup.lastNodeMax = lastNodeMax; return node; } /* Function to lookup an input key in the AVL tree. This function works for any input key type. * Returns if a given key is found or not. "lookupParent" will be updated ONLY IF "node" is NOT found in tree. * Note: It is preferable for performance-sensitive callers to call the lvAvlTreeLookupInt/lvAvlTreeLookupNum/lvAvlTreeLookupStr * functions directly (assuming the caller already knows the key type) instead of going through here thereby avoiding an if check. */ lvTreeNode *lvAvlTreeLookup(lvTree *lvt, treeKeySubscr *key, lvTreeNode **lookupParent) { int key_mvtype; assert(lvAvlTreeLookupKeyCheck(key)); key_mvtype = key->mvtype; if (TREE_KEY_SUBSCR_IS_CANONICAL(key_mvtype)) { if (MVTYPE_IS_INT(key_mvtype)) return lvAvlTreeLookupInt(lvt, key, lookupParent); else return lvAvlTreeLookupNum(lvt, key, lookupParent); } else return lvAvlTreeLookupStr(lvt, key, lookupParent); } /* The below two functions (lvAvlTreeSingleRotation & lvAvlTreeDoubleRotation) do height balancing of AVL tree by tree rotation. * They are used by the "lvAvlTreeNodeInsert" and "lvAvlTreeNodeDelete" functions. * A node insertion or deletion can cause the AVL tree height balance to be disturbed by taking it to one of 4 states. * a) Left Left * b) Right Right * c) Left Right * d) Right Left * Cases (a) and (b) can be taken into a "Balanced" state by just ONE rotation (implemented by lvAvlTreeSingleRotation). * Cases (c) and (d) need TWO rotations to take them to a "Balanced" state as shown below (implemented by lvAvlTreeDoubleRotation). * * In the below illustration (courtesy of http://en.wikipedia.org/wiki/AVL_tree) key points to note are * -> 3,4,5 are nodes with those key values. * -> A,B,C,D are arbitrary subtrees (not necessarily nodes). * -> The double-width link (\\ or //) in each tree is where the rotation happens * (the child in that link becomes the parent) to take it to the next state. * * Left Right case Left Left case Balanced case * ---------------- ----------------- -------------- * * ------- ------- ------------- * | 5 | | 5 | | 4 | * ------- ------- ------------- * / \ // \ / \ * / \ // \ / \ * ------- ------- ------- ------- ------- ------- * | 3 | | D | | 4 | | D | | 3 | | 5 | * ------- ------- ------- ------- ------- ------- * / \\ ----> / \ ----> / \ / \ * / \\ / \ / \ / \ * ------- ------- ------- ------- ------- ------- ------- ------- * | A | | 4 | | 3 | | C | | A | | B | | C | | D | * ------- ------- ------- ------- ------- ------- ------- ------- * / \ / \ * / \ / \ * ------- ------- ------- ------- * | B | | C | | A | | B | * ------- ------- ------- ------- * * Right Left case Right Right case Balanced case * ---------------- ----------------- -------------- * * ------- ------- ------------- * | 3 | | 3 | | 4 | * ------- ------- ------------- * / \ / \\ / \ * / \ / \\ / \ * ------- ------- ------- ------- ------- ------- * | A | | 5 | | A | | 4 | | 3 | | 5 | * ------- ------- ------- ------- ------- ------- * // \ ----> / \ ----> / \ / \ * // \ / \ / \ / \ * ------- ------- ------- ------- ------- ------- ------- ------- * | 4 | | D | | B | | 5 | | A | | B | | C | | D | * ------- ------- ------- ------- ------- ------- ------- ------- * / \ / \ * / \ / \ * ------- ------- ------- ------- * | B | | C | | C | | D | * ------- ------- ------- ------- * */ STATICFNDEF lvTreeNode *lvAvlTreeSingleRotation(lvTreeNode *rebalanceNode, lvTreeNode *anchorNode, int4 balanceFactor) { lvTreeNode *newRoot, *node; TREE_DEBUG1("DOING SINGLE ROTATION\n"); assert((TREE_LEFT_HEAVY == balanceFactor) || (TREE_RIGHT_HEAVY == balanceFactor)); if (TREE_LEFT_HEAVY == balanceFactor) { /* Left-Left path rotate. In above illustration, 5 is rebalanceNode, 4 is anchorNode */ assert(rebalanceNode->avl_left == anchorNode); node = anchorNode->avl_right; rebalanceNode->avl_left = node; anchorNode->avl_right = rebalanceNode; } else { /* Right-Right path rotate. In above illustration, 3 is rebalanceNode, 4 is anchorNode */ assert(rebalanceNode->avl_right == anchorNode); node = anchorNode->avl_left; rebalanceNode->avl_right = node; anchorNode->avl_left = rebalanceNode; } if (node) node->avl_parent = rebalanceNode; rebalanceNode->avl_parent = anchorNode; if (TREE_IS_NOT_BALANCED(anchorNode->balance)) { rebalanceNode->balance = TREE_BALANCED; anchorNode->balance = TREE_BALANCED; } else anchorNode->balance = TREE_INVERT_BALANCE_FACTOR(balanceFactor); newRoot = anchorNode; return newRoot; } /* Comments before "lvAvlTreeSingleRotation" function definition describe what this function does */ STATICFNDEF lvTreeNode *lvAvlTreeDoubleRotation(lvTreeNode *rebalanceNode, lvTreeNode *anchorNode, int4 balanceFactor) { lvTreeNode *newRoot, *node, *rebalanceChild, *anchorChild; int balance; TREE_DEBUG1("DOING DOUBLE ROTATION\n"); assert((TREE_LEFT_HEAVY == balanceFactor) || (TREE_RIGHT_HEAVY == balanceFactor)); if (TREE_LEFT_HEAVY == balanceFactor) { /* Left-Right path rotate. In above illustration, 5 is rebalanceNode, 3 is anchorNode */ assert(rebalanceNode->avl_left == anchorNode); newRoot = anchorNode->avl_right; rebalanceChild = newRoot->avl_right; rebalanceNode->avl_left = rebalanceChild; anchorChild = newRoot->avl_left; anchorNode->avl_right = anchorChild; newRoot->avl_left = anchorNode; newRoot->avl_right = rebalanceNode; } else { /* Right-Left path rotate. In above illustration, 3 is rebalanceNode, 5 is anchorNode */ assert(rebalanceNode->avl_right == anchorNode); newRoot = anchorNode->avl_left; rebalanceChild = newRoot->avl_left; rebalanceNode->avl_right = rebalanceChild; anchorChild = newRoot->avl_right; anchorNode->avl_left = anchorChild; newRoot->avl_left = rebalanceNode; newRoot->avl_right = anchorNode; } if (NULL != rebalanceChild) rebalanceChild->avl_parent = rebalanceNode; if (NULL != anchorChild) anchorChild->avl_parent = anchorNode; anchorNode->avl_parent = newRoot; rebalanceNode->avl_parent = newRoot; balance = newRoot->balance; if (balance == balanceFactor) { rebalanceNode->balance = TREE_INVERT_BALANCE_FACTOR(balanceFactor); anchorNode->balance = TREE_BALANCED; } else if (TREE_IS_BALANCED(balance)) { rebalanceNode->balance = TREE_BALANCED; anchorNode->balance = TREE_BALANCED; } else { /* balance & balanceFactor are opposites */ rebalanceNode->balance = TREE_BALANCED; anchorNode->balance = balanceFactor; } newRoot->balance = TREE_BALANCED; return(newRoot); } /* Function to INSERT a node into the AVL tree. * * At a high level, insertion proceeds by doing a key lookup first and inserting the key wherever the lookup ends. * After inserting a node, it is necessary to check each of the node's ancestors for consistency with the rules of AVL. * For each node checked, if the height difference between the left and right subtrees is atmost 1 then no rotations are necessary. * If not, then the subtree rooted at this node is unbalanced. It is possible more than one node in the ancestor path is * unbalanced due to the insertion but at most ONE tree rotation is needed (at the last unbalanced node down the tree path) * to restore the entire tree to the rules of AVL. * * Key points to note for AVL tree insertion are (courtesy of http://neil.brown.name/blog/20041124101820) * * When we step down from a node to the longest subtree, that node's tree will not get any larger. If the subtree * we descend into grows, a rotation will be needed, but this will result in this tree being the same height as it * was before. The only difference at