fis-gtm/sr_port/mu_extr_gblout.c

318 lines
10 KiB
C

/****************************************************************
* *
* Copyright 2001, 2013 Fidelity Information Services, Inc *
* *
* This source code contains the intellectual property *
* of its copyright holder(s), and is made available *
* under a license. If you do not know the terms of *
* the license, please stop and do not read further. *
* *
****************************************************************/
#include "mdef.h"
#ifdef UNIX
#include <errno.h>
#include "gtm_stdio.h"
#include "gtmio.h"
#elif defined(VMS)
#include <rms.h>
#include <ssdef.h>
#include "iormdef.h"
#else
#error UNSUPPORTED PLATFORM
#endif
#include "gtm_string.h"
#include "io.h"
#include "gdsroot.h"
#include "gdsblk.h"
#include "gtm_facility.h"
#include "fileinfo.h"
#include "gdsbt.h"
#include "gdsfhead.h"
#include "muextr.h"
#include "cdb_sc.h"
#include "copy.h"
#include "mlkdef.h"
#include "op.h"
#include "gvcst_expand_key.h"
#include "format_targ_key.h"
#include "zshow.h"
#include "gtmmsg.h"
#include "min_max.h"
#ifdef GTM_CRYPT
#include "gtmcrypt.h"
#endif
#include "gvcst_protos.h"
#define INTEG_ERROR_RETURN \
{ \
gtm_putmsg_csa(CSA_ARG(cs_addrs) VARLSTCNT(4) ERR_EXTRFAIL, 2, gn->str.len, gn->str.addr); \
return FALSE; \
}
GBLREF bool mu_ctrlc_occurred;
GBLREF bool mu_ctrly_occurred;
GBLREF gd_addr *gd_header;
GBLREF gd_region *gv_cur_region;
GBLREF gv_key *gv_currkey;
GBLREF gv_namehead *gv_target;
GBLREF sgmnt_addrs *cs_addrs;
GBLREF sgmnt_data_ptr_t cs_data;
error_def(ERR_EXTRFAIL);
error_def(ERR_RECORDSTAT);
#if defined(UNIX) && defined(GTM_CRYPT)
boolean_t mu_extr_gblout(mval *gn, mu_extr_stats *st, int format, muext_hash_hdr_ptr_t hash_array,
boolean_t is_any_file_encrypted)
#elif defined(UNIX)
boolean_t mu_extr_gblout(mval *gn, mu_extr_stats *st, int format)
#elif defined(VMS)
boolean_t mu_extr_gblout(mval *gn, struct RAB *outrab, mu_extr_stats *st, int format)
#else
#error UNSUPPORTED PLATFORM
#endif
{
blk_hdr_ptr_t bp;
boolean_t beg_key;
int data_len, des_len, fmtd_key_len, gname_size;
int tmp_cmpc;
rec_hdr_ptr_t rp, save_rp;
sm_uc_ptr_t blktop, cp1, rectop;
unsigned char *cp2, current, *keytop, last;
unsigned short out_size, rec_size;
static gv_key *beg_gv_currkey; /* this is used to check key out of order condition */
static int max_zwr_len = 0;
static unsigned char *private_blk = NULL, *zwr_buffer = NULL, *key_buffer = NULL;
static uint4 private_blksz = 0;
mval *val_span = NULL;
boolean_t is_hidden, found_dummy = FALSE;
# ifdef GTM_CRYPT
char *in, *out;
gd_region *reg, *reg_top;
int gtmcrypt_errno;
static gtmcrypt_key_t encr_key_handle;
static int4 index, prev_allocated_size;
static sgmnt_data_ptr_t prev_csd;
static unsigned char *unencrypted_blk_buff;
gd_segment *seg;
# endif
op_gvname(VARLSTCNT(1) gn); /* op_gvname() must be done before any usage of cs_addrs or, gv_currkey */
if (0 == gv_target->root)
return TRUE; /* possible if ROLLBACK ended up physically removing a global from the database */
if (NULL == key_buffer)
key_buffer = (unsigned char *)malloc(MAX_ZWR_KEY_SZ);
if (ZWR_EXP_RATIO(cs_addrs->hdr->max_rec_size) > max_zwr_len)
{
if (NULL != zwr_buffer)
free (zwr_buffer);
max_zwr_len = ZWR_EXP_RATIO(cs_addrs->hdr->max_rec_size);
zwr_buffer = (unsigned char *)malloc(max_zwr_len);
}
assert(0 < cs_data->blk_size);
if (cs_data->blk_size > private_blksz)
{
if (NULL != private_blk)
free(private_blk);
private_blksz = cs_data->blk_size;
private_blk = (unsigned char *)malloc(private_blksz);
}
if (NULL == beg_gv_currkey)
beg_gv_currkey = (gv_key *)malloc(SIZEOF(gv_key) + MAX_KEY_SZ);
memcpy(beg_gv_currkey->base, gv_currkey->base, (SIZEOF(gv_key) + gv_currkey->end));
gname_size = gv_currkey->end;
keytop = &gv_currkey->base[gv_currkey->top];
st->recknt = st->reclen = st->keylen = st->datalen = 0;
# ifdef GTM_CRYPT
if (is_any_file_encrypted && (cs_data->is_encrypted) && (format == MU_FMT_BINARY))
{
ASSERT_ENCRYPTION_INITIALIZED; /* due to op_gvname done from gv_select in mu_extract */
if (prev_csd != cs_data)
{
prev_csd = cs_data;
for (reg = gd_header->regions, reg_top = reg + gd_header->n_regions, index = 0;
reg < reg_top; reg++, index++)
{
if (gv_cur_region == reg)
break;
}
assert(gv_cur_region < reg_top);
GTMCRYPT_GETKEY(cs_addrs, hash_array[index].gtmcrypt_hash, encr_key_handle, gtmcrypt_errno);
if (0 != gtmcrypt_errno)
{
seg = gv_cur_region->dyn.addr;
GTMCRYPT_REPORT_ERROR(gtmcrypt_errno, gtm_putmsg, seg->fname_len, seg->fname);
return FALSE;
}
}
}
# endif
for ( ; ; )
{
if (mu_ctrly_occurred)
return FALSE;
if (mu_ctrlc_occurred)
{
gtm_putmsg_csa(CSA_ARG(cs_addrs) VARLSTCNT(8) ERR_RECORDSTAT, 6, LEN_AND_LIT("TOTAL"),
st->recknt, st->keylen, st->datalen, st->reclen);
mu_ctrlc_occurred = FALSE;
}
if (!mu_extr_getblk(private_blk))
break;
bp = (blk_hdr_ptr_t)private_blk;
if (bp->bsiz == SIZEOF(blk_hdr))
break;
if (0 != bp->levl || bp->bsiz < SIZEOF(blk_hdr) || bp->bsiz > cs_data->blk_size ||
gv_target->hist.h[0].curr_rec.match < gname_size)
INTEG_ERROR_RETURN
/* Note that rp may not be the beginning of a block */
rp = (rec_hdr_ptr_t)(gv_target->hist.h[0].curr_rec.offset + (sm_uc_ptr_t)bp);
blktop = (sm_uc_ptr_t)bp + bp->bsiz;
if (format == MU_FMT_BINARY)
{
out_size = blktop - (sm_uc_ptr_t)rp;
save_rp = rp;
# ifdef GTM_CRYPT
if (is_any_file_encrypted)
{
if (cs_data->is_encrypted)
{
in = (char *)(rp);
*(int4 *)(cs_addrs->encrypted_blk_contents) = index;
out = cs_addrs->encrypted_blk_contents + SIZEOF(int4);
GTMCRYPT_ENCRYPT(cs_addrs, encr_key_handle, in, out_size, out, gtmcrypt_errno)
if (0 != gtmcrypt_errno)
{
seg = gv_cur_region->dyn.addr;
GTMCRYPT_REPORT_ERROR(gtmcrypt_errno, gtm_putmsg, seg->fname_len, seg->fname);
return FALSE;
}
rp = (rec_hdr_ptr_t)cs_addrs->encrypted_blk_contents;
} else
{ /* For unencrypted database, we cannot use cs_addrs->encrypted_blk_contents. Instead, use
* a static malloc'ed buffer. The malloc is needed because the buffer that's written out
* to the extract file is prefixed with an int4 indicating the ith database that this block
* corresponds to and -1 (if the database is unencrypted).
