fis-gtm/sr_port/dollar_quit.c

265 lines
9.3 KiB
C

/****************************************************************
* *
* Copyright 2010, 2012 Fidelity Information Services, Inc *
* *
* This source code contains the intellectual property *
* of its copyright holder(s), and is made available *
* under a license. If you do not know the terms of *
* the license, please stop and do not read further. *
* *
****************************************************************/
#include "mdef.h"
#include "gtm_string.h"
#include <rtnhdr.h>
#include "stack_frame.h"
#include "op.h"
#include "get_ret_targ.h"
#include "xfer_enum.h"
#include "dollar_quit.h"
#if defined(__sparc)
# include "sparc.h"
#elif defined(__s390__) || defined(__MVS__)
# include "s390.h"
#elif defined(__hppa)
# include "hppa.h"
#elif defined(__ia64)
# include "ia64.h"
#endif
GBLREF int process_exiting;
/* Determine value to return for $QUIT:
*
* 0 - no return value requested
* 1 - non-alias return value requested
* 11 - alias return value requested
*
* Determination of parm/no-parm is made by calling get_ret_targ() which checks the stack frames back to
* a counted frame whether the ret_value field has a return mval, signifying that a return value is required.
* If a return value is required, determination of the type of return value is made by examining the
* generated instruction stream at the return point and checking for an OC_EXFUNRET or OC_EXFUNRETALS
* (non-alias and alias type return var processor respectively) opcode following the return point. This is
* done by isolating the instruction that indexes into the transfer table, extracting the xfer-table index
* and checking against known values for op_exfunret and op_exfunretals to determine type of return. No match
* means no return value.
*
* Because this routine looks at the generated code stream at the return point, it is highly platform
* dependent.
*
* Note: If generated code changes for a platform, this module needs to be revisited.
*/
int dollar_quit(void)
{
stack_frame *sf;
int xfer_index;
union
{
unsigned char *instr;
unsigned short *instr_type;
unsigned char *instr_type_8;
unsigned char *xfer_offset_8;
short *xfer_offset_16;
int *xfer_offset_32;
} ptrs;
/* There was no return value - return 0 */
if (NULL == get_ret_targ(&sf))
return 0;
/* There is a return value - see if they want a "regular" or alias type return argument */
sf = sf->old_frame_pointer; /* Caller's frame */
# ifdef __i386
{
ptrs.instr = sf->mpc;
/* First figure out the potential length of the lea* instruction loading compiler temp offset */
if (0x078d == *ptrs.instr_type)
ptrs.instr += 3; /* Past the 2 byte lea plus 1 byte push */
else if (0x478d == *ptrs.instr_type)
ptrs.instr += 4; /* Past the 3 byte lea plus 1 byte push */
else if (0x878d == *ptrs.instr_type)
ptrs.instr += 7; /* Past the 6 byte lea plus 1 byte push */
else
ptrs.instr = NULL;
/* Note the "long format call opcode" check below assumes that both of the EXFUNRET[ALS] calls remain at a
* greater-than-128 byte offset in the transfer table (which they currently are).
*/
if ((NULL != ptrs.instr) && (0x93FF == *ptrs.instr_type))
{
ptrs.instr += SIZEOF(*ptrs.instr_type);
xfer_index = *ptrs.xfer_offset_32 / SIZEOF(void *);
} else
xfer_index = -1;
}
# elif defined(__x86_64__)
{
ptrs.instr = sf->mpc;
if (0x8d49 == *ptrs.instr_type)
{
ptrs.instr += 2; /* Past first part of instruction type */
if (0x7e == *ptrs.instr_type_8)
ptrs.instr += 2; /* past last byte of instruction type plus 1 byte offset */
else if (0xbe == *ptrs.instr_type_8)
ptrs.instr += 5; /* past last byte of instruction type plus 4 byte offset */
else
ptrs.instr = NULL;
} else
ptrs.instr_type = NULL;
if ((NULL != ptrs.instr) && (0x93FF == *ptrs.instr_type))
{ /* Long format CALL */
ptrs.instr += SIZEOF(*ptrs.instr_type);
xfer_index = *ptrs.xfer_offset_32 / SIZEOF(void *);
} else
xfer_index = -1; /* Not an xfer index */
}
# elif defined(_AIX)
{
ptrs.instr = sf->mpc + 4; /* Past address load of compiler temp arg */
if (0xE97C == *ptrs.instr_type)
{ /* ld of descriptor address from xfer table */
ptrs.instr += SIZEOF(*ptrs.instr_type);
xfer_index = *ptrs.xfer_offset_16 / SIZEOF(void *);
} else
xfer_index = -1;
}
# elif defined(__alpha) /* Applies to both VMS and Tru64 as have same codegen */
{
ptrs.instr = sf->mpc + 4; /* Past address load of compiler temp arg */
if (UNIX_ONLY(0xA36C) VMS_ONLY(0xA36B) == *(ptrs.instr_type + 1)) /* Different code for reg diff */
/* ldl of descriptor address from xfer table - little endian - offset prior to opcode */
xfer_index = *ptrs.xfer_offset_16 / SIZEOF(void *);
else
xfer_index = -1;
}
# elif defined(__sparc)
{
ptrs.instr = sf->mpc + 4; /* Past address load of compiler temp arg */
if (0xC85C == *ptrs.instr_type)
{ /* ldx of rtn address from xfer table */
ptrs.instr += SIZEOF(*ptrs.instr_type);
xfer_index = (*ptrs.xfer_offset_16 & SPARC_MASK_OFFSET) / SIZEOF(void *);
} else
xfer_index = -1;
}
# elif defined(__s390__) || defined(__MVS__)
{
format_RXY instr_LG;
ZOS_ONLY(format_RR instr_RR;)
union
{
int offset;
struct
{ /* Used to reassemble the offset in the LG instruction */
int offset_unused:12;
int offset_hi:8;
int offset_low:12;
} instr_LG_bits;
} RXY;
/* Need to forward space past address load of compiler temp arg. On zOS, the position of the mpc can
* differ. If the origin point is an external call, we have to forward space past the BCR following
* the call point. If the origin point is an internal call, the call point is a branch with no
* following BCR. So zOS needs to determine if it has to jump over a BCR call first.
*/
ZOS_ONLY(memcpy(&instr_RR, sf->mpc, SIZEOF(instr_RR)));
ptrs.instr = sf->mpc;
ZOS_ONLY(if ((S390_OPCODE_RR_BCR == instr_RR.opcode) && (0 == instr_RR.r1) && (0 == instr_RR.r2))
ptrs.instr += 2); /* Past BCR 0,0 from external call */
ptrs.instr += 6; /* Past address load of compiler temp arg */
memcpy(&instr_LG, ptrs.instr, SIZEOF(instr_LG));
if ((S390_OPCODE_RXY_LG == instr_LG.opcode) && (S390_SUBCOD_RXY_LG == instr_LG.opcode2)
&& (GTM_REG_SAVE_RTN_ADDR == instr_LG.r1) && (GTM_REG_XFER_TABLE == instr_LG.b2))
{ /* LG of rtn address from xfer table */
RXY.offset = 0;
RXY.instr_LG_bits.offset_hi = instr_LG.dh2;
RXY.instr_LG_bits.offset_low = instr_LG.dl2;
xfer_index = RXY.offset / SIZEOF(void *);
} else
xfer_index = -1;
}
# elif defined(__hppa)
{
hppa_fmt_1 instr_LDX;
union
{
int offset;
struct
{
signed int high:19;
unsigned int low:13;
} instr_offset;
} fmt_1;
ptrs.instr = sf->mpc + 8; /* Past address load of compiler temp arg plus rtn call to load of xfer
* table call with offset in delay slot */
memcpy(&instr_LDX, ptrs.instr, SIZEOF(instr_LDX));
if (((HPPA_INS_LDW >> HPPA_SHIFT_OP) == instr_LDX.pop) && (GTM_REG_XFER_TABLE == instr_LDX.b)
&& (R22 == instr_LDX.t))
{ /* ldx of rtn address from xfer table */
fmt_1.instr_offset.low = instr_LDX.im14a;
fmt_1.instr_offset.high = instr_LDX.im14b;
xfer_index = fmt_1.offset / SIZEOF(void *);
} else
xfer_index = -1;
}
# elif defined(__ia64)
{
ia64_bundle xfer_ref_inst; /* Buffer to put built instruction into */
ia64_fmt_A4 adds_inst; /* The actual adds instruction computing xfer reference */
union
{
int offset;
struct
{
# ifdef BIGENDIAN
signed int sign:19;
unsigned int imm6d:6;
unsigned int imm7b:7;
# else
unsigned int imm7b:7;
unsigned int imm6d:6;
signed int sign:19;
# endif
} instr_offset;
} imm14;
ptrs.instr = sf->mpc + 16; /* Past address load of compiler temp arg */
# ifdef BIGENDIAN
xfer_ref_inst.hexValue.aValue = GTM_BYTESWAP_64(((ia64_bundle *)ptrs.instr)->hexValue.aValue);
xfer_ref_inst.hexValue.bValue = GTM_BYTESWAP_64(((ia64_bundle *)ptrs.instr)->hexValue.bValue);
# else
xfer_ref_inst.hexValue.aValue = ((ia64_bundle *)ptrs.instr)->hexValue.aValue;
xfer_ref_inst.hexValue.bValue = ((ia64_bundle *)ptrs.instr)->hexValue.bValue;
# endif
adds_inst.hexValue = xfer_ref_inst.format.inst3; /* Extract instruction from bundle */
if ((8 == adds_inst.format.pop) && (2 == adds_inst.format.x2a)
&& (GTM_REG_XFER_TABLE == adds_inst.format.r3) && (IA64_REG_SCRATCH1 == adds_inst.format.r1))
{ /* We have an xfer computation instruction. Find the offset to find which opcode */
imm14.instr_offset.imm7b = adds_inst.format.imm7b; /* Low order bits */
imm14.instr_offset.imm6d = adds_inst.format.imm6d; /* upper bits minus sign */
imm14.instr_offset.sign = adds_inst.format.sb; /* Sign bit propagated */
xfer_index = imm14.offset / SIZEOF(void *);
} else
xfer_index = -1;
}
# else
# error Unsupported Platform
# endif
if (xf_exfunret == xfer_index)
/* Need a QUIT with a non-alias return value */
return 1;
else if (xf_exfunretals == xfer_index)
/* Need a QUIT with an alias return value */
return 11;
else
{ /* Something weird afoot - had parm block can can't locate EXFUNRET[ALS] opcode. This can happen if
* a fatal error occurs during a call before the callee stack frame is actually pushed and we are
* called during GTM_FATAL_ERROR.* file creation. Assert that this is the case, else, we just pretend
* we didn't find a parm block..
*/
assert(process_exiting);
return 0;
}
}