python-peps/pep-0443.txt

277 lines
9.7 KiB
Plaintext
Raw Normal View History

PEP: 443
Title: Single-dispatch generic functions
Version: $Revision$
Last-Modified: $Date$
Author: Łukasz Langa <lukasz@langa.pl>
Discussions-To: Python-Dev <python-dev@python.org>
Status: Draft
Type: Standards Track
Content-Type: text/x-rst
Created: 22-May-2013
Post-History: 22-May-2013
Replaces: 245, 246, 3124
Abstract
========
This PEP proposes a new mechanism in the ``functools`` standard library
module that provides a simple form of generic programming known as
single-dispatch generic functions.
A **generic function** is composed of multiple functions sharing the
same name. Which form should be used during a call is determined by the
dispatch algorithm. When the implementation is chosen based on the type
of a single argument, this is known as **single dispatch**.
Rationale and Goals
===================
Python has always provided a variety of built-in and standard-library
generic functions, such as ``len()``, ``iter()``, ``pprint.pprint()``,
``copy.copy()``, and most of the functions in the ``operator`` module.
However, it currently:
1. does not have a simple or straightforward way for developers to
create new generic functions,
2. does not have a standard way for methods to be added to existing
generic functions (i.e., some are added using registration
functions, others require defining ``__special__`` methods, possibly
by monkeypatching).
In addition, it is currently a common anti-pattern for Python code to
inspect the types of received arguments, in order to decide what to do
with the objects. For example, code may wish to accept either an object
of some type, or a sequence of objects of that type.
Currently, the "obvious way" to do this is by type inspection, but this
is brittle and closed to extension. Abstract Base Classes make it easier
to discover present behaviour, but don't help adding new behaviour.
A developer using an already-written library may be unable to change how
their objects are treated by such code, especially if the objects they
are using were created by a third party.
Therefore, this PEP proposes a uniform API to address dynamic
overloading using decorators.
User API
========
To define a generic function, decorate it with the ``@singledispatch``
decorator. Note that the dispatch happens on the type of the first
argument, create your function accordingly:
.. code-block:: pycon
>>> from functools import singledispatch
>>> @singledispatch
... def fun(arg, verbose=False):
... if verbose:
... print("Let me just say,", end=" ")
... print(arg)
To add overloaded implementations to the function, use the
``register()`` attribute of the generic function. It takes a type
parameter:
.. code-block:: pycon
>>> @fun.register(int)
... def _(arg, verbose=False):
... if verbose:
... print("Strength in numbers, eh?", end=" ")
... print(arg)
...
>>> @fun.register(list)
... def _(arg, verbose=False):
... if verbose:
... print("Enumerate this:")
... for i, elem in enumerate(arg):
... print(i, elem)
To enable registering lambdas and pre-existing functions, the
``register()`` attribute can be used in a functional form:
.. code-block:: pycon
>>> def nothing(arg, verbose=False):
... print("Nothing.")
...
>>> fun.register(type(None), nothing)
When called, the function dispatches on the first argument:
.. code-block:: pycon
>>> fun("Hello, world.")
Hello, world.
>>> fun("test.", verbose=True)
Let me just say, test.
>>> fun(42, verbose=True)
Strength in numbers, eh? 42
>>> fun(['spam', 'spam', 'eggs', 'spam'], verbose=True)
Enumerate this:
0 spam
1 spam
2 eggs
3 spam
>>> fun(None)
Nothing.
The proposed API is intentionally limited and opinionated, as to ensure
it is easy to explain and use, as well as to maintain consistency with
existing members in the ``functools`` module.
Implementation Notes
====================
The functionality described in this PEP is already implemented in the
``pkgutil`` standard library module as ``simplegeneric``. Because this
implementation is mature, the goal is to move it largely as-is. Several
open issues remain:
* the current implementation relies on ``__mro__`` alone, making it
incompatible with Abstract Base Classes'
``register()``/``unregister()`` functionality. A possible solution has
been proposed by PJE on the original issue for exposing
``pkgutil.simplegeneric`` as part of the ``functools`` API
[#issue-5135]_.
* the dispatch type is currently specified as a decorator argument. The
implementation could allow a form using argument annotations. This
usage pattern is out of scope for the standard library [#pep-0008]_.
However, whether this registration form would be acceptable for
general usage, is up to debate.