*/
if ((NULL == unencrypted_blk_buff) || (prev_allocated_size < out_size))
{
if (NULL != unencrypted_blk_buff)
free(unencrypted_blk_buff);
unencrypted_blk_buff = (unsigned char *) malloc(out_size + SIZEOF(int4));
prev_allocated_size = out_size;
}
*(int4 *)(unencrypted_blk_buff) = -1;
memcpy(unencrypted_blk_buff + (SIZEOF(int4)), rp, out_size);
rp = (rec_hdr_ptr_t)unencrypted_blk_buff;
}
out_size += SIZEOF(int4);
}
# endif
WRITE_BIN_EXTR_BLK(rp, out_size); /* output records of current block */
rp = save_rp;
}
for (beg_key = TRUE; (sm_uc_ptr_t)rp < blktop; rp = (rec_hdr_ptr_t)rectop)
{ /* Start scanning a block */
GET_USHORT(rec_size, &rp->rsiz);
rectop = (sm_uc_ptr_t)rp + rec_size;
EVAL_CMPC2(rp, tmp_cmpc);
if (rectop > blktop || tmp_cmpc > gv_currkey->end ||
(((unsigned char *)rp != private_blk + SIZEOF(blk_hdr)) && (tmp_cmpc < gname_size)))
INTEG_ERROR_RETURN
cp1 = (sm_uc_ptr_t)(rp + 1);
cp2 = gv_currkey->base + tmp_cmpc;
if (cp2 >= keytop || cp1 >= rectop)
INTEG_ERROR_RETURN
if (!beg_key && (*cp2 >= *cp1))
INTEG_ERROR_RETURN
for (;;)
{
if (0 == (*cp2++ = *cp1++))
{
if (cp2 >= keytop || cp1 >= rectop)
INTEG_ERROR_RETURN
if (0 == (*cp2++ = *cp1++))
break;
}
if (cp2 >= keytop || cp1 >= rectop)
INTEG_ERROR_RETURN
}
gv_currkey->end = cp2 - gv_currkey->base - 1;
if (beg_key)
{ /* beg_gv_currkey usually the first key of a block,
but for concurrency conflict it could be any key */
beg_key = FALSE;
memcpy(beg_gv_currkey->base, gv_currkey->base, gv_currkey->end + 1);
beg_gv_currkey->end = gv_currkey->end;
}
if (st->reclen < rec_size)
st->reclen = rec_size;
# ifdef UNIX
CHECK_HIDDEN_SUBSCRIPT(gv_currkey, is_hidden);
if (is_hidden)
continue;
# endif
st->recknt++;
if (st->keylen < gv_currkey->end + 1)
st->keylen = gv_currkey->end + 1;
data_len = (int)(rec_size - (cp1 - (sm_uc_ptr_t)rp));
if (0 > data_len)
INTEG_ERROR_RETURN
if (st->datalen < data_len)
st->datalen = data_len;
# ifdef UNIX
if ((1 == data_len) && ('\0' == *cp1))
{ /* Possibly (probably) a spanning node. Need to read in more blocks to get the value */
if (!val_span)
{ /* protect val_span from stp_gcol in WRITE_EXTR_LINE/op_write */
PUSH_MV_STENT(MVST_MVAL);
val_span = &mv_chain->mv_st_cont.mvs_mval;
}
gvcst_get(val_span);
cp1 = (unsigned char *)val_span->str.addr;
data_len = val_span->str.len;
found_dummy = TRUE;
if (st->datalen < data_len)
st->datalen = data_len;
}
# endif
if (MU_FMT_BINARY != format)
{
cp2 = (unsigned char *)format_targ_key(key_buffer, MAX_ZWR_KEY_SZ, gv_currkey, TRUE);
fmtd_key_len = (int)(cp2 - key_buffer);
if (MU_FMT_ZWR == format)
{
memcpy(zwr_buffer, key_buffer, fmtd_key_len);
memcpy(zwr_buffer + fmtd_key_len, "=", 1);
des_len = 0;
format2zwr(cp1, data_len, zwr_buffer + fmtd_key_len + 1, &des_len);
WRITE_EXTR_LINE(zwr_buffer, (fmtd_key_len + des_len + 1));
}
else if (MU_FMT_GO == format)
{
WRITE_EXTR_LINE(key_buffer, fmtd_key_len);
WRITE_EXTR_LINE(cp1, data_len);
}
}
# ifdef UNIX
if (found_dummy)
{
val_span->mvtype = 0; /* so stp_gcol can free up any space */
found_dummy = FALSE;
}
# endif
} /* End scanning a block */
if ((sm_uc_ptr_t)rp != blktop ||
(memcmp(gv_currkey->base, beg_gv_currkey->base, MIN(gv_currkey->end, beg_gv_currkey->end)) < 0))
INTEG_ERROR_RETURN
gv_currkey->base[gv_currkey->end] = 1;
gv_currkey->base[gv_currkey->end + 1] = 0;
gv_currkey->base[gv_currkey->end + 2] = 0;
gv_currkey->end += 2;
} /* end outmost for */
return TRUE;
}