fis-gtm/sr_port/shrink_trips.c

159 lines
5.6 KiB
C

/****************************************************************
* *
* Copyright 2003, 2011 Fidelity Information Services, Inc *
* *
* This source code contains the intellectual property *
* of its copyright holder(s), and is made available *
* under a license. If you do not know the terms of *
* the license, please stop and do not read further. *
* *
****************************************************************/
#include "mdef.h"
#include "gtm_stdio.h"
#include "compiler.h"
#include "opcode.h"
#include "mdq.h"
#include "cgp.h"
#include "gtmdbglvl.h"
#include "cdbg_dump.h"
#include <emit_code.h>
#include "rtnhdr.h"
#include "obj_file.h"
#if defined(USHBIN_SUPPORTED) || defined(VMS)
GBLREF int4 curr_addr, code_size;
GBLREF char cg_phase; /* code generation phase */
GBLREF triple t_orig; /* head of triples */
GBLREF uint4 gtmDebugLevel;
LITREF octabstruct oc_tab[]; /* op-code table */
/* Certain triples need to have their expansions shrunk down to be optimal. Current
* triples that are eligible for shrinking are:
* <triples of type OCT_JUMP>
* OC_LDADDR
* OC_FORLOOP
* literal argument references (either one) for given triple
* Many of the jump triples start out life as long jumps because of the assumped jump offset
* in the first pass before the offsets are known. This is where we shrink them.
*
* For the literal referencess, if the offset into the literal table exceeds that which can be
* addressed by the immediate operand of a load address instruction, a long form is generated.
* But this long form is initially assumed. This is where we will shrink it if we can which
* should be the normal case.
*/
void shrink_trips(void)
{
int new_size, old_size, shrink;
boolean_t first_pass;
triple *ct; /* current triple */
DCL_THREADGBL_ACCESS;
SETUP_THREADGBL_ACCESS;
# ifdef DEBUG
/* If debug and compiler debugging enabled, run through triples again to show where we are just before we modify them. */
if (gtmDebugLevel & GDL_DebugCompiler)
{
PRINTF(" \n\n\n\n************************************ Begin pre-shrink_trips dump *****************************\n");
dqloop(&t_orig, exorder, ct)
{
PRINTF(" ************************ Triple Start **********************\n");
cdbg_dump_triple(ct, 0);
}
PRINTF(" \n\n\n\n************************************ Begin shrink_trips scan *****************************\n");
}
# endif
first_pass = TRUE;
assert(CGP_ADDR_OPT == cg_phase); /* Follows address optimization phase */
do
{
shrink = 0;
dqloop(&t_orig, exorder, ct)
{
if ((oc_tab[ct->opcode].octype & OCT_JUMP) || (OC_LDADDR == ct->opcode) || (OC_FORLOOP == ct->opcode))
{
old_size = ct->exorder.fl->rtaddr - ct->rtaddr;
curr_addr = 0;
if (ct->operand[0].oprval.tref->rtaddr - ct->rtaddr < 0)
{
ct->rtaddr -= shrink;
trip_gen(ct);
} else
{
trip_gen(ct);
ct->rtaddr -= shrink;
}
new_size = curr_addr; /* size of operand 0 */
assert(old_size >= new_size);
COMPDBG(if (0 != (old_size - new_size)) cdbg_dump_shrunk_triple(ct, old_size, new_size););
shrink += old_size - new_size;
} else if (first_pass && !(oc_tab[ct->opcode].octype & OCT_CGSKIP) &&
(litref_triple_oprcheck(&ct->operand[0]) || litref_triple_oprcheck(&ct->operand[1])))
{
old_size = ct->exorder.fl->rtaddr - ct->rtaddr;
curr_addr = 0;
trip_gen(ct);
ct->rtaddr -= shrink;
new_size = curr_addr; /* size of operand 0 */
assert(old_size >= new_size);
COMPDBG(if (0 != (old_size - new_size)) cdbg_dump_shrunk_triple(ct, old_size, new_size););
shrink += old_size - new_size;
} else
ct->rtaddr -= shrink;
if (0 == shrink && OC_TRIPSIZE == ct->opcode)
{ /* This triple is a reference to another triple whose codegen size we want to compute for an
* argument to another triple. We will only do this on what appears to (thus far) be
* the last pass through the triples).
*/
curr_addr = 0;
trip_gen(ct->operand[0].oprval.tsize->ct);
ct->operand[0].oprval.tsize->size = curr_addr;
}
} /* dqloop */
code_size -= shrink;
first_pass = FALSE;
} while (0 != shrink); /* Do until no more shrinking occurs */
/* Now that the code has been strunk, we may have to adjust the pad length of the code segment. Compute
* this by now subtracting out the size of the pad length from the code size and recomputing the pad length
* and readjusting the code size. (see similar computation in code_gen().
*/
code_size -= TREF(codegen_padlen);
TREF(codegen_padlen) = PADLEN(code_size, SECTION_ALIGN_BOUNDARY); /* Length to pad to align next section */
code_size += TREF(codegen_padlen);
# ifdef DEBUG
/* If debug and compiler debuggingenabled, run through the triples again to show what we did to them */
if (gtmDebugLevel & GDL_DebugCompiler)
{
dqloop(&t_orig, exorder, ct)
{
PRINTF(" ************************ Triple Start **********************\n");
cdbg_dump_triple(ct, 0);
}
}
# endif
}
/* Check if this operand or any it may be chained to are literals in the literal section (not immediate operands) */
boolean_t litref_triple_oprcheck(oprtype *operand)
{
if (TRIP_REF == operand->oprclass)
{ /* We are referring to another triple */
if (OC_LIT == operand->oprval.tref->opcode)
/* It is a literal section reference.. done */
return TRUE;
if (OC_PARAMETER == operand->oprval.tref->opcode)
{ /* There are two more parameters to check. Call recursively */
if (litref_triple_oprcheck(&operand->oprval.tref->operand[0]))
return TRUE;
return litref_triple_oprcheck(&operand->oprval.tref->operand[1]);
}
}
return FALSE; /* Uninteresting triple .. not our type */
}
#endif /* USHBIN_SUPPORTED or VMS */