this level is that it will be balanced whereas it wasn't before. This means * that when we step down a longer path, we can forget about all the nodes above the one we step down from. They * cannot be affected as neither of their subtrees will grow. This observation tells us where the rotation has to happen. * * We only need to rotate if as part of the lookup/insert, we step down to a longer subtree, and then all * subsequent nodes are balanced, without longer or shorter subtrees. The actual rotation that happens * (if needed) will depend on what happens immediately after stepping down to a longer subtree. If the * next step is in the same direction as the step into the larger subtree, then a SINGLE rotation will be * needed. If the next step is in the other direction, then a DOUBLE rotation will be needed. * * The important data that we need is that part of the path from the last unbalanced node to the insertion * point. All nodes in this list other than the first will be balanced, including the newly inserted * node. All of these nodes will either take part in a rotation, or will need to have their balance value * changed (though the new node won't need it's balance changed, it could take part in a rotation though). * * This path may not actually start with an unbalanced node. If every node in the path from the root is * balanced, then that whole path needs to be recorded, and every node will have it's balance changed. * * Time for insert = O(log n) for lookup + O(1) for at most one single or double rotation = O(log n) */ lvTreeNode *lvAvlTreeNodeInsert(lvTree *lvt, treeKeySubscr *key, lvTreeNode *parent) { lvTreeNode *node, *t_root, *tmp_parent, *anchorNode, *tmpNode, **nodePtr; lvTreeNode *rebalanceNode, *rebalanceNodeParent; lvTreeNodeNum *fltNode; int balanceFactor, curBalance, cmp, key_mvtype; treeSrchStatus *lastLookup; DEBUG_ONLY(lvTreeNode *dbg_node); assert(MV_DEFINED(key)); /* At time of node insertion into tree, ensure that if we have MV_CANONICAL bit set, then MV_STR bit is not set. * This makes it clear that the node key is a number and does not have the string representation constructed. */ assert(!TREE_KEY_SUBSCR_IS_CANONICAL(key->mvtype) || MV_IS_NUMERIC(key) && !MV_IS_STRING(key)); assert(NULL == lvAvlTreeLookup(lvt, key, &tmp_parent)); /* create a node in the avl tree and initialize it */ node = lvtreenode_getslot(LVT_GET_SYMVAL(lvt)); assert(NULL != node); /* node->v must be initialized by caller */ node->sbs_child = NULL; node->tree_parent = lvt; node->avl_left = node->avl_right = NULL; node->avl_parent = parent; key_mvtype = key->mvtype; if (TREE_KEY_SUBSCR_IS_CANONICAL(key_mvtype)) { /* Initialize lvTreeNodeNum structure */ fltNode = (lvTreeNodeNum *)node; fltNode->key_mvtype = (key_mvtype & MV_EXT_NUM_MASK); if (MV_INT & key_mvtype) { fltNode->key_m0 = key->m[1]; fltNode->key_flags.key_bits.key_iconv = FALSE; } else { fltNode->key_flags.key_bytes.key_sgne = ((mval_b *)key)->sgne; fltNode->key_m0 = key->m[0]; fltNode->key_m1 = key->m[1]; } } else { /* Initialize lvTreeNode structure */ node->key_mvtype = MV_STR; /* do not use input mvtype as it might have MV_NM or MV_NUM_APPROX bits set */ node->key_len = key->str.len; node->key_addr = key->str.addr; } node->balance = TREE_BALANCED; /* node->descent_dir is initialized later when this node is part of a lvAvlTreeLookup operation. * this field is not used by anyone until then so ok not to initialize it here. * Update lastLookup clue to reflect the newly inserted node. Note that this clue will continue * to be valid inspite of any single or double rotations that happen as part of the insert below. */ lastLookup = &lvt->lastLookup; lastLookup->lastNodeLookedUp = node; /* first part of lastLookup clue update */ /* Do height-balancing tree rotations as needed to maintain avl property */ if (NULL != parent) { if (TREE_DESCEND_LEFT == parent->descent_dir) { parent->avl_left = node; nodePtr = &lastLookup->lastNodeMax; } else { parent->avl_right = node; nodePtr = &lastLookup->lastNodeMin; } *nodePtr = parent; /* second (and last) part of lastLookup clue update */ t_root = lvt->avl_root; /* Do balance factor adjustment & rotation as needed */ tmpNode = parent; while (t_root != tmpNode) { balanceFactor = tmpNode->balance; if (TREE_IS_NOT_BALANCED(balanceFactor)) break; tmpNode->balance = tmpNode->descent_dir; tmpNode = tmpNode->avl_parent; } rebalanceNode = tmpNode; if (TREE_DESCEND_LEFT == rebalanceNode->descent_dir) { anchorNode = rebalanceNode->avl_left; balanceFactor = TREE_LEFT_HEAVY; } else { anchorNode = rebalanceNode->avl_right; balanceFactor = TREE_RIGHT_HEAVY; } curBalance = rebalanceNode->balance; if (TREE_IS_BALANCED(curBalance)) /* tree has grown taller */ { rebalanceNode->balance = balanceFactor; TREE_DEBUG3("Tree height increased from %d to %d\n", lvt->avl_height, (lvt->avl_height + 1)); lvt->avl_height++; assert(1 < lvt->avl_height); } else if (curBalance == TREE_INVERT_BALANCE_FACTOR(balanceFactor)) { /* the tree has gotten more balanced */ rebalanceNode->balance = TREE_BALANCED; } else { /* The tree has gotten out of balance so need a rotation */ rebalanceNodeParent = rebalanceNode->avl_parent; assert(anchorNode->balance == anchorNode->descent_dir); assert(balanceFactor == rebalanceNode->descent_dir); if (anchorNode->balance == balanceFactor) tmpNode = lvAvlTreeSingleRotation(rebalanceNode, anchorNode, balanceFactor); else tmpNode = lvAvlTreeDoubleRotation(rebalanceNode, anchorNode, balanceFactor); tmpNode->avl_parent = rebalanceNodeParent; if (NULL != rebalanceNodeParent) { /* root of tree has NOT changed */ assert(rebalanceNodeParent->descent_dir == ((rebalanceNodeParent->avl_left == rebalanceNode) ? TREE_DESCEND_LEFT : TREE_DESCEND_RIGHT)); if (TREE_DESCEND_LEFT == rebalanceNodeParent->descent_dir) rebalanceNodeParent->avl_left = tmpNode; else rebalanceNodeParent->avl_right = tmpNode; } else lvt->avl_root = tmpNode; /* new root although tree height is still the same */ } } else { /* we just inserted the real root of the tree */ assert(NULL == lvt->avl_root); lvt->avl_root = node; assert(NULL == node->avl_right); assert(NULL == node->avl_left); assert(TREE_BALANCED == node->balance); TREE_DEBUG3("Tree height increased from %d to %d\n", lvt->avl_height, (lvt->avl_height + 1)); assert(0 == lvt->avl_height); lvt->avl_height = 1; lastLookup->lastNodeMin = NULL; /* ensure lastLookup clue is uptodate */ lastLookup->lastNodeMax = NULL; /* ensure lastLookup clue is uptodate */ } TREE_DEBUG_ONLY(assert(lvTreeIsWellFormed(lvt));) return node; } /* Function to DELETE a node from the AVL tree. * * At a high level, deletion proceeds by doing a key lookup first and deleting the node wherever the lookup ends. * After deleting a node, it is necessary to check each of the node's ancestors for consistency with the rules of AVL. * For each node checked, if the height difference between the left and right subtrees is atmost 1 then no rotations are necessary. * If not, then the subtree rooted at this node is unbalanced. It is possible more than one node in the ancestor path is * unbalanced due to the deletion. Unlike insertion, MANY (as many as the height of the tree) tree rotations are needed * to restore the entire tree to the rules of AVL. * * Key points to note for AVL tree deletion are (courtesy of http://neil.brown.name/blog/20041124141849) * * It is easy to remove a node when it only has one child, as that child can replace the deleted node as the child of * the grandparent. If the target node has two children, the easiest approach is to swap the node with a node that does * have at most one child. This can work providing we can find such a node that is adjacent to the target node in the sort-order. * A few moments consideration will confirm that if a node has two children, then there must be a node both immediately above * and below it in the sort order, and that both of these must be further down the tree than the target node, and that neither * of these can have two children (as if they did, then one of the children would lie between that node and the target, which * contradicts the selection of that node). In this implementation we choose the immediately-above node (in-order successor) only. * * While insert only needed one rotation, delete may need rotation at every level. * If the shrinkage of a subtree (i.e. height reduction due to a tree rotation) causes the node's tree to shrink, the change * must propagate up. If it does not, then all higher nodes in the tree will not be affected. * * Time for delete = O(log n) for lookup + at most O(log n) rotations = O(log n) */ void lvAvlTreeNodeDelete(lvTree *lvt, lvTreeNode *node) { boolean_t treeBalanced; int4 balanceFactor, curNodeBalance; lvTreeNode *balanceThisNode, *nextBalanceThisNode, *anchorNode, *newRoot; lvTreeNode *next, *nextLeft, *nextRight, *nextParent, *left; lvTreeNode *nodeLeft, *nodeRight, *nodeParent; lvTreeNode *rebalanceNode, *rebalanceNodeParent; assert(IS_LVAVLTREENODE(((lv_val *)node))); /* ensure input "node" is of type "lvTreeNode *" or "lvTreeNodeNum *" * and not "lv_val *" */ assert(lvt == node->tree_parent); nodeLeft = node->avl_left; nodeRight = node->avl_right; nodeParent = node->avl_parent; if (NULL == nodeRight) { /* No right subtree. Move the left subtree (if it exists) over to the current node. */ balanceThisNode = nodeParent; if (NULL != balanceThisNode) { assert(balanceThisNode->descent_dir == ((balanceThisNode->avl_left == node) ? TREE_DESCEND_LEFT : TREE_DESCEND_RIGHT)); if (TREE_DESCEND_LEFT == balanceThisNode->descent_dir) balanceThisNode->avl_left = nodeLeft; else balanceThisNode->avl_right = nodeLeft; } else { /* No parent and the fact that this is an AVL tree implies only two possibilities * a) deleting only node of tree. * b) deleting root of a height=2 tree that has only one child-node on its left and no other nodes. * In either case, the tree height will reduce by 1 due to the deletion. * Set tree root here. Tree height will be reduced later in the rebalancing for loop. */ lvt->avl_root = nodeLeft; } if (NULL != nodeLeft) nodeLeft->avl_parent = balanceThisNode; } else { /* Replace node with in-order successor, and rearrange */ next = nodeRight; while (TRUE) { left = next->avl_left; if (NULL != left) { next->descent_dir = TREE_DESCEND_LEFT; next = left; } else break; } /* at this point, "next" is the in-order successor of "node" */ assert(NULL == next->avl_left); nextRight = next->avl_right; nextParent = next->avl_parent; if (nextParent != node) { balanceThisNode = nextParent; assert(nextParent->descent_dir == ((nextParent->avl_left == next) ? TREE_DESCEND_LEFT : TREE_DESCEND_RIGHT)); if (TREE_DESCEND_LEFT == nextParent->descent_dir) nextParent->avl_left = nextRight; else nextParent->avl_right = nextRight; if (NULL != nextRight) nextRight->avl_parent = nextParent; next->avl_right = nodeRight; nodeRight->avl_parent = next; } else { assert(nextParent->avl_right == next); balanceThisNode = next; } assert(NULL != balanceThisNode); next->avl_left = nextLeft = nodeLeft; if (NULL != nextLeft) nextLeft->avl_parent = next; next->avl_parent = nodeParent; next->balance = node->balance; next->descent_dir = TREE_DESCEND_RIGHT; if (NULL != nodeParent) { assert(nodeParent->descent_dir == ((nodeParent->avl_left == node) ? TREE_DESCEND_LEFT : TREE_DESCEND_RIGHT)); if (TREE_DESCEND_LEFT == nodeParent->descent_dir) nodeParent->avl_left = next; else nodeParent->avl_right = next; } else lvt->avl_root = next; /* root of avl tree changing from "node" to "next" */ } /* At this point "balanceThisNode" points to the first unbalanced node (from the bottom of the tree path) * which might also need a rotation (single or double). The rotations need to bubble up the tree hence the for loop. */ for ( ; ; balanceThisNode = nextBalanceThisNode) { /* Balancing act */ if (NULL == balanceThisNode) { /* Went past root of tree as part of balance factor adjustments. Tree height has reduced. */ TREE_DEBUG3("Tree height reduced from %d to %d\n", lvt->avl_height, (lvt->avl_height - 1)); assert(lvt->avl_height > 0); lvt->avl_height--; break; } balanceFactor = balanceThisNode->descent_dir; curNodeBalance = balanceThisNode->balance; if (TREE_IS_BALANCED(curNodeBalance)) { /* Found a balanced node in the tree path. Fix its balance to account for the decrease in subtree height. * No more tree rotations needed so break out of the for loop. */ balanceThisNode->balance = TREE_INVERT_BALANCE_FACTOR(balanceFactor); break; } nextBalanceThisNode = balanceThisNode->avl_parent; assert((NULL == nextBalanceThisNode) || nextBalanceThisNode->descent_dir == ((nextBalanceThisNode->avl_left == balanceThisNode) ? TREE_LEFT_HEAVY : TREE_RIGHT_HEAVY)); if (curNodeBalance == balanceFactor) { /* The longer subtree is the one which had its height reduce so this node now becomes balanced. * So no rotation needed for this node, but the height of this node has now reduced so we still * need to trace back up the tree to see if this causes any more height imbalances. */ balanceThisNode->balance = TREE_BALANCED; continue; } /* balanceThisNode->balance == inverse of balanceFactor. * * The subtree at balanceThisNode is already heavy on one side and a node delete has caused * the other side to reduce one more level increasing the height difference between the two * subtrees to be 2 and therefore requires a rebalance (using tree rotation). */ rebalanceNode = balanceThisNode; if (TREE_LEFT_HEAVY == balanceFactor) { balanceFactor = TREE_RIGHT_HEAVY; anchorNode = rebalanceNode->avl_right; } else { balanceFactor = TREE_LEFT_HEAVY; anchorNode = rebalanceNode->avl_left; } treeBalanced = TREE_IS_BALANCED(anchorNode->balance); if (treeBalanced || (anchorNode->balance == balanceFactor)) { newRoot = lvAvlTreeSingleRotation(rebalanceNode, anchorNode, balanceFactor); assert((treeBalanced && TREE_IS_NOT_BALANCED(rebalanceNode->balance) && TREE_IS_NOT_BALANCED(anchorNode->balance)) || (TREE_IS_BALANCED(rebalanceNode->balance) && TREE_IS_BALANCED(anchorNode->balance))); } else newRoot = lvAvlTreeDoubleRotation(rebalanceNode, anchorNode, balanceFactor); rebalanceNodeParent = nextBalanceThisNode; newRoot->avl_parent = rebalanceNodeParent; if (NULL != rebalanceNodeParent) { /* Point parent to new root of the rotated subtree */ assert(rebalanceNodeParent->descent_dir == ((rebalanceNodeParent->avl_left == rebalanceNode) ? TREE_DESCEND_LEFT : TREE_DESCEND_RIGHT)); if (TREE_DESCEND_LEFT == rebalanceNodeParent->descent_dir) rebalanceNodeParent->avl_left = newRoot; else rebalanceNodeParent->avl_right = newRoot; } else lvt->avl_root = newRoot; if (treeBalanced) { /* If tree is balanced at "anchorNode" before the rotation, the post-rotated tree height does NOT change. * This means no more need to propagate the rebalancing up the tree. Break out of the loop now. */ break; } } lvt->lastLookup.lastNodeLookedUp = NULL; /* reset lastLookup clue since all bets are off after the delete */ }