Based on the current ``pkgutil.simplegeneric`` implementation and
following the convention on registering virtual subclasses on Abstract
Base Classes, the dispatch registry will not be thread-safe.
Usage Patterns
==============
This PEP proposes extending behaviour only of functions specifically
marked as generic. Just as a base class method may be overridden by
a subclass, so too may a function be overloaded to provide custom
functionality for a given type.
Universal overloading does not equal *arbitrary* overloading, in the
sense that we need not expect people to randomly redefine the behavior
of existing functions in unpredictable ways. To the contrary, generic
function usage in actual programs tends to follow very predictable
patterns and overloads are highly-discoverable in the common case.
If a module is defining a new generic operation, it will usually also
define any required overloads for existing types in the same place.
Likewise, if a module is defining a new type, then it will usually
define overloads there for any generic functions that it knows or cares
about. As a result, the vast majority of overloads can be found adjacent
to either the function being overloaded, or to a newly-defined type for
which the overload is adding support.
It is only in rather infrequent cases that one will have overloads in
a module that contains neither the function nor the type(s) for which
the overload is added. In the absence of incompetence or deliberate
intention to be obscure, the few overloads that are not adjacent to the
relevant type(s) or function(s), will generally not need to be
understood or known about outside the scope where those overloads are
defined. (Except in the "support modules" case, where best practice
suggests naming them accordingly.)
As mentioned earlier, single-dispatch generics are already prolific
throughout the standard library. A clean, standard way of doing them
provides a way forward to refactor those custom implementations to use
a common one, opening them up for user extensibility at the same time.
Alternative approaches
======================
In PEP 3124 [#pep-3124]_ Phillip J. Eby proposes a full-grown solution
with overloading based on arbitrary rule sets (with the default
implementation dispatching on argument types), as well as interfaces,
adaptation and method combining. PEAK-Rules [#peak-rules]_ is
a reference implementation of the concepts described in PJE's PEP.
Such a broad approach is inherently complex, which makes reaching
a consensus hard. In contrast, this PEP focuses on a single piece of
functionality that is simple to reason about. It's important to note
this does not preclude the use of other approaches now or in the future.
In a 2005 article on Artima [#artima2005]_ Guido van Rossum presents
a generic function implementation that dispatches on types of all
arguments on a function. The same approach was chosen in Andrey Popp's
``generic`` package available on PyPI [#pypi-generic]_, as well as David
Mertz's ``gnosis.magic.multimethods`` [#gnosis-multimethods]_.
While this seems desirable at first, I agree with Fredrik Lundh's
comment that "if you design APIs with pages of logic just to sort out
what code a function should execute, you should probably hand over the
API design to someone else". In other words, the single argument
approach proposed in this PEP is not only easier to implement but also
clearly communicates that dispatching on a more complex state is an
anti-pattern. It also has the virtue of corresponding directly with the
familiar method dispatch mechanism in object oriented programming. The
only difference is whether the custom implementation is associated more
closely with the data (object-oriented methods) or the algorithm
(single-dispatch overloading).
Acknowledgements
================
Apart from Phillip J. Eby's work on PEP 3124 [#pep-3124]_ and
PEAK-Rules, influences include Paul Moore's original issue
[#issue-5135]_ that proposed exposing ``pkgutil.simplegeneric`` as part
of the ``functools`` API, Guido van Rossum's article on multimethods
[#artima2005]_, and discussions with Raymond Hettinger on a general
pprint rewrite.
References
==========
.. [#issue-5135] http://bugs.python.org/issue5135
.. [#pep-0008] PEP 8 states in the "Programming Recommendations"
section that "the Python standard library will not use function
annotations as that would result in a premature commitment to
a particular annotation style".
(http://www.python.org/dev/peps/pep-0008)
.. [#pep-3124] http://www.python.org/dev/peps/pep-3124/
.. [#peak-rules] http://peak.telecommunity.com/DevCenter/PEAK_2dRules
.. [#artima2005]
http://www.artima.com/weblogs/viewpost.jsp?thread=101605
.. [#pypi-generic] http://pypi.python.org/pypi/generic
.. [#gnosis-multimethods]
http://gnosis.cx/publish/programming/charming_python_b12.html
Copyright
=========
This document has been placed in the public domain.
..
Local Variables:
mode: indented-text
indent-tabs-mode: nil
sentence-end-double-space: t
fill-column: 70
coding: utf-8
End: